1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38#include <linux/pinctrl/consumer.h>
39
40#include <linux/can.h>
41#include <linux/can/dev.h>
42#include <linux/can/error.h>
43
44#include "c_can.h"
45
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN		11
48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR		BIT(8)
52
53/* control register */
54#define CONTROL_SWR		BIT(15)
55#define CONTROL_TEST		BIT(7)
56#define CONTROL_CCE		BIT(6)
57#define CONTROL_DISABLE_AR	BIT(5)
58#define CONTROL_ENABLE_AR	(0 << 5)
59#define CONTROL_EIE		BIT(3)
60#define CONTROL_SIE		BIT(2)
61#define CONTROL_IE		BIT(1)
62#define CONTROL_INIT		BIT(0)
63
64#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
65
66/* test register */
67#define TEST_RX			BIT(7)
68#define TEST_TX1		BIT(6)
69#define TEST_TX2		BIT(5)
70#define TEST_LBACK		BIT(4)
71#define TEST_SILENT		BIT(3)
72#define TEST_BASIC		BIT(2)
73
74/* status register */
75#define STATUS_PDA		BIT(10)
76#define STATUS_BOFF		BIT(7)
77#define STATUS_EWARN		BIT(6)
78#define STATUS_EPASS		BIT(5)
79#define STATUS_RXOK		BIT(4)
80#define STATUS_TXOK		BIT(3)
81
82/* error counter register */
83#define ERR_CNT_TEC_MASK	0xff
84#define ERR_CNT_TEC_SHIFT	0
85#define ERR_CNT_REC_SHIFT	8
86#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
87#define ERR_CNT_RP_SHIFT	15
88#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
89
90/* bit-timing register */
91#define BTR_BRP_MASK		0x3f
92#define BTR_BRP_SHIFT		0
93#define BTR_SJW_SHIFT		6
94#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
95#define BTR_TSEG1_SHIFT		8
96#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
97#define BTR_TSEG2_SHIFT		12
98#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
99
100/* interrupt register */
101#define INT_STS_PENDING		0x8000
102
103/* brp extension register */
104#define BRP_EXT_BRPE_MASK	0x0f
105#define BRP_EXT_BRPE_SHIFT	0
106
107/* IFx command request */
108#define IF_COMR_BUSY		BIT(15)
109
110/* IFx command mask */
111#define IF_COMM_WR		BIT(7)
112#define IF_COMM_MASK		BIT(6)
113#define IF_COMM_ARB		BIT(5)
114#define IF_COMM_CONTROL		BIT(4)
115#define IF_COMM_CLR_INT_PND	BIT(3)
116#define IF_COMM_TXRQST		BIT(2)
117#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
118#define IF_COMM_DATAA		BIT(1)
119#define IF_COMM_DATAB		BIT(0)
120
121/* TX buffer setup */
122#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
123				 IF_COMM_TXRQST |		 \
124				 IF_COMM_DATAA | IF_COMM_DATAB)
125
126/* For the low buffers we clear the interrupt bit, but keep newdat */
127#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
128				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
129				 IF_COMM_DATAA | IF_COMM_DATAB)
130
131/* For the high buffers we clear the interrupt bit and newdat */
132#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
133
134/* Receive setup of message objects */
135#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
136
137/* Invalidation of message objects */
138#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
139
140/* IFx arbitration */
141#define IF_ARB_MSGVAL		BIT(31)
142#define IF_ARB_MSGXTD		BIT(30)
143#define IF_ARB_TRANSMIT		BIT(29)
144
145/* IFx message control */
146#define IF_MCONT_NEWDAT		BIT(15)
147#define IF_MCONT_MSGLST		BIT(14)
148#define IF_MCONT_INTPND		BIT(13)
149#define IF_MCONT_UMASK		BIT(12)
150#define IF_MCONT_TXIE		BIT(11)
151#define IF_MCONT_RXIE		BIT(10)
152#define IF_MCONT_RMTEN		BIT(9)
153#define IF_MCONT_TXRQST		BIT(8)
154#define IF_MCONT_EOB		BIT(7)
155#define IF_MCONT_DLC_MASK	0xf
156
157#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
158#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
159
160#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
161
162/* Use IF1 in NAPI path and IF2 in TX path */
163#define IF_NAPI			0
164#define IF_TX			1
165
166/* minimum timeout for checking BUSY status */
167#define MIN_TIMEOUT_VALUE	6
168
169/* Wait for ~1 sec for INIT bit */
170#define INIT_WAIT_MS		1000
171
172/* c_can lec values */
173enum c_can_lec_type {
174	LEC_NO_ERROR = 0,
175	LEC_STUFF_ERROR,
176	LEC_FORM_ERROR,
177	LEC_ACK_ERROR,
178	LEC_BIT1_ERROR,
179	LEC_BIT0_ERROR,
180	LEC_CRC_ERROR,
181	LEC_UNUSED,
182	LEC_MASK = LEC_UNUSED,
183};
184
185/* c_can error types:
186 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
187 */
188enum c_can_bus_error_types {
189	C_CAN_NO_ERROR = 0,
190	C_CAN_BUS_OFF,
191	C_CAN_ERROR_WARNING,
192	C_CAN_ERROR_PASSIVE,
193};
194
195static const struct can_bittiming_const c_can_bittiming_const = {
196	.name = KBUILD_MODNAME,
197	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
198	.tseg1_max = 16,
199	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
200	.tseg2_max = 8,
201	.sjw_max = 4,
202	.brp_min = 1,
203	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
204	.brp_inc = 1,
205};
206
207static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
208{
209	if (priv->device)
210		pm_runtime_get_sync(priv->device);
211}
212
213static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
214{
215	if (priv->device)
216		pm_runtime_put_sync(priv->device);
217}
218
219static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
220{
221	if (priv->raminit)
222		priv->raminit(priv, enable);
223}
224
225static void c_can_irq_control(struct c_can_priv *priv, bool enable)
226{
227	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
228
229	if (enable)
230		ctrl |= CONTROL_IRQMSK;
231
232	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
233}
234
235static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
236{
237	struct c_can_priv *priv = netdev_priv(dev);
238	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
239
240	priv->write_reg32(priv, reg, (cmd << 16) | obj);
241
242	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
243		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
244			return;
245		udelay(1);
246	}
247	netdev_err(dev, "Updating object timed out\n");
248}
249
250static inline void c_can_object_get(struct net_device *dev, int iface,
251				    u32 obj, u32 cmd)
252{
253	c_can_obj_update(dev, iface, cmd, obj);
254}
255
256static inline void c_can_object_put(struct net_device *dev, int iface,
257				    u32 obj, u32 cmd)
258{
259	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
260}
261
262/* Note: According to documentation clearing TXIE while MSGVAL is set
263 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
264 * load significantly.
265 */
266static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
267{
268	struct c_can_priv *priv = netdev_priv(dev);
269
270	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
271	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
272}
273
274static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
275{
276	struct c_can_priv *priv = netdev_priv(dev);
277
278	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
279	c_can_inval_tx_object(dev, iface, obj);
280}
281
282static void c_can_setup_tx_object(struct net_device *dev, int iface,
283				  struct can_frame *frame, int idx)
284{
285	struct c_can_priv *priv = netdev_priv(dev);
286	u16 ctrl = IF_MCONT_TX | frame->len;
287	bool rtr = frame->can_id & CAN_RTR_FLAG;
288	u32 arb = IF_ARB_MSGVAL;
289	int i;
290
291	if (frame->can_id & CAN_EFF_FLAG) {
292		arb |= frame->can_id & CAN_EFF_MASK;
293		arb |= IF_ARB_MSGXTD;
294	} else {
295		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
296	}
297
298	if (!rtr)
299		arb |= IF_ARB_TRANSMIT;
300
301	/* If we change the DIR bit, we need to invalidate the buffer
302	 * first, i.e. clear the MSGVAL flag in the arbiter.
303	 */
304	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
305		u32 obj = idx + priv->msg_obj_tx_first;
306
307		c_can_inval_msg_object(dev, iface, obj);
308		change_bit(idx, &priv->tx_dir);
309	}
310
311	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
312
313	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
314
315	if (priv->type == BOSCH_D_CAN) {
316		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
317
318		for (i = 0; i < frame->len; i += 4, dreg += 2) {
319			data = (u32)frame->data[i];
320			data |= (u32)frame->data[i + 1] << 8;
321			data |= (u32)frame->data[i + 2] << 16;
322			data |= (u32)frame->data[i + 3] << 24;
323			priv->write_reg32(priv, dreg, data);
324		}
325	} else {
326		for (i = 0; i < frame->len; i += 2) {
327			priv->write_reg(priv,
328					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
329					frame->data[i] |
330					(frame->data[i + 1] << 8));
331		}
332	}
333}
334
335static int c_can_handle_lost_msg_obj(struct net_device *dev,
336				     int iface, int objno, u32 ctrl)
337{
338	struct net_device_stats *stats = &dev->stats;
339	struct c_can_priv *priv = netdev_priv(dev);
340	struct can_frame *frame;
341	struct sk_buff *skb;
342
343	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
344	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
345	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
346
347	stats->rx_errors++;
348	stats->rx_over_errors++;
349
350	/* create an error msg */
351	skb = alloc_can_err_skb(dev, &frame);
352	if (unlikely(!skb))
353		return 0;
354
355	frame->can_id |= CAN_ERR_CRTL;
356	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
357
358	netif_receive_skb(skb);
359	return 1;
360}
361
362static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
363{
364	struct net_device_stats *stats = &dev->stats;
365	struct c_can_priv *priv = netdev_priv(dev);
366	struct can_frame *frame;
367	struct sk_buff *skb;
368	u32 arb, data;
369
370	skb = alloc_can_skb(dev, &frame);
371	if (!skb) {
372		stats->rx_dropped++;
373		return -ENOMEM;
374	}
375
376	frame->len = can_cc_dlc2len(ctrl & 0x0F);
377
378	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
379
380	if (arb & IF_ARB_MSGXTD)
381		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
382	else
383		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
384
385	if (arb & IF_ARB_TRANSMIT) {
386		frame->can_id |= CAN_RTR_FLAG;
387	} else {
388		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
389
390		if (priv->type == BOSCH_D_CAN) {
391			for (i = 0; i < frame->len; i += 4, dreg += 2) {
392				data = priv->read_reg32(priv, dreg);
393				frame->data[i] = data;
394				frame->data[i + 1] = data >> 8;
395				frame->data[i + 2] = data >> 16;
396				frame->data[i + 3] = data >> 24;
397			}
398		} else {
399			for (i = 0; i < frame->len; i += 2, dreg++) {
400				data = priv->read_reg(priv, dreg);
401				frame->data[i] = data;
402				frame->data[i + 1] = data >> 8;
403			}
404		}
405
406		stats->rx_bytes += frame->len;
407	}
408	stats->rx_packets++;
409
410	netif_receive_skb(skb);
411	return 0;
412}
413
414static void c_can_setup_receive_object(struct net_device *dev, int iface,
415				       u32 obj, u32 mask, u32 id, u32 mcont)
416{
417	struct c_can_priv *priv = netdev_priv(dev);
418
419	mask |= BIT(29);
420	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
421
422	id |= IF_ARB_MSGVAL;
423	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
424
425	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
426	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
427}
428
429static bool c_can_tx_busy(const struct c_can_priv *priv,
430			  const struct c_can_tx_ring *tx_ring)
431{
432	if (c_can_get_tx_free(priv, tx_ring) > 0)
433		return false;
434
435	netif_stop_queue(priv->dev);
436
437	/* Memory barrier before checking tx_free (head and tail) */
438	smp_mb();
439
440	if (c_can_get_tx_free(priv, tx_ring) == 0) {
441		netdev_dbg(priv->dev,
442			   "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
443			   tx_ring->head, tx_ring->tail,
444			   tx_ring->head - tx_ring->tail);
445		return true;
446	}
447
448	netif_start_queue(priv->dev);
449	return false;
450}
451
452static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
453				    struct net_device *dev)
454{
455	struct can_frame *frame = (struct can_frame *)skb->data;
456	struct c_can_priv *priv = netdev_priv(dev);
457	struct c_can_tx_ring *tx_ring = &priv->tx;
458	u32 idx, obj, cmd = IF_COMM_TX;
459
460	if (can_dev_dropped_skb(dev, skb))
461		return NETDEV_TX_OK;
462
463	if (c_can_tx_busy(priv, tx_ring))
464		return NETDEV_TX_BUSY;
465
466	idx = c_can_get_tx_head(tx_ring);
467	tx_ring->head++;
468	if (c_can_get_tx_free(priv, tx_ring) == 0)
469		netif_stop_queue(dev);
470
471	if (idx < c_can_get_tx_tail(tx_ring))
472		cmd &= ~IF_COMM_TXRQST; /* Cache the message */
473
474	/* Store the message in the interface so we can call
475	 * can_put_echo_skb(). We must do this before we enable
476	 * transmit as we might race against do_tx().
477	 */
478	c_can_setup_tx_object(dev, IF_TX, frame, idx);
479	can_put_echo_skb(skb, dev, idx, 0);
480	obj = idx + priv->msg_obj_tx_first;
481	c_can_object_put(dev, IF_TX, obj, cmd);
482
483	return NETDEV_TX_OK;
484}
485
486static int c_can_wait_for_ctrl_init(struct net_device *dev,
487				    struct c_can_priv *priv, u32 init)
488{
489	int retry = 0;
490
491	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
492		udelay(10);
493		if (retry++ > 1000) {
494			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
495			return -EIO;
496		}
497	}
498	return 0;
499}
500
501static int c_can_set_bittiming(struct net_device *dev)
502{
503	unsigned int reg_btr, reg_brpe, ctrl_save;
504	u8 brp, brpe, sjw, tseg1, tseg2;
505	u32 ten_bit_brp;
506	struct c_can_priv *priv = netdev_priv(dev);
507	const struct can_bittiming *bt = &priv->can.bittiming;
508	int res;
509
510	/* c_can provides a 6-bit brp and 4-bit brpe fields */
511	ten_bit_brp = bt->brp - 1;
512	brp = ten_bit_brp & BTR_BRP_MASK;
513	brpe = ten_bit_brp >> 6;
514
515	sjw = bt->sjw - 1;
516	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
517	tseg2 = bt->phase_seg2 - 1;
518	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
519			(tseg2 << BTR_TSEG2_SHIFT);
520	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
521
522	netdev_info(dev,
523		    "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
524
525	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
526	ctrl_save &= ~CONTROL_INIT;
527	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
528	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
529	if (res)
530		return res;
531
532	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
533	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
534	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
535
536	return c_can_wait_for_ctrl_init(dev, priv, 0);
537}
538
539/* Configure C_CAN message objects for Tx and Rx purposes:
540 * C_CAN provides a total of 32 message objects that can be configured
541 * either for Tx or Rx purposes. Here the first 16 message objects are used as
542 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
543 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
544 * See user guide document for further details on configuring message
545 * objects.
546 */
547static void c_can_configure_msg_objects(struct net_device *dev)
548{
549	struct c_can_priv *priv = netdev_priv(dev);
550	int i;
551
552	/* first invalidate all message objects */
553	for (i = priv->msg_obj_rx_first; i <= priv->msg_obj_num; i++)
554		c_can_inval_msg_object(dev, IF_NAPI, i);
555
556	/* setup receive message objects */
557	for (i = priv->msg_obj_rx_first; i < priv->msg_obj_rx_last; i++)
558		c_can_setup_receive_object(dev, IF_NAPI, i, 0, 0, IF_MCONT_RCV);
559
560	c_can_setup_receive_object(dev, IF_NAPI, priv->msg_obj_rx_last, 0, 0,
561				   IF_MCONT_RCV_EOB);
562}
563
564static int c_can_software_reset(struct net_device *dev)
565{
566	struct c_can_priv *priv = netdev_priv(dev);
567	int retry = 0;
568
569	if (priv->type != BOSCH_D_CAN)
570		return 0;
571
572	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
573	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
574		msleep(20);
575		if (retry++ > 100) {
576			netdev_err(dev, "CCTRL: software reset failed\n");
577			return -EIO;
578		}
579	}
580
581	return 0;
582}
583
584/* Configure C_CAN chip:
585 * - enable/disable auto-retransmission
586 * - set operating mode
587 * - configure message objects
588 */
589static int c_can_chip_config(struct net_device *dev)
590{
591	struct c_can_priv *priv = netdev_priv(dev);
592	struct c_can_tx_ring *tx_ring = &priv->tx;
593	int err;
594
595	err = c_can_software_reset(dev);
596	if (err)
597		return err;
598
599	/* enable automatic retransmission */
600	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
601
602	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
603	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
604		/* loopback + silent mode : useful for hot self-test */
605		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
606		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
607	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
608		/* loopback mode : useful for self-test function */
609		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
610		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
611	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
612		/* silent mode : bus-monitoring mode */
613		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
614		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
615	}
616
617	/* configure message objects */
618	c_can_configure_msg_objects(dev);
619
620	/* set a `lec` value so that we can check for updates later */
621	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
622
623	/* Clear all internal status */
624	tx_ring->head = 0;
625	tx_ring->tail = 0;
626	priv->tx_dir = 0;
627
628	/* set bittiming params */
629	return c_can_set_bittiming(dev);
630}
631
632static int c_can_start(struct net_device *dev)
633{
634	struct c_can_priv *priv = netdev_priv(dev);
635	int err;
636	struct pinctrl *p;
637
638	/* basic c_can configuration */
639	err = c_can_chip_config(dev);
640	if (err)
641		return err;
642
643	/* Setup the command for new messages */
644	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
645		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
646
647	priv->can.state = CAN_STATE_ERROR_ACTIVE;
648
649	/* Attempt to use "active" if available else use "default" */
650	p = pinctrl_get_select(priv->device, "active");
651	if (!IS_ERR(p))
652		pinctrl_put(p);
653	else
654		pinctrl_pm_select_default_state(priv->device);
655
656	return 0;
657}
658
659static void c_can_stop(struct net_device *dev)
660{
661	struct c_can_priv *priv = netdev_priv(dev);
662
663	c_can_irq_control(priv, false);
664
665	/* put ctrl to init on stop to end ongoing transmission */
666	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
667
668	/* deactivate pins */
669	pinctrl_pm_select_sleep_state(dev->dev.parent);
670	priv->can.state = CAN_STATE_STOPPED;
671}
672
673static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
674{
675	struct c_can_priv *priv = netdev_priv(dev);
676	int err;
677
678	switch (mode) {
679	case CAN_MODE_START:
680		err = c_can_start(dev);
681		if (err)
682			return err;
683		netif_wake_queue(dev);
684		c_can_irq_control(priv, true);
685		break;
686	default:
687		return -EOPNOTSUPP;
688	}
689
690	return 0;
691}
692
693static int __c_can_get_berr_counter(const struct net_device *dev,
694				    struct can_berr_counter *bec)
695{
696	unsigned int reg_err_counter;
697	struct c_can_priv *priv = netdev_priv(dev);
698
699	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
700	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
701				ERR_CNT_REC_SHIFT;
702	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
703
704	return 0;
705}
706
707static int c_can_get_berr_counter(const struct net_device *dev,
708				  struct can_berr_counter *bec)
709{
710	struct c_can_priv *priv = netdev_priv(dev);
711	int err;
712
713	c_can_pm_runtime_get_sync(priv);
714	err = __c_can_get_berr_counter(dev, bec);
715	c_can_pm_runtime_put_sync(priv);
716
717	return err;
718}
719
720static void c_can_do_tx(struct net_device *dev)
721{
722	struct c_can_priv *priv = netdev_priv(dev);
723	struct c_can_tx_ring *tx_ring = &priv->tx;
724	struct net_device_stats *stats = &dev->stats;
725	u32 idx, obj, pkts = 0, bytes = 0, pend;
726	u8 tail;
727
728	if (priv->msg_obj_tx_last > 32)
729		pend = priv->read_reg32(priv, C_CAN_INTPND3_REG);
730	else
731		pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
732
733	while ((idx = ffs(pend))) {
734		idx--;
735		pend &= ~BIT(idx);
736		obj = idx + priv->msg_obj_tx_first;
737
738		/* We use IF_NAPI interface instead of IF_TX because we
739		 * are called from c_can_poll(), which runs inside
740		 * NAPI. We are not transmitting.
741		 */
742		c_can_inval_tx_object(dev, IF_NAPI, obj);
743		bytes += can_get_echo_skb(dev, idx, NULL);
744		pkts++;
745	}
746
747	if (!pkts)
748		return;
749
750	tx_ring->tail += pkts;
751	if (c_can_get_tx_free(priv, tx_ring)) {
752		/* Make sure that anybody stopping the queue after
753		 * this sees the new tx_ring->tail.
754		 */
755		smp_mb();
756		netif_wake_queue(priv->dev);
757	}
758
759	stats->tx_bytes += bytes;
760	stats->tx_packets += pkts;
761
762	tail = c_can_get_tx_tail(tx_ring);
763	if (priv->type == BOSCH_D_CAN && tail == 0) {
764		u8 head = c_can_get_tx_head(tx_ring);
765
766		/* Start transmission for all cached messages */
767		for (idx = tail; idx < head; idx++) {
768			obj = idx + priv->msg_obj_tx_first;
769			c_can_object_put(dev, IF_NAPI, obj, IF_COMM_TXRQST);
770		}
771	}
772}
773
774/* If we have a gap in the pending bits, that means we either
775 * raced with the hardware or failed to readout all upper
776 * objects in the last run due to quota limit.
777 */
778static u32 c_can_adjust_pending(u32 pend, u32 rx_mask)
779{
780	u32 weight, lasts;
781
782	if (pend == rx_mask)
783		return pend;
784
785	/* If the last set bit is larger than the number of pending
786	 * bits we have a gap.
787	 */
788	weight = hweight32(pend);
789	lasts = fls(pend);
790
791	/* If the bits are linear, nothing to do */
792	if (lasts == weight)
793		return pend;
794
795	/* Find the first set bit after the gap. We walk backwards
796	 * from the last set bit.
797	 */
798	for (lasts--; pend & BIT(lasts - 1); lasts--)
799		;
800
801	return pend & ~GENMASK(lasts - 1, 0);
802}
803
804static inline void c_can_rx_object_get(struct net_device *dev,
805				       struct c_can_priv *priv, u32 obj)
806{
807	c_can_object_get(dev, IF_NAPI, obj, priv->comm_rcv_high);
808}
809
810static inline void c_can_rx_finalize(struct net_device *dev,
811				     struct c_can_priv *priv, u32 obj)
812{
813	if (priv->type != BOSCH_D_CAN)
814		c_can_object_get(dev, IF_NAPI, obj, IF_COMM_CLR_NEWDAT);
815}
816
817static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
818			      u32 pend, int quota)
819{
820	u32 pkts = 0, ctrl, obj;
821
822	while ((obj = ffs(pend)) && quota > 0) {
823		pend &= ~BIT(obj - 1);
824
825		c_can_rx_object_get(dev, priv, obj);
826		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_NAPI));
827
828		if (ctrl & IF_MCONT_MSGLST) {
829			int n;
830
831			n = c_can_handle_lost_msg_obj(dev, IF_NAPI, obj, ctrl);
832
833			pkts += n;
834			quota -= n;
835			continue;
836		}
837
838		/* This really should not happen, but this covers some
839		 * odd HW behaviour. Do not remove that unless you
840		 * want to brick your machine.
841		 */
842		if (!(ctrl & IF_MCONT_NEWDAT))
843			continue;
844
845		/* read the data from the message object */
846		c_can_read_msg_object(dev, IF_NAPI, ctrl);
847
848		c_can_rx_finalize(dev, priv, obj);
849
850		pkts++;
851		quota--;
852	}
853
854	return pkts;
855}
856
857static inline u32 c_can_get_pending(struct c_can_priv *priv)
858{
859	u32 pend;
860
861	if (priv->msg_obj_rx_last > 16)
862		pend = priv->read_reg32(priv, C_CAN_NEWDAT1_REG);
863	else
864		pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
865
866	return pend;
867}
868
869/* theory of operation:
870 *
871 * c_can core saves a received CAN message into the first free message
872 * object it finds free (starting with the lowest). Bits NEWDAT and
873 * INTPND are set for this message object indicating that a new message
874 * has arrived.
875 *
876 * We clear the newdat bit right away.
877 *
878 * This can result in packet reordering when the readout is slow.
879 */
880static int c_can_do_rx_poll(struct net_device *dev, int quota)
881{
882	struct c_can_priv *priv = netdev_priv(dev);
883	u32 pkts = 0, pend = 0, toread, n;
884
885	while (quota > 0) {
886		if (!pend) {
887			pend = c_can_get_pending(priv);
888			if (!pend)
889				break;
890			/* If the pending field has a gap, handle the
891			 * bits above the gap first.
892			 */
893			toread = c_can_adjust_pending(pend,
894						      priv->msg_obj_rx_mask);
895		} else {
896			toread = pend;
897		}
898		/* Remove the bits from pend */
899		pend &= ~toread;
900		/* Read the objects */
901		n = c_can_read_objects(dev, priv, toread, quota);
902		pkts += n;
903		quota -= n;
904	}
905
906	return pkts;
907}
908
909static int c_can_handle_state_change(struct net_device *dev,
910				     enum c_can_bus_error_types error_type)
911{
912	unsigned int reg_err_counter;
913	unsigned int rx_err_passive;
914	struct c_can_priv *priv = netdev_priv(dev);
915	struct can_frame *cf;
916	struct sk_buff *skb;
917	struct can_berr_counter bec;
918
919	switch (error_type) {
920	case C_CAN_NO_ERROR:
921		priv->can.state = CAN_STATE_ERROR_ACTIVE;
922		break;
923	case C_CAN_ERROR_WARNING:
924		/* error warning state */
925		priv->can.can_stats.error_warning++;
926		priv->can.state = CAN_STATE_ERROR_WARNING;
927		break;
928	case C_CAN_ERROR_PASSIVE:
929		/* error passive state */
930		priv->can.can_stats.error_passive++;
931		priv->can.state = CAN_STATE_ERROR_PASSIVE;
932		break;
933	case C_CAN_BUS_OFF:
934		/* bus-off state */
935		priv->can.state = CAN_STATE_BUS_OFF;
936		priv->can.can_stats.bus_off++;
937		break;
938	default:
939		break;
940	}
941
942	/* propagate the error condition to the CAN stack */
943	skb = alloc_can_err_skb(dev, &cf);
944	if (unlikely(!skb))
945		return 0;
946
947	__c_can_get_berr_counter(dev, &bec);
948	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
949	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
950				ERR_CNT_RP_SHIFT;
951
952	switch (error_type) {
953	case C_CAN_NO_ERROR:
954		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
955		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
956		cf->data[6] = bec.txerr;
957		cf->data[7] = bec.rxerr;
958		break;
959	case C_CAN_ERROR_WARNING:
960		/* error warning state */
961		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
962		cf->data[1] = (bec.txerr > bec.rxerr) ?
963			CAN_ERR_CRTL_TX_WARNING :
964			CAN_ERR_CRTL_RX_WARNING;
965		cf->data[6] = bec.txerr;
966		cf->data[7] = bec.rxerr;
967
968		break;
969	case C_CAN_ERROR_PASSIVE:
970		/* error passive state */
971		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
972		if (rx_err_passive)
973			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
974		if (bec.txerr > 127)
975			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
976
977		cf->data[6] = bec.txerr;
978		cf->data[7] = bec.rxerr;
979		break;
980	case C_CAN_BUS_OFF:
981		/* bus-off state */
982		cf->can_id |= CAN_ERR_BUSOFF;
983		can_bus_off(dev);
984		break;
985	default:
986		break;
987	}
988
989	netif_receive_skb(skb);
990
991	return 1;
992}
993
994static int c_can_handle_bus_err(struct net_device *dev,
995				enum c_can_lec_type lec_type)
996{
997	struct c_can_priv *priv = netdev_priv(dev);
998	struct net_device_stats *stats = &dev->stats;
999	struct can_frame *cf;
1000	struct sk_buff *skb;
1001
1002	/* early exit if no lec update or no error.
1003	 * no lec update means that no CAN bus event has been detected
1004	 * since CPU wrote 0x7 value to status reg.
1005	 */
1006	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1007		return 0;
1008
1009	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1010		return 0;
1011
1012	/* common for all type of bus errors */
1013	priv->can.can_stats.bus_error++;
1014	stats->rx_errors++;
1015
1016	/* propagate the error condition to the CAN stack */
1017	skb = alloc_can_err_skb(dev, &cf);
1018	if (unlikely(!skb))
1019		return 0;
1020
1021	/* check for 'last error code' which tells us the
1022	 * type of the last error to occur on the CAN bus
1023	 */
1024	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1025
1026	switch (lec_type) {
1027	case LEC_STUFF_ERROR:
1028		netdev_dbg(dev, "stuff error\n");
1029		cf->data[2] |= CAN_ERR_PROT_STUFF;
1030		break;
1031	case LEC_FORM_ERROR:
1032		netdev_dbg(dev, "form error\n");
1033		cf->data[2] |= CAN_ERR_PROT_FORM;
1034		break;
1035	case LEC_ACK_ERROR:
1036		netdev_dbg(dev, "ack error\n");
1037		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1038		break;
1039	case LEC_BIT1_ERROR:
1040		netdev_dbg(dev, "bit1 error\n");
1041		cf->data[2] |= CAN_ERR_PROT_BIT1;
1042		break;
1043	case LEC_BIT0_ERROR:
1044		netdev_dbg(dev, "bit0 error\n");
1045		cf->data[2] |= CAN_ERR_PROT_BIT0;
1046		break;
1047	case LEC_CRC_ERROR:
1048		netdev_dbg(dev, "CRC error\n");
1049		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1050		break;
1051	default:
1052		break;
1053	}
1054
1055	netif_receive_skb(skb);
1056	return 1;
1057}
1058
1059static int c_can_poll(struct napi_struct *napi, int quota)
1060{
1061	struct net_device *dev = napi->dev;
1062	struct c_can_priv *priv = netdev_priv(dev);
1063	u16 curr, last = priv->last_status;
1064	int work_done = 0;
1065
1066	/* Only read the status register if a status interrupt was pending */
1067	if (atomic_xchg(&priv->sie_pending, 0)) {
1068		priv->last_status = priv->read_reg(priv, C_CAN_STS_REG);
1069		curr = priv->last_status;
1070		/* Ack status on C_CAN. D_CAN is self clearing */
1071		if (priv->type != BOSCH_D_CAN)
1072			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1073	} else {
1074		/* no change detected ... */
1075		curr = last;
1076	}
1077
1078	/* handle state changes */
1079	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1080		netdev_dbg(dev, "entered error warning state\n");
1081		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1082	}
1083
1084	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1085		netdev_dbg(dev, "entered error passive state\n");
1086		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1087	}
1088
1089	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1090		netdev_dbg(dev, "entered bus off state\n");
1091		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1092		goto end;
1093	}
1094
1095	/* handle bus recovery events */
1096	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1097		netdev_dbg(dev, "left bus off state\n");
1098		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1099	}
1100
1101	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1102		netdev_dbg(dev, "left error passive state\n");
1103		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1104	}
1105
1106	if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1107		netdev_dbg(dev, "left error warning state\n");
1108		work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1109	}
1110
1111	/* handle lec errors on the bus */
1112	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1113
1114	/* Handle Tx/Rx events. We do this unconditionally */
1115	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1116	c_can_do_tx(dev);
1117
1118end:
1119	if (work_done < quota) {
1120		napi_complete_done(napi, work_done);
1121		/* enable all IRQs if we are not in bus off state */
1122		if (priv->can.state != CAN_STATE_BUS_OFF)
1123			c_can_irq_control(priv, true);
1124	}
1125
1126	return work_done;
1127}
1128
1129static irqreturn_t c_can_isr(int irq, void *dev_id)
1130{
1131	struct net_device *dev = (struct net_device *)dev_id;
1132	struct c_can_priv *priv = netdev_priv(dev);
1133	int reg_int;
1134
1135	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1136	if (!reg_int)
1137		return IRQ_NONE;
1138
1139	/* save for later use */
1140	if (reg_int & INT_STS_PENDING)
1141		atomic_set(&priv->sie_pending, 1);
1142
1143	/* disable all interrupts and schedule the NAPI */
1144	c_can_irq_control(priv, false);
1145	napi_schedule(&priv->napi);
1146
1147	return IRQ_HANDLED;
1148}
1149
1150static int c_can_open(struct net_device *dev)
1151{
1152	int err;
1153	struct c_can_priv *priv = netdev_priv(dev);
1154
1155	c_can_pm_runtime_get_sync(priv);
1156	c_can_reset_ram(priv, true);
1157
1158	/* open the can device */
1159	err = open_candev(dev);
1160	if (err) {
1161		netdev_err(dev, "failed to open can device\n");
1162		goto exit_open_fail;
1163	}
1164
1165	/* register interrupt handler */
1166	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1167			  dev);
1168	if (err < 0) {
1169		netdev_err(dev, "failed to request interrupt\n");
1170		goto exit_irq_fail;
1171	}
1172
1173	/* start the c_can controller */
1174	err = c_can_start(dev);
1175	if (err)
1176		goto exit_start_fail;
1177
1178	napi_enable(&priv->napi);
1179	/* enable status change, error and module interrupts */
1180	c_can_irq_control(priv, true);
1181	netif_start_queue(dev);
1182
1183	return 0;
1184
1185exit_start_fail:
1186	free_irq(dev->irq, dev);
1187exit_irq_fail:
1188	close_candev(dev);
1189exit_open_fail:
1190	c_can_reset_ram(priv, false);
1191	c_can_pm_runtime_put_sync(priv);
1192	return err;
1193}
1194
1195static int c_can_close(struct net_device *dev)
1196{
1197	struct c_can_priv *priv = netdev_priv(dev);
1198
1199	netif_stop_queue(dev);
1200	napi_disable(&priv->napi);
1201	c_can_stop(dev);
1202	free_irq(dev->irq, dev);
1203	close_candev(dev);
1204
1205	c_can_reset_ram(priv, false);
1206	c_can_pm_runtime_put_sync(priv);
1207
1208	return 0;
1209}
1210
1211struct net_device *alloc_c_can_dev(int msg_obj_num)
1212{
1213	struct net_device *dev;
1214	struct c_can_priv *priv;
1215	int msg_obj_tx_num = msg_obj_num / 2;
1216
1217	dev = alloc_candev(sizeof(*priv), msg_obj_tx_num);
1218	if (!dev)
1219		return NULL;
1220
1221	priv = netdev_priv(dev);
1222	priv->msg_obj_num = msg_obj_num;
1223	priv->msg_obj_rx_num = msg_obj_num - msg_obj_tx_num;
1224	priv->msg_obj_rx_first = 1;
1225	priv->msg_obj_rx_last =
1226		priv->msg_obj_rx_first + priv->msg_obj_rx_num - 1;
1227	priv->msg_obj_rx_mask = GENMASK(priv->msg_obj_rx_num - 1, 0);
1228
1229	priv->msg_obj_tx_num = msg_obj_tx_num;
1230	priv->msg_obj_tx_first = priv->msg_obj_rx_last + 1;
1231	priv->msg_obj_tx_last =
1232		priv->msg_obj_tx_first + priv->msg_obj_tx_num - 1;
1233
1234	priv->tx.head = 0;
1235	priv->tx.tail = 0;
1236	priv->tx.obj_num = msg_obj_tx_num;
1237
1238	netif_napi_add_weight(dev, &priv->napi, c_can_poll,
1239			      priv->msg_obj_rx_num);
1240
1241	priv->dev = dev;
1242	priv->can.bittiming_const = &c_can_bittiming_const;
1243	priv->can.do_set_mode = c_can_set_mode;
1244	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1245	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1246					CAN_CTRLMODE_LISTENONLY |
1247					CAN_CTRLMODE_BERR_REPORTING;
1248
1249	return dev;
1250}
1251EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1252
1253#ifdef CONFIG_PM
1254int c_can_power_down(struct net_device *dev)
1255{
1256	u32 val;
1257	unsigned long time_out;
1258	struct c_can_priv *priv = netdev_priv(dev);
1259
1260	if (!(dev->flags & IFF_UP))
1261		return 0;
1262
1263	WARN_ON(priv->type != BOSCH_D_CAN);
1264
1265	/* set PDR value so the device goes to power down mode */
1266	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1267	val |= CONTROL_EX_PDR;
1268	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1269
1270	/* Wait for the PDA bit to get set */
1271	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1272	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1273	       time_after(time_out, jiffies))
1274		cpu_relax();
1275
1276	if (time_after(jiffies, time_out))
1277		return -ETIMEDOUT;
1278
1279	c_can_stop(dev);
1280
1281	c_can_reset_ram(priv, false);
1282	c_can_pm_runtime_put_sync(priv);
1283
1284	return 0;
1285}
1286EXPORT_SYMBOL_GPL(c_can_power_down);
1287
1288int c_can_power_up(struct net_device *dev)
1289{
1290	u32 val;
1291	unsigned long time_out;
1292	struct c_can_priv *priv = netdev_priv(dev);
1293	int ret;
1294
1295	if (!(dev->flags & IFF_UP))
1296		return 0;
1297
1298	WARN_ON(priv->type != BOSCH_D_CAN);
1299
1300	c_can_pm_runtime_get_sync(priv);
1301	c_can_reset_ram(priv, true);
1302
1303	/* Clear PDR and INIT bits */
1304	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1305	val &= ~CONTROL_EX_PDR;
1306	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1307	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1308	val &= ~CONTROL_INIT;
1309	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1310
1311	/* Wait for the PDA bit to get clear */
1312	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1313	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1314	       time_after(time_out, jiffies))
1315		cpu_relax();
1316
1317	if (time_after(jiffies, time_out)) {
1318		ret = -ETIMEDOUT;
1319		goto err_out;
1320	}
1321
1322	ret = c_can_start(dev);
1323	if (ret)
1324		goto err_out;
1325
1326	c_can_irq_control(priv, true);
1327
1328	return 0;
1329
1330err_out:
1331	c_can_reset_ram(priv, false);
1332	c_can_pm_runtime_put_sync(priv);
1333
1334	return ret;
1335}
1336EXPORT_SYMBOL_GPL(c_can_power_up);
1337#endif
1338
1339void free_c_can_dev(struct net_device *dev)
1340{
1341	struct c_can_priv *priv = netdev_priv(dev);
1342
1343	netif_napi_del(&priv->napi);
1344	free_candev(dev);
1345}
1346EXPORT_SYMBOL_GPL(free_c_can_dev);
1347
1348static const struct net_device_ops c_can_netdev_ops = {
1349	.ndo_open = c_can_open,
1350	.ndo_stop = c_can_close,
1351	.ndo_start_xmit = c_can_start_xmit,
1352	.ndo_change_mtu = can_change_mtu,
1353};
1354
1355int register_c_can_dev(struct net_device *dev)
1356{
1357	/* Deactivate pins to prevent DRA7 DCAN IP from being
1358	 * stuck in transition when module is disabled.
1359	 * Pins are activated in c_can_start() and deactivated
1360	 * in c_can_stop()
1361	 */
1362	pinctrl_pm_select_sleep_state(dev->dev.parent);
1363
1364	dev->flags |= IFF_ECHO;	/* we support local echo */
1365	dev->netdev_ops = &c_can_netdev_ops;
1366	dev->ethtool_ops = &c_can_ethtool_ops;
1367
1368	return register_candev(dev);
1369}
1370EXPORT_SYMBOL_GPL(register_c_can_dev);
1371
1372void unregister_c_can_dev(struct net_device *dev)
1373{
1374	unregister_candev(dev);
1375}
1376EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1377
1378MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1379MODULE_LICENSE("GPL v2");
1380MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1381