1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Mediatek MT7530 DSA Switch driver
4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5 */
6#include <linux/etherdevice.h>
7#include <linux/if_bridge.h>
8#include <linux/iopoll.h>
9#include <linux/mdio.h>
10#include <linux/mfd/syscon.h>
11#include <linux/module.h>
12#include <linux/netdevice.h>
13#include <linux/of_irq.h>
14#include <linux/of_mdio.h>
15#include <linux/of_net.h>
16#include <linux/of_platform.h>
17#include <linux/phylink.h>
18#include <linux/regmap.h>
19#include <linux/regulator/consumer.h>
20#include <linux/reset.h>
21#include <linux/gpio/consumer.h>
22#include <linux/gpio/driver.h>
23#include <net/dsa.h>
24
25#include "mt7530.h"
26
27static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28{
29	return container_of(pcs, struct mt753x_pcs, pcs);
30}
31
32/* String, offset, and register size in bytes if different from 4 bytes */
33static const struct mt7530_mib_desc mt7530_mib[] = {
34	MIB_DESC(1, 0x00, "TxDrop"),
35	MIB_DESC(1, 0x04, "TxCrcErr"),
36	MIB_DESC(1, 0x08, "TxUnicast"),
37	MIB_DESC(1, 0x0c, "TxMulticast"),
38	MIB_DESC(1, 0x10, "TxBroadcast"),
39	MIB_DESC(1, 0x14, "TxCollision"),
40	MIB_DESC(1, 0x18, "TxSingleCollision"),
41	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42	MIB_DESC(1, 0x20, "TxDeferred"),
43	MIB_DESC(1, 0x24, "TxLateCollision"),
44	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45	MIB_DESC(1, 0x2c, "TxPause"),
46	MIB_DESC(1, 0x30, "TxPktSz64"),
47	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52	MIB_DESC(2, 0x48, "TxBytes"),
53	MIB_DESC(1, 0x60, "RxDrop"),
54	MIB_DESC(1, 0x64, "RxFiltering"),
55	MIB_DESC(1, 0x68, "RxUnicast"),
56	MIB_DESC(1, 0x6c, "RxMulticast"),
57	MIB_DESC(1, 0x70, "RxBroadcast"),
58	MIB_DESC(1, 0x74, "RxAlignErr"),
59	MIB_DESC(1, 0x78, "RxCrcErr"),
60	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61	MIB_DESC(1, 0x80, "RxFragErr"),
62	MIB_DESC(1, 0x84, "RxOverSzErr"),
63	MIB_DESC(1, 0x88, "RxJabberErr"),
64	MIB_DESC(1, 0x8c, "RxPause"),
65	MIB_DESC(1, 0x90, "RxPktSz64"),
66	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71	MIB_DESC(2, 0xa8, "RxBytes"),
72	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74	MIB_DESC(1, 0xb8, "RxArlDrop"),
75};
76
77/* Since phy_device has not yet been created and
78 * phy_{read,write}_mmd_indirect is not available, we provide our own
79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80 * to complete this function.
81 */
82static int
83core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84{
85	struct mii_bus *bus = priv->bus;
86	int value, ret;
87
88	/* Write the desired MMD Devad */
89	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90	if (ret < 0)
91		goto err;
92
93	/* Write the desired MMD register address */
94	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95	if (ret < 0)
96		goto err;
97
98	/* Select the Function : DATA with no post increment */
99	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100	if (ret < 0)
101		goto err;
102
103	/* Read the content of the MMD's selected register */
104	value = bus->read(bus, 0, MII_MMD_DATA);
105
106	return value;
107err:
108	dev_err(&bus->dev,  "failed to read mmd register\n");
109
110	return ret;
111}
112
113static int
114core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115			int devad, u32 data)
116{
117	struct mii_bus *bus = priv->bus;
118	int ret;
119
120	/* Write the desired MMD Devad */
121	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122	if (ret < 0)
123		goto err;
124
125	/* Write the desired MMD register address */
126	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127	if (ret < 0)
128		goto err;
129
130	/* Select the Function : DATA with no post increment */
131	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132	if (ret < 0)
133		goto err;
134
135	/* Write the data into MMD's selected register */
136	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137err:
138	if (ret < 0)
139		dev_err(&bus->dev,
140			"failed to write mmd register\n");
141	return ret;
142}
143
144static void
145mt7530_mutex_lock(struct mt7530_priv *priv)
146{
147	if (priv->bus)
148		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149}
150
151static void
152mt7530_mutex_unlock(struct mt7530_priv *priv)
153{
154	if (priv->bus)
155		mutex_unlock(&priv->bus->mdio_lock);
156}
157
158static void
159core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160{
161	mt7530_mutex_lock(priv);
162
163	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164
165	mt7530_mutex_unlock(priv);
166}
167
168static void
169core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170{
171	u32 val;
172
173	mt7530_mutex_lock(priv);
174
175	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176	val &= ~mask;
177	val |= set;
178	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179
180	mt7530_mutex_unlock(priv);
181}
182
183static void
184core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185{
186	core_rmw(priv, reg, 0, val);
187}
188
189static void
190core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191{
192	core_rmw(priv, reg, val, 0);
193}
194
195static int
196mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197{
198	int ret;
199
200	ret = regmap_write(priv->regmap, reg, val);
201
202	if (ret < 0)
203		dev_err(priv->dev,
204			"failed to write mt7530 register\n");
205
206	return ret;
207}
208
209static u32
210mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211{
212	int ret;
213	u32 val;
214
215	ret = regmap_read(priv->regmap, reg, &val);
216	if (ret) {
217		WARN_ON_ONCE(1);
218		dev_err(priv->dev,
219			"failed to read mt7530 register\n");
220		return 0;
221	}
222
223	return val;
224}
225
226static void
227mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228{
229	mt7530_mutex_lock(priv);
230
231	mt7530_mii_write(priv, reg, val);
232
233	mt7530_mutex_unlock(priv);
234}
235
236static u32
237_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238{
239	return mt7530_mii_read(p->priv, p->reg);
240}
241
242static u32
243_mt7530_read(struct mt7530_dummy_poll *p)
244{
245	u32 val;
246
247	mt7530_mutex_lock(p->priv);
248
249	val = mt7530_mii_read(p->priv, p->reg);
250
251	mt7530_mutex_unlock(p->priv);
252
253	return val;
254}
255
256static u32
257mt7530_read(struct mt7530_priv *priv, u32 reg)
258{
259	struct mt7530_dummy_poll p;
260
261	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262	return _mt7530_read(&p);
263}
264
265static void
266mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267	   u32 mask, u32 set)
268{
269	mt7530_mutex_lock(priv);
270
271	regmap_update_bits(priv->regmap, reg, mask, set);
272
273	mt7530_mutex_unlock(priv);
274}
275
276static void
277mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278{
279	mt7530_rmw(priv, reg, val, val);
280}
281
282static void
283mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284{
285	mt7530_rmw(priv, reg, val, 0);
286}
287
288static int
289mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290{
291	u32 val;
292	int ret;
293	struct mt7530_dummy_poll p;
294
295	/* Set the command operating upon the MAC address entries */
296	val = ATC_BUSY | ATC_MAT(0) | cmd;
297	mt7530_write(priv, MT7530_ATC, val);
298
299	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300	ret = readx_poll_timeout(_mt7530_read, &p, val,
301				 !(val & ATC_BUSY), 20, 20000);
302	if (ret < 0) {
303		dev_err(priv->dev, "reset timeout\n");
304		return ret;
305	}
306
307	/* Additional sanity for read command if the specified
308	 * entry is invalid
309	 */
310	val = mt7530_read(priv, MT7530_ATC);
311	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312		return -EINVAL;
313
314	if (rsp)
315		*rsp = val;
316
317	return 0;
318}
319
320static void
321mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322{
323	u32 reg[3];
324	int i;
325
326	/* Read from ARL table into an array */
327	for (i = 0; i < 3; i++) {
328		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329
330		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331			__func__, __LINE__, i, reg[i]);
332	}
333
334	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344}
345
346static void
347mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348		 u8 port_mask, const u8 *mac,
349		 u8 aging, u8 type)
350{
351	u32 reg[3] = { 0 };
352	int i;
353
354	reg[1] |= vid & CVID_MASK;
355	reg[1] |= ATA2_IVL;
356	reg[1] |= ATA2_FID(FID_BRIDGED);
357	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359	/* STATIC_ENT indicate that entry is static wouldn't
360	 * be aged out and STATIC_EMP specified as erasing an
361	 * entry
362	 */
363	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364	reg[1] |= mac[5] << MAC_BYTE_5;
365	reg[1] |= mac[4] << MAC_BYTE_4;
366	reg[0] |= mac[3] << MAC_BYTE_3;
367	reg[0] |= mac[2] << MAC_BYTE_2;
368	reg[0] |= mac[1] << MAC_BYTE_1;
369	reg[0] |= mac[0] << MAC_BYTE_0;
370
371	/* Write array into the ARL table */
372	for (i = 0; i < 3; i++)
373		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374}
375
376/* Set up switch core clock for MT7530 */
377static void mt7530_pll_setup(struct mt7530_priv *priv)
378{
379	/* Disable core clock */
380	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381
382	/* Disable PLL */
383	core_write(priv, CORE_GSWPLL_GRP1, 0);
384
385	/* Set core clock into 500Mhz */
386	core_write(priv, CORE_GSWPLL_GRP2,
387		   RG_GSWPLL_POSDIV_500M(1) |
388		   RG_GSWPLL_FBKDIV_500M(25));
389
390	/* Enable PLL */
391	core_write(priv, CORE_GSWPLL_GRP1,
392		   RG_GSWPLL_EN_PRE |
393		   RG_GSWPLL_POSDIV_200M(2) |
394		   RG_GSWPLL_FBKDIV_200M(32));
395
396	udelay(20);
397
398	/* Enable core clock */
399	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400}
401
402/* If port 6 is available as a CPU port, always prefer that as the default,
403 * otherwise don't care.
404 */
405static struct dsa_port *
406mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407{
408	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409
410	if (dsa_port_is_cpu(cpu_dp))
411		return cpu_dp;
412
413	return NULL;
414}
415
416/* Setup port 6 interface mode and TRGMII TX circuit */
417static void
418mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
419{
420	struct mt7530_priv *priv = ds->priv;
421	u32 ncpo1, ssc_delta, xtal;
422
423	/* Disable the MT7530 TRGMII clocks */
424	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
425
426	if (interface == PHY_INTERFACE_MODE_RGMII) {
427		mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
428			   P6_INTF_MODE(0));
429		return;
430	}
431
432	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
433
434	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
435
436	if (xtal == HWTRAP_XTAL_25MHZ)
437		ssc_delta = 0x57;
438	else
439		ssc_delta = 0x87;
440
441	if (priv->id == ID_MT7621) {
442		/* PLL frequency: 125MHz: 1.0GBit */
443		if (xtal == HWTRAP_XTAL_40MHZ)
444			ncpo1 = 0x0640;
445		if (xtal == HWTRAP_XTAL_25MHZ)
446			ncpo1 = 0x0a00;
447	} else { /* PLL frequency: 250MHz: 2.0Gbit */
448		if (xtal == HWTRAP_XTAL_40MHZ)
449			ncpo1 = 0x0c80;
450		if (xtal == HWTRAP_XTAL_25MHZ)
451			ncpo1 = 0x1400;
452	}
453
454	/* Setup the MT7530 TRGMII Tx Clock */
455	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
456	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
457	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
458	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
459	core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
460		   RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
461	core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
462		   RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
463	core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
464		   RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
465
466	/* Enable the MT7530 TRGMII clocks */
467	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
468}
469
470static void
471mt7531_pll_setup(struct mt7530_priv *priv)
472{
473	u32 top_sig;
474	u32 hwstrap;
475	u32 xtal;
476	u32 val;
477
478	val = mt7530_read(priv, MT7531_CREV);
479	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
480	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
481	if ((val & CHIP_REV_M) > 0)
482		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
483						    HWTRAP_XTAL_FSEL_25MHZ;
484	else
485		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
486
487	/* Step 1 : Disable MT7531 COREPLL */
488	val = mt7530_read(priv, MT7531_PLLGP_EN);
489	val &= ~EN_COREPLL;
490	mt7530_write(priv, MT7531_PLLGP_EN, val);
491
492	/* Step 2: switch to XTAL output */
493	val = mt7530_read(priv, MT7531_PLLGP_EN);
494	val |= SW_CLKSW;
495	mt7530_write(priv, MT7531_PLLGP_EN, val);
496
497	val = mt7530_read(priv, MT7531_PLLGP_CR0);
498	val &= ~RG_COREPLL_EN;
499	mt7530_write(priv, MT7531_PLLGP_CR0, val);
500
501	/* Step 3: disable PLLGP and enable program PLLGP */
502	val = mt7530_read(priv, MT7531_PLLGP_EN);
503	val |= SW_PLLGP;
504	mt7530_write(priv, MT7531_PLLGP_EN, val);
505
506	/* Step 4: program COREPLL output frequency to 500MHz */
507	val = mt7530_read(priv, MT7531_PLLGP_CR0);
508	val &= ~RG_COREPLL_POSDIV_M;
509	val |= 2 << RG_COREPLL_POSDIV_S;
510	mt7530_write(priv, MT7531_PLLGP_CR0, val);
511	usleep_range(25, 35);
512
513	switch (xtal) {
514	case HWTRAP_XTAL_FSEL_25MHZ:
515		val = mt7530_read(priv, MT7531_PLLGP_CR0);
516		val &= ~RG_COREPLL_SDM_PCW_M;
517		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
518		mt7530_write(priv, MT7531_PLLGP_CR0, val);
519		break;
520	case HWTRAP_XTAL_FSEL_40MHZ:
521		val = mt7530_read(priv, MT7531_PLLGP_CR0);
522		val &= ~RG_COREPLL_SDM_PCW_M;
523		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
524		mt7530_write(priv, MT7531_PLLGP_CR0, val);
525		break;
526	}
527
528	/* Set feedback divide ratio update signal to high */
529	val = mt7530_read(priv, MT7531_PLLGP_CR0);
530	val |= RG_COREPLL_SDM_PCW_CHG;
531	mt7530_write(priv, MT7531_PLLGP_CR0, val);
532	/* Wait for at least 16 XTAL clocks */
533	usleep_range(10, 20);
534
535	/* Step 5: set feedback divide ratio update signal to low */
536	val = mt7530_read(priv, MT7531_PLLGP_CR0);
537	val &= ~RG_COREPLL_SDM_PCW_CHG;
538	mt7530_write(priv, MT7531_PLLGP_CR0, val);
539
540	/* Enable 325M clock for SGMII */
541	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
542
543	/* Enable 250SSC clock for RGMII */
544	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
545
546	/* Step 6: Enable MT7531 PLL */
547	val = mt7530_read(priv, MT7531_PLLGP_CR0);
548	val |= RG_COREPLL_EN;
549	mt7530_write(priv, MT7531_PLLGP_CR0, val);
550
551	val = mt7530_read(priv, MT7531_PLLGP_EN);
552	val |= EN_COREPLL;
553	mt7530_write(priv, MT7531_PLLGP_EN, val);
554	usleep_range(25, 35);
555}
556
557static void
558mt7530_mib_reset(struct dsa_switch *ds)
559{
560	struct mt7530_priv *priv = ds->priv;
561
562	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
563	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
564}
565
566static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
567{
568	return mdiobus_read_nested(priv->bus, port, regnum);
569}
570
571static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
572				u16 val)
573{
574	return mdiobus_write_nested(priv->bus, port, regnum, val);
575}
576
577static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
578			       int devad, int regnum)
579{
580	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
581}
582
583static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
584				int regnum, u16 val)
585{
586	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
587}
588
589static int
590mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
591			int regnum)
592{
593	struct mt7530_dummy_poll p;
594	u32 reg, val;
595	int ret;
596
597	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
598
599	mt7530_mutex_lock(priv);
600
601	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
602				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
603	if (ret < 0) {
604		dev_err(priv->dev, "poll timeout\n");
605		goto out;
606	}
607
608	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
609	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
610	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
611
612	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
613				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
614	if (ret < 0) {
615		dev_err(priv->dev, "poll timeout\n");
616		goto out;
617	}
618
619	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
620	      MT7531_MDIO_DEV_ADDR(devad);
621	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
622
623	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
624				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
625	if (ret < 0) {
626		dev_err(priv->dev, "poll timeout\n");
627		goto out;
628	}
629
630	ret = val & MT7531_MDIO_RW_DATA_MASK;
631out:
632	mt7530_mutex_unlock(priv);
633
634	return ret;
635}
636
637static int
638mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
639			 int regnum, u16 data)
640{
641	struct mt7530_dummy_poll p;
642	u32 val, reg;
643	int ret;
644
645	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
646
647	mt7530_mutex_lock(priv);
648
649	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651	if (ret < 0) {
652		dev_err(priv->dev, "poll timeout\n");
653		goto out;
654	}
655
656	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
657	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
658	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
659
660	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
661				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
662	if (ret < 0) {
663		dev_err(priv->dev, "poll timeout\n");
664		goto out;
665	}
666
667	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
668	      MT7531_MDIO_DEV_ADDR(devad) | data;
669	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
670
671	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
672				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
673	if (ret < 0) {
674		dev_err(priv->dev, "poll timeout\n");
675		goto out;
676	}
677
678out:
679	mt7530_mutex_unlock(priv);
680
681	return ret;
682}
683
684static int
685mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
686{
687	struct mt7530_dummy_poll p;
688	int ret;
689	u32 val;
690
691	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
692
693	mt7530_mutex_lock(priv);
694
695	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697	if (ret < 0) {
698		dev_err(priv->dev, "poll timeout\n");
699		goto out;
700	}
701
702	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
703	      MT7531_MDIO_REG_ADDR(regnum);
704
705	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
706
707	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
708				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
709	if (ret < 0) {
710		dev_err(priv->dev, "poll timeout\n");
711		goto out;
712	}
713
714	ret = val & MT7531_MDIO_RW_DATA_MASK;
715out:
716	mt7530_mutex_unlock(priv);
717
718	return ret;
719}
720
721static int
722mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
723			 u16 data)
724{
725	struct mt7530_dummy_poll p;
726	int ret;
727	u32 reg;
728
729	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730
731	mt7530_mutex_lock(priv);
732
733	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
734				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
735	if (ret < 0) {
736		dev_err(priv->dev, "poll timeout\n");
737		goto out;
738	}
739
740	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
741	      MT7531_MDIO_REG_ADDR(regnum) | data;
742
743	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
744
745	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
746				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
747	if (ret < 0) {
748		dev_err(priv->dev, "poll timeout\n");
749		goto out;
750	}
751
752out:
753	mt7530_mutex_unlock(priv);
754
755	return ret;
756}
757
758static int
759mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
760{
761	struct mt7530_priv *priv = bus->priv;
762
763	return priv->info->phy_read_c22(priv, port, regnum);
764}
765
766static int
767mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
768{
769	struct mt7530_priv *priv = bus->priv;
770
771	return priv->info->phy_read_c45(priv, port, devad, regnum);
772}
773
774static int
775mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
776{
777	struct mt7530_priv *priv = bus->priv;
778
779	return priv->info->phy_write_c22(priv, port, regnum, val);
780}
781
782static int
783mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
784		     u16 val)
785{
786	struct mt7530_priv *priv = bus->priv;
787
788	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
789}
790
791static void
792mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
793		   uint8_t *data)
794{
795	int i;
796
797	if (stringset != ETH_SS_STATS)
798		return;
799
800	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
801		ethtool_puts(&data, mt7530_mib[i].name);
802}
803
804static void
805mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
806			 uint64_t *data)
807{
808	struct mt7530_priv *priv = ds->priv;
809	const struct mt7530_mib_desc *mib;
810	u32 reg, i;
811	u64 hi;
812
813	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
814		mib = &mt7530_mib[i];
815		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
816
817		data[i] = mt7530_read(priv, reg);
818		if (mib->size == 2) {
819			hi = mt7530_read(priv, reg + 4);
820			data[i] |= hi << 32;
821		}
822	}
823}
824
825static int
826mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
827{
828	if (sset != ETH_SS_STATS)
829		return 0;
830
831	return ARRAY_SIZE(mt7530_mib);
832}
833
834static int
835mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
836{
837	struct mt7530_priv *priv = ds->priv;
838	unsigned int secs = msecs / 1000;
839	unsigned int tmp_age_count;
840	unsigned int error = -1;
841	unsigned int age_count;
842	unsigned int age_unit;
843
844	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
845	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
846		return -ERANGE;
847
848	/* iterate through all possible age_count to find the closest pair */
849	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
850		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
851
852		if (tmp_age_unit <= AGE_UNIT_MAX) {
853			unsigned int tmp_error = secs -
854				(tmp_age_count + 1) * (tmp_age_unit + 1);
855
856			/* found a closer pair */
857			if (error > tmp_error) {
858				error = tmp_error;
859				age_count = tmp_age_count;
860				age_unit = tmp_age_unit;
861			}
862
863			/* found the exact match, so break the loop */
864			if (!error)
865				break;
866		}
867	}
868
869	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
870
871	return 0;
872}
873
874static const char *p5_intf_modes(unsigned int p5_interface)
875{
876	switch (p5_interface) {
877	case P5_DISABLED:
878		return "DISABLED";
879	case P5_INTF_SEL_PHY_P0:
880		return "PHY P0";
881	case P5_INTF_SEL_PHY_P4:
882		return "PHY P4";
883	case P5_INTF_SEL_GMAC5:
884		return "GMAC5";
885	default:
886		return "unknown";
887	}
888}
889
890static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
891{
892	struct mt7530_priv *priv = ds->priv;
893	u8 tx_delay = 0;
894	int val;
895
896	mutex_lock(&priv->reg_mutex);
897
898	val = mt7530_read(priv, MT7530_MHWTRAP);
899
900	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
901	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
902
903	switch (priv->p5_intf_sel) {
904	case P5_INTF_SEL_PHY_P0:
905		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
906		val |= MHWTRAP_PHY0_SEL;
907		fallthrough;
908	case P5_INTF_SEL_PHY_P4:
909		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
910		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
911
912		/* Setup the MAC by default for the cpu port */
913		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
914		break;
915	case P5_INTF_SEL_GMAC5:
916		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
917		val &= ~MHWTRAP_P5_DIS;
918		break;
919	default:
920		break;
921	}
922
923	/* Setup RGMII settings */
924	if (phy_interface_mode_is_rgmii(interface)) {
925		val |= MHWTRAP_P5_RGMII_MODE;
926
927		/* P5 RGMII RX Clock Control: delay setting for 1000M */
928		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
929
930		/* Don't set delay in DSA mode */
931		if (!dsa_is_dsa_port(priv->ds, 5) &&
932		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
933		     interface == PHY_INTERFACE_MODE_RGMII_ID))
934			tx_delay = 4; /* n * 0.5 ns */
935
936		/* P5 RGMII TX Clock Control: delay x */
937		mt7530_write(priv, MT7530_P5RGMIITXCR,
938			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
939
940		/* reduce P5 RGMII Tx driving, 8mA */
941		mt7530_write(priv, MT7530_IO_DRV_CR,
942			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
943	}
944
945	mt7530_write(priv, MT7530_MHWTRAP, val);
946
947	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
948		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
949
950	mutex_unlock(&priv->reg_mutex);
951}
952
953/* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
954 * of the Open Systems Interconnection basic reference model (OSI/RM) are
955 * described; the medium access control (MAC) and logical link control (LLC)
956 * sublayers. The MAC sublayer is the one facing the physical layer.
957 *
958 * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
959 * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
960 * of the Bridge, at least two Ports, and higher layer entities with at least a
961 * Spanning Tree Protocol Entity included.
962 *
963 * Each Bridge Port also functions as an end station and shall provide the MAC
964 * Service to an LLC Entity. Each instance of the MAC Service is provided to a
965 * distinct LLC Entity that supports protocol identification, multiplexing, and
966 * demultiplexing, for protocol data unit (PDU) transmission and reception by
967 * one or more higher layer entities.
968 *
969 * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
970 * Entity associated with each Bridge Port is modeled as being directly
971 * connected to the attached Local Area Network (LAN).
972 *
973 * On the switch with CPU port architecture, CPU port functions as Management
974 * Port, and the Management Port functionality is provided by software which
975 * functions as an end station. Software is connected to an IEEE 802 LAN that is
976 * wholly contained within the system that incorporates the Bridge. Software
977 * provides access to the LLC Entity associated with each Bridge Port by the
978 * value of the source port field on the special tag on the frame received by
979 * software.
980 *
981 * We call frames that carry control information to determine the active
982 * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
983 * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
984 * Protocol Data Units (MVRPDUs), and frames from other link constrained
985 * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
986 * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
987 * forwarded by a Bridge. Permanently configured entries in the filtering
988 * database (FDB) ensure that such frames are discarded by the Forwarding
989 * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
990 *
991 * Each of the reserved MAC addresses specified in Table 8-1
992 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
993 * permanently configured in the FDB in C-VLAN components and ERs.
994 *
995 * Each of the reserved MAC addresses specified in Table 8-2
996 * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
997 * configured in the FDB in S-VLAN components.
998 *
999 * Each of the reserved MAC addresses specified in Table 8-3
1000 * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
1001 * TPMR components.
1002 *
1003 * The FDB entries for reserved MAC addresses shall specify filtering for all
1004 * Bridge Ports and all VIDs. Management shall not provide the capability to
1005 * modify or remove entries for reserved MAC addresses.
1006 *
1007 * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
1008 * propagation of PDUs within a Bridged Network, as follows:
1009 *
1010 *   The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
1011 *   conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
1012 *   component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
1013 *   PDUs transmitted using this destination address, or any other addresses
1014 *   that appear in Table 8-1, Table 8-2, and Table 8-3
1015 *   (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
1016 *   therefore travel no further than those stations that can be reached via a
1017 *   single individual LAN from the originating station.
1018 *
1019 *   The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1020 *   address that no conformant S-VLAN component, C-VLAN component, or MAC
1021 *   Bridge can forward; however, this address is relayed by a TPMR component.
1022 *   PDUs using this destination address, or any of the other addresses that
1023 *   appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1024 *   (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1025 *   any TPMRs but will propagate no further than the nearest S-VLAN component,
1026 *   C-VLAN component, or MAC Bridge.
1027 *
1028 *   The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1029 *   that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1030 *   relayed by TPMR components and S-VLAN components. PDUs using this
1031 *   destination address, or any of the other addresses that appear in Table 8-1
1032 *   but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1033 *   will be relayed by TPMR components and S-VLAN components but will propagate
1034 *   no further than the nearest C-VLAN component or MAC Bridge.
1035 *
1036 * Because the LLC Entity associated with each Bridge Port is provided via CPU
1037 * port, we must not filter these frames but forward them to CPU port.
1038 *
1039 * In a Bridge, the transmission Port is majorly decided by ingress and egress
1040 * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1041 * For link-local frames, only CPU port should be designated as destination port
1042 * in the FDB, and the other functions of the Forwarding Process must not
1043 * interfere with the decision of the transmission Port. We call this process
1044 * trapping frames to CPU port.
1045 *
1046 * Therefore, on the switch with CPU port architecture, link-local frames must
1047 * be trapped to CPU port, and certain link-local frames received by a Port of a
1048 * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1049 * from it.
1050 *
1051 * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1052 * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1053 * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1054 * doesn't count) of this architecture will either function as a standard MAC
1055 * Bridge or a standard VLAN Bridge.
1056 *
1057 * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1058 * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1059 * we don't need to relay PDUs using the destination addresses specified on the
1060 * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1061 * section where they must be relayed by TPMR components.
1062 *
1063 * One option to trap link-local frames to CPU port is to add static FDB entries
1064 * with CPU port designated as destination port. However, because that
1065 * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1066 * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1067 * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1068 * entries. This switch intellectual property can only hold a maximum of 2048
1069 * entries. Using this option, there also isn't a mechanism to prevent
1070 * link-local frames from being discarded when the spanning tree Port State of
1071 * the reception Port is discarding.
1072 *
1073 * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1074 * registers. Whilst this applies to every VID, it doesn't contain all of the
1075 * reserved MAC addresses without affecting the remaining Standard Group MAC
1076 * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1077 * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1078 * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1079 * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1080 * The latter option provides better but not complete conformance.
1081 *
1082 * This switch intellectual property also does not provide a mechanism to trap
1083 * link-local frames with specific destination addresses to CPU port by Bridge,
1084 * to conform to the filtering rules for the distinct Bridge components.
1085 *
1086 * Therefore, regardless of the type of the Bridge component, link-local frames
1087 * with these destination addresses will be trapped to CPU port:
1088 *
1089 * 01-80-C2-00-00-[00,01,02,03,0E]
1090 *
1091 * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1092 *
1093 *   Link-local frames with these destination addresses won't be trapped to CPU
1094 *   port which won't conform to IEEE Std 802.1Q-2022:
1095 *
1096 *   01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1097 *
1098 * In a Bridge comprising an S-VLAN component:
1099 *
1100 *   Link-local frames with these destination addresses will be trapped to CPU
1101 *   port which won't conform to IEEE Std 802.1Q-2022:
1102 *
1103 *   01-80-C2-00-00-00
1104 *
1105 *   Link-local frames with these destination addresses won't be trapped to CPU
1106 *   port which won't conform to IEEE Std 802.1Q-2022:
1107 *
1108 *   01-80-C2-00-00-[04,05,06,07,08,09,0A]
1109 *
1110 * To trap link-local frames to CPU port as conformant as this switch
1111 * intellectual property can allow, link-local frames are made to be regarded as
1112 * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1113 * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1114 * State function of the Forwarding Process.
1115 *
1116 * The only remaining interference is the ingress rules. When the reception Port
1117 * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1118 * There doesn't seem to be a mechanism on the switch intellectual property to
1119 * have link-local frames bypass this function of the Forwarding Process.
1120 */
1121static void
1122mt753x_trap_frames(struct mt7530_priv *priv)
1123{
1124	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1125	 * VLAN-untagged.
1126	 */
1127	mt7530_rmw(priv, MT753X_BPC,
1128		   MT753X_PAE_BPDU_FR | MT753X_PAE_EG_TAG_MASK |
1129			   MT753X_PAE_PORT_FW_MASK | MT753X_BPDU_EG_TAG_MASK |
1130			   MT753X_BPDU_PORT_FW_MASK,
1131		   MT753X_PAE_BPDU_FR |
1132			   MT753X_PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1133			   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1134			   MT753X_BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1135			   MT753X_BPDU_CPU_ONLY);
1136
1137	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1138	 * them VLAN-untagged.
1139	 */
1140	mt7530_rmw(priv, MT753X_RGAC1,
1141		   MT753X_R02_BPDU_FR | MT753X_R02_EG_TAG_MASK |
1142			   MT753X_R02_PORT_FW_MASK | MT753X_R01_BPDU_FR |
1143			   MT753X_R01_EG_TAG_MASK | MT753X_R01_PORT_FW_MASK,
1144		   MT753X_R02_BPDU_FR |
1145			   MT753X_R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1146			   MT753X_R02_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1147			   MT753X_R01_BPDU_FR |
1148			   MT753X_R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1149			   MT753X_BPDU_CPU_ONLY);
1150
1151	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1152	 * them VLAN-untagged.
1153	 */
1154	mt7530_rmw(priv, MT753X_RGAC2,
1155		   MT753X_R0E_BPDU_FR | MT753X_R0E_EG_TAG_MASK |
1156			   MT753X_R0E_PORT_FW_MASK | MT753X_R03_BPDU_FR |
1157			   MT753X_R03_EG_TAG_MASK | MT753X_R03_PORT_FW_MASK,
1158		   MT753X_R0E_BPDU_FR |
1159			   MT753X_R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1160			   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1161			   MT753X_R03_BPDU_FR |
1162			   MT753X_R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1163			   MT753X_BPDU_CPU_ONLY);
1164}
1165
1166static void
1167mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1168{
1169	struct mt7530_priv *priv = ds->priv;
1170
1171	/* Enable Mediatek header mode on the cpu port */
1172	mt7530_write(priv, MT7530_PVC_P(port),
1173		     PORT_SPEC_TAG);
1174
1175	/* Enable flooding on the CPU port */
1176	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1177		   UNU_FFP(BIT(port)));
1178
1179	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1180	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1181	 * is affine to the inbound user port.
1182	 */
1183	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1184		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1185
1186	/* CPU port gets connected to all user ports of
1187	 * the switch.
1188	 */
1189	mt7530_write(priv, MT7530_PCR_P(port),
1190		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1191
1192	/* Set to fallback mode for independent VLAN learning */
1193	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1194		   MT7530_PORT_FALLBACK_MODE);
1195}
1196
1197static int
1198mt7530_port_enable(struct dsa_switch *ds, int port,
1199		   struct phy_device *phy)
1200{
1201	struct dsa_port *dp = dsa_to_port(ds, port);
1202	struct mt7530_priv *priv = ds->priv;
1203
1204	mutex_lock(&priv->reg_mutex);
1205
1206	/* Allow the user port gets connected to the cpu port and also
1207	 * restore the port matrix if the port is the member of a certain
1208	 * bridge.
1209	 */
1210	if (dsa_port_is_user(dp)) {
1211		struct dsa_port *cpu_dp = dp->cpu_dp;
1212
1213		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1214	}
1215	priv->ports[port].enable = true;
1216	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1217		   priv->ports[port].pm);
1218
1219	mutex_unlock(&priv->reg_mutex);
1220
1221	return 0;
1222}
1223
1224static void
1225mt7530_port_disable(struct dsa_switch *ds, int port)
1226{
1227	struct mt7530_priv *priv = ds->priv;
1228
1229	mutex_lock(&priv->reg_mutex);
1230
1231	/* Clear up all port matrix which could be restored in the next
1232	 * enablement for the port.
1233	 */
1234	priv->ports[port].enable = false;
1235	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1236		   PCR_MATRIX_CLR);
1237
1238	mutex_unlock(&priv->reg_mutex);
1239}
1240
1241static int
1242mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1243{
1244	struct mt7530_priv *priv = ds->priv;
1245	int length;
1246	u32 val;
1247
1248	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1249	 * largest MTU of the user ports. Because the switch only has a global
1250	 * RX length register, only allowing CPU port here is enough.
1251	 */
1252	if (!dsa_is_cpu_port(ds, port))
1253		return 0;
1254
1255	mt7530_mutex_lock(priv);
1256
1257	val = mt7530_mii_read(priv, MT7530_GMACCR);
1258	val &= ~MAX_RX_PKT_LEN_MASK;
1259
1260	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1261	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1262	if (length <= 1522) {
1263		val |= MAX_RX_PKT_LEN_1522;
1264	} else if (length <= 1536) {
1265		val |= MAX_RX_PKT_LEN_1536;
1266	} else if (length <= 1552) {
1267		val |= MAX_RX_PKT_LEN_1552;
1268	} else {
1269		val &= ~MAX_RX_JUMBO_MASK;
1270		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1271		val |= MAX_RX_PKT_LEN_JUMBO;
1272	}
1273
1274	mt7530_mii_write(priv, MT7530_GMACCR, val);
1275
1276	mt7530_mutex_unlock(priv);
1277
1278	return 0;
1279}
1280
1281static int
1282mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1283{
1284	return MT7530_MAX_MTU;
1285}
1286
1287static void
1288mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1289{
1290	struct mt7530_priv *priv = ds->priv;
1291	u32 stp_state;
1292
1293	switch (state) {
1294	case BR_STATE_DISABLED:
1295		stp_state = MT7530_STP_DISABLED;
1296		break;
1297	case BR_STATE_BLOCKING:
1298		stp_state = MT7530_STP_BLOCKING;
1299		break;
1300	case BR_STATE_LISTENING:
1301		stp_state = MT7530_STP_LISTENING;
1302		break;
1303	case BR_STATE_LEARNING:
1304		stp_state = MT7530_STP_LEARNING;
1305		break;
1306	case BR_STATE_FORWARDING:
1307	default:
1308		stp_state = MT7530_STP_FORWARDING;
1309		break;
1310	}
1311
1312	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1313		   FID_PST(FID_BRIDGED, stp_state));
1314}
1315
1316static int
1317mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1318			     struct switchdev_brport_flags flags,
1319			     struct netlink_ext_ack *extack)
1320{
1321	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1322			   BR_BCAST_FLOOD))
1323		return -EINVAL;
1324
1325	return 0;
1326}
1327
1328static int
1329mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1330			 struct switchdev_brport_flags flags,
1331			 struct netlink_ext_ack *extack)
1332{
1333	struct mt7530_priv *priv = ds->priv;
1334
1335	if (flags.mask & BR_LEARNING)
1336		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1337			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1338
1339	if (flags.mask & BR_FLOOD)
1340		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1341			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1342
1343	if (flags.mask & BR_MCAST_FLOOD)
1344		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1345			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1346
1347	if (flags.mask & BR_BCAST_FLOOD)
1348		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1349			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1350
1351	return 0;
1352}
1353
1354static int
1355mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1356			struct dsa_bridge bridge, bool *tx_fwd_offload,
1357			struct netlink_ext_ack *extack)
1358{
1359	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1360	struct dsa_port *cpu_dp = dp->cpu_dp;
1361	u32 port_bitmap = BIT(cpu_dp->index);
1362	struct mt7530_priv *priv = ds->priv;
1363
1364	mutex_lock(&priv->reg_mutex);
1365
1366	dsa_switch_for_each_user_port(other_dp, ds) {
1367		int other_port = other_dp->index;
1368
1369		if (dp == other_dp)
1370			continue;
1371
1372		/* Add this port to the port matrix of the other ports in the
1373		 * same bridge. If the port is disabled, port matrix is kept
1374		 * and not being setup until the port becomes enabled.
1375		 */
1376		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1377			continue;
1378
1379		if (priv->ports[other_port].enable)
1380			mt7530_set(priv, MT7530_PCR_P(other_port),
1381				   PCR_MATRIX(BIT(port)));
1382		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1383
1384		port_bitmap |= BIT(other_port);
1385	}
1386
1387	/* Add the all other ports to this port matrix. */
1388	if (priv->ports[port].enable)
1389		mt7530_rmw(priv, MT7530_PCR_P(port),
1390			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1391	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1392
1393	/* Set to fallback mode for independent VLAN learning */
1394	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1395		   MT7530_PORT_FALLBACK_MODE);
1396
1397	mutex_unlock(&priv->reg_mutex);
1398
1399	return 0;
1400}
1401
1402static void
1403mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1404{
1405	struct mt7530_priv *priv = ds->priv;
1406	bool all_user_ports_removed = true;
1407	int i;
1408
1409	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1410	 * bridge. Don't set standalone ports to fallback mode.
1411	 */
1412	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1413		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1414			   MT7530_PORT_FALLBACK_MODE);
1415
1416	mt7530_rmw(priv, MT7530_PVC_P(port),
1417		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1418		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1419		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1420		   MT7530_VLAN_ACC_ALL);
1421
1422	/* Set PVID to 0 */
1423	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1424		   G0_PORT_VID_DEF);
1425
1426	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1427		if (dsa_is_user_port(ds, i) &&
1428		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1429			all_user_ports_removed = false;
1430			break;
1431		}
1432	}
1433
1434	/* CPU port also does the same thing until all user ports belonging to
1435	 * the CPU port get out of VLAN filtering mode.
1436	 */
1437	if (all_user_ports_removed) {
1438		struct dsa_port *dp = dsa_to_port(ds, port);
1439		struct dsa_port *cpu_dp = dp->cpu_dp;
1440
1441		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1442			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1443		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1444			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1445	}
1446}
1447
1448static void
1449mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1450{
1451	struct mt7530_priv *priv = ds->priv;
1452
1453	/* Trapped into security mode allows packet forwarding through VLAN
1454	 * table lookup.
1455	 */
1456	if (dsa_is_user_port(ds, port)) {
1457		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1458			   MT7530_PORT_SECURITY_MODE);
1459		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1460			   G0_PORT_VID(priv->ports[port].pvid));
1461
1462		/* Only accept tagged frames if PVID is not set */
1463		if (!priv->ports[port].pvid)
1464			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1465				   MT7530_VLAN_ACC_TAGGED);
1466
1467		/* Set the port as a user port which is to be able to recognize
1468		 * VID from incoming packets before fetching entry within the
1469		 * VLAN table.
1470		 */
1471		mt7530_rmw(priv, MT7530_PVC_P(port),
1472			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1473			   VLAN_ATTR(MT7530_VLAN_USER) |
1474			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1475	} else {
1476		/* Also set CPU ports to the "user" VLAN port attribute, to
1477		 * allow VLAN classification, but keep the EG_TAG attribute as
1478		 * "consistent" (i.o.w. don't change its value) for packets
1479		 * received by the switch from the CPU, so that tagged packets
1480		 * are forwarded to user ports as tagged, and untagged as
1481		 * untagged.
1482		 */
1483		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1484			   VLAN_ATTR(MT7530_VLAN_USER));
1485	}
1486}
1487
1488static void
1489mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1490			 struct dsa_bridge bridge)
1491{
1492	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1493	struct dsa_port *cpu_dp = dp->cpu_dp;
1494	struct mt7530_priv *priv = ds->priv;
1495
1496	mutex_lock(&priv->reg_mutex);
1497
1498	dsa_switch_for_each_user_port(other_dp, ds) {
1499		int other_port = other_dp->index;
1500
1501		if (dp == other_dp)
1502			continue;
1503
1504		/* Remove this port from the port matrix of the other ports
1505		 * in the same bridge. If the port is disabled, port matrix
1506		 * is kept and not being setup until the port becomes enabled.
1507		 */
1508		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1509			continue;
1510
1511		if (priv->ports[other_port].enable)
1512			mt7530_clear(priv, MT7530_PCR_P(other_port),
1513				     PCR_MATRIX(BIT(port)));
1514		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1515	}
1516
1517	/* Set the cpu port to be the only one in the port matrix of
1518	 * this port.
1519	 */
1520	if (priv->ports[port].enable)
1521		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1522			   PCR_MATRIX(BIT(cpu_dp->index)));
1523	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1524
1525	/* When a port is removed from the bridge, the port would be set up
1526	 * back to the default as is at initial boot which is a VLAN-unaware
1527	 * port.
1528	 */
1529	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1530		   MT7530_PORT_MATRIX_MODE);
1531
1532	mutex_unlock(&priv->reg_mutex);
1533}
1534
1535static int
1536mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1537		    const unsigned char *addr, u16 vid,
1538		    struct dsa_db db)
1539{
1540	struct mt7530_priv *priv = ds->priv;
1541	int ret;
1542	u8 port_mask = BIT(port);
1543
1544	mutex_lock(&priv->reg_mutex);
1545	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1546	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1547	mutex_unlock(&priv->reg_mutex);
1548
1549	return ret;
1550}
1551
1552static int
1553mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1554		    const unsigned char *addr, u16 vid,
1555		    struct dsa_db db)
1556{
1557	struct mt7530_priv *priv = ds->priv;
1558	int ret;
1559	u8 port_mask = BIT(port);
1560
1561	mutex_lock(&priv->reg_mutex);
1562	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1563	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1564	mutex_unlock(&priv->reg_mutex);
1565
1566	return ret;
1567}
1568
1569static int
1570mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1571		     dsa_fdb_dump_cb_t *cb, void *data)
1572{
1573	struct mt7530_priv *priv = ds->priv;
1574	struct mt7530_fdb _fdb = { 0 };
1575	int cnt = MT7530_NUM_FDB_RECORDS;
1576	int ret = 0;
1577	u32 rsp = 0;
1578
1579	mutex_lock(&priv->reg_mutex);
1580
1581	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1582	if (ret < 0)
1583		goto err;
1584
1585	do {
1586		if (rsp & ATC_SRCH_HIT) {
1587			mt7530_fdb_read(priv, &_fdb);
1588			if (_fdb.port_mask & BIT(port)) {
1589				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1590					 data);
1591				if (ret < 0)
1592					break;
1593			}
1594		}
1595	} while (--cnt &&
1596		 !(rsp & ATC_SRCH_END) &&
1597		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1598err:
1599	mutex_unlock(&priv->reg_mutex);
1600
1601	return 0;
1602}
1603
1604static int
1605mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1606		    const struct switchdev_obj_port_mdb *mdb,
1607		    struct dsa_db db)
1608{
1609	struct mt7530_priv *priv = ds->priv;
1610	const u8 *addr = mdb->addr;
1611	u16 vid = mdb->vid;
1612	u8 port_mask = 0;
1613	int ret;
1614
1615	mutex_lock(&priv->reg_mutex);
1616
1617	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1618	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1619		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1620			    & PORT_MAP_MASK;
1621
1622	port_mask |= BIT(port);
1623	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1624	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1625
1626	mutex_unlock(&priv->reg_mutex);
1627
1628	return ret;
1629}
1630
1631static int
1632mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1633		    const struct switchdev_obj_port_mdb *mdb,
1634		    struct dsa_db db)
1635{
1636	struct mt7530_priv *priv = ds->priv;
1637	const u8 *addr = mdb->addr;
1638	u16 vid = mdb->vid;
1639	u8 port_mask = 0;
1640	int ret;
1641
1642	mutex_lock(&priv->reg_mutex);
1643
1644	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1645	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1646		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1647			    & PORT_MAP_MASK;
1648
1649	port_mask &= ~BIT(port);
1650	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1651			 port_mask ? STATIC_ENT : STATIC_EMP);
1652	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1653
1654	mutex_unlock(&priv->reg_mutex);
1655
1656	return ret;
1657}
1658
1659static int
1660mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1661{
1662	struct mt7530_dummy_poll p;
1663	u32 val;
1664	int ret;
1665
1666	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1667	mt7530_write(priv, MT7530_VTCR, val);
1668
1669	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1670	ret = readx_poll_timeout(_mt7530_read, &p, val,
1671				 !(val & VTCR_BUSY), 20, 20000);
1672	if (ret < 0) {
1673		dev_err(priv->dev, "poll timeout\n");
1674		return ret;
1675	}
1676
1677	val = mt7530_read(priv, MT7530_VTCR);
1678	if (val & VTCR_INVALID) {
1679		dev_err(priv->dev, "read VTCR invalid\n");
1680		return -EINVAL;
1681	}
1682
1683	return 0;
1684}
1685
1686static int
1687mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1688			   struct netlink_ext_ack *extack)
1689{
1690	struct dsa_port *dp = dsa_to_port(ds, port);
1691	struct dsa_port *cpu_dp = dp->cpu_dp;
1692
1693	if (vlan_filtering) {
1694		/* The port is being kept as VLAN-unaware port when bridge is
1695		 * set up with vlan_filtering not being set, Otherwise, the
1696		 * port and the corresponding CPU port is required the setup
1697		 * for becoming a VLAN-aware port.
1698		 */
1699		mt7530_port_set_vlan_aware(ds, port);
1700		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1701	} else {
1702		mt7530_port_set_vlan_unaware(ds, port);
1703	}
1704
1705	return 0;
1706}
1707
1708static void
1709mt7530_hw_vlan_add(struct mt7530_priv *priv,
1710		   struct mt7530_hw_vlan_entry *entry)
1711{
1712	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1713	u8 new_members;
1714	u32 val;
1715
1716	new_members = entry->old_members | BIT(entry->port);
1717
1718	/* Validate the entry with independent learning, create egress tag per
1719	 * VLAN and joining the port as one of the port members.
1720	 */
1721	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1722	      VLAN_VALID;
1723	mt7530_write(priv, MT7530_VAWD1, val);
1724
1725	/* Decide whether adding tag or not for those outgoing packets from the
1726	 * port inside the VLAN.
1727	 * CPU port is always taken as a tagged port for serving more than one
1728	 * VLANs across and also being applied with egress type stack mode for
1729	 * that VLAN tags would be appended after hardware special tag used as
1730	 * DSA tag.
1731	 */
1732	if (dsa_port_is_cpu(dp))
1733		val = MT7530_VLAN_EGRESS_STACK;
1734	else if (entry->untagged)
1735		val = MT7530_VLAN_EGRESS_UNTAG;
1736	else
1737		val = MT7530_VLAN_EGRESS_TAG;
1738	mt7530_rmw(priv, MT7530_VAWD2,
1739		   ETAG_CTRL_P_MASK(entry->port),
1740		   ETAG_CTRL_P(entry->port, val));
1741}
1742
1743static void
1744mt7530_hw_vlan_del(struct mt7530_priv *priv,
1745		   struct mt7530_hw_vlan_entry *entry)
1746{
1747	u8 new_members;
1748	u32 val;
1749
1750	new_members = entry->old_members & ~BIT(entry->port);
1751
1752	val = mt7530_read(priv, MT7530_VAWD1);
1753	if (!(val & VLAN_VALID)) {
1754		dev_err(priv->dev,
1755			"Cannot be deleted due to invalid entry\n");
1756		return;
1757	}
1758
1759	if (new_members) {
1760		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1761		      VLAN_VALID;
1762		mt7530_write(priv, MT7530_VAWD1, val);
1763	} else {
1764		mt7530_write(priv, MT7530_VAWD1, 0);
1765		mt7530_write(priv, MT7530_VAWD2, 0);
1766	}
1767}
1768
1769static void
1770mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1771		      struct mt7530_hw_vlan_entry *entry,
1772		      mt7530_vlan_op vlan_op)
1773{
1774	u32 val;
1775
1776	/* Fetch entry */
1777	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1778
1779	val = mt7530_read(priv, MT7530_VAWD1);
1780
1781	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1782
1783	/* Manipulate entry */
1784	vlan_op(priv, entry);
1785
1786	/* Flush result to hardware */
1787	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1788}
1789
1790static int
1791mt7530_setup_vlan0(struct mt7530_priv *priv)
1792{
1793	u32 val;
1794
1795	/* Validate the entry with independent learning, keep the original
1796	 * ingress tag attribute.
1797	 */
1798	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1799	      VLAN_VALID;
1800	mt7530_write(priv, MT7530_VAWD1, val);
1801
1802	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1803}
1804
1805static int
1806mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1807		     const struct switchdev_obj_port_vlan *vlan,
1808		     struct netlink_ext_ack *extack)
1809{
1810	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1811	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1812	struct mt7530_hw_vlan_entry new_entry;
1813	struct mt7530_priv *priv = ds->priv;
1814
1815	mutex_lock(&priv->reg_mutex);
1816
1817	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1818	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1819
1820	if (pvid) {
1821		priv->ports[port].pvid = vlan->vid;
1822
1823		/* Accept all frames if PVID is set */
1824		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1825			   MT7530_VLAN_ACC_ALL);
1826
1827		/* Only configure PVID if VLAN filtering is enabled */
1828		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1829			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1830				   G0_PORT_VID_MASK,
1831				   G0_PORT_VID(vlan->vid));
1832	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1833		/* This VLAN is overwritten without PVID, so unset it */
1834		priv->ports[port].pvid = G0_PORT_VID_DEF;
1835
1836		/* Only accept tagged frames if the port is VLAN-aware */
1837		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1838			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1839				   MT7530_VLAN_ACC_TAGGED);
1840
1841		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1842			   G0_PORT_VID_DEF);
1843	}
1844
1845	mutex_unlock(&priv->reg_mutex);
1846
1847	return 0;
1848}
1849
1850static int
1851mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1852		     const struct switchdev_obj_port_vlan *vlan)
1853{
1854	struct mt7530_hw_vlan_entry target_entry;
1855	struct mt7530_priv *priv = ds->priv;
1856
1857	mutex_lock(&priv->reg_mutex);
1858
1859	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1860	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1861			      mt7530_hw_vlan_del);
1862
1863	/* PVID is being restored to the default whenever the PVID port
1864	 * is being removed from the VLAN.
1865	 */
1866	if (priv->ports[port].pvid == vlan->vid) {
1867		priv->ports[port].pvid = G0_PORT_VID_DEF;
1868
1869		/* Only accept tagged frames if the port is VLAN-aware */
1870		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1871			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1872				   MT7530_VLAN_ACC_TAGGED);
1873
1874		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1875			   G0_PORT_VID_DEF);
1876	}
1877
1878
1879	mutex_unlock(&priv->reg_mutex);
1880
1881	return 0;
1882}
1883
1884static int mt753x_mirror_port_get(unsigned int id, u32 val)
1885{
1886	return (id == ID_MT7531 || id == ID_MT7988) ?
1887		       MT7531_MIRROR_PORT_GET(val) :
1888		       MIRROR_PORT(val);
1889}
1890
1891static int mt753x_mirror_port_set(unsigned int id, u32 val)
1892{
1893	return (id == ID_MT7531 || id == ID_MT7988) ?
1894		       MT7531_MIRROR_PORT_SET(val) :
1895		       MIRROR_PORT(val);
1896}
1897
1898static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1899				  struct dsa_mall_mirror_tc_entry *mirror,
1900				  bool ingress, struct netlink_ext_ack *extack)
1901{
1902	struct mt7530_priv *priv = ds->priv;
1903	int monitor_port;
1904	u32 val;
1905
1906	/* Check for existent entry */
1907	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1908		return -EEXIST;
1909
1910	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1911
1912	/* MT7530 only supports one monitor port */
1913	monitor_port = mt753x_mirror_port_get(priv->id, val);
1914	if (val & MT753X_MIRROR_EN(priv->id) &&
1915	    monitor_port != mirror->to_local_port)
1916		return -EEXIST;
1917
1918	val |= MT753X_MIRROR_EN(priv->id);
1919	val &= ~MT753X_MIRROR_MASK(priv->id);
1920	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1921	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1922
1923	val = mt7530_read(priv, MT7530_PCR_P(port));
1924	if (ingress) {
1925		val |= PORT_RX_MIR;
1926		priv->mirror_rx |= BIT(port);
1927	} else {
1928		val |= PORT_TX_MIR;
1929		priv->mirror_tx |= BIT(port);
1930	}
1931	mt7530_write(priv, MT7530_PCR_P(port), val);
1932
1933	return 0;
1934}
1935
1936static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1937				   struct dsa_mall_mirror_tc_entry *mirror)
1938{
1939	struct mt7530_priv *priv = ds->priv;
1940	u32 val;
1941
1942	val = mt7530_read(priv, MT7530_PCR_P(port));
1943	if (mirror->ingress) {
1944		val &= ~PORT_RX_MIR;
1945		priv->mirror_rx &= ~BIT(port);
1946	} else {
1947		val &= ~PORT_TX_MIR;
1948		priv->mirror_tx &= ~BIT(port);
1949	}
1950	mt7530_write(priv, MT7530_PCR_P(port), val);
1951
1952	if (!priv->mirror_rx && !priv->mirror_tx) {
1953		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1954		val &= ~MT753X_MIRROR_EN(priv->id);
1955		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1956	}
1957}
1958
1959static enum dsa_tag_protocol
1960mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1961		     enum dsa_tag_protocol mp)
1962{
1963	return DSA_TAG_PROTO_MTK;
1964}
1965
1966#ifdef CONFIG_GPIOLIB
1967static inline u32
1968mt7530_gpio_to_bit(unsigned int offset)
1969{
1970	/* Map GPIO offset to register bit
1971	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1972	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1973	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1974	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1975	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1976	 */
1977	return BIT(offset + offset / 3);
1978}
1979
1980static int
1981mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1982{
1983	struct mt7530_priv *priv = gpiochip_get_data(gc);
1984	u32 bit = mt7530_gpio_to_bit(offset);
1985
1986	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1987}
1988
1989static void
1990mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1991{
1992	struct mt7530_priv *priv = gpiochip_get_data(gc);
1993	u32 bit = mt7530_gpio_to_bit(offset);
1994
1995	if (value)
1996		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1997	else
1998		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1999}
2000
2001static int
2002mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
2003{
2004	struct mt7530_priv *priv = gpiochip_get_data(gc);
2005	u32 bit = mt7530_gpio_to_bit(offset);
2006
2007	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
2008		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
2009}
2010
2011static int
2012mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
2013{
2014	struct mt7530_priv *priv = gpiochip_get_data(gc);
2015	u32 bit = mt7530_gpio_to_bit(offset);
2016
2017	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
2018	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
2019
2020	return 0;
2021}
2022
2023static int
2024mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2025{
2026	struct mt7530_priv *priv = gpiochip_get_data(gc);
2027	u32 bit = mt7530_gpio_to_bit(offset);
2028
2029	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
2030
2031	if (value)
2032		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2033	else
2034		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2035
2036	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
2037
2038	return 0;
2039}
2040
2041static int
2042mt7530_setup_gpio(struct mt7530_priv *priv)
2043{
2044	struct device *dev = priv->dev;
2045	struct gpio_chip *gc;
2046
2047	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
2048	if (!gc)
2049		return -ENOMEM;
2050
2051	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
2052	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
2053	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
2054
2055	gc->label = "mt7530";
2056	gc->parent = dev;
2057	gc->owner = THIS_MODULE;
2058	gc->get_direction = mt7530_gpio_get_direction;
2059	gc->direction_input = mt7530_gpio_direction_input;
2060	gc->direction_output = mt7530_gpio_direction_output;
2061	gc->get = mt7530_gpio_get;
2062	gc->set = mt7530_gpio_set;
2063	gc->base = -1;
2064	gc->ngpio = 15;
2065	gc->can_sleep = true;
2066
2067	return devm_gpiochip_add_data(dev, gc, priv);
2068}
2069#endif /* CONFIG_GPIOLIB */
2070
2071static irqreturn_t
2072mt7530_irq_thread_fn(int irq, void *dev_id)
2073{
2074	struct mt7530_priv *priv = dev_id;
2075	bool handled = false;
2076	u32 val;
2077	int p;
2078
2079	mt7530_mutex_lock(priv);
2080	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
2081	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
2082	mt7530_mutex_unlock(priv);
2083
2084	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2085		if (BIT(p) & val) {
2086			unsigned int irq;
2087
2088			irq = irq_find_mapping(priv->irq_domain, p);
2089			handle_nested_irq(irq);
2090			handled = true;
2091		}
2092	}
2093
2094	return IRQ_RETVAL(handled);
2095}
2096
2097static void
2098mt7530_irq_mask(struct irq_data *d)
2099{
2100	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2101
2102	priv->irq_enable &= ~BIT(d->hwirq);
2103}
2104
2105static void
2106mt7530_irq_unmask(struct irq_data *d)
2107{
2108	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2109
2110	priv->irq_enable |= BIT(d->hwirq);
2111}
2112
2113static void
2114mt7530_irq_bus_lock(struct irq_data *d)
2115{
2116	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2117
2118	mt7530_mutex_lock(priv);
2119}
2120
2121static void
2122mt7530_irq_bus_sync_unlock(struct irq_data *d)
2123{
2124	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2125
2126	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2127	mt7530_mutex_unlock(priv);
2128}
2129
2130static struct irq_chip mt7530_irq_chip = {
2131	.name = KBUILD_MODNAME,
2132	.irq_mask = mt7530_irq_mask,
2133	.irq_unmask = mt7530_irq_unmask,
2134	.irq_bus_lock = mt7530_irq_bus_lock,
2135	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2136};
2137
2138static int
2139mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2140	       irq_hw_number_t hwirq)
2141{
2142	irq_set_chip_data(irq, domain->host_data);
2143	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2144	irq_set_nested_thread(irq, true);
2145	irq_set_noprobe(irq);
2146
2147	return 0;
2148}
2149
2150static const struct irq_domain_ops mt7530_irq_domain_ops = {
2151	.map = mt7530_irq_map,
2152	.xlate = irq_domain_xlate_onecell,
2153};
2154
2155static void
2156mt7988_irq_mask(struct irq_data *d)
2157{
2158	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2159
2160	priv->irq_enable &= ~BIT(d->hwirq);
2161	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2162}
2163
2164static void
2165mt7988_irq_unmask(struct irq_data *d)
2166{
2167	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2168
2169	priv->irq_enable |= BIT(d->hwirq);
2170	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2171}
2172
2173static struct irq_chip mt7988_irq_chip = {
2174	.name = KBUILD_MODNAME,
2175	.irq_mask = mt7988_irq_mask,
2176	.irq_unmask = mt7988_irq_unmask,
2177};
2178
2179static int
2180mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2181	       irq_hw_number_t hwirq)
2182{
2183	irq_set_chip_data(irq, domain->host_data);
2184	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2185	irq_set_nested_thread(irq, true);
2186	irq_set_noprobe(irq);
2187
2188	return 0;
2189}
2190
2191static const struct irq_domain_ops mt7988_irq_domain_ops = {
2192	.map = mt7988_irq_map,
2193	.xlate = irq_domain_xlate_onecell,
2194};
2195
2196static void
2197mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2198{
2199	struct dsa_switch *ds = priv->ds;
2200	int p;
2201
2202	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2203		if (BIT(p) & ds->phys_mii_mask) {
2204			unsigned int irq;
2205
2206			irq = irq_create_mapping(priv->irq_domain, p);
2207			ds->user_mii_bus->irq[p] = irq;
2208		}
2209	}
2210}
2211
2212static int
2213mt7530_setup_irq(struct mt7530_priv *priv)
2214{
2215	struct device *dev = priv->dev;
2216	struct device_node *np = dev->of_node;
2217	int ret;
2218
2219	if (!of_property_read_bool(np, "interrupt-controller")) {
2220		dev_info(dev, "no interrupt support\n");
2221		return 0;
2222	}
2223
2224	priv->irq = of_irq_get(np, 0);
2225	if (priv->irq <= 0) {
2226		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2227		return priv->irq ? : -EINVAL;
2228	}
2229
2230	if (priv->id == ID_MT7988)
2231		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2232							 &mt7988_irq_domain_ops,
2233							 priv);
2234	else
2235		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2236							 &mt7530_irq_domain_ops,
2237							 priv);
2238
2239	if (!priv->irq_domain) {
2240		dev_err(dev, "failed to create IRQ domain\n");
2241		return -ENOMEM;
2242	}
2243
2244	/* This register must be set for MT7530 to properly fire interrupts */
2245	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2246		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2247
2248	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2249				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2250	if (ret) {
2251		irq_domain_remove(priv->irq_domain);
2252		dev_err(dev, "failed to request IRQ: %d\n", ret);
2253		return ret;
2254	}
2255
2256	return 0;
2257}
2258
2259static void
2260mt7530_free_mdio_irq(struct mt7530_priv *priv)
2261{
2262	int p;
2263
2264	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2265		if (BIT(p) & priv->ds->phys_mii_mask) {
2266			unsigned int irq;
2267
2268			irq = irq_find_mapping(priv->irq_domain, p);
2269			irq_dispose_mapping(irq);
2270		}
2271	}
2272}
2273
2274static void
2275mt7530_free_irq_common(struct mt7530_priv *priv)
2276{
2277	free_irq(priv->irq, priv);
2278	irq_domain_remove(priv->irq_domain);
2279}
2280
2281static void
2282mt7530_free_irq(struct mt7530_priv *priv)
2283{
2284	struct device_node *mnp, *np = priv->dev->of_node;
2285
2286	mnp = of_get_child_by_name(np, "mdio");
2287	if (!mnp)
2288		mt7530_free_mdio_irq(priv);
2289	of_node_put(mnp);
2290
2291	mt7530_free_irq_common(priv);
2292}
2293
2294static int
2295mt7530_setup_mdio(struct mt7530_priv *priv)
2296{
2297	struct device_node *mnp, *np = priv->dev->of_node;
2298	struct dsa_switch *ds = priv->ds;
2299	struct device *dev = priv->dev;
2300	struct mii_bus *bus;
2301	static int idx;
2302	int ret = 0;
2303
2304	mnp = of_get_child_by_name(np, "mdio");
2305
2306	if (mnp && !of_device_is_available(mnp))
2307		goto out;
2308
2309	bus = devm_mdiobus_alloc(dev);
2310	if (!bus) {
2311		ret = -ENOMEM;
2312		goto out;
2313	}
2314
2315	if (!mnp)
2316		ds->user_mii_bus = bus;
2317
2318	bus->priv = priv;
2319	bus->name = KBUILD_MODNAME "-mii";
2320	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2321	bus->read = mt753x_phy_read_c22;
2322	bus->write = mt753x_phy_write_c22;
2323	bus->read_c45 = mt753x_phy_read_c45;
2324	bus->write_c45 = mt753x_phy_write_c45;
2325	bus->parent = dev;
2326	bus->phy_mask = ~ds->phys_mii_mask;
2327
2328	if (priv->irq && !mnp)
2329		mt7530_setup_mdio_irq(priv);
2330
2331	ret = devm_of_mdiobus_register(dev, bus, mnp);
2332	if (ret) {
2333		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2334		if (priv->irq && !mnp)
2335			mt7530_free_mdio_irq(priv);
2336	}
2337
2338out:
2339	of_node_put(mnp);
2340	return ret;
2341}
2342
2343static int
2344mt7530_setup(struct dsa_switch *ds)
2345{
2346	struct mt7530_priv *priv = ds->priv;
2347	struct device_node *dn = NULL;
2348	struct device_node *phy_node;
2349	struct device_node *mac_np;
2350	struct mt7530_dummy_poll p;
2351	phy_interface_t interface;
2352	struct dsa_port *cpu_dp;
2353	u32 id, val;
2354	int ret, i;
2355
2356	/* The parent node of conduit netdev which holds the common system
2357	 * controller also is the container for two GMACs nodes representing
2358	 * as two netdev instances.
2359	 */
2360	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2361		dn = cpu_dp->conduit->dev.of_node->parent;
2362		/* It doesn't matter which CPU port is found first,
2363		 * their conduits should share the same parent OF node
2364		 */
2365		break;
2366	}
2367
2368	if (!dn) {
2369		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2370		return -EINVAL;
2371	}
2372
2373	ds->assisted_learning_on_cpu_port = true;
2374	ds->mtu_enforcement_ingress = true;
2375
2376	if (priv->id == ID_MT7530) {
2377		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2378		ret = regulator_enable(priv->core_pwr);
2379		if (ret < 0) {
2380			dev_err(priv->dev,
2381				"Failed to enable core power: %d\n", ret);
2382			return ret;
2383		}
2384
2385		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2386		ret = regulator_enable(priv->io_pwr);
2387		if (ret < 0) {
2388			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2389				ret);
2390			return ret;
2391		}
2392	}
2393
2394	/* Reset whole chip through gpio pin or memory-mapped registers for
2395	 * different type of hardware
2396	 */
2397	if (priv->mcm) {
2398		reset_control_assert(priv->rstc);
2399		usleep_range(5000, 5100);
2400		reset_control_deassert(priv->rstc);
2401	} else {
2402		gpiod_set_value_cansleep(priv->reset, 0);
2403		usleep_range(5000, 5100);
2404		gpiod_set_value_cansleep(priv->reset, 1);
2405	}
2406
2407	/* Waiting for MT7530 got to stable */
2408	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2409	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2410				 20, 1000000);
2411	if (ret < 0) {
2412		dev_err(priv->dev, "reset timeout\n");
2413		return ret;
2414	}
2415
2416	id = mt7530_read(priv, MT7530_CREV);
2417	id >>= CHIP_NAME_SHIFT;
2418	if (id != MT7530_ID) {
2419		dev_err(priv->dev, "chip %x can't be supported\n", id);
2420		return -ENODEV;
2421	}
2422
2423	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_20MHZ) {
2424		dev_err(priv->dev,
2425			"MT7530 with a 20MHz XTAL is not supported!\n");
2426		return -EINVAL;
2427	}
2428
2429	/* Reset the switch through internal reset */
2430	mt7530_write(priv, MT7530_SYS_CTRL,
2431		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2432		     SYS_CTRL_REG_RST);
2433
2434	/* Lower Tx driving for TRGMII path */
2435	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2436		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2437			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2438
2439	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2440		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2441			   RD_TAP_MASK, RD_TAP(16));
2442
2443	/* Enable port 6 */
2444	val = mt7530_read(priv, MT7530_MHWTRAP);
2445	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2446	val |= MHWTRAP_MANUAL;
2447	mt7530_write(priv, MT7530_MHWTRAP, val);
2448
2449	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_40MHZ)
2450		mt7530_pll_setup(priv);
2451
2452	mt753x_trap_frames(priv);
2453
2454	/* Enable and reset MIB counters */
2455	mt7530_mib_reset(ds);
2456
2457	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2458		/* Clear link settings and enable force mode to force link down
2459		 * on all ports until they're enabled later.
2460		 */
2461		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2462			   PMCR_FORCE_MODE, PMCR_FORCE_MODE);
2463
2464		/* Disable forwarding by default on all ports */
2465		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2466			   PCR_MATRIX_CLR);
2467
2468		/* Disable learning by default on all ports */
2469		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2470
2471		if (dsa_is_cpu_port(ds, i)) {
2472			mt753x_cpu_port_enable(ds, i);
2473		} else {
2474			mt7530_port_disable(ds, i);
2475
2476			/* Set default PVID to 0 on all user ports */
2477			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2478				   G0_PORT_VID_DEF);
2479		}
2480		/* Enable consistent egress tag */
2481		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2482			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2483	}
2484
2485	/* Allow mirroring frames received on the local port (monitor port). */
2486	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2487
2488	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2489	ret = mt7530_setup_vlan0(priv);
2490	if (ret)
2491		return ret;
2492
2493	/* Setup port 5 */
2494	if (!dsa_is_unused_port(ds, 5)) {
2495		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2496	} else {
2497		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2498		 * Set priv->p5_intf_sel to the appropriate value if PHY muxing
2499		 * is detected.
2500		 */
2501		for_each_child_of_node(dn, mac_np) {
2502			if (!of_device_is_compatible(mac_np,
2503						     "mediatek,eth-mac"))
2504				continue;
2505
2506			ret = of_property_read_u32(mac_np, "reg", &id);
2507			if (ret < 0 || id != 1)
2508				continue;
2509
2510			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2511			if (!phy_node)
2512				continue;
2513
2514			if (phy_node->parent == priv->dev->of_node->parent) {
2515				ret = of_get_phy_mode(mac_np, &interface);
2516				if (ret && ret != -ENODEV) {
2517					of_node_put(mac_np);
2518					of_node_put(phy_node);
2519					return ret;
2520				}
2521				id = of_mdio_parse_addr(ds->dev, phy_node);
2522				if (id == 0)
2523					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2524				if (id == 4)
2525					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2526			}
2527			of_node_put(mac_np);
2528			of_node_put(phy_node);
2529			break;
2530		}
2531
2532		if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 ||
2533		    priv->p5_intf_sel == P5_INTF_SEL_PHY_P4)
2534			mt7530_setup_port5(ds, interface);
2535	}
2536
2537#ifdef CONFIG_GPIOLIB
2538	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2539		ret = mt7530_setup_gpio(priv);
2540		if (ret)
2541			return ret;
2542	}
2543#endif /* CONFIG_GPIOLIB */
2544
2545	/* Flush the FDB table */
2546	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2547	if (ret < 0)
2548		return ret;
2549
2550	return 0;
2551}
2552
2553static int
2554mt7531_setup_common(struct dsa_switch *ds)
2555{
2556	struct mt7530_priv *priv = ds->priv;
2557	int ret, i;
2558
2559	mt753x_trap_frames(priv);
2560
2561	/* Enable and reset MIB counters */
2562	mt7530_mib_reset(ds);
2563
2564	/* Disable flooding on all ports */
2565	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2566		     UNU_FFP_MASK);
2567
2568	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2569		/* Clear link settings and enable force mode to force link down
2570		 * on all ports until they're enabled later.
2571		 */
2572		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2573			   MT7531_FORCE_MODE, MT7531_FORCE_MODE);
2574
2575		/* Disable forwarding by default on all ports */
2576		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2577			   PCR_MATRIX_CLR);
2578
2579		/* Disable learning by default on all ports */
2580		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2581
2582		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2583
2584		if (dsa_is_cpu_port(ds, i)) {
2585			mt753x_cpu_port_enable(ds, i);
2586		} else {
2587			mt7530_port_disable(ds, i);
2588
2589			/* Set default PVID to 0 on all user ports */
2590			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2591				   G0_PORT_VID_DEF);
2592		}
2593
2594		/* Enable consistent egress tag */
2595		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2596			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2597	}
2598
2599	/* Allow mirroring frames received on the local port (monitor port). */
2600	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2601
2602	/* Flush the FDB table */
2603	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2604	if (ret < 0)
2605		return ret;
2606
2607	return 0;
2608}
2609
2610static int
2611mt7531_setup(struct dsa_switch *ds)
2612{
2613	struct mt7530_priv *priv = ds->priv;
2614	struct mt7530_dummy_poll p;
2615	u32 val, id;
2616	int ret, i;
2617
2618	/* Reset whole chip through gpio pin or memory-mapped registers for
2619	 * different type of hardware
2620	 */
2621	if (priv->mcm) {
2622		reset_control_assert(priv->rstc);
2623		usleep_range(5000, 5100);
2624		reset_control_deassert(priv->rstc);
2625	} else {
2626		gpiod_set_value_cansleep(priv->reset, 0);
2627		usleep_range(5000, 5100);
2628		gpiod_set_value_cansleep(priv->reset, 1);
2629	}
2630
2631	/* Waiting for MT7530 got to stable */
2632	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2633	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2634				 20, 1000000);
2635	if (ret < 0) {
2636		dev_err(priv->dev, "reset timeout\n");
2637		return ret;
2638	}
2639
2640	id = mt7530_read(priv, MT7531_CREV);
2641	id >>= CHIP_NAME_SHIFT;
2642
2643	if (id != MT7531_ID) {
2644		dev_err(priv->dev, "chip %x can't be supported\n", id);
2645		return -ENODEV;
2646	}
2647
2648	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2649	 * MT7531BE has got only one SGMII unit which is for port 6.
2650	 */
2651	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2652	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2653
2654	/* Force link down on all ports before internal reset */
2655	for (i = 0; i < MT7530_NUM_PORTS; i++)
2656		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2657
2658	/* Reset the switch through internal reset */
2659	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2660
2661	if (!priv->p5_sgmii) {
2662		mt7531_pll_setup(priv);
2663	} else {
2664		/* Let ds->user_mii_bus be able to access external phy. */
2665		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2666			   MT7531_EXT_P_MDC_11);
2667		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2668			   MT7531_EXT_P_MDIO_12);
2669	}
2670
2671	if (!dsa_is_unused_port(ds, 5))
2672		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2673
2674	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2675		   MT7531_GPIO0_INTERRUPT);
2676
2677	/* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2678	 * phy_device has not yet been created provided for
2679	 * phy_[read,write]_mmd_indirect is called, we provide our own
2680	 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2681	 */
2682	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2683				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2684	val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2685	val &= ~MT7531_PHY_PLL_OFF;
2686	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2687				 CORE_PLL_GROUP4, val);
2688
2689	/* Disable EEE advertisement on the switch PHYs. */
2690	for (i = MT753X_CTRL_PHY_ADDR;
2691	     i < MT753X_CTRL_PHY_ADDR + MT7530_NUM_PHYS; i++) {
2692		mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2693					 0);
2694	}
2695
2696	mt7531_setup_common(ds);
2697
2698	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2699	ret = mt7530_setup_vlan0(priv);
2700	if (ret)
2701		return ret;
2702
2703	ds->assisted_learning_on_cpu_port = true;
2704	ds->mtu_enforcement_ingress = true;
2705
2706	return 0;
2707}
2708
2709static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2710				     struct phylink_config *config)
2711{
2712	switch (port) {
2713	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2714	case 0 ... 4:
2715		__set_bit(PHY_INTERFACE_MODE_GMII,
2716			  config->supported_interfaces);
2717		break;
2718
2719	/* Port 5 supports rgmii with delays, mii, and gmii. */
2720	case 5:
2721		phy_interface_set_rgmii(config->supported_interfaces);
2722		__set_bit(PHY_INTERFACE_MODE_MII,
2723			  config->supported_interfaces);
2724		__set_bit(PHY_INTERFACE_MODE_GMII,
2725			  config->supported_interfaces);
2726		break;
2727
2728	/* Port 6 supports rgmii and trgmii. */
2729	case 6:
2730		__set_bit(PHY_INTERFACE_MODE_RGMII,
2731			  config->supported_interfaces);
2732		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2733			  config->supported_interfaces);
2734		break;
2735	}
2736}
2737
2738static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2739				     struct phylink_config *config)
2740{
2741	struct mt7530_priv *priv = ds->priv;
2742
2743	switch (port) {
2744	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2745	case 0 ... 4:
2746		__set_bit(PHY_INTERFACE_MODE_GMII,
2747			  config->supported_interfaces);
2748		break;
2749
2750	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2751	 * MT7531AE.
2752	 */
2753	case 5:
2754		if (!priv->p5_sgmii) {
2755			phy_interface_set_rgmii(config->supported_interfaces);
2756			break;
2757		}
2758		fallthrough;
2759
2760	/* Port 6 supports sgmii/802.3z. */
2761	case 6:
2762		__set_bit(PHY_INTERFACE_MODE_SGMII,
2763			  config->supported_interfaces);
2764		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2765			  config->supported_interfaces);
2766		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2767			  config->supported_interfaces);
2768
2769		config->mac_capabilities |= MAC_2500FD;
2770		break;
2771	}
2772}
2773
2774static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2775				     struct phylink_config *config)
2776{
2777	switch (port) {
2778	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2779	case 0 ... 3:
2780		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2781			  config->supported_interfaces);
2782		break;
2783
2784	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2785	case 6:
2786		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2787			  config->supported_interfaces);
2788		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2789					   MAC_10000FD;
2790	}
2791}
2792
2793static void
2794mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2795		  phy_interface_t interface)
2796{
2797	struct mt7530_priv *priv = ds->priv;
2798
2799	if (port == 5)
2800		mt7530_setup_port5(priv->ds, interface);
2801	else if (port == 6)
2802		mt7530_setup_port6(priv->ds, interface);
2803}
2804
2805static void mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2806			       phy_interface_t interface,
2807			       struct phy_device *phydev)
2808{
2809	u32 val;
2810
2811	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2812	val |= GP_CLK_EN;
2813	val &= ~GP_MODE_MASK;
2814	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2815	val &= ~CLK_SKEW_IN_MASK;
2816	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2817	val &= ~CLK_SKEW_OUT_MASK;
2818	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2819	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2820
2821	/* Do not adjust rgmii delay when vendor phy driver presents. */
2822	if (!phydev || phy_driver_is_genphy(phydev)) {
2823		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2824		switch (interface) {
2825		case PHY_INTERFACE_MODE_RGMII:
2826			val |= TXCLK_NO_REVERSE;
2827			val |= RXCLK_NO_DELAY;
2828			break;
2829		case PHY_INTERFACE_MODE_RGMII_RXID:
2830			val |= TXCLK_NO_REVERSE;
2831			break;
2832		case PHY_INTERFACE_MODE_RGMII_TXID:
2833			val |= RXCLK_NO_DELAY;
2834			break;
2835		case PHY_INTERFACE_MODE_RGMII_ID:
2836			break;
2837		default:
2838			break;
2839		}
2840	}
2841
2842	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2843}
2844
2845static void
2846mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2847		  phy_interface_t interface)
2848{
2849	struct mt7530_priv *priv = ds->priv;
2850	struct phy_device *phydev;
2851	struct dsa_port *dp;
2852
2853	if (phy_interface_mode_is_rgmii(interface)) {
2854		dp = dsa_to_port(ds, port);
2855		phydev = dp->user->phydev;
2856		mt7531_rgmii_setup(priv, port, interface, phydev);
2857	}
2858}
2859
2860static struct phylink_pcs *
2861mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2862			      phy_interface_t interface)
2863{
2864	struct mt7530_priv *priv = ds->priv;
2865
2866	switch (interface) {
2867	case PHY_INTERFACE_MODE_TRGMII:
2868		return &priv->pcs[port].pcs;
2869	case PHY_INTERFACE_MODE_SGMII:
2870	case PHY_INTERFACE_MODE_1000BASEX:
2871	case PHY_INTERFACE_MODE_2500BASEX:
2872		return priv->ports[port].sgmii_pcs;
2873	default:
2874		return NULL;
2875	}
2876}
2877
2878static void
2879mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2880			  const struct phylink_link_state *state)
2881{
2882	struct mt7530_priv *priv = ds->priv;
2883
2884	if ((port == 5 || port == 6) && priv->info->mac_port_config)
2885		priv->info->mac_port_config(ds, port, mode, state->interface);
2886
2887	/* Are we connected to external phy */
2888	if (port == 5 && dsa_is_user_port(ds, 5))
2889		mt7530_set(priv, MT7530_PMCR_P(port), PMCR_EXT_PHY);
2890}
2891
2892static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2893					 unsigned int mode,
2894					 phy_interface_t interface)
2895{
2896	struct mt7530_priv *priv = ds->priv;
2897
2898	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2899}
2900
2901static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2902				       unsigned int mode,
2903				       phy_interface_t interface,
2904				       struct phy_device *phydev,
2905				       int speed, int duplex,
2906				       bool tx_pause, bool rx_pause)
2907{
2908	struct mt7530_priv *priv = ds->priv;
2909	u32 mcr;
2910
2911	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2912
2913	switch (speed) {
2914	case SPEED_1000:
2915	case SPEED_2500:
2916	case SPEED_10000:
2917		mcr |= PMCR_FORCE_SPEED_1000;
2918		break;
2919	case SPEED_100:
2920		mcr |= PMCR_FORCE_SPEED_100;
2921		break;
2922	}
2923	if (duplex == DUPLEX_FULL) {
2924		mcr |= PMCR_FORCE_FDX;
2925		if (tx_pause)
2926			mcr |= PMCR_TX_FC_EN;
2927		if (rx_pause)
2928			mcr |= PMCR_RX_FC_EN;
2929	}
2930
2931	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2932		switch (speed) {
2933		case SPEED_1000:
2934		case SPEED_2500:
2935			mcr |= PMCR_FORCE_EEE1G;
2936			break;
2937		case SPEED_100:
2938			mcr |= PMCR_FORCE_EEE100;
2939			break;
2940		}
2941	}
2942
2943	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2944}
2945
2946static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2947				    struct phylink_config *config)
2948{
2949	struct mt7530_priv *priv = ds->priv;
2950
2951	/* This switch only supports full-duplex at 1Gbps */
2952	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2953				   MAC_10 | MAC_100 | MAC_1000FD;
2954
2955	priv->info->mac_port_get_caps(ds, port, config);
2956}
2957
2958static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2959			       unsigned long *supported,
2960			       const struct phylink_link_state *state)
2961{
2962	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2963	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2964	    phy_interface_mode_is_8023z(state->interface))
2965		phylink_clear(supported, Autoneg);
2966
2967	return 0;
2968}
2969
2970static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2971				 struct phylink_link_state *state)
2972{
2973	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2974	int port = pcs_to_mt753x_pcs(pcs)->port;
2975	u32 pmsr;
2976
2977	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2978
2979	state->link = (pmsr & PMSR_LINK);
2980	state->an_complete = state->link;
2981	state->duplex = !!(pmsr & PMSR_DPX);
2982
2983	switch (pmsr & PMSR_SPEED_MASK) {
2984	case PMSR_SPEED_10:
2985		state->speed = SPEED_10;
2986		break;
2987	case PMSR_SPEED_100:
2988		state->speed = SPEED_100;
2989		break;
2990	case PMSR_SPEED_1000:
2991		state->speed = SPEED_1000;
2992		break;
2993	default:
2994		state->speed = SPEED_UNKNOWN;
2995		break;
2996	}
2997
2998	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2999	if (pmsr & PMSR_RX_FC)
3000		state->pause |= MLO_PAUSE_RX;
3001	if (pmsr & PMSR_TX_FC)
3002		state->pause |= MLO_PAUSE_TX;
3003}
3004
3005static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3006			     phy_interface_t interface,
3007			     const unsigned long *advertising,
3008			     bool permit_pause_to_mac)
3009{
3010	return 0;
3011}
3012
3013static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3014{
3015}
3016
3017static const struct phylink_pcs_ops mt7530_pcs_ops = {
3018	.pcs_validate = mt753x_pcs_validate,
3019	.pcs_get_state = mt7530_pcs_get_state,
3020	.pcs_config = mt753x_pcs_config,
3021	.pcs_an_restart = mt7530_pcs_an_restart,
3022};
3023
3024static int
3025mt753x_setup(struct dsa_switch *ds)
3026{
3027	struct mt7530_priv *priv = ds->priv;
3028	int ret = priv->info->sw_setup(ds);
3029	int i;
3030
3031	if (ret)
3032		return ret;
3033
3034	ret = mt7530_setup_irq(priv);
3035	if (ret)
3036		return ret;
3037
3038	ret = mt7530_setup_mdio(priv);
3039	if (ret && priv->irq)
3040		mt7530_free_irq_common(priv);
3041
3042	/* Initialise the PCS devices */
3043	for (i = 0; i < priv->ds->num_ports; i++) {
3044		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3045		priv->pcs[i].pcs.neg_mode = true;
3046		priv->pcs[i].priv = priv;
3047		priv->pcs[i].port = i;
3048	}
3049
3050	if (priv->create_sgmii) {
3051		ret = priv->create_sgmii(priv);
3052		if (ret && priv->irq)
3053			mt7530_free_irq(priv);
3054	}
3055
3056	return ret;
3057}
3058
3059static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3060			      struct ethtool_keee *e)
3061{
3062	struct mt7530_priv *priv = ds->priv;
3063	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3064
3065	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3066	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3067
3068	return 0;
3069}
3070
3071static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3072			      struct ethtool_keee *e)
3073{
3074	struct mt7530_priv *priv = ds->priv;
3075	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3076
3077	if (e->tx_lpi_timer > 0xFFF)
3078		return -EINVAL;
3079
3080	set = SET_LPI_THRESH(e->tx_lpi_timer);
3081	if (!e->tx_lpi_enabled)
3082		/* Force LPI Mode without a delay */
3083		set |= LPI_MODE_EN;
3084	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3085
3086	return 0;
3087}
3088
3089static void
3090mt753x_conduit_state_change(struct dsa_switch *ds,
3091			    const struct net_device *conduit,
3092			    bool operational)
3093{
3094	struct dsa_port *cpu_dp = conduit->dsa_ptr;
3095	struct mt7530_priv *priv = ds->priv;
3096	int val = 0;
3097	u8 mask;
3098
3099	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3100	 * forwarded to the numerically smallest CPU port whose conduit
3101	 * interface is up.
3102	 */
3103	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3104		return;
3105
3106	mask = BIT(cpu_dp->index);
3107
3108	if (operational)
3109		priv->active_cpu_ports |= mask;
3110	else
3111		priv->active_cpu_ports &= ~mask;
3112
3113	if (priv->active_cpu_ports)
3114		val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports));
3115
3116	mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, val);
3117}
3118
3119static int mt7988_setup(struct dsa_switch *ds)
3120{
3121	struct mt7530_priv *priv = ds->priv;
3122
3123	/* Reset the switch */
3124	reset_control_assert(priv->rstc);
3125	usleep_range(20, 50);
3126	reset_control_deassert(priv->rstc);
3127	usleep_range(20, 50);
3128
3129	/* Reset the switch PHYs */
3130	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3131
3132	return mt7531_setup_common(ds);
3133}
3134
3135const struct dsa_switch_ops mt7530_switch_ops = {
3136	.get_tag_protocol	= mtk_get_tag_protocol,
3137	.setup			= mt753x_setup,
3138	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3139	.get_strings		= mt7530_get_strings,
3140	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3141	.get_sset_count		= mt7530_get_sset_count,
3142	.set_ageing_time	= mt7530_set_ageing_time,
3143	.port_enable		= mt7530_port_enable,
3144	.port_disable		= mt7530_port_disable,
3145	.port_change_mtu	= mt7530_port_change_mtu,
3146	.port_max_mtu		= mt7530_port_max_mtu,
3147	.port_stp_state_set	= mt7530_stp_state_set,
3148	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3149	.port_bridge_flags	= mt7530_port_bridge_flags,
3150	.port_bridge_join	= mt7530_port_bridge_join,
3151	.port_bridge_leave	= mt7530_port_bridge_leave,
3152	.port_fdb_add		= mt7530_port_fdb_add,
3153	.port_fdb_del		= mt7530_port_fdb_del,
3154	.port_fdb_dump		= mt7530_port_fdb_dump,
3155	.port_mdb_add		= mt7530_port_mdb_add,
3156	.port_mdb_del		= mt7530_port_mdb_del,
3157	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3158	.port_vlan_add		= mt7530_port_vlan_add,
3159	.port_vlan_del		= mt7530_port_vlan_del,
3160	.port_mirror_add	= mt753x_port_mirror_add,
3161	.port_mirror_del	= mt753x_port_mirror_del,
3162	.phylink_get_caps	= mt753x_phylink_get_caps,
3163	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3164	.phylink_mac_config	= mt753x_phylink_mac_config,
3165	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3166	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3167	.get_mac_eee		= mt753x_get_mac_eee,
3168	.set_mac_eee		= mt753x_set_mac_eee,
3169	.conduit_state_change	= mt753x_conduit_state_change,
3170};
3171EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3172
3173const struct mt753x_info mt753x_table[] = {
3174	[ID_MT7621] = {
3175		.id = ID_MT7621,
3176		.pcs_ops = &mt7530_pcs_ops,
3177		.sw_setup = mt7530_setup,
3178		.phy_read_c22 = mt7530_phy_read_c22,
3179		.phy_write_c22 = mt7530_phy_write_c22,
3180		.phy_read_c45 = mt7530_phy_read_c45,
3181		.phy_write_c45 = mt7530_phy_write_c45,
3182		.mac_port_get_caps = mt7530_mac_port_get_caps,
3183		.mac_port_config = mt7530_mac_config,
3184	},
3185	[ID_MT7530] = {
3186		.id = ID_MT7530,
3187		.pcs_ops = &mt7530_pcs_ops,
3188		.sw_setup = mt7530_setup,
3189		.phy_read_c22 = mt7530_phy_read_c22,
3190		.phy_write_c22 = mt7530_phy_write_c22,
3191		.phy_read_c45 = mt7530_phy_read_c45,
3192		.phy_write_c45 = mt7530_phy_write_c45,
3193		.mac_port_get_caps = mt7530_mac_port_get_caps,
3194		.mac_port_config = mt7530_mac_config,
3195	},
3196	[ID_MT7531] = {
3197		.id = ID_MT7531,
3198		.pcs_ops = &mt7530_pcs_ops,
3199		.sw_setup = mt7531_setup,
3200		.phy_read_c22 = mt7531_ind_c22_phy_read,
3201		.phy_write_c22 = mt7531_ind_c22_phy_write,
3202		.phy_read_c45 = mt7531_ind_c45_phy_read,
3203		.phy_write_c45 = mt7531_ind_c45_phy_write,
3204		.mac_port_get_caps = mt7531_mac_port_get_caps,
3205		.mac_port_config = mt7531_mac_config,
3206	},
3207	[ID_MT7988] = {
3208		.id = ID_MT7988,
3209		.pcs_ops = &mt7530_pcs_ops,
3210		.sw_setup = mt7988_setup,
3211		.phy_read_c22 = mt7531_ind_c22_phy_read,
3212		.phy_write_c22 = mt7531_ind_c22_phy_write,
3213		.phy_read_c45 = mt7531_ind_c45_phy_read,
3214		.phy_write_c45 = mt7531_ind_c45_phy_write,
3215		.mac_port_get_caps = mt7988_mac_port_get_caps,
3216	},
3217};
3218EXPORT_SYMBOL_GPL(mt753x_table);
3219
3220int
3221mt7530_probe_common(struct mt7530_priv *priv)
3222{
3223	struct device *dev = priv->dev;
3224
3225	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3226	if (!priv->ds)
3227		return -ENOMEM;
3228
3229	priv->ds->dev = dev;
3230	priv->ds->num_ports = MT7530_NUM_PORTS;
3231
3232	/* Get the hardware identifier from the devicetree node.
3233	 * We will need it for some of the clock and regulator setup.
3234	 */
3235	priv->info = of_device_get_match_data(dev);
3236	if (!priv->info)
3237		return -EINVAL;
3238
3239	/* Sanity check if these required device operations are filled
3240	 * properly.
3241	 */
3242	if (!priv->info->sw_setup || !priv->info->phy_read_c22 ||
3243	    !priv->info->phy_write_c22 || !priv->info->mac_port_get_caps)
3244		return -EINVAL;
3245
3246	priv->id = priv->info->id;
3247	priv->dev = dev;
3248	priv->ds->priv = priv;
3249	priv->ds->ops = &mt7530_switch_ops;
3250	mutex_init(&priv->reg_mutex);
3251	dev_set_drvdata(dev, priv);
3252
3253	return 0;
3254}
3255EXPORT_SYMBOL_GPL(mt7530_probe_common);
3256
3257void
3258mt7530_remove_common(struct mt7530_priv *priv)
3259{
3260	if (priv->irq)
3261		mt7530_free_irq(priv);
3262
3263	dsa_unregister_switch(priv->ds);
3264
3265	mutex_destroy(&priv->reg_mutex);
3266}
3267EXPORT_SYMBOL_GPL(mt7530_remove_common);
3268
3269MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3270MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3271MODULE_LICENSE("GPL");
3272