1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Author: Artem Bityutskiy (���������������� ����������)
6 */
7
8/*
9 * The UBI Eraseblock Association (EBA) sub-system.
10 *
11 * This sub-system is responsible for I/O to/from logical eraseblock.
12 *
13 * Although in this implementation the EBA table is fully kept and managed in
14 * RAM, which assumes poor scalability, it might be (partially) maintained on
15 * flash in future implementations.
16 *
17 * The EBA sub-system implements per-logical eraseblock locking. Before
18 * accessing a logical eraseblock it is locked for reading or writing. The
19 * per-logical eraseblock locking is implemented by means of the lock tree. The
20 * lock tree is an RB-tree which refers all the currently locked logical
21 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
22 * They are indexed by (@vol_id, @lnum) pairs.
23 *
24 * EBA also maintains the global sequence counter which is incremented each
25 * time a logical eraseblock is mapped to a physical eraseblock and it is
26 * stored in the volume identifier header. This means that each VID header has
27 * a unique sequence number. The sequence number is only increased an we assume
28 * 64 bits is enough to never overflow.
29 */
30
31#include <linux/slab.h>
32#include <linux/crc32.h>
33#include <linux/err.h>
34#include "ubi.h"
35
36/**
37 * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
38 * @pnum: the physical eraseblock number attached to the LEB
39 *
40 * This structure is encoding a LEB -> PEB association. Note that the LEB
41 * number is not stored here, because it is the index used to access the
42 * entries table.
43 */
44struct ubi_eba_entry {
45	int pnum;
46};
47
48/**
49 * struct ubi_eba_table - LEB -> PEB association information
50 * @entries: the LEB to PEB mapping (one entry per LEB).
51 *
52 * This structure is private to the EBA logic and should be kept here.
53 * It is encoding the LEB to PEB association table, and is subject to
54 * changes.
55 */
56struct ubi_eba_table {
57	struct ubi_eba_entry *entries;
58};
59
60/**
61 * ubi_next_sqnum - get next sequence number.
62 * @ubi: UBI device description object
63 *
64 * This function returns next sequence number to use, which is just the current
65 * global sequence counter value. It also increases the global sequence
66 * counter.
67 */
68unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
69{
70	unsigned long long sqnum;
71
72	spin_lock(&ubi->ltree_lock);
73	sqnum = ubi->global_sqnum++;
74	spin_unlock(&ubi->ltree_lock);
75
76	return sqnum;
77}
78
79/**
80 * ubi_get_compat - get compatibility flags of a volume.
81 * @ubi: UBI device description object
82 * @vol_id: volume ID
83 *
84 * This function returns compatibility flags for an internal volume. User
85 * volumes have no compatibility flags, so %0 is returned.
86 */
87static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
88{
89	if (vol_id == UBI_LAYOUT_VOLUME_ID)
90		return UBI_LAYOUT_VOLUME_COMPAT;
91	return 0;
92}
93
94/**
95 * ubi_eba_get_ldesc - get information about a LEB
96 * @vol: volume description object
97 * @lnum: logical eraseblock number
98 * @ldesc: the LEB descriptor to fill
99 *
100 * Used to query information about a specific LEB.
101 * It is currently only returning the physical position of the LEB, but will be
102 * extended to provide more information.
103 */
104void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
105		       struct ubi_eba_leb_desc *ldesc)
106{
107	ldesc->lnum = lnum;
108	ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
109}
110
111/**
112 * ubi_eba_create_table - allocate a new EBA table and initialize it with all
113 *			  LEBs unmapped
114 * @vol: volume containing the EBA table to copy
115 * @nentries: number of entries in the table
116 *
117 * Allocate a new EBA table and initialize it with all LEBs unmapped.
118 * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
119 */
120struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
121					   int nentries)
122{
123	struct ubi_eba_table *tbl;
124	int err = -ENOMEM;
125	int i;
126
127	tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
128	if (!tbl)
129		return ERR_PTR(-ENOMEM);
130
131	tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
132				     GFP_KERNEL);
133	if (!tbl->entries)
134		goto err;
135
136	for (i = 0; i < nentries; i++)
137		tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
138
139	return tbl;
140
141err:
142	kfree(tbl);
143
144	return ERR_PTR(err);
145}
146
147/**
148 * ubi_eba_destroy_table - destroy an EBA table
149 * @tbl: the table to destroy
150 *
151 * Destroy an EBA table.
152 */
153void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
154{
155	if (!tbl)
156		return;
157
158	kfree(tbl->entries);
159	kfree(tbl);
160}
161
162/**
163 * ubi_eba_copy_table - copy the EBA table attached to vol into another table
164 * @vol: volume containing the EBA table to copy
165 * @dst: destination
166 * @nentries: number of entries to copy
167 *
168 * Copy the EBA table stored in vol into the one pointed by dst.
169 */
170void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
171			int nentries)
172{
173	struct ubi_eba_table *src;
174	int i;
175
176	ubi_assert(dst && vol && vol->eba_tbl);
177
178	src = vol->eba_tbl;
179
180	for (i = 0; i < nentries; i++)
181		dst->entries[i].pnum = src->entries[i].pnum;
182}
183
184/**
185 * ubi_eba_replace_table - assign a new EBA table to a volume
186 * @vol: volume containing the EBA table to copy
187 * @tbl: new EBA table
188 *
189 * Assign a new EBA table to the volume and release the old one.
190 */
191void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
192{
193	ubi_eba_destroy_table(vol->eba_tbl);
194	vol->eba_tbl = tbl;
195}
196
197/**
198 * ltree_lookup - look up the lock tree.
199 * @ubi: UBI device description object
200 * @vol_id: volume ID
201 * @lnum: logical eraseblock number
202 *
203 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
204 * object if the logical eraseblock is locked and %NULL if it is not.
205 * @ubi->ltree_lock has to be locked.
206 */
207static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
208					    int lnum)
209{
210	struct rb_node *p;
211
212	p = ubi->ltree.rb_node;
213	while (p) {
214		struct ubi_ltree_entry *le;
215
216		le = rb_entry(p, struct ubi_ltree_entry, rb);
217
218		if (vol_id < le->vol_id)
219			p = p->rb_left;
220		else if (vol_id > le->vol_id)
221			p = p->rb_right;
222		else {
223			if (lnum < le->lnum)
224				p = p->rb_left;
225			else if (lnum > le->lnum)
226				p = p->rb_right;
227			else
228				return le;
229		}
230	}
231
232	return NULL;
233}
234
235/**
236 * ltree_add_entry - add new entry to the lock tree.
237 * @ubi: UBI device description object
238 * @vol_id: volume ID
239 * @lnum: logical eraseblock number
240 *
241 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
242 * lock tree. If such entry is already there, its usage counter is increased.
243 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
244 * failed.
245 */
246static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
247					       int vol_id, int lnum)
248{
249	struct ubi_ltree_entry *le, *le1, *le_free;
250
251	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
252	if (!le)
253		return ERR_PTR(-ENOMEM);
254
255	le->users = 0;
256	init_rwsem(&le->mutex);
257	le->vol_id = vol_id;
258	le->lnum = lnum;
259
260	spin_lock(&ubi->ltree_lock);
261	le1 = ltree_lookup(ubi, vol_id, lnum);
262
263	if (le1) {
264		/*
265		 * This logical eraseblock is already locked. The newly
266		 * allocated lock entry is not needed.
267		 */
268		le_free = le;
269		le = le1;
270	} else {
271		struct rb_node **p, *parent = NULL;
272
273		/*
274		 * No lock entry, add the newly allocated one to the
275		 * @ubi->ltree RB-tree.
276		 */
277		le_free = NULL;
278
279		p = &ubi->ltree.rb_node;
280		while (*p) {
281			parent = *p;
282			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
283
284			if (vol_id < le1->vol_id)
285				p = &(*p)->rb_left;
286			else if (vol_id > le1->vol_id)
287				p = &(*p)->rb_right;
288			else {
289				ubi_assert(lnum != le1->lnum);
290				if (lnum < le1->lnum)
291					p = &(*p)->rb_left;
292				else
293					p = &(*p)->rb_right;
294			}
295		}
296
297		rb_link_node(&le->rb, parent, p);
298		rb_insert_color(&le->rb, &ubi->ltree);
299	}
300	le->users += 1;
301	spin_unlock(&ubi->ltree_lock);
302
303	kfree(le_free);
304	return le;
305}
306
307/**
308 * leb_read_lock - lock logical eraseblock for reading.
309 * @ubi: UBI device description object
310 * @vol_id: volume ID
311 * @lnum: logical eraseblock number
312 *
313 * This function locks a logical eraseblock for reading. Returns zero in case
314 * of success and a negative error code in case of failure.
315 */
316static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
317{
318	struct ubi_ltree_entry *le;
319
320	le = ltree_add_entry(ubi, vol_id, lnum);
321	if (IS_ERR(le))
322		return PTR_ERR(le);
323	down_read(&le->mutex);
324	return 0;
325}
326
327/**
328 * leb_read_unlock - unlock logical eraseblock.
329 * @ubi: UBI device description object
330 * @vol_id: volume ID
331 * @lnum: logical eraseblock number
332 */
333static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
334{
335	struct ubi_ltree_entry *le;
336
337	spin_lock(&ubi->ltree_lock);
338	le = ltree_lookup(ubi, vol_id, lnum);
339	le->users -= 1;
340	ubi_assert(le->users >= 0);
341	up_read(&le->mutex);
342	if (le->users == 0) {
343		rb_erase(&le->rb, &ubi->ltree);
344		kfree(le);
345	}
346	spin_unlock(&ubi->ltree_lock);
347}
348
349/**
350 * leb_write_lock - lock logical eraseblock for writing.
351 * @ubi: UBI device description object
352 * @vol_id: volume ID
353 * @lnum: logical eraseblock number
354 *
355 * This function locks a logical eraseblock for writing. Returns zero in case
356 * of success and a negative error code in case of failure.
357 */
358static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
359{
360	struct ubi_ltree_entry *le;
361
362	le = ltree_add_entry(ubi, vol_id, lnum);
363	if (IS_ERR(le))
364		return PTR_ERR(le);
365	down_write(&le->mutex);
366	return 0;
367}
368
369/**
370 * leb_write_trylock - try to lock logical eraseblock for writing.
371 * @ubi: UBI device description object
372 * @vol_id: volume ID
373 * @lnum: logical eraseblock number
374 *
375 * This function locks a logical eraseblock for writing if there is no
376 * contention and does nothing if there is contention. Returns %0 in case of
377 * success, %1 in case of contention, and a negative error code in case of
378 * failure.
379 */
380static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
381{
382	struct ubi_ltree_entry *le;
383
384	le = ltree_add_entry(ubi, vol_id, lnum);
385	if (IS_ERR(le))
386		return PTR_ERR(le);
387	if (down_write_trylock(&le->mutex))
388		return 0;
389
390	/* Contention, cancel */
391	spin_lock(&ubi->ltree_lock);
392	le->users -= 1;
393	ubi_assert(le->users >= 0);
394	if (le->users == 0) {
395		rb_erase(&le->rb, &ubi->ltree);
396		kfree(le);
397	}
398	spin_unlock(&ubi->ltree_lock);
399
400	return 1;
401}
402
403/**
404 * leb_write_unlock - unlock logical eraseblock.
405 * @ubi: UBI device description object
406 * @vol_id: volume ID
407 * @lnum: logical eraseblock number
408 */
409static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
410{
411	struct ubi_ltree_entry *le;
412
413	spin_lock(&ubi->ltree_lock);
414	le = ltree_lookup(ubi, vol_id, lnum);
415	le->users -= 1;
416	ubi_assert(le->users >= 0);
417	up_write(&le->mutex);
418	if (le->users == 0) {
419		rb_erase(&le->rb, &ubi->ltree);
420		kfree(le);
421	}
422	spin_unlock(&ubi->ltree_lock);
423}
424
425/**
426 * ubi_eba_is_mapped - check if a LEB is mapped.
427 * @vol: volume description object
428 * @lnum: logical eraseblock number
429 *
430 * This function returns true if the LEB is mapped, false otherwise.
431 */
432bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
433{
434	return vol->eba_tbl->entries[lnum].pnum >= 0;
435}
436
437/**
438 * ubi_eba_unmap_leb - un-map logical eraseblock.
439 * @ubi: UBI device description object
440 * @vol: volume description object
441 * @lnum: logical eraseblock number
442 *
443 * This function un-maps logical eraseblock @lnum and schedules corresponding
444 * physical eraseblock for erasure. Returns zero in case of success and a
445 * negative error code in case of failure.
446 */
447int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
448		      int lnum)
449{
450	int err, pnum, vol_id = vol->vol_id;
451
452	if (ubi->ro_mode)
453		return -EROFS;
454
455	err = leb_write_lock(ubi, vol_id, lnum);
456	if (err)
457		return err;
458
459	pnum = vol->eba_tbl->entries[lnum].pnum;
460	if (pnum < 0)
461		/* This logical eraseblock is already unmapped */
462		goto out_unlock;
463
464	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
465
466	down_read(&ubi->fm_eba_sem);
467	vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
468	up_read(&ubi->fm_eba_sem);
469	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
470
471out_unlock:
472	leb_write_unlock(ubi, vol_id, lnum);
473	return err;
474}
475
476#ifdef CONFIG_MTD_UBI_FASTMAP
477/**
478 * check_mapping - check and fixup a mapping
479 * @ubi: UBI device description object
480 * @vol: volume description object
481 * @lnum: logical eraseblock number
482 * @pnum: physical eraseblock number
483 *
484 * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
485 * operations, if such an operation is interrupted the mapping still looks
486 * good, but upon first read an ECC is reported to the upper layer.
487 * Normaly during the full-scan at attach time this is fixed, for Fastmap
488 * we have to deal with it while reading.
489 * If the PEB behind a LEB shows this symthom we change the mapping to
490 * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
491 *
492 * Returns 0 on success, negative error code in case of failure.
493 */
494static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
495			 int *pnum)
496{
497	int err;
498	struct ubi_vid_io_buf *vidb;
499	struct ubi_vid_hdr *vid_hdr;
500
501	if (!ubi->fast_attach)
502		return 0;
503
504	if (!vol->checkmap || test_bit(lnum, vol->checkmap))
505		return 0;
506
507	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
508	if (!vidb)
509		return -ENOMEM;
510
511	err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
512	if (err > 0 && err != UBI_IO_BITFLIPS) {
513		int torture = 0;
514
515		switch (err) {
516			case UBI_IO_FF:
517			case UBI_IO_FF_BITFLIPS:
518			case UBI_IO_BAD_HDR:
519			case UBI_IO_BAD_HDR_EBADMSG:
520				break;
521			default:
522				ubi_assert(0);
523		}
524
525		if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
526			torture = 1;
527
528		down_read(&ubi->fm_eba_sem);
529		vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
530		up_read(&ubi->fm_eba_sem);
531		ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
532
533		*pnum = UBI_LEB_UNMAPPED;
534	} else if (err < 0) {
535		ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
536			*pnum, err);
537
538		goto out_free;
539	} else {
540		int found_vol_id, found_lnum;
541
542		ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
543
544		vid_hdr = ubi_get_vid_hdr(vidb);
545		found_vol_id = be32_to_cpu(vid_hdr->vol_id);
546		found_lnum = be32_to_cpu(vid_hdr->lnum);
547
548		if (found_lnum != lnum || found_vol_id != vol->vol_id) {
549			ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
550				*pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
551			ubi_ro_mode(ubi);
552			err = -EINVAL;
553			goto out_free;
554		}
555	}
556
557	set_bit(lnum, vol->checkmap);
558	err = 0;
559
560out_free:
561	ubi_free_vid_buf(vidb);
562
563	return err;
564}
565#else
566static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
567		  int *pnum)
568{
569	return 0;
570}
571#endif
572
573/**
574 * ubi_eba_read_leb - read data.
575 * @ubi: UBI device description object
576 * @vol: volume description object
577 * @lnum: logical eraseblock number
578 * @buf: buffer to store the read data
579 * @offset: offset from where to read
580 * @len: how many bytes to read
581 * @check: data CRC check flag
582 *
583 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
584 * bytes. The @check flag only makes sense for static volumes and forces
585 * eraseblock data CRC checking.
586 *
587 * In case of success this function returns zero. In case of a static volume,
588 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
589 * returned for any volume type if an ECC error was detected by the MTD device
590 * driver. Other negative error cored may be returned in case of other errors.
591 */
592int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
593		     void *buf, int offset, int len, int check)
594{
595	int err, pnum, scrub = 0, vol_id = vol->vol_id;
596	struct ubi_vid_io_buf *vidb;
597	struct ubi_vid_hdr *vid_hdr;
598	uint32_t crc;
599
600	err = leb_read_lock(ubi, vol_id, lnum);
601	if (err)
602		return err;
603
604	pnum = vol->eba_tbl->entries[lnum].pnum;
605	if (pnum >= 0) {
606		err = check_mapping(ubi, vol, lnum, &pnum);
607		if (err < 0)
608			goto out_unlock;
609	}
610
611	if (pnum == UBI_LEB_UNMAPPED) {
612		/*
613		 * The logical eraseblock is not mapped, fill the whole buffer
614		 * with 0xFF bytes. The exception is static volumes for which
615		 * it is an error to read unmapped logical eraseblocks.
616		 */
617		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
618			len, offset, vol_id, lnum);
619		leb_read_unlock(ubi, vol_id, lnum);
620		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
621		memset(buf, 0xFF, len);
622		return 0;
623	}
624
625	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
626		len, offset, vol_id, lnum, pnum);
627
628	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
629		check = 0;
630
631retry:
632	if (check) {
633		vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
634		if (!vidb) {
635			err = -ENOMEM;
636			goto out_unlock;
637		}
638
639		vid_hdr = ubi_get_vid_hdr(vidb);
640
641		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
642		if (err && err != UBI_IO_BITFLIPS) {
643			if (err > 0) {
644				/*
645				 * The header is either absent or corrupted.
646				 * The former case means there is a bug -
647				 * switch to read-only mode just in case.
648				 * The latter case means a real corruption - we
649				 * may try to recover data. FIXME: but this is
650				 * not implemented.
651				 */
652				if (err == UBI_IO_BAD_HDR_EBADMSG ||
653				    err == UBI_IO_BAD_HDR) {
654					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
655						 pnum, vol_id, lnum);
656					err = -EBADMSG;
657				} else {
658					/*
659					 * Ending up here in the non-Fastmap case
660					 * is a clear bug as the VID header had to
661					 * be present at scan time to have it referenced.
662					 * With fastmap the story is more complicated.
663					 * Fastmap has the mapping info without the need
664					 * of a full scan. So the LEB could have been
665					 * unmapped, Fastmap cannot know this and keeps
666					 * the LEB referenced.
667					 * This is valid and works as the layer above UBI
668					 * has to do bookkeeping about used/referenced
669					 * LEBs in any case.
670					 */
671					if (ubi->fast_attach) {
672						err = -EBADMSG;
673					} else {
674						err = -EINVAL;
675						ubi_ro_mode(ubi);
676					}
677				}
678			}
679			goto out_free;
680		} else if (err == UBI_IO_BITFLIPS)
681			scrub = 1;
682
683		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
684		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
685
686		crc = be32_to_cpu(vid_hdr->data_crc);
687		ubi_free_vid_buf(vidb);
688	}
689
690	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
691	if (err) {
692		if (err == UBI_IO_BITFLIPS)
693			scrub = 1;
694		else if (mtd_is_eccerr(err)) {
695			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
696				goto out_unlock;
697			scrub = 1;
698			if (!check) {
699				ubi_msg(ubi, "force data checking");
700				check = 1;
701				goto retry;
702			}
703		} else
704			goto out_unlock;
705	}
706
707	if (check) {
708		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
709		if (crc1 != crc) {
710			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
711				 crc1, crc);
712			err = -EBADMSG;
713			goto out_unlock;
714		}
715	}
716
717	if (scrub)
718		err = ubi_wl_scrub_peb(ubi, pnum);
719
720	leb_read_unlock(ubi, vol_id, lnum);
721	return err;
722
723out_free:
724	ubi_free_vid_buf(vidb);
725out_unlock:
726	leb_read_unlock(ubi, vol_id, lnum);
727	return err;
728}
729
730/**
731 * ubi_eba_read_leb_sg - read data into a scatter gather list.
732 * @ubi: UBI device description object
733 * @vol: volume description object
734 * @lnum: logical eraseblock number
735 * @sgl: UBI scatter gather list to store the read data
736 * @offset: offset from where to read
737 * @len: how many bytes to read
738 * @check: data CRC check flag
739 *
740 * This function works exactly like ubi_eba_read_leb(). But instead of
741 * storing the read data into a buffer it writes to an UBI scatter gather
742 * list.
743 */
744int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
745			struct ubi_sgl *sgl, int lnum, int offset, int len,
746			int check)
747{
748	int to_read;
749	int ret;
750	struct scatterlist *sg;
751
752	for (;;) {
753		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
754		sg = &sgl->sg[sgl->list_pos];
755		if (len < sg->length - sgl->page_pos)
756			to_read = len;
757		else
758			to_read = sg->length - sgl->page_pos;
759
760		ret = ubi_eba_read_leb(ubi, vol, lnum,
761				       sg_virt(sg) + sgl->page_pos, offset,
762				       to_read, check);
763		if (ret < 0)
764			return ret;
765
766		offset += to_read;
767		len -= to_read;
768		if (!len) {
769			sgl->page_pos += to_read;
770			if (sgl->page_pos == sg->length) {
771				sgl->list_pos++;
772				sgl->page_pos = 0;
773			}
774
775			break;
776		}
777
778		sgl->list_pos++;
779		sgl->page_pos = 0;
780	}
781
782	return ret;
783}
784
785/**
786 * try_recover_peb - try to recover from write failure.
787 * @vol: volume description object
788 * @pnum: the physical eraseblock to recover
789 * @lnum: logical eraseblock number
790 * @buf: data which was not written because of the write failure
791 * @offset: offset of the failed write
792 * @len: how many bytes should have been written
793 * @vidb: VID buffer
794 * @retry: whether the caller should retry in case of failure
795 *
796 * This function is called in case of a write failure and moves all good data
797 * from the potentially bad physical eraseblock to a good physical eraseblock.
798 * This function also writes the data which was not written due to the failure.
799 * Returns 0 in case of success, and a negative error code in case of failure.
800 * In case of failure, the %retry parameter is set to false if this is a fatal
801 * error (retrying won't help), and true otherwise.
802 */
803static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
804			   const void *buf, int offset, int len,
805			   struct ubi_vid_io_buf *vidb, bool *retry)
806{
807	struct ubi_device *ubi = vol->ubi;
808	struct ubi_vid_hdr *vid_hdr;
809	int new_pnum, err, vol_id = vol->vol_id, data_size;
810	uint32_t crc;
811
812	*retry = false;
813
814	new_pnum = ubi_wl_get_peb(ubi);
815	if (new_pnum < 0) {
816		err = new_pnum;
817		goto out_put;
818	}
819
820	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
821		pnum, new_pnum);
822
823	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
824	if (err && err != UBI_IO_BITFLIPS) {
825		if (err > 0)
826			err = -EIO;
827		goto out_put;
828	}
829
830	vid_hdr = ubi_get_vid_hdr(vidb);
831	ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
832
833	mutex_lock(&ubi->buf_mutex);
834	memset(ubi->peb_buf + offset, 0xFF, len);
835
836	/* Read everything before the area where the write failure happened */
837	if (offset > 0) {
838		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
839		if (err && err != UBI_IO_BITFLIPS)
840			goto out_unlock;
841	}
842
843	*retry = true;
844
845	memcpy(ubi->peb_buf + offset, buf, len);
846
847	data_size = offset + len;
848	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
849	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
850	vid_hdr->copy_flag = 1;
851	vid_hdr->data_size = cpu_to_be32(data_size);
852	vid_hdr->data_crc = cpu_to_be32(crc);
853	err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
854	if (err)
855		goto out_unlock;
856
857	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
858
859out_unlock:
860	mutex_unlock(&ubi->buf_mutex);
861
862	if (!err)
863		vol->eba_tbl->entries[lnum].pnum = new_pnum;
864
865out_put:
866	up_read(&ubi->fm_eba_sem);
867
868	if (!err) {
869		ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
870		ubi_msg(ubi, "data was successfully recovered");
871	} else if (new_pnum >= 0) {
872		/*
873		 * Bad luck? This physical eraseblock is bad too? Crud. Let's
874		 * try to get another one.
875		 */
876		ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
877		ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
878	}
879
880	return err;
881}
882
883/**
884 * recover_peb - recover from write failure.
885 * @ubi: UBI device description object
886 * @pnum: the physical eraseblock to recover
887 * @vol_id: volume ID
888 * @lnum: logical eraseblock number
889 * @buf: data which was not written because of the write failure
890 * @offset: offset of the failed write
891 * @len: how many bytes should have been written
892 *
893 * This function is called in case of a write failure and moves all good data
894 * from the potentially bad physical eraseblock to a good physical eraseblock.
895 * This function also writes the data which was not written due to the failure.
896 * Returns 0 in case of success, and a negative error code in case of failure.
897 * This function tries %UBI_IO_RETRIES before giving up.
898 */
899static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
900		       const void *buf, int offset, int len)
901{
902	int err, idx = vol_id2idx(ubi, vol_id), tries;
903	struct ubi_volume *vol = ubi->volumes[idx];
904	struct ubi_vid_io_buf *vidb;
905
906	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
907	if (!vidb)
908		return -ENOMEM;
909
910	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
911		bool retry;
912
913		err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
914				      &retry);
915		if (!err || !retry)
916			break;
917
918		ubi_msg(ubi, "try again");
919	}
920
921	ubi_free_vid_buf(vidb);
922
923	return err;
924}
925
926/**
927 * try_write_vid_and_data - try to write VID header and data to a new PEB.
928 * @vol: volume description object
929 * @lnum: logical eraseblock number
930 * @vidb: the VID buffer to write
931 * @buf: buffer containing the data
932 * @offset: where to start writing data
933 * @len: how many bytes should be written
934 *
935 * This function tries to write VID header and data belonging to logical
936 * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
937 * in case of success and a negative error code in case of failure.
938 * In case of error, it is possible that something was still written to the
939 * flash media, but may be some garbage.
940 */
941static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
942				  struct ubi_vid_io_buf *vidb, const void *buf,
943				  int offset, int len)
944{
945	struct ubi_device *ubi = vol->ubi;
946	int pnum, opnum, err, err2, vol_id = vol->vol_id;
947
948	pnum = ubi_wl_get_peb(ubi);
949	if (pnum < 0) {
950		err = pnum;
951		goto out_put;
952	}
953
954	opnum = vol->eba_tbl->entries[lnum].pnum;
955
956	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
957		len, offset, vol_id, lnum, pnum);
958
959	err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
960	if (err) {
961		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
962			 vol_id, lnum, pnum);
963		goto out_put;
964	}
965
966	if (len) {
967		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
968		if (err) {
969			ubi_warn(ubi,
970				 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
971				 len, offset, vol_id, lnum, pnum);
972			goto out_put;
973		}
974	}
975
976	vol->eba_tbl->entries[lnum].pnum = pnum;
977
978out_put:
979	up_read(&ubi->fm_eba_sem);
980
981	if (err && pnum >= 0) {
982		err2 = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
983		if (err2) {
984			ubi_warn(ubi, "failed to return physical eraseblock %d, error %d",
985				 pnum, err2);
986		}
987	} else if (!err && opnum >= 0) {
988		err2 = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
989		if (err2) {
990			ubi_warn(ubi, "failed to return physical eraseblock %d, error %d",
991				 opnum, err2);
992		}
993	}
994
995	return err;
996}
997
998/**
999 * ubi_eba_write_leb - write data to dynamic volume.
1000 * @ubi: UBI device description object
1001 * @vol: volume description object
1002 * @lnum: logical eraseblock number
1003 * @buf: the data to write
1004 * @offset: offset within the logical eraseblock where to write
1005 * @len: how many bytes to write
1006 *
1007 * This function writes data to logical eraseblock @lnum of a dynamic volume
1008 * @vol. Returns zero in case of success and a negative error code in case
1009 * of failure. In case of error, it is possible that something was still
1010 * written to the flash media, but may be some garbage.
1011 * This function retries %UBI_IO_RETRIES times before giving up.
1012 */
1013int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
1014		      const void *buf, int offset, int len)
1015{
1016	int err, pnum, tries, vol_id = vol->vol_id;
1017	struct ubi_vid_io_buf *vidb;
1018	struct ubi_vid_hdr *vid_hdr;
1019
1020	if (ubi->ro_mode)
1021		return -EROFS;
1022
1023	err = leb_write_lock(ubi, vol_id, lnum);
1024	if (err)
1025		return err;
1026
1027	pnum = vol->eba_tbl->entries[lnum].pnum;
1028	if (pnum >= 0) {
1029		err = check_mapping(ubi, vol, lnum, &pnum);
1030		if (err < 0)
1031			goto out;
1032	}
1033
1034	if (pnum >= 0) {
1035		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1036			len, offset, vol_id, lnum, pnum);
1037
1038		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
1039		if (err) {
1040			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
1041			if (err == -EIO && ubi->bad_allowed)
1042				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
1043						  offset, len);
1044		}
1045
1046		goto out;
1047	}
1048
1049	/*
1050	 * The logical eraseblock is not mapped. We have to get a free physical
1051	 * eraseblock and write the volume identifier header there first.
1052	 */
1053	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1054	if (!vidb) {
1055		leb_write_unlock(ubi, vol_id, lnum);
1056		return -ENOMEM;
1057	}
1058
1059	vid_hdr = ubi_get_vid_hdr(vidb);
1060
1061	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1062	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1063	vid_hdr->vol_id = cpu_to_be32(vol_id);
1064	vid_hdr->lnum = cpu_to_be32(lnum);
1065	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1066	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1067
1068	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1069		err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
1070		if (err != -EIO || !ubi->bad_allowed)
1071			break;
1072
1073		/*
1074		 * Fortunately, this is the first write operation to this
1075		 * physical eraseblock, so just put it and request a new one.
1076		 * We assume that if this physical eraseblock went bad, the
1077		 * erase code will handle that.
1078		 */
1079		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1080		ubi_msg(ubi, "try another PEB");
1081	}
1082
1083	ubi_free_vid_buf(vidb);
1084
1085out:
1086	if (err)
1087		ubi_ro_mode(ubi);
1088
1089	leb_write_unlock(ubi, vol_id, lnum);
1090
1091	return err;
1092}
1093
1094/**
1095 * ubi_eba_write_leb_st - write data to static volume.
1096 * @ubi: UBI device description object
1097 * @vol: volume description object
1098 * @lnum: logical eraseblock number
1099 * @buf: data to write
1100 * @len: how many bytes to write
1101 * @used_ebs: how many logical eraseblocks will this volume contain
1102 *
1103 * This function writes data to logical eraseblock @lnum of static volume
1104 * @vol. The @used_ebs argument should contain total number of logical
1105 * eraseblock in this static volume.
1106 *
1107 * When writing to the last logical eraseblock, the @len argument doesn't have
1108 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1109 * to the real data size, although the @buf buffer has to contain the
1110 * alignment. In all other cases, @len has to be aligned.
1111 *
1112 * It is prohibited to write more than once to logical eraseblocks of static
1113 * volumes. This function returns zero in case of success and a negative error
1114 * code in case of failure.
1115 */
1116int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1117			 int lnum, const void *buf, int len, int used_ebs)
1118{
1119	int err, tries, data_size = len, vol_id = vol->vol_id;
1120	struct ubi_vid_io_buf *vidb;
1121	struct ubi_vid_hdr *vid_hdr;
1122	uint32_t crc;
1123
1124	if (ubi->ro_mode)
1125		return -EROFS;
1126
1127	if (lnum == used_ebs - 1)
1128		/* If this is the last LEB @len may be unaligned */
1129		len = ALIGN(data_size, ubi->min_io_size);
1130	else
1131		ubi_assert(!(len & (ubi->min_io_size - 1)));
1132
1133	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1134	if (!vidb)
1135		return -ENOMEM;
1136
1137	vid_hdr = ubi_get_vid_hdr(vidb);
1138
1139	err = leb_write_lock(ubi, vol_id, lnum);
1140	if (err)
1141		goto out;
1142
1143	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1144	vid_hdr->vol_id = cpu_to_be32(vol_id);
1145	vid_hdr->lnum = cpu_to_be32(lnum);
1146	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1147	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1148
1149	crc = crc32(UBI_CRC32_INIT, buf, data_size);
1150	vid_hdr->vol_type = UBI_VID_STATIC;
1151	vid_hdr->data_size = cpu_to_be32(data_size);
1152	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1153	vid_hdr->data_crc = cpu_to_be32(crc);
1154
1155	ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1156
1157	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1158		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1159		if (err != -EIO || !ubi->bad_allowed)
1160			break;
1161
1162		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1163		ubi_msg(ubi, "try another PEB");
1164	}
1165
1166	if (err)
1167		ubi_ro_mode(ubi);
1168
1169	leb_write_unlock(ubi, vol_id, lnum);
1170
1171out:
1172	ubi_free_vid_buf(vidb);
1173
1174	return err;
1175}
1176
1177/*
1178 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1179 * @ubi: UBI device description object
1180 * @vol: volume description object
1181 * @lnum: logical eraseblock number
1182 * @buf: data to write
1183 * @len: how many bytes to write
1184 *
1185 * This function changes the contents of a logical eraseblock atomically. @buf
1186 * has to contain new logical eraseblock data, and @len - the length of the
1187 * data, which has to be aligned. This function guarantees that in case of an
1188 * unclean reboot the old contents is preserved. Returns zero in case of
1189 * success and a negative error code in case of failure.
1190 *
1191 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1192 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1193 */
1194int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1195			      int lnum, const void *buf, int len)
1196{
1197	int err, tries, vol_id = vol->vol_id;
1198	struct ubi_vid_io_buf *vidb;
1199	struct ubi_vid_hdr *vid_hdr;
1200	uint32_t crc;
1201
1202	if (ubi->ro_mode)
1203		return -EROFS;
1204
1205	if (len == 0) {
1206		/*
1207		 * Special case when data length is zero. In this case the LEB
1208		 * has to be unmapped and mapped somewhere else.
1209		 */
1210		err = ubi_eba_unmap_leb(ubi, vol, lnum);
1211		if (err)
1212			return err;
1213		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1214	}
1215
1216	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1217	if (!vidb)
1218		return -ENOMEM;
1219
1220	vid_hdr = ubi_get_vid_hdr(vidb);
1221
1222	mutex_lock(&ubi->alc_mutex);
1223	err = leb_write_lock(ubi, vol_id, lnum);
1224	if (err)
1225		goto out_mutex;
1226
1227	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1228	vid_hdr->vol_id = cpu_to_be32(vol_id);
1229	vid_hdr->lnum = cpu_to_be32(lnum);
1230	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1231	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1232
1233	crc = crc32(UBI_CRC32_INIT, buf, len);
1234	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1235	vid_hdr->data_size = cpu_to_be32(len);
1236	vid_hdr->copy_flag = 1;
1237	vid_hdr->data_crc = cpu_to_be32(crc);
1238
1239	dbg_eba("change LEB %d:%d", vol_id, lnum);
1240
1241	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1242		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1243		if (err != -EIO || !ubi->bad_allowed)
1244			break;
1245
1246		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1247		ubi_msg(ubi, "try another PEB");
1248	}
1249
1250	/*
1251	 * This flash device does not admit of bad eraseblocks or
1252	 * something nasty and unexpected happened. Switch to read-only
1253	 * mode just in case.
1254	 */
1255	if (err)
1256		ubi_ro_mode(ubi);
1257
1258	leb_write_unlock(ubi, vol_id, lnum);
1259
1260out_mutex:
1261	mutex_unlock(&ubi->alc_mutex);
1262	ubi_free_vid_buf(vidb);
1263	return err;
1264}
1265
1266/**
1267 * is_error_sane - check whether a read error is sane.
1268 * @err: code of the error happened during reading
1269 *
1270 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1271 * cannot read data from the target PEB (an error @err happened). If the error
1272 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1273 * fatal and UBI will be switched to R/O mode later.
1274 *
1275 * The idea is that we try not to switch to R/O mode if the read error is
1276 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1277 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1278 * mode, simply because we do not know what happened at the MTD level, and we
1279 * cannot handle this. E.g., the underlying driver may have become crazy, and
1280 * it is safer to switch to R/O mode to preserve the data.
1281 *
1282 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1283 * which we have just written.
1284 */
1285static int is_error_sane(int err)
1286{
1287	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1288	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1289		return 0;
1290	return 1;
1291}
1292
1293/**
1294 * ubi_eba_copy_leb - copy logical eraseblock.
1295 * @ubi: UBI device description object
1296 * @from: physical eraseblock number from where to copy
1297 * @to: physical eraseblock number where to copy
1298 * @vidb: data structure from where the VID header is derived
1299 *
1300 * This function copies logical eraseblock from physical eraseblock @from to
1301 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1302 * function. Returns:
1303 *   o %0 in case of success;
1304 *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1305 *   o a negative error code in case of failure.
1306 */
1307int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1308		     struct ubi_vid_io_buf *vidb)
1309{
1310	int err, vol_id, lnum, data_size, aldata_size, idx;
1311	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1312	struct ubi_volume *vol;
1313	uint32_t crc;
1314
1315	ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1316
1317	vol_id = be32_to_cpu(vid_hdr->vol_id);
1318	lnum = be32_to_cpu(vid_hdr->lnum);
1319
1320	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1321
1322	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1323		data_size = be32_to_cpu(vid_hdr->data_size);
1324		aldata_size = ALIGN(data_size, ubi->min_io_size);
1325	} else
1326		data_size = aldata_size =
1327			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1328
1329	idx = vol_id2idx(ubi, vol_id);
1330	spin_lock(&ubi->volumes_lock);
1331	/*
1332	 * Note, we may race with volume deletion, which means that the volume
1333	 * this logical eraseblock belongs to might be being deleted. Since the
1334	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1335	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1336	 */
1337	vol = ubi->volumes[idx];
1338	spin_unlock(&ubi->volumes_lock);
1339	if (!vol) {
1340		/* No need to do further work, cancel */
1341		dbg_wl("volume %d is being removed, cancel", vol_id);
1342		return MOVE_CANCEL_RACE;
1343	}
1344
1345	/*
1346	 * We do not want anybody to write to this logical eraseblock while we
1347	 * are moving it, so lock it.
1348	 *
1349	 * Note, we are using non-waiting locking here, because we cannot sleep
1350	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1351	 * unmapping the LEB which is mapped to the PEB we are going to move
1352	 * (@from). This task locks the LEB and goes sleep in the
1353	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1354	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1355	 * LEB is already locked, we just do not move it and return
1356	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1357	 * we do not know the reasons of the contention - it may be just a
1358	 * normal I/O on this LEB, so we want to re-try.
1359	 */
1360	err = leb_write_trylock(ubi, vol_id, lnum);
1361	if (err) {
1362		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1363		return MOVE_RETRY;
1364	}
1365
1366	/*
1367	 * The LEB might have been put meanwhile, and the task which put it is
1368	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1369	 * cancel it.
1370	 */
1371	if (vol->eba_tbl->entries[lnum].pnum != from) {
1372		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1373		       vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1374		err = MOVE_CANCEL_RACE;
1375		goto out_unlock_leb;
1376	}
1377
1378	/*
1379	 * OK, now the LEB is locked and we can safely start moving it. Since
1380	 * this function utilizes the @ubi->peb_buf buffer which is shared
1381	 * with some other functions - we lock the buffer by taking the
1382	 * @ubi->buf_mutex.
1383	 */
1384	mutex_lock(&ubi->buf_mutex);
1385	dbg_wl("read %d bytes of data", aldata_size);
1386	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1387	if (err && err != UBI_IO_BITFLIPS) {
1388		ubi_warn(ubi, "error %d while reading data from PEB %d",
1389			 err, from);
1390		err = MOVE_SOURCE_RD_ERR;
1391		goto out_unlock_buf;
1392	}
1393
1394	/*
1395	 * Now we have got to calculate how much data we have to copy. In
1396	 * case of a static volume it is fairly easy - the VID header contains
1397	 * the data size. In case of a dynamic volume it is more difficult - we
1398	 * have to read the contents, cut 0xFF bytes from the end and copy only
1399	 * the first part. We must do this to avoid writing 0xFF bytes as it
1400	 * may have some side-effects. And not only this. It is important not
1401	 * to include those 0xFFs to CRC because later the they may be filled
1402	 * by data.
1403	 */
1404	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1405		aldata_size = data_size =
1406			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1407
1408	cond_resched();
1409	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1410	cond_resched();
1411
1412	/*
1413	 * It may turn out to be that the whole @from physical eraseblock
1414	 * contains only 0xFF bytes. Then we have to only write the VID header
1415	 * and do not write any data. This also means we should not set
1416	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1417	 */
1418	if (data_size > 0) {
1419		vid_hdr->copy_flag = 1;
1420		vid_hdr->data_size = cpu_to_be32(data_size);
1421		vid_hdr->data_crc = cpu_to_be32(crc);
1422	}
1423	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1424
1425	err = ubi_io_write_vid_hdr(ubi, to, vidb);
1426	if (err) {
1427		if (err == -EIO)
1428			err = MOVE_TARGET_WR_ERR;
1429		goto out_unlock_buf;
1430	}
1431
1432	cond_resched();
1433
1434	/* Read the VID header back and check if it was written correctly */
1435	err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1436	if (err) {
1437		if (err != UBI_IO_BITFLIPS) {
1438			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1439				 err, to);
1440			if (is_error_sane(err))
1441				err = MOVE_TARGET_RD_ERR;
1442		} else
1443			err = MOVE_TARGET_BITFLIPS;
1444		goto out_unlock_buf;
1445	}
1446
1447	if (data_size > 0) {
1448		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1449		if (err) {
1450			if (err == -EIO)
1451				err = MOVE_TARGET_WR_ERR;
1452			goto out_unlock_buf;
1453		}
1454
1455		cond_resched();
1456	}
1457
1458	ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1459
1460	/**
1461	 * The volumes_lock lock is needed here to prevent the expired old eba_tbl
1462	 * being updated when the eba_tbl is copied in the ubi_resize_volume() process.
1463	 */
1464	spin_lock(&ubi->volumes_lock);
1465	vol->eba_tbl->entries[lnum].pnum = to;
1466	spin_unlock(&ubi->volumes_lock);
1467
1468out_unlock_buf:
1469	mutex_unlock(&ubi->buf_mutex);
1470out_unlock_leb:
1471	leb_write_unlock(ubi, vol_id, lnum);
1472	return err;
1473}
1474
1475/**
1476 * print_rsvd_warning - warn about not having enough reserved PEBs.
1477 * @ubi: UBI device description object
1478 * @ai: UBI attach info object
1479 *
1480 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1481 * cannot reserve enough PEBs for bad block handling. This function makes a
1482 * decision whether we have to print a warning or not. The algorithm is as
1483 * follows:
1484 *   o if this is a new UBI image, then just print the warning
1485 *   o if this is an UBI image which has already been used for some time, print
1486 *     a warning only if we can reserve less than 10% of the expected amount of
1487 *     the reserved PEB.
1488 *
1489 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1490 * of PEBs becomes smaller, which is normal and we do not want to scare users
1491 * with a warning every time they attach the MTD device. This was an issue
1492 * reported by real users.
1493 */
1494static void print_rsvd_warning(struct ubi_device *ubi,
1495			       struct ubi_attach_info *ai)
1496{
1497	/*
1498	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1499	 * large number to distinguish between newly flashed and used images.
1500	 */
1501	if (ai->max_sqnum > (1 << 18)) {
1502		int min = ubi->beb_rsvd_level / 10;
1503
1504		if (!min)
1505			min = 1;
1506		if (ubi->beb_rsvd_pebs > min)
1507			return;
1508	}
1509
1510	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1511		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1512	if (ubi->corr_peb_count)
1513		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1514			 ubi->corr_peb_count);
1515}
1516
1517/**
1518 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1519 * @ubi: UBI device description object
1520 * @ai_fastmap: UBI attach info object created by fastmap
1521 * @ai_scan: UBI attach info object created by scanning
1522 *
1523 * Returns < 0 in case of an internal error, 0 otherwise.
1524 * If a bad EBA table entry was found it will be printed out and
1525 * ubi_assert() triggers.
1526 */
1527int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1528		   struct ubi_attach_info *ai_scan)
1529{
1530	int i, j, num_volumes, ret = 0;
1531	int **scan_eba, **fm_eba;
1532	struct ubi_ainf_volume *av;
1533	struct ubi_volume *vol;
1534	struct ubi_ainf_peb *aeb;
1535	struct rb_node *rb;
1536
1537	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1538
1539	scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
1540	if (!scan_eba)
1541		return -ENOMEM;
1542
1543	fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
1544	if (!fm_eba) {
1545		kfree(scan_eba);
1546		return -ENOMEM;
1547	}
1548
1549	for (i = 0; i < num_volumes; i++) {
1550		vol = ubi->volumes[i];
1551		if (!vol)
1552			continue;
1553
1554		scan_eba[i] = kmalloc_array(vol->reserved_pebs,
1555					    sizeof(**scan_eba),
1556					    GFP_KERNEL);
1557		if (!scan_eba[i]) {
1558			ret = -ENOMEM;
1559			goto out_free;
1560		}
1561
1562		fm_eba[i] = kmalloc_array(vol->reserved_pebs,
1563					  sizeof(**fm_eba),
1564					  GFP_KERNEL);
1565		if (!fm_eba[i]) {
1566			ret = -ENOMEM;
1567			goto out_free;
1568		}
1569
1570		for (j = 0; j < vol->reserved_pebs; j++)
1571			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1572
1573		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1574		if (!av)
1575			continue;
1576
1577		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1578			scan_eba[i][aeb->lnum] = aeb->pnum;
1579
1580		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1581		if (!av)
1582			continue;
1583
1584		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1585			fm_eba[i][aeb->lnum] = aeb->pnum;
1586
1587		for (j = 0; j < vol->reserved_pebs; j++) {
1588			if (scan_eba[i][j] != fm_eba[i][j]) {
1589				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1590					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1591					continue;
1592
1593				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1594					vol->vol_id, j, fm_eba[i][j],
1595					scan_eba[i][j]);
1596				ubi_assert(0);
1597			}
1598		}
1599	}
1600
1601out_free:
1602	for (i = 0; i < num_volumes; i++) {
1603		if (!ubi->volumes[i])
1604			continue;
1605
1606		kfree(scan_eba[i]);
1607		kfree(fm_eba[i]);
1608	}
1609
1610	kfree(scan_eba);
1611	kfree(fm_eba);
1612	return ret;
1613}
1614
1615/**
1616 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1617 * @ubi: UBI device description object
1618 * @ai: attaching information
1619 *
1620 * This function returns zero in case of success and a negative error code in
1621 * case of failure.
1622 */
1623int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1624{
1625	int i, err, num_volumes;
1626	struct ubi_ainf_volume *av;
1627	struct ubi_volume *vol;
1628	struct ubi_ainf_peb *aeb;
1629	struct rb_node *rb;
1630
1631	dbg_eba("initialize EBA sub-system");
1632
1633	spin_lock_init(&ubi->ltree_lock);
1634	mutex_init(&ubi->alc_mutex);
1635	ubi->ltree = RB_ROOT;
1636
1637	ubi->global_sqnum = ai->max_sqnum + 1;
1638	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1639
1640	for (i = 0; i < num_volumes; i++) {
1641		struct ubi_eba_table *tbl;
1642
1643		vol = ubi->volumes[i];
1644		if (!vol)
1645			continue;
1646
1647		cond_resched();
1648
1649		tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1650		if (IS_ERR(tbl)) {
1651			err = PTR_ERR(tbl);
1652			goto out_free;
1653		}
1654
1655		ubi_eba_replace_table(vol, tbl);
1656
1657		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1658		if (!av)
1659			continue;
1660
1661		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1662			if (aeb->lnum >= vol->reserved_pebs) {
1663				/*
1664				 * This may happen in case of an unclean reboot
1665				 * during re-size.
1666				 */
1667				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1668			} else {
1669				struct ubi_eba_entry *entry;
1670
1671				entry = &vol->eba_tbl->entries[aeb->lnum];
1672				entry->pnum = aeb->pnum;
1673			}
1674		}
1675	}
1676
1677	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1678		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1679			ubi->avail_pebs, EBA_RESERVED_PEBS);
1680		if (ubi->corr_peb_count)
1681			ubi_err(ubi, "%d PEBs are corrupted and not used",
1682				ubi->corr_peb_count);
1683		err = -ENOSPC;
1684		goto out_free;
1685	}
1686	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1687	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1688
1689	if (ubi->bad_allowed) {
1690		ubi_calculate_reserved(ubi);
1691
1692		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1693			/* No enough free physical eraseblocks */
1694			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1695			print_rsvd_warning(ubi, ai);
1696		} else
1697			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1698
1699		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1700		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1701	}
1702
1703	dbg_eba("EBA sub-system is initialized");
1704	return 0;
1705
1706out_free:
1707	for (i = 0; i < num_volumes; i++) {
1708		if (!ubi->volumes[i])
1709			continue;
1710		ubi_eba_replace_table(ubi->volumes[i], NULL);
1711	}
1712	return err;
1713}
1714