1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *
4 * Alchemy Au1x00 ethernet driver
5 *
6 * Copyright 2001-2003, 2006 MontaVista Software Inc.
7 * Copyright 2002 TimeSys Corp.
8 * Added ethtool/mii-tool support,
9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
11 * or riemer@riemer-nt.de: fixed the link beat detection with
12 * ioctls (SIOCGMIIPHY)
13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
14 *  converted to use linux-2.6.x's PHY framework
15 *
16 * Author: MontaVista Software, Inc.
17 *		ppopov@mvista.com or source@mvista.com
18 */
19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21#include <linux/capability.h>
22#include <linux/dma-mapping.h>
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/string.h>
26#include <linux/timer.h>
27#include <linux/errno.h>
28#include <linux/in.h>
29#include <linux/ioport.h>
30#include <linux/bitops.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/mii.h>
37#include <linux/skbuff.h>
38#include <linux/delay.h>
39#include <linux/crc32.h>
40#include <linux/phy.h>
41#include <linux/platform_device.h>
42#include <linux/cpu.h>
43#include <linux/io.h>
44
45#include <asm/mipsregs.h>
46#include <asm/irq.h>
47#include <asm/processor.h>
48
49#include <au1000.h>
50#include <au1xxx_eth.h>
51#include <prom.h>
52
53#include "au1000_eth.h"
54
55#ifdef AU1000_ETH_DEBUG
56static int au1000_debug = 5;
57#else
58static int au1000_debug = 3;
59#endif
60
61#define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
62				NETIF_MSG_PROBE	| \
63				NETIF_MSG_LINK)
64
65#define DRV_NAME	"au1000_eth"
66#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
67#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
68
69MODULE_AUTHOR(DRV_AUTHOR);
70MODULE_DESCRIPTION(DRV_DESC);
71MODULE_LICENSE("GPL");
72
73/* AU1000 MAC registers and bits */
74#define MAC_CONTROL		0x0
75#  define MAC_RX_ENABLE		(1 << 2)
76#  define MAC_TX_ENABLE		(1 << 3)
77#  define MAC_DEF_CHECK		(1 << 5)
78#  define MAC_SET_BL(X)		(((X) & 0x3) << 6)
79#  define MAC_AUTO_PAD		(1 << 8)
80#  define MAC_DISABLE_RETRY	(1 << 10)
81#  define MAC_DISABLE_BCAST	(1 << 11)
82#  define MAC_LATE_COL		(1 << 12)
83#  define MAC_HASH_MODE		(1 << 13)
84#  define MAC_HASH_ONLY		(1 << 15)
85#  define MAC_PASS_ALL		(1 << 16)
86#  define MAC_INVERSE_FILTER	(1 << 17)
87#  define MAC_PROMISCUOUS	(1 << 18)
88#  define MAC_PASS_ALL_MULTI	(1 << 19)
89#  define MAC_FULL_DUPLEX	(1 << 20)
90#  define MAC_NORMAL_MODE	0
91#  define MAC_INT_LOOPBACK	(1 << 21)
92#  define MAC_EXT_LOOPBACK	(1 << 22)
93#  define MAC_DISABLE_RX_OWN	(1 << 23)
94#  define MAC_BIG_ENDIAN	(1 << 30)
95#  define MAC_RX_ALL		(1 << 31)
96#define MAC_ADDRESS_HIGH	0x4
97#define MAC_ADDRESS_LOW		0x8
98#define MAC_MCAST_HIGH		0xC
99#define MAC_MCAST_LOW		0x10
100#define MAC_MII_CNTRL		0x14
101#  define MAC_MII_BUSY		(1 << 0)
102#  define MAC_MII_READ		0
103#  define MAC_MII_WRITE		(1 << 1)
104#  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
105#  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
106#define MAC_MII_DATA		0x18
107#define MAC_FLOW_CNTRL		0x1C
108#  define MAC_FLOW_CNTRL_BUSY	(1 << 0)
109#  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
110#  define MAC_PASS_CONTROL	(1 << 2)
111#  define MAC_SET_PAUSE(X)	(((X) & 0xffff) << 16)
112#define MAC_VLAN1_TAG		0x20
113#define MAC_VLAN2_TAG		0x24
114
115/* Ethernet Controller Enable */
116#  define MAC_EN_CLOCK_ENABLE	(1 << 0)
117#  define MAC_EN_RESET0		(1 << 1)
118#  define MAC_EN_TOSS		(0 << 2)
119#  define MAC_EN_CACHEABLE	(1 << 3)
120#  define MAC_EN_RESET1		(1 << 4)
121#  define MAC_EN_RESET2		(1 << 5)
122#  define MAC_DMA_RESET		(1 << 6)
123
124/* Ethernet Controller DMA Channels */
125/* offsets from MAC_TX_RING_ADDR address */
126#define MAC_TX_BUFF0_STATUS	0x0
127#  define TX_FRAME_ABORTED	(1 << 0)
128#  define TX_JAB_TIMEOUT	(1 << 1)
129#  define TX_NO_CARRIER		(1 << 2)
130#  define TX_LOSS_CARRIER	(1 << 3)
131#  define TX_EXC_DEF		(1 << 4)
132#  define TX_LATE_COLL_ABORT	(1 << 5)
133#  define TX_EXC_COLL		(1 << 6)
134#  define TX_UNDERRUN		(1 << 7)
135#  define TX_DEFERRED		(1 << 8)
136#  define TX_LATE_COLL		(1 << 9)
137#  define TX_COLL_CNT_MASK	(0xF << 10)
138#  define TX_PKT_RETRY		(1 << 31)
139#define MAC_TX_BUFF0_ADDR	0x4
140#  define TX_DMA_ENABLE		(1 << 0)
141#  define TX_T_DONE		(1 << 1)
142#  define TX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
143#define MAC_TX_BUFF0_LEN	0x8
144#define MAC_TX_BUFF1_STATUS	0x10
145#define MAC_TX_BUFF1_ADDR	0x14
146#define MAC_TX_BUFF1_LEN	0x18
147#define MAC_TX_BUFF2_STATUS	0x20
148#define MAC_TX_BUFF2_ADDR	0x24
149#define MAC_TX_BUFF2_LEN	0x28
150#define MAC_TX_BUFF3_STATUS	0x30
151#define MAC_TX_BUFF3_ADDR	0x34
152#define MAC_TX_BUFF3_LEN	0x38
153
154/* offsets from MAC_RX_RING_ADDR */
155#define MAC_RX_BUFF0_STATUS	0x0
156#  define RX_FRAME_LEN_MASK	0x3fff
157#  define RX_WDOG_TIMER		(1 << 14)
158#  define RX_RUNT		(1 << 15)
159#  define RX_OVERLEN		(1 << 16)
160#  define RX_COLL		(1 << 17)
161#  define RX_ETHER		(1 << 18)
162#  define RX_MII_ERROR		(1 << 19)
163#  define RX_DRIBBLING		(1 << 20)
164#  define RX_CRC_ERROR		(1 << 21)
165#  define RX_VLAN1		(1 << 22)
166#  define RX_VLAN2		(1 << 23)
167#  define RX_LEN_ERROR		(1 << 24)
168#  define RX_CNTRL_FRAME	(1 << 25)
169#  define RX_U_CNTRL_FRAME	(1 << 26)
170#  define RX_MCAST_FRAME	(1 << 27)
171#  define RX_BCAST_FRAME	(1 << 28)
172#  define RX_FILTER_FAIL	(1 << 29)
173#  define RX_PACKET_FILTER	(1 << 30)
174#  define RX_MISSED_FRAME	(1 << 31)
175
176#  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
177		    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
178		    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
179#define MAC_RX_BUFF0_ADDR	0x4
180#  define RX_DMA_ENABLE		(1 << 0)
181#  define RX_T_DONE		(1 << 1)
182#  define RX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
183#  define RX_SET_BUFF_ADDR(X)	((X) & 0xffffffc0)
184#define MAC_RX_BUFF1_STATUS	0x10
185#define MAC_RX_BUFF1_ADDR	0x14
186#define MAC_RX_BUFF2_STATUS	0x20
187#define MAC_RX_BUFF2_ADDR	0x24
188#define MAC_RX_BUFF3_STATUS	0x30
189#define MAC_RX_BUFF3_ADDR	0x34
190
191/*
192 * Theory of operation
193 *
194 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
195 * There are four receive and four transmit descriptors.  These
196 * descriptors are not in memory; rather, they are just a set of
197 * hardware registers.
198 *
199 * Since the Au1000 has a coherent data cache, the receive and
200 * transmit buffers are allocated from the KSEG0 segment. The
201 * hardware registers, however, are still mapped at KSEG1 to
202 * make sure there's no out-of-order writes, and that all writes
203 * complete immediately.
204 */
205
206/*
207 * board-specific configurations
208 *
209 * PHY detection algorithm
210 *
211 * If phy_static_config is undefined, the PHY setup is
212 * autodetected:
213 *
214 * mii_probe() first searches the current MAC's MII bus for a PHY,
215 * selecting the first (or last, if phy_search_highest_addr is
216 * defined) PHY address not already claimed by another netdev.
217 *
218 * If nothing was found that way when searching for the 2nd ethernet
219 * controller's PHY and phy1_search_mac0 is defined, then
220 * the first MII bus is searched as well for an unclaimed PHY; this is
221 * needed in case of a dual-PHY accessible only through the MAC0's MII
222 * bus.
223 *
224 * Finally, if no PHY is found, then the corresponding ethernet
225 * controller is not registered to the network subsystem.
226 */
227
228/* autodetection defaults: phy1_search_mac0 */
229
230/* static PHY setup
231 *
232 * most boards PHY setup should be detectable properly with the
233 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
234 * you have a switch attached, or want to use the PHY's interrupt
235 * notification capabilities) you can provide a static PHY
236 * configuration here
237 *
238 * IRQs may only be set, if a PHY address was configured
239 * If a PHY address is given, also a bus id is required to be set
240 *
241 * ps: make sure the used irqs are configured properly in the board
242 * specific irq-map
243 */
244static void au1000_enable_mac(struct net_device *dev, int force_reset)
245{
246	unsigned long flags;
247	struct au1000_private *aup = netdev_priv(dev);
248
249	spin_lock_irqsave(&aup->lock, flags);
250
251	if (force_reset || (!aup->mac_enabled)) {
252		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
253		wmb(); /* drain writebuffer */
254		mdelay(2);
255		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
256				| MAC_EN_CLOCK_ENABLE), aup->enable);
257		wmb(); /* drain writebuffer */
258		mdelay(2);
259
260		aup->mac_enabled = 1;
261	}
262
263	spin_unlock_irqrestore(&aup->lock, flags);
264}
265
266/*
267 * MII operations
268 */
269static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
270{
271	struct au1000_private *aup = netdev_priv(dev);
272	u32 *const mii_control_reg = &aup->mac->mii_control;
273	u32 *const mii_data_reg = &aup->mac->mii_data;
274	u32 timedout = 20;
275	u32 mii_control;
276
277	while (readl(mii_control_reg) & MAC_MII_BUSY) {
278		mdelay(1);
279		if (--timedout == 0) {
280			netdev_err(dev, "read_MII busy timeout!!\n");
281			return -1;
282		}
283	}
284
285	mii_control = MAC_SET_MII_SELECT_REG(reg) |
286		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
287
288	writel(mii_control, mii_control_reg);
289
290	timedout = 20;
291	while (readl(mii_control_reg) & MAC_MII_BUSY) {
292		mdelay(1);
293		if (--timedout == 0) {
294			netdev_err(dev, "mdio_read busy timeout!!\n");
295			return -1;
296		}
297	}
298	return readl(mii_data_reg);
299}
300
301static void au1000_mdio_write(struct net_device *dev, int phy_addr,
302			      int reg, u16 value)
303{
304	struct au1000_private *aup = netdev_priv(dev);
305	u32 *const mii_control_reg = &aup->mac->mii_control;
306	u32 *const mii_data_reg = &aup->mac->mii_data;
307	u32 timedout = 20;
308	u32 mii_control;
309
310	while (readl(mii_control_reg) & MAC_MII_BUSY) {
311		mdelay(1);
312		if (--timedout == 0) {
313			netdev_err(dev, "mdio_write busy timeout!!\n");
314			return;
315		}
316	}
317
318	mii_control = MAC_SET_MII_SELECT_REG(reg) |
319		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
320
321	writel(value, mii_data_reg);
322	writel(mii_control, mii_control_reg);
323}
324
325static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
326{
327	struct net_device *const dev = bus->priv;
328
329	/* make sure the MAC associated with this
330	 * mii_bus is enabled
331	 */
332	au1000_enable_mac(dev, 0);
333
334	return au1000_mdio_read(dev, phy_addr, regnum);
335}
336
337static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
338				u16 value)
339{
340	struct net_device *const dev = bus->priv;
341
342	/* make sure the MAC associated with this
343	 * mii_bus is enabled
344	 */
345	au1000_enable_mac(dev, 0);
346
347	au1000_mdio_write(dev, phy_addr, regnum, value);
348	return 0;
349}
350
351static int au1000_mdiobus_reset(struct mii_bus *bus)
352{
353	struct net_device *const dev = bus->priv;
354
355	/* make sure the MAC associated with this
356	 * mii_bus is enabled
357	 */
358	au1000_enable_mac(dev, 0);
359
360	return 0;
361}
362
363static void au1000_hard_stop(struct net_device *dev)
364{
365	struct au1000_private *aup = netdev_priv(dev);
366	u32 reg;
367
368	netif_dbg(aup, drv, dev, "hard stop\n");
369
370	reg = readl(&aup->mac->control);
371	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
372	writel(reg, &aup->mac->control);
373	wmb(); /* drain writebuffer */
374	mdelay(10);
375}
376
377static void au1000_enable_rx_tx(struct net_device *dev)
378{
379	struct au1000_private *aup = netdev_priv(dev);
380	u32 reg;
381
382	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
383
384	reg = readl(&aup->mac->control);
385	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
386	writel(reg, &aup->mac->control);
387	wmb(); /* drain writebuffer */
388	mdelay(10);
389}
390
391static void
392au1000_adjust_link(struct net_device *dev)
393{
394	struct au1000_private *aup = netdev_priv(dev);
395	struct phy_device *phydev = dev->phydev;
396	unsigned long flags;
397	u32 reg;
398
399	int status_change = 0;
400
401	BUG_ON(!phydev);
402
403	spin_lock_irqsave(&aup->lock, flags);
404
405	if (phydev->link && (aup->old_speed != phydev->speed)) {
406		/* speed changed */
407
408		switch (phydev->speed) {
409		case SPEED_10:
410		case SPEED_100:
411			break;
412		default:
413			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
414							phydev->speed);
415			break;
416		}
417
418		aup->old_speed = phydev->speed;
419
420		status_change = 1;
421	}
422
423	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
424		/* duplex mode changed */
425
426		/* switching duplex mode requires to disable rx and tx! */
427		au1000_hard_stop(dev);
428
429		reg = readl(&aup->mac->control);
430		if (DUPLEX_FULL == phydev->duplex) {
431			reg |= MAC_FULL_DUPLEX;
432			reg &= ~MAC_DISABLE_RX_OWN;
433		} else {
434			reg &= ~MAC_FULL_DUPLEX;
435			reg |= MAC_DISABLE_RX_OWN;
436		}
437		writel(reg, &aup->mac->control);
438		wmb(); /* drain writebuffer */
439		mdelay(1);
440
441		au1000_enable_rx_tx(dev);
442		aup->old_duplex = phydev->duplex;
443
444		status_change = 1;
445	}
446
447	if (phydev->link != aup->old_link) {
448		/* link state changed */
449
450		if (!phydev->link) {
451			/* link went down */
452			aup->old_speed = 0;
453			aup->old_duplex = -1;
454		}
455
456		aup->old_link = phydev->link;
457		status_change = 1;
458	}
459
460	spin_unlock_irqrestore(&aup->lock, flags);
461
462	if (status_change) {
463		if (phydev->link)
464			netdev_info(dev, "link up (%d/%s)\n",
465			       phydev->speed,
466			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
467		else
468			netdev_info(dev, "link down\n");
469	}
470}
471
472static int au1000_mii_probe(struct net_device *dev)
473{
474	struct au1000_private *const aup = netdev_priv(dev);
475	struct phy_device *phydev = NULL;
476	int phy_addr;
477
478	if (aup->phy_static_config) {
479		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
480
481		if (aup->phy_addr)
482			phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
483		else
484			netdev_info(dev, "using PHY-less setup\n");
485		return 0;
486	}
487
488	/* find the first (lowest address) PHY
489	 * on the current MAC's MII bus
490	 */
491	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
492		if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
493			phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
494			if (!aup->phy_search_highest_addr)
495				/* break out with first one found */
496				break;
497		}
498
499	if (aup->phy1_search_mac0) {
500		/* try harder to find a PHY */
501		if (!phydev && (aup->mac_id == 1)) {
502			/* no PHY found, maybe we have a dual PHY? */
503			dev_info(&dev->dev, ": no PHY found on MAC1, "
504				"let's see if it's attached to MAC0...\n");
505
506			/* find the first (lowest address) non-attached
507			 * PHY on the MAC0 MII bus
508			 */
509			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
510				struct phy_device *const tmp_phydev =
511					mdiobus_get_phy(aup->mii_bus,
512							phy_addr);
513
514				if (aup->mac_id == 1)
515					break;
516
517				/* no PHY here... */
518				if (!tmp_phydev)
519					continue;
520
521				/* already claimed by MAC0 */
522				if (tmp_phydev->attached_dev)
523					continue;
524
525				phydev = tmp_phydev;
526				break; /* found it */
527			}
528		}
529	}
530
531	if (!phydev) {
532		netdev_err(dev, "no PHY found\n");
533		return -1;
534	}
535
536	/* now we are supposed to have a proper phydev, to attach to... */
537	BUG_ON(phydev->attached_dev);
538
539	phydev = phy_connect(dev, phydev_name(phydev),
540			     &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
541
542	if (IS_ERR(phydev)) {
543		netdev_err(dev, "Could not attach to PHY\n");
544		return PTR_ERR(phydev);
545	}
546
547	phy_set_max_speed(phydev, SPEED_100);
548
549	aup->old_link = 0;
550	aup->old_speed = 0;
551	aup->old_duplex = -1;
552
553	phy_attached_info(phydev);
554
555	return 0;
556}
557
558/*
559 * Buffer allocation/deallocation routines. The buffer descriptor returned
560 * has the virtual and dma address of a buffer suitable for
561 * both, receive and transmit operations.
562 */
563static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
564{
565	struct db_dest *pDB;
566	pDB = aup->pDBfree;
567
568	if (pDB)
569		aup->pDBfree = pDB->pnext;
570
571	return pDB;
572}
573
574void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
575{
576	struct db_dest *pDBfree = aup->pDBfree;
577	if (pDBfree)
578		pDBfree->pnext = pDB;
579	aup->pDBfree = pDB;
580}
581
582static void au1000_reset_mac_unlocked(struct net_device *dev)
583{
584	struct au1000_private *const aup = netdev_priv(dev);
585	int i;
586
587	au1000_hard_stop(dev);
588
589	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
590	wmb(); /* drain writebuffer */
591	mdelay(2);
592	writel(0, aup->enable);
593	wmb(); /* drain writebuffer */
594	mdelay(2);
595
596	aup->tx_full = 0;
597	for (i = 0; i < NUM_RX_DMA; i++) {
598		/* reset control bits */
599		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
600	}
601	for (i = 0; i < NUM_TX_DMA; i++) {
602		/* reset control bits */
603		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
604	}
605
606	aup->mac_enabled = 0;
607
608}
609
610static void au1000_reset_mac(struct net_device *dev)
611{
612	struct au1000_private *const aup = netdev_priv(dev);
613	unsigned long flags;
614
615	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
616					(unsigned)aup);
617
618	spin_lock_irqsave(&aup->lock, flags);
619
620	au1000_reset_mac_unlocked(dev);
621
622	spin_unlock_irqrestore(&aup->lock, flags);
623}
624
625/*
626 * Setup the receive and transmit "rings".  These pointers are the addresses
627 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
628 * these are not descriptors sitting in memory.
629 */
630static void
631au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
632{
633	int i;
634
635	for (i = 0; i < NUM_RX_DMA; i++) {
636		aup->rx_dma_ring[i] = (struct rx_dma *)
637			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
638	}
639	for (i = 0; i < NUM_TX_DMA; i++) {
640		aup->tx_dma_ring[i] = (struct tx_dma *)
641			(tx_base + sizeof(struct tx_dma) * i);
642	}
643}
644
645/*
646 * ethtool operations
647 */
648static void
649au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
650{
651	struct au1000_private *aup = netdev_priv(dev);
652
653	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
654	snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
655		 aup->mac_id);
656}
657
658static void au1000_set_msglevel(struct net_device *dev, u32 value)
659{
660	struct au1000_private *aup = netdev_priv(dev);
661	aup->msg_enable = value;
662}
663
664static u32 au1000_get_msglevel(struct net_device *dev)
665{
666	struct au1000_private *aup = netdev_priv(dev);
667	return aup->msg_enable;
668}
669
670static const struct ethtool_ops au1000_ethtool_ops = {
671	.get_drvinfo = au1000_get_drvinfo,
672	.get_link = ethtool_op_get_link,
673	.get_msglevel = au1000_get_msglevel,
674	.set_msglevel = au1000_set_msglevel,
675	.get_link_ksettings = phy_ethtool_get_link_ksettings,
676	.set_link_ksettings = phy_ethtool_set_link_ksettings,
677};
678
679/*
680 * Initialize the interface.
681 *
682 * When the device powers up, the clocks are disabled and the
683 * mac is in reset state.  When the interface is closed, we
684 * do the same -- reset the device and disable the clocks to
685 * conserve power. Thus, whenever au1000_init() is called,
686 * the device should already be in reset state.
687 */
688static int au1000_init(struct net_device *dev)
689{
690	struct au1000_private *aup = netdev_priv(dev);
691	unsigned long flags;
692	int i;
693	u32 control;
694
695	netif_dbg(aup, hw, dev, "au1000_init\n");
696
697	/* bring the device out of reset */
698	au1000_enable_mac(dev, 1);
699
700	spin_lock_irqsave(&aup->lock, flags);
701
702	writel(0, &aup->mac->control);
703	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
704	aup->tx_tail = aup->tx_head;
705	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
706
707	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
708					&aup->mac->mac_addr_high);
709	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
710		dev->dev_addr[1]<<8 | dev->dev_addr[0],
711					&aup->mac->mac_addr_low);
712
713
714	for (i = 0; i < NUM_RX_DMA; i++)
715		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
716
717	wmb(); /* drain writebuffer */
718
719	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
720#ifndef CONFIG_CPU_LITTLE_ENDIAN
721	control |= MAC_BIG_ENDIAN;
722#endif
723	if (dev->phydev) {
724		if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
725			control |= MAC_FULL_DUPLEX;
726		else
727			control |= MAC_DISABLE_RX_OWN;
728	} else { /* PHY-less op, assume full-duplex */
729		control |= MAC_FULL_DUPLEX;
730	}
731
732	writel(control, &aup->mac->control);
733	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
734	wmb(); /* drain writebuffer */
735
736	spin_unlock_irqrestore(&aup->lock, flags);
737	return 0;
738}
739
740static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
741{
742	struct net_device_stats *ps = &dev->stats;
743
744	ps->rx_packets++;
745	if (status & RX_MCAST_FRAME)
746		ps->multicast++;
747
748	if (status & RX_ERROR) {
749		ps->rx_errors++;
750		if (status & RX_MISSED_FRAME)
751			ps->rx_missed_errors++;
752		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
753			ps->rx_length_errors++;
754		if (status & RX_CRC_ERROR)
755			ps->rx_crc_errors++;
756		if (status & RX_COLL)
757			ps->collisions++;
758	} else
759		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
760
761}
762
763/*
764 * Au1000 receive routine.
765 */
766static int au1000_rx(struct net_device *dev)
767{
768	struct au1000_private *aup = netdev_priv(dev);
769	struct sk_buff *skb;
770	struct rx_dma *prxd;
771	u32 buff_stat, status;
772	struct db_dest *pDB;
773	u32	frmlen;
774
775	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
776
777	prxd = aup->rx_dma_ring[aup->rx_head];
778	buff_stat = prxd->buff_stat;
779	while (buff_stat & RX_T_DONE)  {
780		status = prxd->status;
781		pDB = aup->rx_db_inuse[aup->rx_head];
782		au1000_update_rx_stats(dev, status);
783		if (!(status & RX_ERROR))  {
784
785			/* good frame */
786			frmlen = (status & RX_FRAME_LEN_MASK);
787			frmlen -= 4; /* Remove FCS */
788			skb = netdev_alloc_skb(dev, frmlen + 2);
789			if (!skb) {
790				dev->stats.rx_dropped++;
791				continue;
792			}
793			skb_reserve(skb, 2);	/* 16 byte IP header align */
794			skb_copy_to_linear_data(skb,
795				(unsigned char *)pDB->vaddr, frmlen);
796			skb_put(skb, frmlen);
797			skb->protocol = eth_type_trans(skb, dev);
798			netif_rx(skb);	/* pass the packet to upper layers */
799		} else {
800			if (au1000_debug > 4) {
801				pr_err("rx_error(s):");
802				if (status & RX_MISSED_FRAME)
803					pr_cont(" miss");
804				if (status & RX_WDOG_TIMER)
805					pr_cont(" wdog");
806				if (status & RX_RUNT)
807					pr_cont(" runt");
808				if (status & RX_OVERLEN)
809					pr_cont(" overlen");
810				if (status & RX_COLL)
811					pr_cont(" coll");
812				if (status & RX_MII_ERROR)
813					pr_cont(" mii error");
814				if (status & RX_CRC_ERROR)
815					pr_cont(" crc error");
816				if (status & RX_LEN_ERROR)
817					pr_cont(" len error");
818				if (status & RX_U_CNTRL_FRAME)
819					pr_cont(" u control frame");
820				pr_cont("\n");
821			}
822		}
823		prxd->buff_stat = lower_32_bits(pDB->dma_addr) | RX_DMA_ENABLE;
824		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
825		wmb(); /* drain writebuffer */
826
827		/* next descriptor */
828		prxd = aup->rx_dma_ring[aup->rx_head];
829		buff_stat = prxd->buff_stat;
830	}
831	return 0;
832}
833
834static void au1000_update_tx_stats(struct net_device *dev, u32 status)
835{
836	struct net_device_stats *ps = &dev->stats;
837
838	if (status & TX_FRAME_ABORTED) {
839		if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
840			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
841				/* any other tx errors are only valid
842				 * in half duplex mode
843				 */
844				ps->tx_errors++;
845				ps->tx_aborted_errors++;
846			}
847		} else {
848			ps->tx_errors++;
849			ps->tx_aborted_errors++;
850			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
851				ps->tx_carrier_errors++;
852		}
853	}
854}
855
856/*
857 * Called from the interrupt service routine to acknowledge
858 * the TX DONE bits.  This is a must if the irq is setup as
859 * edge triggered.
860 */
861static void au1000_tx_ack(struct net_device *dev)
862{
863	struct au1000_private *aup = netdev_priv(dev);
864	struct tx_dma *ptxd;
865
866	ptxd = aup->tx_dma_ring[aup->tx_tail];
867
868	while (ptxd->buff_stat & TX_T_DONE) {
869		au1000_update_tx_stats(dev, ptxd->status);
870		ptxd->buff_stat &= ~TX_T_DONE;
871		ptxd->len = 0;
872		wmb(); /* drain writebuffer */
873
874		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
875		ptxd = aup->tx_dma_ring[aup->tx_tail];
876
877		if (aup->tx_full) {
878			aup->tx_full = 0;
879			netif_wake_queue(dev);
880		}
881	}
882}
883
884/*
885 * Au1000 interrupt service routine.
886 */
887static irqreturn_t au1000_interrupt(int irq, void *dev_id)
888{
889	struct net_device *dev = dev_id;
890
891	/* Handle RX interrupts first to minimize chance of overrun */
892
893	au1000_rx(dev);
894	au1000_tx_ack(dev);
895	return IRQ_RETVAL(1);
896}
897
898static int au1000_open(struct net_device *dev)
899{
900	int retval;
901	struct au1000_private *aup = netdev_priv(dev);
902
903	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
904
905	retval = request_irq(dev->irq, au1000_interrupt, 0,
906					dev->name, dev);
907	if (retval) {
908		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
909		return retval;
910	}
911
912	retval = au1000_init(dev);
913	if (retval) {
914		netdev_err(dev, "error in au1000_init\n");
915		free_irq(dev->irq, dev);
916		return retval;
917	}
918
919	if (dev->phydev)
920		phy_start(dev->phydev);
921
922	netif_start_queue(dev);
923
924	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
925
926	return 0;
927}
928
929static int au1000_close(struct net_device *dev)
930{
931	unsigned long flags;
932	struct au1000_private *const aup = netdev_priv(dev);
933
934	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
935
936	if (dev->phydev)
937		phy_stop(dev->phydev);
938
939	spin_lock_irqsave(&aup->lock, flags);
940
941	au1000_reset_mac_unlocked(dev);
942
943	/* stop the device */
944	netif_stop_queue(dev);
945
946	/* disable the interrupt */
947	free_irq(dev->irq, dev);
948	spin_unlock_irqrestore(&aup->lock, flags);
949
950	return 0;
951}
952
953/*
954 * Au1000 transmit routine.
955 */
956static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
957{
958	struct au1000_private *aup = netdev_priv(dev);
959	struct net_device_stats *ps = &dev->stats;
960	struct tx_dma *ptxd;
961	u32 buff_stat;
962	struct db_dest *pDB;
963	int i;
964
965	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
966				(unsigned)aup, skb->len,
967				skb->data, aup->tx_head);
968
969	ptxd = aup->tx_dma_ring[aup->tx_head];
970	buff_stat = ptxd->buff_stat;
971	if (buff_stat & TX_DMA_ENABLE) {
972		/* We've wrapped around and the transmitter is still busy */
973		netif_stop_queue(dev);
974		aup->tx_full = 1;
975		return NETDEV_TX_BUSY;
976	} else if (buff_stat & TX_T_DONE) {
977		au1000_update_tx_stats(dev, ptxd->status);
978		ptxd->len = 0;
979	}
980
981	if (aup->tx_full) {
982		aup->tx_full = 0;
983		netif_wake_queue(dev);
984	}
985
986	pDB = aup->tx_db_inuse[aup->tx_head];
987	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
988	if (skb->len < ETH_ZLEN) {
989		for (i = skb->len; i < ETH_ZLEN; i++)
990			((char *)pDB->vaddr)[i] = 0;
991
992		ptxd->len = ETH_ZLEN;
993	} else
994		ptxd->len = skb->len;
995
996	ps->tx_packets++;
997	ps->tx_bytes += ptxd->len;
998
999	ptxd->buff_stat = lower_32_bits(pDB->dma_addr) | TX_DMA_ENABLE;
1000	wmb(); /* drain writebuffer */
1001	dev_kfree_skb(skb);
1002	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1003	return NETDEV_TX_OK;
1004}
1005
1006/*
1007 * The Tx ring has been full longer than the watchdog timeout
1008 * value. The transmitter must be hung?
1009 */
1010static void au1000_tx_timeout(struct net_device *dev, unsigned int txqueue)
1011{
1012	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1013	au1000_reset_mac(dev);
1014	au1000_init(dev);
1015	netif_trans_update(dev); /* prevent tx timeout */
1016	netif_wake_queue(dev);
1017}
1018
1019static void au1000_multicast_list(struct net_device *dev)
1020{
1021	struct au1000_private *aup = netdev_priv(dev);
1022	u32 reg;
1023
1024	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1025	reg = readl(&aup->mac->control);
1026	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1027		reg |= MAC_PROMISCUOUS;
1028	} else if ((dev->flags & IFF_ALLMULTI)  ||
1029			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1030		reg |= MAC_PASS_ALL_MULTI;
1031		reg &= ~MAC_PROMISCUOUS;
1032		netdev_info(dev, "Pass all multicast\n");
1033	} else {
1034		struct netdev_hw_addr *ha;
1035		u32 mc_filter[2];	/* Multicast hash filter */
1036
1037		mc_filter[1] = mc_filter[0] = 0;
1038		netdev_for_each_mc_addr(ha, dev)
1039			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1040					(long *)mc_filter);
1041		writel(mc_filter[1], &aup->mac->multi_hash_high);
1042		writel(mc_filter[0], &aup->mac->multi_hash_low);
1043		reg &= ~MAC_PROMISCUOUS;
1044		reg |= MAC_HASH_MODE;
1045	}
1046	writel(reg, &aup->mac->control);
1047}
1048
1049static const struct net_device_ops au1000_netdev_ops = {
1050	.ndo_open		= au1000_open,
1051	.ndo_stop		= au1000_close,
1052	.ndo_start_xmit		= au1000_tx,
1053	.ndo_set_rx_mode	= au1000_multicast_list,
1054	.ndo_eth_ioctl		= phy_do_ioctl_running,
1055	.ndo_tx_timeout		= au1000_tx_timeout,
1056	.ndo_set_mac_address	= eth_mac_addr,
1057	.ndo_validate_addr	= eth_validate_addr,
1058};
1059
1060static int au1000_probe(struct platform_device *pdev)
1061{
1062	struct au1000_private *aup = NULL;
1063	struct au1000_eth_platform_data *pd;
1064	struct net_device *dev = NULL;
1065	struct db_dest *pDB, *pDBfree;
1066	int irq, i, err = 0;
1067	struct resource *base, *macen, *macdma;
1068
1069	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1070	if (!base) {
1071		dev_err(&pdev->dev, "failed to retrieve base register\n");
1072		err = -ENODEV;
1073		goto out;
1074	}
1075
1076	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1077	if (!macen) {
1078		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1079		err = -ENODEV;
1080		goto out;
1081	}
1082
1083	irq = platform_get_irq(pdev, 0);
1084	if (irq < 0) {
1085		err = -ENODEV;
1086		goto out;
1087	}
1088
1089	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1090	if (!macdma) {
1091		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1092		err = -ENODEV;
1093		goto out;
1094	}
1095
1096	if (!request_mem_region(base->start, resource_size(base),
1097							pdev->name)) {
1098		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1099		err = -ENXIO;
1100		goto out;
1101	}
1102
1103	if (!request_mem_region(macen->start, resource_size(macen),
1104							pdev->name)) {
1105		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1106		err = -ENXIO;
1107		goto err_request;
1108	}
1109
1110	if (!request_mem_region(macdma->start, resource_size(macdma),
1111							pdev->name)) {
1112		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1113		err = -ENXIO;
1114		goto err_macdma;
1115	}
1116
1117	dev = alloc_etherdev(sizeof(struct au1000_private));
1118	if (!dev) {
1119		err = -ENOMEM;
1120		goto err_alloc;
1121	}
1122
1123	SET_NETDEV_DEV(dev, &pdev->dev);
1124	platform_set_drvdata(pdev, dev);
1125	aup = netdev_priv(dev);
1126
1127	spin_lock_init(&aup->lock);
1128	aup->msg_enable = (au1000_debug < 4 ?
1129				AU1000_DEF_MSG_ENABLE : au1000_debug);
1130
1131	/* Allocate the data buffers
1132	 * Snooping works fine with eth on all au1xxx
1133	 */
1134	aup->vaddr = dma_alloc_coherent(&pdev->dev, MAX_BUF_SIZE *
1135					(NUM_TX_BUFFS + NUM_RX_BUFFS),
1136					&aup->dma_addr, 0);
1137	if (!aup->vaddr) {
1138		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1139		err = -ENOMEM;
1140		goto err_vaddr;
1141	}
1142
1143	/* aup->mac is the base address of the MAC's registers */
1144	aup->mac = (struct mac_reg *)
1145			ioremap(base->start, resource_size(base));
1146	if (!aup->mac) {
1147		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1148		err = -ENXIO;
1149		goto err_remap1;
1150	}
1151
1152	/* Setup some variables for quick register address access */
1153	aup->enable = (u32 *)ioremap(macen->start,
1154						resource_size(macen));
1155	if (!aup->enable) {
1156		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1157		err = -ENXIO;
1158		goto err_remap2;
1159	}
1160	aup->mac_id = pdev->id;
1161
1162	aup->macdma = ioremap(macdma->start, resource_size(macdma));
1163	if (!aup->macdma) {
1164		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1165		err = -ENXIO;
1166		goto err_remap3;
1167	}
1168
1169	au1000_setup_hw_rings(aup, aup->macdma);
1170
1171	writel(0, aup->enable);
1172	aup->mac_enabled = 0;
1173
1174	pd = dev_get_platdata(&pdev->dev);
1175	if (!pd) {
1176		dev_info(&pdev->dev, "no platform_data passed,"
1177					" PHY search on MAC0\n");
1178		aup->phy1_search_mac0 = 1;
1179	} else {
1180		if (is_valid_ether_addr(pd->mac)) {
1181			eth_hw_addr_set(dev, pd->mac);
1182		} else {
1183			/* Set a random MAC since no valid provided by platform_data. */
1184			eth_hw_addr_random(dev);
1185		}
1186
1187		aup->phy_static_config = pd->phy_static_config;
1188		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1189		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1190		aup->phy_addr = pd->phy_addr;
1191		aup->phy_busid = pd->phy_busid;
1192		aup->phy_irq = pd->phy_irq;
1193	}
1194
1195	if (aup->phy_busid > 0) {
1196		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1197		err = -ENODEV;
1198		goto err_mdiobus_alloc;
1199	}
1200
1201	aup->mii_bus = mdiobus_alloc();
1202	if (!aup->mii_bus) {
1203		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1204		err = -ENOMEM;
1205		goto err_mdiobus_alloc;
1206	}
1207
1208	aup->mii_bus->priv = dev;
1209	aup->mii_bus->read = au1000_mdiobus_read;
1210	aup->mii_bus->write = au1000_mdiobus_write;
1211	aup->mii_bus->reset = au1000_mdiobus_reset;
1212	aup->mii_bus->name = "au1000_eth_mii";
1213	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1214		pdev->name, aup->mac_id);
1215
1216	/* if known, set corresponding PHY IRQs */
1217	if (aup->phy_static_config)
1218		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1219			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1220
1221	err = mdiobus_register(aup->mii_bus);
1222	if (err) {
1223		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1224		goto err_mdiobus_reg;
1225	}
1226
1227	err = au1000_mii_probe(dev);
1228	if (err != 0)
1229		goto err_out;
1230
1231	pDBfree = NULL;
1232	/* setup the data buffer descriptors and attach a buffer to each one */
1233	pDB = aup->db;
1234	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1235		pDB->pnext = pDBfree;
1236		pDBfree = pDB;
1237		pDB->vaddr = aup->vaddr + MAX_BUF_SIZE * i;
1238		pDB->dma_addr = aup->dma_addr + MAX_BUF_SIZE * i;
1239		pDB++;
1240	}
1241	aup->pDBfree = pDBfree;
1242
1243	err = -ENODEV;
1244	for (i = 0; i < NUM_RX_DMA; i++) {
1245		pDB = au1000_GetFreeDB(aup);
1246		if (!pDB)
1247			goto err_out;
1248
1249		aup->rx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr);
1250		aup->rx_db_inuse[i] = pDB;
1251	}
1252
1253	for (i = 0; i < NUM_TX_DMA; i++) {
1254		pDB = au1000_GetFreeDB(aup);
1255		if (!pDB)
1256			goto err_out;
1257
1258		aup->tx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr);
1259		aup->tx_dma_ring[i]->len = 0;
1260		aup->tx_db_inuse[i] = pDB;
1261	}
1262
1263	dev->base_addr = base->start;
1264	dev->irq = irq;
1265	dev->netdev_ops = &au1000_netdev_ops;
1266	dev->ethtool_ops = &au1000_ethtool_ops;
1267	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1268
1269	/*
1270	 * The boot code uses the ethernet controller, so reset it to start
1271	 * fresh.  au1000_init() expects that the device is in reset state.
1272	 */
1273	au1000_reset_mac(dev);
1274
1275	err = register_netdev(dev);
1276	if (err) {
1277		netdev_err(dev, "Cannot register net device, aborting.\n");
1278		goto err_out;
1279	}
1280
1281	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1282			(unsigned long)base->start, irq);
1283
1284	return 0;
1285
1286err_out:
1287	if (aup->mii_bus)
1288		mdiobus_unregister(aup->mii_bus);
1289
1290	/* here we should have a valid dev plus aup-> register addresses
1291	 * so we can reset the mac properly.
1292	 */
1293	au1000_reset_mac(dev);
1294
1295	for (i = 0; i < NUM_RX_DMA; i++) {
1296		if (aup->rx_db_inuse[i])
1297			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1298	}
1299	for (i = 0; i < NUM_TX_DMA; i++) {
1300		if (aup->tx_db_inuse[i])
1301			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1302	}
1303err_mdiobus_reg:
1304	mdiobus_free(aup->mii_bus);
1305err_mdiobus_alloc:
1306	iounmap(aup->macdma);
1307err_remap3:
1308	iounmap(aup->enable);
1309err_remap2:
1310	iounmap(aup->mac);
1311err_remap1:
1312	dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1313			  aup->vaddr, aup->dma_addr);
1314err_vaddr:
1315	free_netdev(dev);
1316err_alloc:
1317	release_mem_region(macdma->start, resource_size(macdma));
1318err_macdma:
1319	release_mem_region(macen->start, resource_size(macen));
1320err_request:
1321	release_mem_region(base->start, resource_size(base));
1322out:
1323	return err;
1324}
1325
1326static void au1000_remove(struct platform_device *pdev)
1327{
1328	struct net_device *dev = platform_get_drvdata(pdev);
1329	struct au1000_private *aup = netdev_priv(dev);
1330	int i;
1331	struct resource *base, *macen;
1332
1333	unregister_netdev(dev);
1334	mdiobus_unregister(aup->mii_bus);
1335	mdiobus_free(aup->mii_bus);
1336
1337	for (i = 0; i < NUM_RX_DMA; i++)
1338		if (aup->rx_db_inuse[i])
1339			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1340
1341	for (i = 0; i < NUM_TX_DMA; i++)
1342		if (aup->tx_db_inuse[i])
1343			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1344
1345	dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1346			  aup->vaddr, aup->dma_addr);
1347
1348	iounmap(aup->macdma);
1349	iounmap(aup->mac);
1350	iounmap(aup->enable);
1351
1352	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1353	release_mem_region(base->start, resource_size(base));
1354
1355	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1356	release_mem_region(base->start, resource_size(base));
1357
1358	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1359	release_mem_region(macen->start, resource_size(macen));
1360
1361	free_netdev(dev);
1362}
1363
1364static struct platform_driver au1000_eth_driver = {
1365	.probe  = au1000_probe,
1366	.remove_new = au1000_remove,
1367	.driver = {
1368		.name   = "au1000-eth",
1369	},
1370};
1371
1372module_platform_driver(au1000_eth_driver);
1373
1374MODULE_ALIAS("platform:au1000-eth");
1375