1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (���������������� ����������), Thomas Gleixner
6 */
7
8/*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 *  o we don't want to move physical eraseblocks just after we have given them
50 *    to the user; instead, we first want to let users fill them up with data;
51 *
52 *  o there is a chance that the user will put the physical eraseblock very
53 *    soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 *   erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88#include <linux/slab.h>
89#include <linux/crc32.h>
90#include <linux/freezer.h>
91#include <linux/kthread.h>
92#include "ubi.h"
93#include "wl.h"
94
95/* Number of physical eraseblocks reserved for wear-leveling purposes */
96#define WL_RESERVED_PEBS 1
97
98/*
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
103 */
104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106/*
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
116 */
117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119/*
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
122 */
123#define WL_MAX_FAILURES 32
124
125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126static int self_check_in_wl_tree(const struct ubi_device *ubi,
127				 struct ubi_wl_entry *e, struct rb_root *root);
128static int self_check_in_pq(const struct ubi_device *ubi,
129			    struct ubi_wl_entry *e);
130
131/**
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
135 *
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
138 */
139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140{
141	struct rb_node **p, *parent = NULL;
142
143	p = &root->rb_node;
144	while (*p) {
145		struct ubi_wl_entry *e1;
146
147		parent = *p;
148		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150		if (e->ec < e1->ec)
151			p = &(*p)->rb_left;
152		else if (e->ec > e1->ec)
153			p = &(*p)->rb_right;
154		else {
155			ubi_assert(e->pnum != e1->pnum);
156			if (e->pnum < e1->pnum)
157				p = &(*p)->rb_left;
158			else
159				p = &(*p)->rb_right;
160		}
161	}
162
163	rb_link_node(&e->u.rb, parent, p);
164	rb_insert_color(&e->u.rb, root);
165}
166
167/**
168 * wl_entry_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
171 *
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
174 */
175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176{
177	ubi->lookuptbl[e->pnum] = NULL;
178	kmem_cache_free(ubi_wl_entry_slab, e);
179}
180
181/**
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 * @executed: whether there is one work is executed
185 *
186 * This function returns zero in case of success and a negative error code in
187 * case of failure. If @executed is not NULL and there is one work executed,
188 * @executed is set as %1, otherwise @executed is set as %0.
189 */
190static int do_work(struct ubi_device *ubi, int *executed)
191{
192	int err;
193	struct ubi_work *wrk;
194
195	cond_resched();
196
197	/*
198	 * @ubi->work_sem is used to synchronize with the workers. Workers take
199	 * it in read mode, so many of them may be doing works at a time. But
200	 * the queue flush code has to be sure the whole queue of works is
201	 * done, and it takes the mutex in write mode.
202	 */
203	down_read(&ubi->work_sem);
204	spin_lock(&ubi->wl_lock);
205	if (list_empty(&ubi->works)) {
206		spin_unlock(&ubi->wl_lock);
207		up_read(&ubi->work_sem);
208		if (executed)
209			*executed = 0;
210		return 0;
211	}
212
213	if (executed)
214		*executed = 1;
215	wrk = list_entry(ubi->works.next, struct ubi_work, list);
216	list_del(&wrk->list);
217	ubi->works_count -= 1;
218	ubi_assert(ubi->works_count >= 0);
219	spin_unlock(&ubi->wl_lock);
220
221	/*
222	 * Call the worker function. Do not touch the work structure
223	 * after this call as it will have been freed or reused by that
224	 * time by the worker function.
225	 */
226	err = wrk->func(ubi, wrk, 0);
227	if (err)
228		ubi_err(ubi, "work failed with error code %d", err);
229	up_read(&ubi->work_sem);
230
231	return err;
232}
233
234/**
235 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
236 * @e: the wear-leveling entry to check
237 * @root: the root of the tree
238 *
239 * This function returns non-zero if @e is in the @root RB-tree and zero if it
240 * is not.
241 */
242static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
243{
244	struct rb_node *p;
245
246	p = root->rb_node;
247	while (p) {
248		struct ubi_wl_entry *e1;
249
250		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
251
252		if (e->pnum == e1->pnum) {
253			ubi_assert(e == e1);
254			return 1;
255		}
256
257		if (e->ec < e1->ec)
258			p = p->rb_left;
259		else if (e->ec > e1->ec)
260			p = p->rb_right;
261		else {
262			ubi_assert(e->pnum != e1->pnum);
263			if (e->pnum < e1->pnum)
264				p = p->rb_left;
265			else
266				p = p->rb_right;
267		}
268	}
269
270	return 0;
271}
272
273/**
274 * in_pq - check if a wear-leveling entry is present in the protection queue.
275 * @ubi: UBI device description object
276 * @e: the wear-leveling entry to check
277 *
278 * This function returns non-zero if @e is in the protection queue and zero
279 * if it is not.
280 */
281static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
282{
283	struct ubi_wl_entry *p;
284	int i;
285
286	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
287		list_for_each_entry(p, &ubi->pq[i], u.list)
288			if (p == e)
289				return 1;
290
291	return 0;
292}
293
294/**
295 * prot_queue_add - add physical eraseblock to the protection queue.
296 * @ubi: UBI device description object
297 * @e: the physical eraseblock to add
298 *
299 * This function adds @e to the tail of the protection queue @ubi->pq, where
300 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
301 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
302 * be locked.
303 */
304static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
305{
306	int pq_tail = ubi->pq_head - 1;
307
308	if (pq_tail < 0)
309		pq_tail = UBI_PROT_QUEUE_LEN - 1;
310	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
311	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
312	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
313}
314
315/**
316 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
317 * @ubi: UBI device description object
318 * @root: the RB-tree where to look for
319 * @diff: maximum possible difference from the smallest erase counter
320 * @pick_max: pick PEB even its erase counter beyonds 'min_ec + @diff'
321 *
322 * This function looks for a wear leveling entry with erase counter closest to
323 * min + @diff, where min is the smallest erase counter.
324 */
325static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
326					  struct rb_root *root, int diff,
327					  int pick_max)
328{
329	struct rb_node *p;
330	struct ubi_wl_entry *e;
331	int max;
332
333	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
334	max = e->ec + diff;
335
336	p = root->rb_node;
337	while (p) {
338		struct ubi_wl_entry *e1;
339
340		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
341		if (e1->ec >= max) {
342			if (pick_max)
343				e = e1;
344			p = p->rb_left;
345		} else {
346			p = p->rb_right;
347			e = e1;
348		}
349	}
350
351	return e;
352}
353
354/**
355 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
356 * @ubi: UBI device description object
357 * @root: the RB-tree where to look for
358 *
359 * This function looks for a wear leveling entry with medium erase counter,
360 * but not greater or equivalent than the lowest erase counter plus
361 * %WL_FREE_MAX_DIFF/2.
362 */
363static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
364					       struct rb_root *root)
365{
366	struct ubi_wl_entry *e, *first, *last;
367
368	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
369	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
370
371	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
372		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
373
374		/*
375		 * If no fastmap has been written and fm_anchor is not
376		 * reserved and this WL entry can be used as anchor PEB
377		 * hold it back and return the second best WL entry such
378		 * that fastmap can use the anchor PEB later.
379		 */
380		e = may_reserve_for_fm(ubi, e, root);
381	} else
382		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2, 0);
383
384	return e;
385}
386
387/**
388 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
389 * refill_wl_user_pool().
390 * @ubi: UBI device description object
391 *
392 * This function returns a wear leveling entry in case of success and
393 * NULL in case of failure.
394 */
395static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
396{
397	struct ubi_wl_entry *e;
398
399	e = find_mean_wl_entry(ubi, &ubi->free);
400	if (!e) {
401		ubi_err(ubi, "no free eraseblocks");
402		return NULL;
403	}
404
405	self_check_in_wl_tree(ubi, e, &ubi->free);
406
407	/*
408	 * Move the physical eraseblock to the protection queue where it will
409	 * be protected from being moved for some time.
410	 */
411	rb_erase(&e->u.rb, &ubi->free);
412	ubi->free_count--;
413	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
414
415	return e;
416}
417
418/**
419 * prot_queue_del - remove a physical eraseblock from the protection queue.
420 * @ubi: UBI device description object
421 * @pnum: the physical eraseblock to remove
422 *
423 * This function deletes PEB @pnum from the protection queue and returns zero
424 * in case of success and %-ENODEV if the PEB was not found.
425 */
426static int prot_queue_del(struct ubi_device *ubi, int pnum)
427{
428	struct ubi_wl_entry *e;
429
430	e = ubi->lookuptbl[pnum];
431	if (!e)
432		return -ENODEV;
433
434	if (self_check_in_pq(ubi, e))
435		return -ENODEV;
436
437	list_del(&e->u.list);
438	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
439	return 0;
440}
441
442/**
443 * ubi_sync_erase - synchronously erase a physical eraseblock.
444 * @ubi: UBI device description object
445 * @e: the physical eraseblock to erase
446 * @torture: if the physical eraseblock has to be tortured
447 *
448 * This function returns zero in case of success and a negative error code in
449 * case of failure.
450 */
451int ubi_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
452{
453	int err;
454	struct ubi_ec_hdr *ec_hdr;
455	unsigned long long ec = e->ec;
456
457	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
458
459	err = self_check_ec(ubi, e->pnum, e->ec);
460	if (err)
461		return -EINVAL;
462
463	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
464	if (!ec_hdr)
465		return -ENOMEM;
466
467	err = ubi_io_sync_erase(ubi, e->pnum, torture);
468	if (err < 0)
469		goto out_free;
470
471	ec += err;
472	if (ec > UBI_MAX_ERASECOUNTER) {
473		/*
474		 * Erase counter overflow. Upgrade UBI and use 64-bit
475		 * erase counters internally.
476		 */
477		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
478			e->pnum, ec);
479		err = -EINVAL;
480		goto out_free;
481	}
482
483	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
484
485	ec_hdr->ec = cpu_to_be64(ec);
486
487	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
488	if (err)
489		goto out_free;
490
491	e->ec = ec;
492	spin_lock(&ubi->wl_lock);
493	if (e->ec > ubi->max_ec)
494		ubi->max_ec = e->ec;
495	spin_unlock(&ubi->wl_lock);
496
497out_free:
498	kfree(ec_hdr);
499	return err;
500}
501
502/**
503 * serve_prot_queue - check if it is time to stop protecting PEBs.
504 * @ubi: UBI device description object
505 *
506 * This function is called after each erase operation and removes PEBs from the
507 * tail of the protection queue. These PEBs have been protected for long enough
508 * and should be moved to the used tree.
509 */
510static void serve_prot_queue(struct ubi_device *ubi)
511{
512	struct ubi_wl_entry *e, *tmp;
513	int count;
514
515	/*
516	 * There may be several protected physical eraseblock to remove,
517	 * process them all.
518	 */
519repeat:
520	count = 0;
521	spin_lock(&ubi->wl_lock);
522	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
523		dbg_wl("PEB %d EC %d protection over, move to used tree",
524			e->pnum, e->ec);
525
526		list_del(&e->u.list);
527		wl_tree_add(e, &ubi->used);
528		if (count++ > 32) {
529			/*
530			 * Let's be nice and avoid holding the spinlock for
531			 * too long.
532			 */
533			spin_unlock(&ubi->wl_lock);
534			cond_resched();
535			goto repeat;
536		}
537	}
538
539	ubi->pq_head += 1;
540	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
541		ubi->pq_head = 0;
542	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
543	spin_unlock(&ubi->wl_lock);
544}
545
546/**
547 * __schedule_ubi_work - schedule a work.
548 * @ubi: UBI device description object
549 * @wrk: the work to schedule
550 *
551 * This function adds a work defined by @wrk to the tail of the pending works
552 * list. Can only be used if ubi->work_sem is already held in read mode!
553 */
554static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
555{
556	spin_lock(&ubi->wl_lock);
557	list_add_tail(&wrk->list, &ubi->works);
558	ubi_assert(ubi->works_count >= 0);
559	ubi->works_count += 1;
560	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
561		wake_up_process(ubi->bgt_thread);
562	spin_unlock(&ubi->wl_lock);
563}
564
565/**
566 * schedule_ubi_work - schedule a work.
567 * @ubi: UBI device description object
568 * @wrk: the work to schedule
569 *
570 * This function adds a work defined by @wrk to the tail of the pending works
571 * list.
572 */
573static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
574{
575	down_read(&ubi->work_sem);
576	__schedule_ubi_work(ubi, wrk);
577	up_read(&ubi->work_sem);
578}
579
580static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
581			int shutdown);
582
583/**
584 * schedule_erase - schedule an erase work.
585 * @ubi: UBI device description object
586 * @e: the WL entry of the physical eraseblock to erase
587 * @vol_id: the volume ID that last used this PEB
588 * @lnum: the last used logical eraseblock number for the PEB
589 * @torture: if the physical eraseblock has to be tortured
590 * @nested: denotes whether the work_sem is already held
591 *
592 * This function returns zero in case of success and a %-ENOMEM in case of
593 * failure.
594 */
595static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
596			  int vol_id, int lnum, int torture, bool nested)
597{
598	struct ubi_work *wl_wrk;
599
600	ubi_assert(e);
601
602	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
603	       e->pnum, e->ec, torture);
604
605	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
606	if (!wl_wrk)
607		return -ENOMEM;
608
609	wl_wrk->func = &erase_worker;
610	wl_wrk->e = e;
611	wl_wrk->vol_id = vol_id;
612	wl_wrk->lnum = lnum;
613	wl_wrk->torture = torture;
614
615	if (nested)
616		__schedule_ubi_work(ubi, wl_wrk);
617	else
618		schedule_ubi_work(ubi, wl_wrk);
619	return 0;
620}
621
622static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
623/**
624 * do_sync_erase - run the erase worker synchronously.
625 * @ubi: UBI device description object
626 * @e: the WL entry of the physical eraseblock to erase
627 * @vol_id: the volume ID that last used this PEB
628 * @lnum: the last used logical eraseblock number for the PEB
629 * @torture: if the physical eraseblock has to be tortured
630 *
631 */
632static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
633			 int vol_id, int lnum, int torture)
634{
635	struct ubi_work wl_wrk;
636
637	dbg_wl("sync erase of PEB %i", e->pnum);
638
639	wl_wrk.e = e;
640	wl_wrk.vol_id = vol_id;
641	wl_wrk.lnum = lnum;
642	wl_wrk.torture = torture;
643
644	return __erase_worker(ubi, &wl_wrk);
645}
646
647static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
648/**
649 * wear_leveling_worker - wear-leveling worker function.
650 * @ubi: UBI device description object
651 * @wrk: the work object
652 * @shutdown: non-zero if the worker has to free memory and exit
653 * because the WL-subsystem is shutting down
654 *
655 * This function copies a more worn out physical eraseblock to a less worn out
656 * one. Returns zero in case of success and a negative error code in case of
657 * failure.
658 */
659static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
660				int shutdown)
661{
662	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
663	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
664	struct ubi_wl_entry *e1, *e2;
665	struct ubi_vid_io_buf *vidb;
666	struct ubi_vid_hdr *vid_hdr;
667	int dst_leb_clean = 0;
668
669	kfree(wrk);
670	if (shutdown)
671		return 0;
672
673	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
674	if (!vidb)
675		return -ENOMEM;
676
677	vid_hdr = ubi_get_vid_hdr(vidb);
678
679	down_read(&ubi->fm_eba_sem);
680	mutex_lock(&ubi->move_mutex);
681	spin_lock(&ubi->wl_lock);
682	ubi_assert(!ubi->move_from && !ubi->move_to);
683	ubi_assert(!ubi->move_to_put);
684
685#ifdef CONFIG_MTD_UBI_FASTMAP
686	if (!next_peb_for_wl(ubi) ||
687#else
688	if (!ubi->free.rb_node ||
689#endif
690	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
691		/*
692		 * No free physical eraseblocks? Well, they must be waiting in
693		 * the queue to be erased. Cancel movement - it will be
694		 * triggered again when a free physical eraseblock appears.
695		 *
696		 * No used physical eraseblocks? They must be temporarily
697		 * protected from being moved. They will be moved to the
698		 * @ubi->used tree later and the wear-leveling will be
699		 * triggered again.
700		 */
701		dbg_wl("cancel WL, a list is empty: free %d, used %d",
702		       !ubi->free.rb_node, !ubi->used.rb_node);
703		goto out_cancel;
704	}
705
706#ifdef CONFIG_MTD_UBI_FASTMAP
707	e1 = find_anchor_wl_entry(&ubi->used);
708	if (e1 && ubi->fm_anchor &&
709	    (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
710		ubi->fm_do_produce_anchor = 1;
711		/*
712		 * fm_anchor is no longer considered a good anchor.
713		 * NULL assignment also prevents multiple wear level checks
714		 * of this PEB.
715		 */
716		wl_tree_add(ubi->fm_anchor, &ubi->free);
717		ubi->fm_anchor = NULL;
718		ubi->free_count++;
719	}
720
721	if (ubi->fm_do_produce_anchor) {
722		if (!e1)
723			goto out_cancel;
724		e2 = get_peb_for_wl(ubi);
725		if (!e2)
726			goto out_cancel;
727
728		self_check_in_wl_tree(ubi, e1, &ubi->used);
729		rb_erase(&e1->u.rb, &ubi->used);
730		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
731		ubi->fm_do_produce_anchor = 0;
732	} else if (!ubi->scrub.rb_node) {
733#else
734	if (!ubi->scrub.rb_node) {
735#endif
736		/*
737		 * Now pick the least worn-out used physical eraseblock and a
738		 * highly worn-out free physical eraseblock. If the erase
739		 * counters differ much enough, start wear-leveling.
740		 */
741		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
742		e2 = get_peb_for_wl(ubi);
743		if (!e2)
744			goto out_cancel;
745
746		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
747			dbg_wl("no WL needed: min used EC %d, max free EC %d",
748			       e1->ec, e2->ec);
749
750			/* Give the unused PEB back */
751			wl_tree_add(e2, &ubi->free);
752			ubi->free_count++;
753			goto out_cancel;
754		}
755		self_check_in_wl_tree(ubi, e1, &ubi->used);
756		rb_erase(&e1->u.rb, &ubi->used);
757		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
758		       e1->pnum, e1->ec, e2->pnum, e2->ec);
759	} else {
760		/* Perform scrubbing */
761		scrubbing = 1;
762		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
763		e2 = get_peb_for_wl(ubi);
764		if (!e2)
765			goto out_cancel;
766
767		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
768		rb_erase(&e1->u.rb, &ubi->scrub);
769		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
770	}
771
772	ubi->move_from = e1;
773	ubi->move_to = e2;
774	spin_unlock(&ubi->wl_lock);
775
776	/*
777	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
778	 * We so far do not know which logical eraseblock our physical
779	 * eraseblock (@e1) belongs to. We have to read the volume identifier
780	 * header first.
781	 *
782	 * Note, we are protected from this PEB being unmapped and erased. The
783	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
784	 * which is being moved was unmapped.
785	 */
786
787	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
788	if (err && err != UBI_IO_BITFLIPS) {
789		dst_leb_clean = 1;
790		if (err == UBI_IO_FF) {
791			/*
792			 * We are trying to move PEB without a VID header. UBI
793			 * always write VID headers shortly after the PEB was
794			 * given, so we have a situation when it has not yet
795			 * had a chance to write it, because it was preempted.
796			 * So add this PEB to the protection queue so far,
797			 * because presumably more data will be written there
798			 * (including the missing VID header), and then we'll
799			 * move it.
800			 */
801			dbg_wl("PEB %d has no VID header", e1->pnum);
802			protect = 1;
803			goto out_not_moved;
804		} else if (err == UBI_IO_FF_BITFLIPS) {
805			/*
806			 * The same situation as %UBI_IO_FF, but bit-flips were
807			 * detected. It is better to schedule this PEB for
808			 * scrubbing.
809			 */
810			dbg_wl("PEB %d has no VID header but has bit-flips",
811			       e1->pnum);
812			scrubbing = 1;
813			goto out_not_moved;
814		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
815			/*
816			 * While a full scan would detect interrupted erasures
817			 * at attach time we can face them here when attached from
818			 * Fastmap.
819			 */
820			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
821			       e1->pnum);
822			erase = 1;
823			goto out_not_moved;
824		}
825
826		ubi_err(ubi, "error %d while reading VID header from PEB %d",
827			err, e1->pnum);
828		goto out_error;
829	}
830
831	vol_id = be32_to_cpu(vid_hdr->vol_id);
832	lnum = be32_to_cpu(vid_hdr->lnum);
833
834	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
835	if (err) {
836		if (err == MOVE_CANCEL_RACE) {
837			/*
838			 * The LEB has not been moved because the volume is
839			 * being deleted or the PEB has been put meanwhile. We
840			 * should prevent this PEB from being selected for
841			 * wear-leveling movement again, so put it to the
842			 * protection queue.
843			 */
844			protect = 1;
845			dst_leb_clean = 1;
846			goto out_not_moved;
847		}
848		if (err == MOVE_RETRY) {
849			scrubbing = 1;
850			dst_leb_clean = 1;
851			goto out_not_moved;
852		}
853		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
854		    err == MOVE_TARGET_RD_ERR) {
855			/*
856			 * Target PEB had bit-flips or write error - torture it.
857			 */
858			torture = 1;
859			keep = 1;
860			goto out_not_moved;
861		}
862
863		if (err == MOVE_SOURCE_RD_ERR) {
864			/*
865			 * An error happened while reading the source PEB. Do
866			 * not switch to R/O mode in this case, and give the
867			 * upper layers a possibility to recover from this,
868			 * e.g. by unmapping corresponding LEB. Instead, just
869			 * put this PEB to the @ubi->erroneous list to prevent
870			 * UBI from trying to move it over and over again.
871			 */
872			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
873				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
874					ubi->erroneous_peb_count);
875				goto out_error;
876			}
877			dst_leb_clean = 1;
878			erroneous = 1;
879			goto out_not_moved;
880		}
881
882		if (err < 0)
883			goto out_error;
884
885		ubi_assert(0);
886	}
887
888	/* The PEB has been successfully moved */
889	if (scrubbing)
890		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
891			e1->pnum, vol_id, lnum, e2->pnum);
892	ubi_free_vid_buf(vidb);
893
894	spin_lock(&ubi->wl_lock);
895	if (!ubi->move_to_put) {
896		wl_tree_add(e2, &ubi->used);
897		e2 = NULL;
898	}
899	ubi->move_from = ubi->move_to = NULL;
900	ubi->move_to_put = ubi->wl_scheduled = 0;
901	spin_unlock(&ubi->wl_lock);
902
903	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
904	if (err) {
905		if (e2) {
906			spin_lock(&ubi->wl_lock);
907			wl_entry_destroy(ubi, e2);
908			spin_unlock(&ubi->wl_lock);
909		}
910		goto out_ro;
911	}
912
913	if (e2) {
914		/*
915		 * Well, the target PEB was put meanwhile, schedule it for
916		 * erasure.
917		 */
918		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
919		       e2->pnum, vol_id, lnum);
920		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
921		if (err)
922			goto out_ro;
923	}
924
925	dbg_wl("done");
926	mutex_unlock(&ubi->move_mutex);
927	up_read(&ubi->fm_eba_sem);
928	return 0;
929
930	/*
931	 * For some reasons the LEB was not moved, might be an error, might be
932	 * something else. @e1 was not changed, so return it back. @e2 might
933	 * have been changed, schedule it for erasure.
934	 */
935out_not_moved:
936	if (vol_id != -1)
937		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
938		       e1->pnum, vol_id, lnum, e2->pnum, err);
939	else
940		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
941		       e1->pnum, e2->pnum, err);
942	spin_lock(&ubi->wl_lock);
943	if (protect)
944		prot_queue_add(ubi, e1);
945	else if (erroneous) {
946		wl_tree_add(e1, &ubi->erroneous);
947		ubi->erroneous_peb_count += 1;
948	} else if (scrubbing)
949		wl_tree_add(e1, &ubi->scrub);
950	else if (keep)
951		wl_tree_add(e1, &ubi->used);
952	if (dst_leb_clean) {
953		wl_tree_add(e2, &ubi->free);
954		ubi->free_count++;
955	}
956
957	ubi_assert(!ubi->move_to_put);
958	ubi->move_from = ubi->move_to = NULL;
959	ubi->wl_scheduled = 0;
960	spin_unlock(&ubi->wl_lock);
961
962	ubi_free_vid_buf(vidb);
963	if (dst_leb_clean) {
964		ensure_wear_leveling(ubi, 1);
965	} else {
966		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
967		if (err)
968			goto out_ro;
969	}
970
971	if (erase) {
972		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
973		if (err)
974			goto out_ro;
975	}
976
977	mutex_unlock(&ubi->move_mutex);
978	up_read(&ubi->fm_eba_sem);
979	return 0;
980
981out_error:
982	if (vol_id != -1)
983		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
984			err, e1->pnum, e2->pnum);
985	else
986		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
987			err, e1->pnum, vol_id, lnum, e2->pnum);
988	spin_lock(&ubi->wl_lock);
989	ubi->move_from = ubi->move_to = NULL;
990	ubi->move_to_put = ubi->wl_scheduled = 0;
991	wl_entry_destroy(ubi, e1);
992	wl_entry_destroy(ubi, e2);
993	spin_unlock(&ubi->wl_lock);
994
995	ubi_free_vid_buf(vidb);
996
997out_ro:
998	ubi_ro_mode(ubi);
999	mutex_unlock(&ubi->move_mutex);
1000	up_read(&ubi->fm_eba_sem);
1001	ubi_assert(err != 0);
1002	return err < 0 ? err : -EIO;
1003
1004out_cancel:
1005	ubi->wl_scheduled = 0;
1006	spin_unlock(&ubi->wl_lock);
1007	mutex_unlock(&ubi->move_mutex);
1008	up_read(&ubi->fm_eba_sem);
1009	ubi_free_vid_buf(vidb);
1010	return 0;
1011}
1012
1013/**
1014 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1015 * @ubi: UBI device description object
1016 * @nested: set to non-zero if this function is called from UBI worker
1017 *
1018 * This function checks if it is time to start wear-leveling and schedules it
1019 * if yes. This function returns zero in case of success and a negative error
1020 * code in case of failure.
1021 */
1022static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1023{
1024	int err = 0;
1025	struct ubi_work *wrk;
1026
1027	spin_lock(&ubi->wl_lock);
1028	if (ubi->wl_scheduled)
1029		/* Wear-leveling is already in the work queue */
1030		goto out_unlock;
1031
1032	/*
1033	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1034	 * WL worker has to be scheduled anyway.
1035	 */
1036	if (!ubi->scrub.rb_node) {
1037#ifdef CONFIG_MTD_UBI_FASTMAP
1038		if (!need_wear_leveling(ubi))
1039			goto out_unlock;
1040#else
1041		struct ubi_wl_entry *e1;
1042		struct ubi_wl_entry *e2;
1043
1044		if (!ubi->used.rb_node || !ubi->free.rb_node)
1045			/* No physical eraseblocks - no deal */
1046			goto out_unlock;
1047
1048		/*
1049		 * We schedule wear-leveling only if the difference between the
1050		 * lowest erase counter of used physical eraseblocks and a high
1051		 * erase counter of free physical eraseblocks is greater than
1052		 * %UBI_WL_THRESHOLD.
1053		 */
1054		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1055		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
1056
1057		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1058			goto out_unlock;
1059#endif
1060		dbg_wl("schedule wear-leveling");
1061	} else
1062		dbg_wl("schedule scrubbing");
1063
1064	ubi->wl_scheduled = 1;
1065	spin_unlock(&ubi->wl_lock);
1066
1067	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1068	if (!wrk) {
1069		err = -ENOMEM;
1070		goto out_cancel;
1071	}
1072
1073	wrk->func = &wear_leveling_worker;
1074	if (nested)
1075		__schedule_ubi_work(ubi, wrk);
1076	else
1077		schedule_ubi_work(ubi, wrk);
1078	return err;
1079
1080out_cancel:
1081	spin_lock(&ubi->wl_lock);
1082	ubi->wl_scheduled = 0;
1083out_unlock:
1084	spin_unlock(&ubi->wl_lock);
1085	return err;
1086}
1087
1088/**
1089 * __erase_worker - physical eraseblock erase worker function.
1090 * @ubi: UBI device description object
1091 * @wl_wrk: the work object
1092 *
1093 * This function erases a physical eraseblock and perform torture testing if
1094 * needed. It also takes care about marking the physical eraseblock bad if
1095 * needed. Returns zero in case of success and a negative error code in case of
1096 * failure.
1097 */
1098static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1099{
1100	struct ubi_wl_entry *e = wl_wrk->e;
1101	int pnum = e->pnum;
1102	int vol_id = wl_wrk->vol_id;
1103	int lnum = wl_wrk->lnum;
1104	int err, available_consumed = 0;
1105
1106	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1107	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1108
1109	err = ubi_sync_erase(ubi, e, wl_wrk->torture);
1110	if (!err) {
1111		spin_lock(&ubi->wl_lock);
1112
1113		if (!ubi->fm_disabled && !ubi->fm_anchor &&
1114		    e->pnum < UBI_FM_MAX_START) {
1115			/*
1116			 * Abort anchor production, if needed it will be
1117			 * enabled again in the wear leveling started below.
1118			 */
1119			ubi->fm_anchor = e;
1120			ubi->fm_do_produce_anchor = 0;
1121		} else {
1122			wl_tree_add(e, &ubi->free);
1123			ubi->free_count++;
1124		}
1125
1126		spin_unlock(&ubi->wl_lock);
1127
1128		/*
1129		 * One more erase operation has happened, take care about
1130		 * protected physical eraseblocks.
1131		 */
1132		serve_prot_queue(ubi);
1133
1134		/* And take care about wear-leveling */
1135		err = ensure_wear_leveling(ubi, 1);
1136		return err;
1137	}
1138
1139	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1140
1141	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1142	    err == -EBUSY) {
1143		int err1;
1144
1145		/* Re-schedule the LEB for erasure */
1146		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1147		if (err1) {
1148			spin_lock(&ubi->wl_lock);
1149			wl_entry_destroy(ubi, e);
1150			spin_unlock(&ubi->wl_lock);
1151			err = err1;
1152			goto out_ro;
1153		}
1154		return err;
1155	}
1156
1157	spin_lock(&ubi->wl_lock);
1158	wl_entry_destroy(ubi, e);
1159	spin_unlock(&ubi->wl_lock);
1160	if (err != -EIO)
1161		/*
1162		 * If this is not %-EIO, we have no idea what to do. Scheduling
1163		 * this physical eraseblock for erasure again would cause
1164		 * errors again and again. Well, lets switch to R/O mode.
1165		 */
1166		goto out_ro;
1167
1168	/* It is %-EIO, the PEB went bad */
1169
1170	if (!ubi->bad_allowed) {
1171		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1172		goto out_ro;
1173	}
1174
1175	spin_lock(&ubi->volumes_lock);
1176	if (ubi->beb_rsvd_pebs == 0) {
1177		if (ubi->avail_pebs == 0) {
1178			spin_unlock(&ubi->volumes_lock);
1179			ubi_err(ubi, "no reserved/available physical eraseblocks");
1180			goto out_ro;
1181		}
1182		ubi->avail_pebs -= 1;
1183		available_consumed = 1;
1184	}
1185	spin_unlock(&ubi->volumes_lock);
1186
1187	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1188	err = ubi_io_mark_bad(ubi, pnum);
1189	if (err)
1190		goto out_ro;
1191
1192	spin_lock(&ubi->volumes_lock);
1193	if (ubi->beb_rsvd_pebs > 0) {
1194		if (available_consumed) {
1195			/*
1196			 * The amount of reserved PEBs increased since we last
1197			 * checked.
1198			 */
1199			ubi->avail_pebs += 1;
1200			available_consumed = 0;
1201		}
1202		ubi->beb_rsvd_pebs -= 1;
1203	}
1204	ubi->bad_peb_count += 1;
1205	ubi->good_peb_count -= 1;
1206	ubi_calculate_reserved(ubi);
1207	if (available_consumed)
1208		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1209	else if (ubi->beb_rsvd_pebs)
1210		ubi_msg(ubi, "%d PEBs left in the reserve",
1211			ubi->beb_rsvd_pebs);
1212	else
1213		ubi_warn(ubi, "last PEB from the reserve was used");
1214	spin_unlock(&ubi->volumes_lock);
1215
1216	return err;
1217
1218out_ro:
1219	if (available_consumed) {
1220		spin_lock(&ubi->volumes_lock);
1221		ubi->avail_pebs += 1;
1222		spin_unlock(&ubi->volumes_lock);
1223	}
1224	ubi_ro_mode(ubi);
1225	return err;
1226}
1227
1228static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1229			  int shutdown)
1230{
1231	int ret;
1232
1233	if (shutdown) {
1234		struct ubi_wl_entry *e = wl_wrk->e;
1235
1236		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1237		kfree(wl_wrk);
1238		wl_entry_destroy(ubi, e);
1239		return 0;
1240	}
1241
1242	ret = __erase_worker(ubi, wl_wrk);
1243	kfree(wl_wrk);
1244	return ret;
1245}
1246
1247/**
1248 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1249 * @ubi: UBI device description object
1250 * @vol_id: the volume ID that last used this PEB
1251 * @lnum: the last used logical eraseblock number for the PEB
1252 * @pnum: physical eraseblock to return
1253 * @torture: if this physical eraseblock has to be tortured
1254 *
1255 * This function is called to return physical eraseblock @pnum to the pool of
1256 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1257 * occurred to this @pnum and it has to be tested. This function returns zero
1258 * in case of success, and a negative error code in case of failure.
1259 */
1260int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1261		   int pnum, int torture)
1262{
1263	int err;
1264	struct ubi_wl_entry *e;
1265
1266	dbg_wl("PEB %d", pnum);
1267	ubi_assert(pnum >= 0);
1268	ubi_assert(pnum < ubi->peb_count);
1269
1270	down_read(&ubi->fm_protect);
1271
1272retry:
1273	spin_lock(&ubi->wl_lock);
1274	e = ubi->lookuptbl[pnum];
1275	if (!e) {
1276		/*
1277		 * This wl entry has been removed for some errors by other
1278		 * process (eg. wear leveling worker), corresponding process
1279		 * (except __erase_worker, which cannot concurrent with
1280		 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1281		 * just ignore this wl entry.
1282		 */
1283		spin_unlock(&ubi->wl_lock);
1284		up_read(&ubi->fm_protect);
1285		return 0;
1286	}
1287	if (e == ubi->move_from) {
1288		/*
1289		 * User is putting the physical eraseblock which was selected to
1290		 * be moved. It will be scheduled for erasure in the
1291		 * wear-leveling worker.
1292		 */
1293		dbg_wl("PEB %d is being moved, wait", pnum);
1294		spin_unlock(&ubi->wl_lock);
1295
1296		/* Wait for the WL worker by taking the @ubi->move_mutex */
1297		mutex_lock(&ubi->move_mutex);
1298		mutex_unlock(&ubi->move_mutex);
1299		goto retry;
1300	} else if (e == ubi->move_to) {
1301		/*
1302		 * User is putting the physical eraseblock which was selected
1303		 * as the target the data is moved to. It may happen if the EBA
1304		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1305		 * but the WL sub-system has not put the PEB to the "used" tree
1306		 * yet, but it is about to do this. So we just set a flag which
1307		 * will tell the WL worker that the PEB is not needed anymore
1308		 * and should be scheduled for erasure.
1309		 */
1310		dbg_wl("PEB %d is the target of data moving", pnum);
1311		ubi_assert(!ubi->move_to_put);
1312		ubi->move_to_put = 1;
1313		spin_unlock(&ubi->wl_lock);
1314		up_read(&ubi->fm_protect);
1315		return 0;
1316	} else {
1317		if (in_wl_tree(e, &ubi->used)) {
1318			self_check_in_wl_tree(ubi, e, &ubi->used);
1319			rb_erase(&e->u.rb, &ubi->used);
1320		} else if (in_wl_tree(e, &ubi->scrub)) {
1321			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1322			rb_erase(&e->u.rb, &ubi->scrub);
1323		} else if (in_wl_tree(e, &ubi->erroneous)) {
1324			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1325			rb_erase(&e->u.rb, &ubi->erroneous);
1326			ubi->erroneous_peb_count -= 1;
1327			ubi_assert(ubi->erroneous_peb_count >= 0);
1328			/* Erroneous PEBs should be tortured */
1329			torture = 1;
1330		} else {
1331			err = prot_queue_del(ubi, e->pnum);
1332			if (err) {
1333				ubi_err(ubi, "PEB %d not found", pnum);
1334				ubi_ro_mode(ubi);
1335				spin_unlock(&ubi->wl_lock);
1336				up_read(&ubi->fm_protect);
1337				return err;
1338			}
1339		}
1340	}
1341	spin_unlock(&ubi->wl_lock);
1342
1343	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1344	if (err) {
1345		spin_lock(&ubi->wl_lock);
1346		wl_tree_add(e, &ubi->used);
1347		spin_unlock(&ubi->wl_lock);
1348	}
1349
1350	up_read(&ubi->fm_protect);
1351	return err;
1352}
1353
1354/**
1355 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1356 * @ubi: UBI device description object
1357 * @pnum: the physical eraseblock to schedule
1358 *
1359 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1360 * needs scrubbing. This function schedules a physical eraseblock for
1361 * scrubbing which is done in background. This function returns zero in case of
1362 * success and a negative error code in case of failure.
1363 */
1364int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1365{
1366	struct ubi_wl_entry *e;
1367
1368	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1369
1370retry:
1371	spin_lock(&ubi->wl_lock);
1372	e = ubi->lookuptbl[pnum];
1373	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1374				   in_wl_tree(e, &ubi->erroneous)) {
1375		spin_unlock(&ubi->wl_lock);
1376		return 0;
1377	}
1378
1379	if (e == ubi->move_to) {
1380		/*
1381		 * This physical eraseblock was used to move data to. The data
1382		 * was moved but the PEB was not yet inserted to the proper
1383		 * tree. We should just wait a little and let the WL worker
1384		 * proceed.
1385		 */
1386		spin_unlock(&ubi->wl_lock);
1387		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1388		yield();
1389		goto retry;
1390	}
1391
1392	if (in_wl_tree(e, &ubi->used)) {
1393		self_check_in_wl_tree(ubi, e, &ubi->used);
1394		rb_erase(&e->u.rb, &ubi->used);
1395	} else {
1396		int err;
1397
1398		err = prot_queue_del(ubi, e->pnum);
1399		if (err) {
1400			ubi_err(ubi, "PEB %d not found", pnum);
1401			ubi_ro_mode(ubi);
1402			spin_unlock(&ubi->wl_lock);
1403			return err;
1404		}
1405	}
1406
1407	wl_tree_add(e, &ubi->scrub);
1408	spin_unlock(&ubi->wl_lock);
1409
1410	/*
1411	 * Technically scrubbing is the same as wear-leveling, so it is done
1412	 * by the WL worker.
1413	 */
1414	return ensure_wear_leveling(ubi, 0);
1415}
1416
1417/**
1418 * ubi_wl_flush - flush all pending works.
1419 * @ubi: UBI device description object
1420 * @vol_id: the volume id to flush for
1421 * @lnum: the logical eraseblock number to flush for
1422 *
1423 * This function executes all pending works for a particular volume id /
1424 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1425 * acts as a wildcard for all of the corresponding volume numbers or logical
1426 * eraseblock numbers. It returns zero in case of success and a negative error
1427 * code in case of failure.
1428 */
1429int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1430{
1431	int err = 0;
1432	int found = 1;
1433
1434	/*
1435	 * Erase while the pending works queue is not empty, but not more than
1436	 * the number of currently pending works.
1437	 */
1438	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1439	       vol_id, lnum, ubi->works_count);
1440
1441	while (found) {
1442		struct ubi_work *wrk, *tmp;
1443		found = 0;
1444
1445		down_read(&ubi->work_sem);
1446		spin_lock(&ubi->wl_lock);
1447		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1448			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1449			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1450				list_del(&wrk->list);
1451				ubi->works_count -= 1;
1452				ubi_assert(ubi->works_count >= 0);
1453				spin_unlock(&ubi->wl_lock);
1454
1455				err = wrk->func(ubi, wrk, 0);
1456				if (err) {
1457					up_read(&ubi->work_sem);
1458					return err;
1459				}
1460
1461				spin_lock(&ubi->wl_lock);
1462				found = 1;
1463				break;
1464			}
1465		}
1466		spin_unlock(&ubi->wl_lock);
1467		up_read(&ubi->work_sem);
1468	}
1469
1470	/*
1471	 * Make sure all the works which have been done in parallel are
1472	 * finished.
1473	 */
1474	down_write(&ubi->work_sem);
1475	up_write(&ubi->work_sem);
1476
1477	return err;
1478}
1479
1480static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1481{
1482	if (in_wl_tree(e, &ubi->scrub))
1483		return false;
1484	else if (in_wl_tree(e, &ubi->erroneous))
1485		return false;
1486	else if (ubi->move_from == e)
1487		return false;
1488	else if (ubi->move_to == e)
1489		return false;
1490
1491	return true;
1492}
1493
1494/**
1495 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1496 * @ubi: UBI device description object
1497 * @pnum: the physical eraseblock to schedule
1498 * @force: don't read the block, assume bitflips happened and take action.
1499 *
1500 * This function reads the given eraseblock and checks if bitflips occured.
1501 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1502 * If scrubbing is forced with @force, the eraseblock is not read,
1503 * but scheduled for scrubbing right away.
1504 *
1505 * Returns:
1506 * %EINVAL, PEB is out of range
1507 * %ENOENT, PEB is no longer used by UBI
1508 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1509 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1510 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1511 * %0, no bit flips detected
1512 */
1513int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1514{
1515	int err = 0;
1516	struct ubi_wl_entry *e;
1517
1518	if (pnum < 0 || pnum >= ubi->peb_count) {
1519		err = -EINVAL;
1520		goto out;
1521	}
1522
1523	/*
1524	 * Pause all parallel work, otherwise it can happen that the
1525	 * erase worker frees a wl entry under us.
1526	 */
1527	down_write(&ubi->work_sem);
1528
1529	/*
1530	 * Make sure that the wl entry does not change state while
1531	 * inspecting it.
1532	 */
1533	spin_lock(&ubi->wl_lock);
1534	e = ubi->lookuptbl[pnum];
1535	if (!e) {
1536		spin_unlock(&ubi->wl_lock);
1537		err = -ENOENT;
1538		goto out_resume;
1539	}
1540
1541	/*
1542	 * Does it make sense to check this PEB?
1543	 */
1544	if (!scrub_possible(ubi, e)) {
1545		spin_unlock(&ubi->wl_lock);
1546		err = -EBUSY;
1547		goto out_resume;
1548	}
1549	spin_unlock(&ubi->wl_lock);
1550
1551	if (!force) {
1552		mutex_lock(&ubi->buf_mutex);
1553		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1554		mutex_unlock(&ubi->buf_mutex);
1555	}
1556
1557	if (force || err == UBI_IO_BITFLIPS) {
1558		/*
1559		 * Okay, bit flip happened, let's figure out what we can do.
1560		 */
1561		spin_lock(&ubi->wl_lock);
1562
1563		/*
1564		 * Recheck. We released wl_lock, UBI might have killed the
1565		 * wl entry under us.
1566		 */
1567		e = ubi->lookuptbl[pnum];
1568		if (!e) {
1569			spin_unlock(&ubi->wl_lock);
1570			err = -ENOENT;
1571			goto out_resume;
1572		}
1573
1574		/*
1575		 * Need to re-check state
1576		 */
1577		if (!scrub_possible(ubi, e)) {
1578			spin_unlock(&ubi->wl_lock);
1579			err = -EBUSY;
1580			goto out_resume;
1581		}
1582
1583		if (in_pq(ubi, e)) {
1584			prot_queue_del(ubi, e->pnum);
1585			wl_tree_add(e, &ubi->scrub);
1586			spin_unlock(&ubi->wl_lock);
1587
1588			err = ensure_wear_leveling(ubi, 1);
1589		} else if (in_wl_tree(e, &ubi->used)) {
1590			rb_erase(&e->u.rb, &ubi->used);
1591			wl_tree_add(e, &ubi->scrub);
1592			spin_unlock(&ubi->wl_lock);
1593
1594			err = ensure_wear_leveling(ubi, 1);
1595		} else if (in_wl_tree(e, &ubi->free)) {
1596			rb_erase(&e->u.rb, &ubi->free);
1597			ubi->free_count--;
1598			spin_unlock(&ubi->wl_lock);
1599
1600			/*
1601			 * This PEB is empty we can schedule it for
1602			 * erasure right away. No wear leveling needed.
1603			 */
1604			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1605					     force ? 0 : 1, true);
1606		} else {
1607			spin_unlock(&ubi->wl_lock);
1608			err = -EAGAIN;
1609		}
1610
1611		if (!err && !force)
1612			err = -EUCLEAN;
1613	} else {
1614		err = 0;
1615	}
1616
1617out_resume:
1618	up_write(&ubi->work_sem);
1619out:
1620
1621	return err;
1622}
1623
1624/**
1625 * tree_destroy - destroy an RB-tree.
1626 * @ubi: UBI device description object
1627 * @root: the root of the tree to destroy
1628 */
1629static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1630{
1631	struct rb_node *rb;
1632	struct ubi_wl_entry *e;
1633
1634	rb = root->rb_node;
1635	while (rb) {
1636		if (rb->rb_left)
1637			rb = rb->rb_left;
1638		else if (rb->rb_right)
1639			rb = rb->rb_right;
1640		else {
1641			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1642
1643			rb = rb_parent(rb);
1644			if (rb) {
1645				if (rb->rb_left == &e->u.rb)
1646					rb->rb_left = NULL;
1647				else
1648					rb->rb_right = NULL;
1649			}
1650
1651			wl_entry_destroy(ubi, e);
1652		}
1653	}
1654}
1655
1656/**
1657 * ubi_thread - UBI background thread.
1658 * @u: the UBI device description object pointer
1659 */
1660int ubi_thread(void *u)
1661{
1662	int failures = 0;
1663	struct ubi_device *ubi = u;
1664
1665	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1666		ubi->bgt_name, task_pid_nr(current));
1667
1668	set_freezable();
1669	for (;;) {
1670		int err;
1671
1672		if (kthread_should_stop())
1673			break;
1674
1675		if (try_to_freeze())
1676			continue;
1677
1678		spin_lock(&ubi->wl_lock);
1679		if (list_empty(&ubi->works) || ubi->ro_mode ||
1680		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1681			set_current_state(TASK_INTERRUPTIBLE);
1682			spin_unlock(&ubi->wl_lock);
1683
1684			/*
1685			 * Check kthread_should_stop() after we set the task
1686			 * state to guarantee that we either see the stop bit
1687			 * and exit or the task state is reset to runnable such
1688			 * that it's not scheduled out indefinitely and detects
1689			 * the stop bit at kthread_should_stop().
1690			 */
1691			if (kthread_should_stop()) {
1692				set_current_state(TASK_RUNNING);
1693				break;
1694			}
1695
1696			schedule();
1697			continue;
1698		}
1699		spin_unlock(&ubi->wl_lock);
1700
1701		err = do_work(ubi, NULL);
1702		if (err) {
1703			ubi_err(ubi, "%s: work failed with error code %d",
1704				ubi->bgt_name, err);
1705			if (failures++ > WL_MAX_FAILURES) {
1706				/*
1707				 * Too many failures, disable the thread and
1708				 * switch to read-only mode.
1709				 */
1710				ubi_msg(ubi, "%s: %d consecutive failures",
1711					ubi->bgt_name, WL_MAX_FAILURES);
1712				ubi_ro_mode(ubi);
1713				ubi->thread_enabled = 0;
1714				continue;
1715			}
1716		} else
1717			failures = 0;
1718
1719		cond_resched();
1720	}
1721
1722	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1723	ubi->thread_enabled = 0;
1724	return 0;
1725}
1726
1727/**
1728 * shutdown_work - shutdown all pending works.
1729 * @ubi: UBI device description object
1730 */
1731static void shutdown_work(struct ubi_device *ubi)
1732{
1733	while (!list_empty(&ubi->works)) {
1734		struct ubi_work *wrk;
1735
1736		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1737		list_del(&wrk->list);
1738		wrk->func(ubi, wrk, 1);
1739		ubi->works_count -= 1;
1740		ubi_assert(ubi->works_count >= 0);
1741	}
1742}
1743
1744/**
1745 * erase_aeb - erase a PEB given in UBI attach info PEB
1746 * @ubi: UBI device description object
1747 * @aeb: UBI attach info PEB
1748 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1749 */
1750static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1751{
1752	struct ubi_wl_entry *e;
1753	int err;
1754
1755	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1756	if (!e)
1757		return -ENOMEM;
1758
1759	e->pnum = aeb->pnum;
1760	e->ec = aeb->ec;
1761	ubi->lookuptbl[e->pnum] = e;
1762
1763	if (sync) {
1764		err = ubi_sync_erase(ubi, e, false);
1765		if (err)
1766			goto out_free;
1767
1768		wl_tree_add(e, &ubi->free);
1769		ubi->free_count++;
1770	} else {
1771		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1772		if (err)
1773			goto out_free;
1774	}
1775
1776	return 0;
1777
1778out_free:
1779	wl_entry_destroy(ubi, e);
1780
1781	return err;
1782}
1783
1784/**
1785 * ubi_wl_init - initialize the WL sub-system using attaching information.
1786 * @ubi: UBI device description object
1787 * @ai: attaching information
1788 *
1789 * This function returns zero in case of success, and a negative error code in
1790 * case of failure.
1791 */
1792int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1793{
1794	int err, i, reserved_pebs, found_pebs = 0;
1795	struct rb_node *rb1, *rb2;
1796	struct ubi_ainf_volume *av;
1797	struct ubi_ainf_peb *aeb, *tmp;
1798	struct ubi_wl_entry *e;
1799
1800	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1801	spin_lock_init(&ubi->wl_lock);
1802	mutex_init(&ubi->move_mutex);
1803	init_rwsem(&ubi->work_sem);
1804	ubi->max_ec = ai->max_ec;
1805	INIT_LIST_HEAD(&ubi->works);
1806
1807	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1808
1809	err = -ENOMEM;
1810	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1811	if (!ubi->lookuptbl)
1812		return err;
1813
1814	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1815		INIT_LIST_HEAD(&ubi->pq[i]);
1816	ubi->pq_head = 0;
1817
1818	ubi->free_count = 0;
1819	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1820		cond_resched();
1821
1822		err = erase_aeb(ubi, aeb, false);
1823		if (err)
1824			goto out_free;
1825
1826		found_pebs++;
1827	}
1828
1829	list_for_each_entry(aeb, &ai->free, u.list) {
1830		cond_resched();
1831
1832		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1833		if (!e) {
1834			err = -ENOMEM;
1835			goto out_free;
1836		}
1837
1838		e->pnum = aeb->pnum;
1839		e->ec = aeb->ec;
1840		ubi_assert(e->ec >= 0);
1841
1842		wl_tree_add(e, &ubi->free);
1843		ubi->free_count++;
1844
1845		ubi->lookuptbl[e->pnum] = e;
1846
1847		found_pebs++;
1848	}
1849
1850	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1851		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1852			cond_resched();
1853
1854			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1855			if (!e) {
1856				err = -ENOMEM;
1857				goto out_free;
1858			}
1859
1860			e->pnum = aeb->pnum;
1861			e->ec = aeb->ec;
1862			ubi->lookuptbl[e->pnum] = e;
1863
1864			if (!aeb->scrub) {
1865				dbg_wl("add PEB %d EC %d to the used tree",
1866				       e->pnum, e->ec);
1867				wl_tree_add(e, &ubi->used);
1868			} else {
1869				dbg_wl("add PEB %d EC %d to the scrub tree",
1870				       e->pnum, e->ec);
1871				wl_tree_add(e, &ubi->scrub);
1872			}
1873
1874			found_pebs++;
1875		}
1876	}
1877
1878	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1879		cond_resched();
1880
1881		e = ubi_find_fm_block(ubi, aeb->pnum);
1882
1883		if (e) {
1884			ubi_assert(!ubi->lookuptbl[e->pnum]);
1885			ubi->lookuptbl[e->pnum] = e;
1886		} else {
1887			bool sync = false;
1888
1889			/*
1890			 * Usually old Fastmap PEBs are scheduled for erasure
1891			 * and we don't have to care about them but if we face
1892			 * an power cut before scheduling them we need to
1893			 * take care of them here.
1894			 */
1895			if (ubi->lookuptbl[aeb->pnum])
1896				continue;
1897
1898			/*
1899			 * The fastmap update code might not find a free PEB for
1900			 * writing the fastmap anchor to and then reuses the
1901			 * current fastmap anchor PEB. When this PEB gets erased
1902			 * and a power cut happens before it is written again we
1903			 * must make sure that the fastmap attach code doesn't
1904			 * find any outdated fastmap anchors, hence we erase the
1905			 * outdated fastmap anchor PEBs synchronously here.
1906			 */
1907			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1908				sync = true;
1909
1910			err = erase_aeb(ubi, aeb, sync);
1911			if (err)
1912				goto out_free;
1913		}
1914
1915		found_pebs++;
1916	}
1917
1918	dbg_wl("found %i PEBs", found_pebs);
1919
1920	ubi_assert(ubi->good_peb_count == found_pebs);
1921
1922	reserved_pebs = WL_RESERVED_PEBS;
1923	ubi_fastmap_init(ubi, &reserved_pebs);
1924
1925	if (ubi->avail_pebs < reserved_pebs) {
1926		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1927			ubi->avail_pebs, reserved_pebs);
1928		if (ubi->corr_peb_count)
1929			ubi_err(ubi, "%d PEBs are corrupted and not used",
1930				ubi->corr_peb_count);
1931		err = -ENOSPC;
1932		goto out_free;
1933	}
1934	ubi->avail_pebs -= reserved_pebs;
1935	ubi->rsvd_pebs += reserved_pebs;
1936
1937	/* Schedule wear-leveling if needed */
1938	err = ensure_wear_leveling(ubi, 0);
1939	if (err)
1940		goto out_free;
1941
1942#ifdef CONFIG_MTD_UBI_FASTMAP
1943	if (!ubi->ro_mode && !ubi->fm_disabled)
1944		ubi_ensure_anchor_pebs(ubi);
1945#endif
1946	return 0;
1947
1948out_free:
1949	shutdown_work(ubi);
1950	tree_destroy(ubi, &ubi->used);
1951	tree_destroy(ubi, &ubi->free);
1952	tree_destroy(ubi, &ubi->scrub);
1953	kfree(ubi->lookuptbl);
1954	return err;
1955}
1956
1957/**
1958 * protection_queue_destroy - destroy the protection queue.
1959 * @ubi: UBI device description object
1960 */
1961static void protection_queue_destroy(struct ubi_device *ubi)
1962{
1963	int i;
1964	struct ubi_wl_entry *e, *tmp;
1965
1966	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1967		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1968			list_del(&e->u.list);
1969			wl_entry_destroy(ubi, e);
1970		}
1971	}
1972}
1973
1974/**
1975 * ubi_wl_close - close the wear-leveling sub-system.
1976 * @ubi: UBI device description object
1977 */
1978void ubi_wl_close(struct ubi_device *ubi)
1979{
1980	dbg_wl("close the WL sub-system");
1981	ubi_fastmap_close(ubi);
1982	shutdown_work(ubi);
1983	protection_queue_destroy(ubi);
1984	tree_destroy(ubi, &ubi->used);
1985	tree_destroy(ubi, &ubi->erroneous);
1986	tree_destroy(ubi, &ubi->free);
1987	tree_destroy(ubi, &ubi->scrub);
1988	kfree(ubi->lookuptbl);
1989}
1990
1991/**
1992 * self_check_ec - make sure that the erase counter of a PEB is correct.
1993 * @ubi: UBI device description object
1994 * @pnum: the physical eraseblock number to check
1995 * @ec: the erase counter to check
1996 *
1997 * This function returns zero if the erase counter of physical eraseblock @pnum
1998 * is equivalent to @ec, and a negative error code if not or if an error
1999 * occurred.
2000 */
2001static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2002{
2003	int err;
2004	long long read_ec;
2005	struct ubi_ec_hdr *ec_hdr;
2006
2007	if (!ubi_dbg_chk_gen(ubi))
2008		return 0;
2009
2010	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2011	if (!ec_hdr)
2012		return -ENOMEM;
2013
2014	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2015	if (err && err != UBI_IO_BITFLIPS) {
2016		/* The header does not have to exist */
2017		err = 0;
2018		goto out_free;
2019	}
2020
2021	read_ec = be64_to_cpu(ec_hdr->ec);
2022	if (ec != read_ec && read_ec - ec > 1) {
2023		ubi_err(ubi, "self-check failed for PEB %d", pnum);
2024		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2025		dump_stack();
2026		err = 1;
2027	} else
2028		err = 0;
2029
2030out_free:
2031	kfree(ec_hdr);
2032	return err;
2033}
2034
2035/**
2036 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2037 * @ubi: UBI device description object
2038 * @e: the wear-leveling entry to check
2039 * @root: the root of the tree
2040 *
2041 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2042 * is not.
2043 */
2044static int self_check_in_wl_tree(const struct ubi_device *ubi,
2045				 struct ubi_wl_entry *e, struct rb_root *root)
2046{
2047	if (!ubi_dbg_chk_gen(ubi))
2048		return 0;
2049
2050	if (in_wl_tree(e, root))
2051		return 0;
2052
2053	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2054		e->pnum, e->ec, root);
2055	dump_stack();
2056	return -EINVAL;
2057}
2058
2059/**
2060 * self_check_in_pq - check if wear-leveling entry is in the protection
2061 *                        queue.
2062 * @ubi: UBI device description object
2063 * @e: the wear-leveling entry to check
2064 *
2065 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2066 */
2067static int self_check_in_pq(const struct ubi_device *ubi,
2068			    struct ubi_wl_entry *e)
2069{
2070	if (!ubi_dbg_chk_gen(ubi))
2071		return 0;
2072
2073	if (in_pq(ubi, e))
2074		return 0;
2075
2076	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2077		e->pnum, e->ec);
2078	dump_stack();
2079	return -EINVAL;
2080}
2081#ifndef CONFIG_MTD_UBI_FASTMAP
2082static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2083{
2084	struct ubi_wl_entry *e;
2085
2086	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
2087	self_check_in_wl_tree(ubi, e, &ubi->free);
2088	ubi->free_count--;
2089	ubi_assert(ubi->free_count >= 0);
2090	rb_erase(&e->u.rb, &ubi->free);
2091
2092	return e;
2093}
2094
2095/**
2096 * produce_free_peb - produce a free physical eraseblock.
2097 * @ubi: UBI device description object
2098 *
2099 * This function tries to make a free PEB by means of synchronous execution of
2100 * pending works. This may be needed if, for example the background thread is
2101 * disabled. Returns zero in case of success and a negative error code in case
2102 * of failure.
2103 */
2104static int produce_free_peb(struct ubi_device *ubi)
2105{
2106	int err;
2107
2108	while (!ubi->free.rb_node && ubi->works_count) {
2109		spin_unlock(&ubi->wl_lock);
2110
2111		dbg_wl("do one work synchronously");
2112		err = do_work(ubi, NULL);
2113
2114		spin_lock(&ubi->wl_lock);
2115		if (err)
2116			return err;
2117	}
2118
2119	return 0;
2120}
2121
2122/**
2123 * ubi_wl_get_peb - get a physical eraseblock.
2124 * @ubi: UBI device description object
2125 *
2126 * This function returns a physical eraseblock in case of success and a
2127 * negative error code in case of failure.
2128 * Returns with ubi->fm_eba_sem held in read mode!
2129 */
2130int ubi_wl_get_peb(struct ubi_device *ubi)
2131{
2132	int err;
2133	struct ubi_wl_entry *e;
2134
2135retry:
2136	down_read(&ubi->fm_eba_sem);
2137	spin_lock(&ubi->wl_lock);
2138	if (!ubi->free.rb_node) {
2139		if (ubi->works_count == 0) {
2140			ubi_err(ubi, "no free eraseblocks");
2141			ubi_assert(list_empty(&ubi->works));
2142			spin_unlock(&ubi->wl_lock);
2143			return -ENOSPC;
2144		}
2145
2146		err = produce_free_peb(ubi);
2147		if (err < 0) {
2148			spin_unlock(&ubi->wl_lock);
2149			return err;
2150		}
2151		spin_unlock(&ubi->wl_lock);
2152		up_read(&ubi->fm_eba_sem);
2153		goto retry;
2154
2155	}
2156	e = wl_get_wle(ubi);
2157	prot_queue_add(ubi, e);
2158	spin_unlock(&ubi->wl_lock);
2159
2160	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2161				    ubi->peb_size - ubi->vid_hdr_aloffset);
2162	if (err) {
2163		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2164		return err;
2165	}
2166
2167	return e->pnum;
2168}
2169#else
2170#include "fastmap-wl.c"
2171#endif
2172