1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7#include <linux/bitfield.h>
8#include <linux/mtd/spi-nor.h>
9#include <linux/slab.h>
10#include <linux/sort.h>
11
12#include "core.h"
13
14#define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
15#define SFDP_PARAM_HEADER_PTP(p) \
16	(((p)->parameter_table_pointer[2] << 16) | \
17	 ((p)->parameter_table_pointer[1] <<  8) | \
18	 ((p)->parameter_table_pointer[0] <<  0))
19#define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
20
21#define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
22#define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
23#define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
24#define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
25#define SFDP_SCCR_MAP_ID	0xff87	/*
26					 * Status, Control and Configuration
27					 * Register Map.
28					 */
29#define SFDP_SCCR_MAP_MC_ID	0xff88	/*
30					 * Status, Control and Configuration
31					 * Register Map Offsets for Multi-Chip
32					 * SPI Memory Devices.
33					 */
34
35#define SFDP_SIGNATURE		0x50444653U
36
37struct sfdp_header {
38	u32		signature; /* Ox50444653U <=> "SFDP" */
39	u8		minor;
40	u8		major;
41	u8		nph; /* 0-base number of parameter headers */
42	u8		unused;
43
44	/* Basic Flash Parameter Table. */
45	struct sfdp_parameter_header	bfpt_header;
46};
47
48/* Fast Read settings. */
49struct sfdp_bfpt_read {
50	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
51	u32			hwcaps;
52
53	/*
54	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
55	 * whether the Fast Read x-y-z command is supported.
56	 */
57	u32			supported_dword;
58	u32			supported_bit;
59
60	/*
61	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
62	 * encodes the op code, the number of mode clocks and the number of wait
63	 * states to be used by Fast Read x-y-z command.
64	 */
65	u32			settings_dword;
66	u32			settings_shift;
67
68	/* The SPI protocol for this Fast Read x-y-z command. */
69	enum spi_nor_protocol	proto;
70};
71
72struct sfdp_bfpt_erase {
73	/*
74	 * The half-word at offset <shift> in DWORD <dword> encodes the
75	 * op code and erase sector size to be used by Sector Erase commands.
76	 */
77	u32			dword;
78	u32			shift;
79};
80
81#define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
82#define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
83#define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
84#define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
85#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
86
87#define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
88#define SMPT_CMD_READ_DUMMY_SHIFT		16
89#define SMPT_CMD_READ_DUMMY(_cmd) \
90	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
91#define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
92
93#define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
94#define SMPT_CMD_READ_DATA_SHIFT		24
95#define SMPT_CMD_READ_DATA(_cmd) \
96	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
97
98#define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
99#define SMPT_CMD_OPCODE_SHIFT			8
100#define SMPT_CMD_OPCODE(_cmd) \
101	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
102
103#define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
104#define SMPT_MAP_REGION_COUNT_SHIFT		16
105#define SMPT_MAP_REGION_COUNT(_header) \
106	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
107	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
108
109#define SMPT_MAP_ID_MASK			GENMASK(15, 8)
110#define SMPT_MAP_ID_SHIFT			8
111#define SMPT_MAP_ID(_header) \
112	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
113
114#define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
115#define SMPT_MAP_REGION_SIZE_SHIFT		8
116#define SMPT_MAP_REGION_SIZE(_region) \
117	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
118	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
119
120#define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
121#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
122	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
123
124#define SMPT_DESC_TYPE_MAP			BIT(1)
125#define SMPT_DESC_END				BIT(0)
126
127#define SFDP_4BAIT_DWORD_MAX	2
128
129struct sfdp_4bait {
130	/* The hardware capability. */
131	u32		hwcaps;
132
133	/*
134	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
135	 * the associated 4-byte address op code is supported.
136	 */
137	u32		supported_bit;
138};
139
140/**
141 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
142 *			addr_nbytes and read_dummy members of the struct spi_nor
143 *			should be previously set.
144 * @nor:	pointer to a 'struct spi_nor'
145 * @addr:	offset in the serial flash memory
146 * @len:	number of bytes to read
147 * @buf:	buffer where the data is copied into (dma-safe memory)
148 *
149 * Return: 0 on success, -errno otherwise.
150 */
151static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
152{
153	ssize_t ret;
154
155	while (len) {
156		ret = spi_nor_read_data(nor, addr, len, buf);
157		if (ret < 0)
158			return ret;
159		if (!ret || ret > len)
160			return -EIO;
161
162		buf += ret;
163		addr += ret;
164		len -= ret;
165	}
166	return 0;
167}
168
169/**
170 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
171 * @nor:	pointer to a 'struct spi_nor'
172 * @addr:	offset in the SFDP area to start reading data from
173 * @len:	number of bytes to read
174 * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
175 *
176 * Whatever the actual numbers of bytes for address and dummy cycles are
177 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
178 * followed by a 3-byte address and 8 dummy clock cycles.
179 *
180 * Return: 0 on success, -errno otherwise.
181 */
182static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
183			     size_t len, void *buf)
184{
185	u8 addr_nbytes, read_opcode, read_dummy;
186	int ret;
187
188	read_opcode = nor->read_opcode;
189	addr_nbytes = nor->addr_nbytes;
190	read_dummy = nor->read_dummy;
191
192	nor->read_opcode = SPINOR_OP_RDSFDP;
193	nor->addr_nbytes = 3;
194	nor->read_dummy = 8;
195
196	ret = spi_nor_read_raw(nor, addr, len, buf);
197
198	nor->read_opcode = read_opcode;
199	nor->addr_nbytes = addr_nbytes;
200	nor->read_dummy = read_dummy;
201
202	return ret;
203}
204
205/**
206 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
207 * @nor:	pointer to a 'struct spi_nor'
208 * @addr:	offset in the SFDP area to start reading data from
209 * @len:	number of bytes to read
210 * @buf:	buffer where the SFDP data are copied into
211 *
212 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
213 * guaranteed to be dma-safe.
214 *
215 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
216 *          otherwise.
217 */
218static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
219					size_t len, void *buf)
220{
221	void *dma_safe_buf;
222	int ret;
223
224	dma_safe_buf = kmalloc(len, GFP_KERNEL);
225	if (!dma_safe_buf)
226		return -ENOMEM;
227
228	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
229	memcpy(buf, dma_safe_buf, len);
230	kfree(dma_safe_buf);
231
232	return ret;
233}
234
235static void
236spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
237				    u16 half,
238				    enum spi_nor_protocol proto)
239{
240	read->num_mode_clocks = (half >> 5) & 0x07;
241	read->num_wait_states = (half >> 0) & 0x1f;
242	read->opcode = (half >> 8) & 0xff;
243	read->proto = proto;
244}
245
246static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
247	/* Fast Read 1-1-2 */
248	{
249		SNOR_HWCAPS_READ_1_1_2,
250		SFDP_DWORD(1), BIT(16),	/* Supported bit */
251		SFDP_DWORD(4), 0,	/* Settings */
252		SNOR_PROTO_1_1_2,
253	},
254
255	/* Fast Read 1-2-2 */
256	{
257		SNOR_HWCAPS_READ_1_2_2,
258		SFDP_DWORD(1), BIT(20),	/* Supported bit */
259		SFDP_DWORD(4), 16,	/* Settings */
260		SNOR_PROTO_1_2_2,
261	},
262
263	/* Fast Read 2-2-2 */
264	{
265		SNOR_HWCAPS_READ_2_2_2,
266		SFDP_DWORD(5),  BIT(0),	/* Supported bit */
267		SFDP_DWORD(6), 16,	/* Settings */
268		SNOR_PROTO_2_2_2,
269	},
270
271	/* Fast Read 1-1-4 */
272	{
273		SNOR_HWCAPS_READ_1_1_4,
274		SFDP_DWORD(1), BIT(22),	/* Supported bit */
275		SFDP_DWORD(3), 16,	/* Settings */
276		SNOR_PROTO_1_1_4,
277	},
278
279	/* Fast Read 1-4-4 */
280	{
281		SNOR_HWCAPS_READ_1_4_4,
282		SFDP_DWORD(1), BIT(21),	/* Supported bit */
283		SFDP_DWORD(3), 0,	/* Settings */
284		SNOR_PROTO_1_4_4,
285	},
286
287	/* Fast Read 4-4-4 */
288	{
289		SNOR_HWCAPS_READ_4_4_4,
290		SFDP_DWORD(5), BIT(4),	/* Supported bit */
291		SFDP_DWORD(7), 16,	/* Settings */
292		SNOR_PROTO_4_4_4,
293	},
294};
295
296static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
297	/* Erase Type 1 in DWORD8 bits[15:0] */
298	{SFDP_DWORD(8), 0},
299
300	/* Erase Type 2 in DWORD8 bits[31:16] */
301	{SFDP_DWORD(8), 16},
302
303	/* Erase Type 3 in DWORD9 bits[15:0] */
304	{SFDP_DWORD(9), 0},
305
306	/* Erase Type 4 in DWORD9 bits[31:16] */
307	{SFDP_DWORD(9), 16},
308};
309
310/**
311 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
312 * @erase:	pointer to a structure that describes a SPI NOR erase type
313 * @size:	the size of the sector/block erased by the erase type
314 * @opcode:	the SPI command op code to erase the sector/block
315 * @i:		erase type index as sorted in the Basic Flash Parameter Table
316 *
317 * The supported Erase Types will be sorted at init in ascending order, with
318 * the smallest Erase Type size being the first member in the erase_type array
319 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
320 * the Basic Flash Parameter Table since it will be used later on to
321 * synchronize with the supported Erase Types defined in SFDP optional tables.
322 */
323static void
324spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
325				     u32 size, u8 opcode, u8 i)
326{
327	erase->idx = i;
328	spi_nor_set_erase_type(erase, size, opcode);
329}
330
331/**
332 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
333 * @l:	member in the left half of the map's erase_type array
334 * @r:	member in the right half of the map's erase_type array
335 *
336 * Comparison function used in the sort() call to sort in ascending order the
337 * map's erase types, the smallest erase type size being the first member in the
338 * sorted erase_type array.
339 *
340 * Return: the result of @l->size - @r->size
341 */
342static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
343{
344	const struct spi_nor_erase_type *left = l, *right = r;
345
346	return left->size - right->size;
347}
348
349/**
350 * spi_nor_sort_erase_mask() - sort erase mask
351 * @map:	the erase map of the SPI NOR
352 * @erase_mask:	the erase type mask to be sorted
353 *
354 * Replicate the sort done for the map's erase types in BFPT: sort the erase
355 * mask in ascending order with the smallest erase type size starting from
356 * BIT(0) in the sorted erase mask.
357 *
358 * Return: sorted erase mask.
359 */
360static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
361{
362	struct spi_nor_erase_type *erase_type = map->erase_type;
363	int i;
364	u8 sorted_erase_mask = 0;
365
366	if (!erase_mask)
367		return 0;
368
369	/* Replicate the sort done for the map's erase types. */
370	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
371		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
372			sorted_erase_mask |= BIT(i);
373
374	return sorted_erase_mask;
375}
376
377/**
378 * spi_nor_regions_sort_erase_types() - sort erase types in each region
379 * @map:	the erase map of the SPI NOR
380 *
381 * Function assumes that the erase types defined in the erase map are already
382 * sorted in ascending order, with the smallest erase type size being the first
383 * member in the erase_type array. It replicates the sort done for the map's
384 * erase types. Each region's erase bitmask will indicate which erase types are
385 * supported from the sorted erase types defined in the erase map.
386 * Sort the all region's erase type at init in order to speed up the process of
387 * finding the best erase command at runtime.
388 */
389static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
390{
391	struct spi_nor_erase_region *region = map->regions;
392	u8 sorted_erase_mask;
393	unsigned int i;
394
395	for (i = 0; i < map->n_regions; i++) {
396		sorted_erase_mask =
397			spi_nor_sort_erase_mask(map, region[i].erase_mask);
398
399		/* Overwrite erase mask. */
400		region[i].erase_mask = sorted_erase_mask;
401	}
402}
403
404/**
405 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
406 * @nor:		pointer to a 'struct spi_nor'
407 * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
408 *			the Basic Flash Parameter Table length and version
409 *
410 * The Basic Flash Parameter Table is the main and only mandatory table as
411 * defined by the SFDP (JESD216) specification.
412 * It provides us with the total size (memory density) of the data array and
413 * the number of address bytes for Fast Read, Page Program and Sector Erase
414 * commands.
415 * For Fast READ commands, it also gives the number of mode clock cycles and
416 * wait states (regrouped in the number of dummy clock cycles) for each
417 * supported instruction op code.
418 * For Page Program, the page size is now available since JESD216 rev A, however
419 * the supported instruction op codes are still not provided.
420 * For Sector Erase commands, this table stores the supported instruction op
421 * codes and the associated sector sizes.
422 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
423 * rev A. The QER bits encode the manufacturer dependent procedure to be
424 * executed to set the Quad Enable (QE) bit in some internal register of the
425 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
426 * sending any Quad SPI command to the memory. Actually, setting the QE bit
427 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
428 * and IO3 hence enabling 4 (Quad) I/O lines.
429 *
430 * Return: 0 on success, -errno otherwise.
431 */
432static int spi_nor_parse_bfpt(struct spi_nor *nor,
433			      const struct sfdp_parameter_header *bfpt_header)
434{
435	struct spi_nor_flash_parameter *params = nor->params;
436	struct spi_nor_erase_map *map = &params->erase_map;
437	struct spi_nor_erase_type *erase_type = map->erase_type;
438	struct sfdp_bfpt bfpt;
439	size_t len;
440	int i, cmd, err;
441	u32 addr, val;
442	u32 dword;
443	u16 half;
444	u8 erase_mask;
445	u8 wait_states, mode_clocks, opcode;
446
447	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
448	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
449		return -EINVAL;
450
451	/* Read the Basic Flash Parameter Table. */
452	len = min_t(size_t, sizeof(bfpt),
453		    bfpt_header->length * sizeof(u32));
454	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
455	memset(&bfpt, 0, sizeof(bfpt));
456	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
457	if (err < 0)
458		return err;
459
460	/* Fix endianness of the BFPT DWORDs. */
461	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
462
463	/* Number of address bytes. */
464	switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
465	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
466	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
467		params->addr_nbytes = 3;
468		params->addr_mode_nbytes = 3;
469		break;
470
471	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
472		params->addr_nbytes = 4;
473		params->addr_mode_nbytes = 4;
474		break;
475
476	default:
477		break;
478	}
479
480	/* Flash Memory Density (in bits). */
481	val = bfpt.dwords[SFDP_DWORD(2)];
482	if (val & BIT(31)) {
483		val &= ~BIT(31);
484
485		/*
486		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
487		 * bits is unlikely to exist so this error probably means
488		 * the BFPT we are reading is corrupted/wrong.
489		 */
490		if (val > 63)
491			return -EINVAL;
492
493		params->size = 1ULL << val;
494	} else {
495		params->size = val + 1;
496	}
497	params->size >>= 3; /* Convert to bytes. */
498
499	/* Fast Read settings. */
500	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
501		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
502		struct spi_nor_read_command *read;
503
504		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
505			params->hwcaps.mask &= ~rd->hwcaps;
506			continue;
507		}
508
509		params->hwcaps.mask |= rd->hwcaps;
510		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
511		read = &params->reads[cmd];
512		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
513		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
514	}
515
516	/*
517	 * Sector Erase settings. Reinitialize the uniform erase map using the
518	 * Erase Types defined in the bfpt table.
519	 */
520	erase_mask = 0;
521	memset(&params->erase_map, 0, sizeof(params->erase_map));
522	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
523		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
524		u32 erasesize;
525		u8 opcode;
526
527		half = bfpt.dwords[er->dword] >> er->shift;
528		erasesize = half & 0xff;
529
530		/* erasesize == 0 means this Erase Type is not supported. */
531		if (!erasesize)
532			continue;
533
534		erasesize = 1U << erasesize;
535		opcode = (half >> 8) & 0xff;
536		erase_mask |= BIT(i);
537		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
538						     opcode, i);
539	}
540	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
541	/*
542	 * Sort all the map's Erase Types in ascending order with the smallest
543	 * erase size being the first member in the erase_type array.
544	 */
545	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
546	     spi_nor_map_cmp_erase_type, NULL);
547	/*
548	 * Sort the erase types in the uniform region in order to update the
549	 * uniform_erase_type bitmask. The bitmask will be used later on when
550	 * selecting the uniform erase.
551	 */
552	spi_nor_regions_sort_erase_types(map);
553
554	/* Stop here if not JESD216 rev A or later. */
555	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
556		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
557
558	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
559	val = bfpt.dwords[SFDP_DWORD(11)];
560	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
561	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
562	params->page_size = 1U << val;
563
564	/* Quad Enable Requirements. */
565	switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
566	case BFPT_DWORD15_QER_NONE:
567		params->quad_enable = NULL;
568		break;
569
570	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
571		/*
572		 * Writing only one byte to the Status Register has the
573		 * side-effect of clearing Status Register 2.
574		 */
575	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
576		/*
577		 * Read Configuration Register (35h) instruction is not
578		 * supported.
579		 */
580		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
581		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
582		break;
583
584	case BFPT_DWORD15_QER_SR1_BIT6:
585		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
586		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
587		break;
588
589	case BFPT_DWORD15_QER_SR2_BIT7:
590		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
591		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
592		break;
593
594	case BFPT_DWORD15_QER_SR2_BIT1:
595		/*
596		 * JESD216 rev B or later does not specify if writing only one
597		 * byte to the Status Register clears or not the Status
598		 * Register 2, so let's be cautious and keep the default
599		 * assumption of a 16-bit Write Status (01h) command.
600		 */
601		nor->flags |= SNOR_F_HAS_16BIT_SR;
602
603		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
604		break;
605
606	default:
607		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
608		break;
609	}
610
611	dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK;
612	if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR))
613		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
614	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B))
615		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
616	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B))
617		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
618	else
619		dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n");
620
621	/* Soft Reset support. */
622	if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
623		nor->flags |= SNOR_F_SOFT_RESET;
624
625	/* Stop here if not JESD216 rev C or later. */
626	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
627		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
628
629	/* Parse 1-1-8 read instruction */
630	opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
631	if (opcode) {
632		mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS,
633					bfpt.dwords[SFDP_DWORD(17)]);
634		wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES,
635					bfpt.dwords[SFDP_DWORD(17)]);
636		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
637		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
638					  mode_clocks, wait_states, opcode,
639					  SNOR_PROTO_1_1_8);
640	}
641
642	/* Parse 1-8-8 read instruction */
643	opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
644	if (opcode) {
645		mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS,
646					bfpt.dwords[SFDP_DWORD(17)]);
647		wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES,
648					bfpt.dwords[SFDP_DWORD(17)]);
649		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8;
650		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_8_8],
651					  mode_clocks, wait_states, opcode,
652					  SNOR_PROTO_1_8_8);
653	}
654
655	/* 8D-8D-8D command extension. */
656	switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
657	case BFPT_DWORD18_CMD_EXT_REP:
658		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
659		break;
660
661	case BFPT_DWORD18_CMD_EXT_INV:
662		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
663		break;
664
665	case BFPT_DWORD18_CMD_EXT_RES:
666		dev_dbg(nor->dev, "Reserved command extension used\n");
667		break;
668
669	case BFPT_DWORD18_CMD_EXT_16B:
670		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
671		return -EOPNOTSUPP;
672	}
673
674	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
675}
676
677/**
678 * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
679 *			       configuration detection command.
680 * @nor:	pointer to a 'struct spi_nor'
681 * @settings:	configuration detection command descriptor, dword1
682 */
683static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
684{
685	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
686	case SMPT_CMD_ADDRESS_LEN_0:
687		return 0;
688	case SMPT_CMD_ADDRESS_LEN_3:
689		return 3;
690	case SMPT_CMD_ADDRESS_LEN_4:
691		return 4;
692	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
693	default:
694		return nor->params->addr_mode_nbytes;
695	}
696}
697
698/**
699 * spi_nor_smpt_read_dummy() - return the configuration detection command read
700 *			       latency, in clock cycles.
701 * @nor:	pointer to a 'struct spi_nor'
702 * @settings:	configuration detection command descriptor, dword1
703 *
704 * Return: the number of dummy cycles for an SMPT read
705 */
706static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
707{
708	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
709
710	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
711		return nor->read_dummy;
712	return read_dummy;
713}
714
715/**
716 * spi_nor_get_map_in_use() - get the configuration map in use
717 * @nor:	pointer to a 'struct spi_nor'
718 * @smpt:	pointer to the sector map parameter table
719 * @smpt_len:	sector map parameter table length
720 *
721 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
722 */
723static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
724					 u8 smpt_len)
725{
726	const u32 *ret;
727	u8 *buf;
728	u32 addr;
729	int err;
730	u8 i;
731	u8 addr_nbytes, read_opcode, read_dummy;
732	u8 read_data_mask, map_id;
733
734	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
735	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
736	if (!buf)
737		return ERR_PTR(-ENOMEM);
738
739	addr_nbytes = nor->addr_nbytes;
740	read_dummy = nor->read_dummy;
741	read_opcode = nor->read_opcode;
742
743	map_id = 0;
744	/* Determine if there are any optional Detection Command Descriptors */
745	for (i = 0; i < smpt_len; i += 2) {
746		if (smpt[i] & SMPT_DESC_TYPE_MAP)
747			break;
748
749		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
750		nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
751		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
752		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
753		addr = smpt[i + 1];
754
755		err = spi_nor_read_raw(nor, addr, 1, buf);
756		if (err) {
757			ret = ERR_PTR(err);
758			goto out;
759		}
760
761		/*
762		 * Build an index value that is used to select the Sector Map
763		 * Configuration that is currently in use.
764		 */
765		map_id = map_id << 1 | !!(*buf & read_data_mask);
766	}
767
768	/*
769	 * If command descriptors are provided, they always precede map
770	 * descriptors in the table. There is no need to start the iteration
771	 * over smpt array all over again.
772	 *
773	 * Find the matching configuration map.
774	 */
775	ret = ERR_PTR(-EINVAL);
776	while (i < smpt_len) {
777		if (SMPT_MAP_ID(smpt[i]) == map_id) {
778			ret = smpt + i;
779			break;
780		}
781
782		/*
783		 * If there are no more configuration map descriptors and no
784		 * configuration ID matched the configuration identifier, the
785		 * sector address map is unknown.
786		 */
787		if (smpt[i] & SMPT_DESC_END)
788			break;
789
790		/* increment the table index to the next map */
791		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
792	}
793
794	/* fall through */
795out:
796	kfree(buf);
797	nor->addr_nbytes = addr_nbytes;
798	nor->read_dummy = read_dummy;
799	nor->read_opcode = read_opcode;
800	return ret;
801}
802
803/**
804 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
805 * @region:	pointer to a structure that describes a SPI NOR erase region
806 * @erase:	pointer to a structure that describes a SPI NOR erase type
807 * @erase_type:	erase type bitmask
808 */
809static void
810spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
811			     const struct spi_nor_erase_type *erase,
812			     const u8 erase_type)
813{
814	int i;
815
816	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
817		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
818			continue;
819		if (region->size & erase[i].size_mask) {
820			region->overlaid = true;
821			return;
822		}
823	}
824}
825
826/**
827 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
828 * @nor:	pointer to a 'struct spi_nor'
829 * @smpt:	pointer to the sector map parameter table
830 *
831 * Return: 0 on success, -errno otherwise.
832 */
833static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
834					      const u32 *smpt)
835{
836	struct spi_nor_erase_map *map = &nor->params->erase_map;
837	struct spi_nor_erase_type *erase = map->erase_type;
838	struct spi_nor_erase_region *region;
839	u64 offset;
840	u32 region_count;
841	int i, j;
842	u8 uniform_erase_type, save_uniform_erase_type;
843	u8 erase_type, regions_erase_type;
844
845	region_count = SMPT_MAP_REGION_COUNT(*smpt);
846	/*
847	 * The regions will be freed when the driver detaches from the
848	 * device.
849	 */
850	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
851			      GFP_KERNEL);
852	if (!region)
853		return -ENOMEM;
854	map->regions = region;
855	map->n_regions = region_count;
856
857	uniform_erase_type = 0xff;
858	regions_erase_type = 0;
859	offset = 0;
860	/* Populate regions. */
861	for (i = 0; i < region_count; i++) {
862		j = i + 1; /* index for the region dword */
863		region[i].offset = offset;
864		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
865		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
866		region[i].erase_mask = erase_type;
867
868		spi_nor_region_check_overlay(&region[i], erase, erase_type);
869
870		/*
871		 * Save the erase types that are supported in all regions and
872		 * can erase the entire flash memory.
873		 */
874		uniform_erase_type &= erase_type;
875
876		/*
877		 * regions_erase_type mask will indicate all the erase types
878		 * supported in this configuration map.
879		 */
880		regions_erase_type |= erase_type;
881
882		offset = region[i].offset + region[i].size;
883	}
884
885	save_uniform_erase_type = map->uniform_region.erase_mask;
886	map->uniform_region.erase_mask =
887				spi_nor_sort_erase_mask(map,
888							uniform_erase_type);
889
890	if (!regions_erase_type) {
891		/*
892		 * Roll back to the previous uniform_erase_type mask, SMPT is
893		 * broken.
894		 */
895		map->uniform_region.erase_mask = save_uniform_erase_type;
896		return -EINVAL;
897	}
898
899	/*
900	 * BFPT advertises all the erase types supported by all the possible
901	 * map configurations. Mask out the erase types that are not supported
902	 * by the current map configuration.
903	 */
904	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
905		if (!(regions_erase_type & BIT(erase[i].idx)))
906			spi_nor_mask_erase_type(&erase[i]);
907
908	return 0;
909}
910
911/**
912 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
913 * @nor:		pointer to a 'struct spi_nor'
914 * @smpt_header:	sector map parameter table header
915 *
916 * This table is optional, but when available, we parse it to identify the
917 * location and size of sectors within the main data array of the flash memory
918 * device and to identify which Erase Types are supported by each sector.
919 *
920 * Return: 0 on success, -errno otherwise.
921 */
922static int spi_nor_parse_smpt(struct spi_nor *nor,
923			      const struct sfdp_parameter_header *smpt_header)
924{
925	const u32 *sector_map;
926	u32 *smpt;
927	size_t len;
928	u32 addr;
929	int ret;
930
931	/* Read the Sector Map Parameter Table. */
932	len = smpt_header->length * sizeof(*smpt);
933	smpt = kmalloc(len, GFP_KERNEL);
934	if (!smpt)
935		return -ENOMEM;
936
937	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
938	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
939	if (ret)
940		goto out;
941
942	/* Fix endianness of the SMPT DWORDs. */
943	le32_to_cpu_array(smpt, smpt_header->length);
944
945	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
946	if (IS_ERR(sector_map)) {
947		ret = PTR_ERR(sector_map);
948		goto out;
949	}
950
951	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
952	if (ret)
953		goto out;
954
955	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
956	/* fall through */
957out:
958	kfree(smpt);
959	return ret;
960}
961
962/**
963 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
964 * @nor:		pointer to a 'struct spi_nor'.
965 * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
966 *			the 4-Byte Address Instruction Table length and version.
967 *
968 * Return: 0 on success, -errno otherwise.
969 */
970static int spi_nor_parse_4bait(struct spi_nor *nor,
971			       const struct sfdp_parameter_header *param_header)
972{
973	static const struct sfdp_4bait reads[] = {
974		{ SNOR_HWCAPS_READ,		BIT(0) },
975		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
976		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
977		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
978		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
979		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
980		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
981		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
982		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
983		{ SNOR_HWCAPS_READ_1_1_8,	BIT(20) },
984		{ SNOR_HWCAPS_READ_1_8_8,	BIT(21) },
985	};
986	static const struct sfdp_4bait programs[] = {
987		{ SNOR_HWCAPS_PP,		BIT(6) },
988		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
989		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
990	};
991	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
992		{ 0u /* not used */,		BIT(9) },
993		{ 0u /* not used */,		BIT(10) },
994		{ 0u /* not used */,		BIT(11) },
995		{ 0u /* not used */,		BIT(12) },
996	};
997	struct spi_nor_flash_parameter *params = nor->params;
998	struct spi_nor_pp_command *params_pp = params->page_programs;
999	struct spi_nor_erase_map *map = &params->erase_map;
1000	struct spi_nor_erase_type *erase_type = map->erase_type;
1001	u32 *dwords;
1002	size_t len;
1003	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
1004	int i, ret;
1005
1006	if (param_header->major != SFDP_JESD216_MAJOR ||
1007	    param_header->length < SFDP_4BAIT_DWORD_MAX)
1008		return -EINVAL;
1009
1010	/* Read the 4-byte Address Instruction Table. */
1011	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
1012
1013	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
1014	dwords = kmalloc(len, GFP_KERNEL);
1015	if (!dwords)
1016		return -ENOMEM;
1017
1018	addr = SFDP_PARAM_HEADER_PTP(param_header);
1019	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1020	if (ret)
1021		goto out;
1022
1023	/* Fix endianness of the 4BAIT DWORDs. */
1024	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
1025
1026	/*
1027	 * Compute the subset of (Fast) Read commands for which the 4-byte
1028	 * version is supported.
1029	 */
1030	discard_hwcaps = 0;
1031	read_hwcaps = 0;
1032	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1033		const struct sfdp_4bait *read = &reads[i];
1034
1035		discard_hwcaps |= read->hwcaps;
1036		if ((params->hwcaps.mask & read->hwcaps) &&
1037		    (dwords[SFDP_DWORD(1)] & read->supported_bit))
1038			read_hwcaps |= read->hwcaps;
1039	}
1040
1041	/*
1042	 * Compute the subset of Page Program commands for which the 4-byte
1043	 * version is supported.
1044	 */
1045	pp_hwcaps = 0;
1046	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1047		const struct sfdp_4bait *program = &programs[i];
1048
1049		/*
1050		 * The 4 Byte Address Instruction (Optional) Table is the only
1051		 * SFDP table that indicates support for Page Program Commands.
1052		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1053		 * authority for specifying Page Program support.
1054		 */
1055		discard_hwcaps |= program->hwcaps;
1056		if (dwords[SFDP_DWORD(1)] & program->supported_bit)
1057			pp_hwcaps |= program->hwcaps;
1058	}
1059
1060	/*
1061	 * Compute the subset of Sector Erase commands for which the 4-byte
1062	 * version is supported.
1063	 */
1064	erase_mask = 0;
1065	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1066		const struct sfdp_4bait *erase = &erases[i];
1067
1068		if (dwords[SFDP_DWORD(1)] & erase->supported_bit)
1069			erase_mask |= BIT(i);
1070	}
1071
1072	/* Replicate the sort done for the map's erase types in BFPT. */
1073	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1074
1075	/*
1076	 * We need at least one 4-byte op code per read, program and erase
1077	 * operation; the .read(), .write() and .erase() hooks share the
1078	 * nor->addr_nbytes value.
1079	 */
1080	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1081		goto out;
1082
1083	/*
1084	 * Discard all operations from the 4-byte instruction set which are
1085	 * not supported by this memory.
1086	 */
1087	params->hwcaps.mask &= ~discard_hwcaps;
1088	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1089
1090	/* Use the 4-byte address instruction set. */
1091	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1092		struct spi_nor_read_command *read_cmd = &params->reads[i];
1093
1094		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1095	}
1096
1097	/* 4BAIT is the only SFDP table that indicates page program support. */
1098	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1099		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1100					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1101		/*
1102		 * Since xSPI Page Program opcode is backward compatible with
1103		 * Legacy SPI, use Legacy SPI opcode there as well.
1104		 */
1105		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1106					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1107	}
1108	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1109		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1110					SPINOR_OP_PP_1_1_4_4B,
1111					SNOR_PROTO_1_1_4);
1112	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1113		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1114					SPINOR_OP_PP_1_4_4_4B,
1115					SNOR_PROTO_1_4_4);
1116
1117	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1118		if (erase_mask & BIT(i))
1119			erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >>
1120						erase_type[i].idx * 8) & 0xFF;
1121		else
1122			spi_nor_mask_erase_type(&erase_type[i]);
1123	}
1124
1125	/*
1126	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1127	 * later because we already did the conversion to 4byte opcodes. Also,
1128	 * this latest function implements a legacy quirk for the erase size of
1129	 * Spansion memory. However this quirk is no longer needed with new
1130	 * SFDP compliant memories.
1131	 */
1132	params->addr_nbytes = 4;
1133	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1134
1135	/* fall through */
1136out:
1137	kfree(dwords);
1138	return ret;
1139}
1140
1141#define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1142#define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1143#define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1144#define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1145#define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1146#define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1147#define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1148
1149/**
1150 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1151 * @nor:		pointer to a 'struct spi_nor'
1152 * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1153 *			the Profile 1.0 Table length and version.
1154 *
1155 * Return: 0 on success, -errno otherwise.
1156 */
1157static int spi_nor_parse_profile1(struct spi_nor *nor,
1158				  const struct sfdp_parameter_header *profile1_header)
1159{
1160	u32 *dwords, addr;
1161	size_t len;
1162	int ret;
1163	u8 dummy, opcode;
1164
1165	len = profile1_header->length * sizeof(*dwords);
1166	dwords = kmalloc(len, GFP_KERNEL);
1167	if (!dwords)
1168		return -ENOMEM;
1169
1170	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1171	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1172	if (ret)
1173		goto out;
1174
1175	le32_to_cpu_array(dwords, profile1_header->length);
1176
1177	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1178	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]);
1179
1180	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1181	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY)
1182		nor->params->rdsr_dummy = 8;
1183	else
1184		nor->params->rdsr_dummy = 4;
1185
1186	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1187		nor->params->rdsr_addr_nbytes = 4;
1188	else
1189		nor->params->rdsr_addr_nbytes = 0;
1190
1191	/*
1192	 * We don't know what speed the controller is running at. Find the
1193	 * dummy cycles for the fastest frequency the flash can run at to be
1194	 * sure we are never short of dummy cycles. A value of 0 means the
1195	 * frequency is not supported.
1196	 *
1197	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1198	 * flashes set the correct value if needed in their fixup hooks.
1199	 */
1200	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]);
1201	if (!dummy)
1202		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ,
1203				  dwords[SFDP_DWORD(5)]);
1204	if (!dummy)
1205		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ,
1206				  dwords[SFDP_DWORD(5)]);
1207	if (!dummy)
1208		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ,
1209				  dwords[SFDP_DWORD(5)]);
1210	if (!dummy)
1211		dev_dbg(nor->dev,
1212			"Can't find dummy cycles from Profile 1.0 table\n");
1213
1214	/* Round up to an even value to avoid tripping controllers up. */
1215	dummy = round_up(dummy, 2);
1216
1217	/* Update the fast read settings. */
1218	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
1219	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1220				  0, dummy, opcode,
1221				  SNOR_PROTO_8_8_8_DTR);
1222
1223	/*
1224	 * Page Program is "Required Command" in the xSPI Profile 1.0. Update
1225	 * the params->hwcaps.mask here.
1226	 */
1227	nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
1228
1229out:
1230	kfree(dwords);
1231	return ret;
1232}
1233
1234#define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1235
1236/**
1237 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1238 *                        Map.
1239 * @nor:		pointer to a 'struct spi_nor'
1240 * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1241 *			the SCCR Map table length and version.
1242 *
1243 * Return: 0 on success, -errno otherwise.
1244 */
1245static int spi_nor_parse_sccr(struct spi_nor *nor,
1246			      const struct sfdp_parameter_header *sccr_header)
1247{
1248	struct spi_nor_flash_parameter *params = nor->params;
1249	u32 *dwords, addr;
1250	size_t len;
1251	int ret;
1252
1253	len = sccr_header->length * sizeof(*dwords);
1254	dwords = kmalloc(len, GFP_KERNEL);
1255	if (!dwords)
1256		return -ENOMEM;
1257
1258	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1259	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1260	if (ret)
1261		goto out;
1262
1263	le32_to_cpu_array(dwords, sccr_header->length);
1264
1265	/* Address offset for volatile registers (die 0) */
1266	if (!params->vreg_offset) {
1267		params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords),
1268						   GFP_KERNEL);
1269		if (!params->vreg_offset) {
1270			ret = -ENOMEM;
1271			goto out;
1272		}
1273	}
1274	params->vreg_offset[0] = dwords[SFDP_DWORD(1)];
1275	params->n_dice = 1;
1276
1277	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE,
1278		      dwords[SFDP_DWORD(22)]))
1279		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1280
1281out:
1282	kfree(dwords);
1283	return ret;
1284}
1285
1286/**
1287 * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration
1288 *                           Register Map Offsets for Multi-Chip SPI Memory
1289 *                           Devices.
1290 * @nor:		pointer to a 'struct spi_nor'
1291 * @sccr_mc_header:	pointer to the 'struct sfdp_parameter_header' describing
1292 *			the SCCR Map offsets table length and version.
1293 *
1294 * Return: 0 on success, -errno otherwise.
1295 */
1296static int spi_nor_parse_sccr_mc(struct spi_nor *nor,
1297				 const struct sfdp_parameter_header *sccr_mc_header)
1298{
1299	struct spi_nor_flash_parameter *params = nor->params;
1300	u32 *dwords, addr;
1301	u8 i, n_dice;
1302	size_t len;
1303	int ret;
1304
1305	len = sccr_mc_header->length * sizeof(*dwords);
1306	dwords = kmalloc(len, GFP_KERNEL);
1307	if (!dwords)
1308		return -ENOMEM;
1309
1310	addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header);
1311	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1312	if (ret)
1313		goto out;
1314
1315	le32_to_cpu_array(dwords, sccr_mc_header->length);
1316
1317	/*
1318	 * Pair of DOWRDs (volatile and non-volatile register offsets) per
1319	 * additional die. Hence, length = 2 * (number of additional dice).
1320	 */
1321	n_dice = 1 + sccr_mc_header->length / 2;
1322
1323	/* Address offset for volatile registers of additional dice */
1324	params->vreg_offset =
1325			devm_krealloc(nor->dev, params->vreg_offset,
1326				      n_dice * sizeof(*dwords),
1327				      GFP_KERNEL);
1328	if (!params->vreg_offset) {
1329		ret = -ENOMEM;
1330		goto out;
1331	}
1332
1333	for (i = 1; i < n_dice; i++)
1334		params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2];
1335
1336	params->n_dice = n_dice;
1337
1338out:
1339	kfree(dwords);
1340	return ret;
1341}
1342
1343/**
1344 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1345 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1346 * tables.
1347 * @nor:	pointer to a 'struct spi_nor'
1348 *
1349 * Used to tweak various flash parameters when information provided by the SFDP
1350 * tables are wrong.
1351 */
1352static int spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1353{
1354	int ret;
1355
1356	if (nor->manufacturer && nor->manufacturer->fixups &&
1357	    nor->manufacturer->fixups->post_sfdp) {
1358		ret = nor->manufacturer->fixups->post_sfdp(nor);
1359		if (ret)
1360			return ret;
1361	}
1362
1363	if (nor->info->fixups && nor->info->fixups->post_sfdp)
1364		return nor->info->fixups->post_sfdp(nor);
1365
1366	return 0;
1367}
1368
1369/**
1370 * spi_nor_check_sfdp_signature() - check for a valid SFDP signature
1371 * @nor:	pointer to a 'struct spi_nor'
1372 *
1373 * Used to detect if the flash supports the RDSFDP command as well as the
1374 * presence of a valid SFDP table.
1375 *
1376 * Return: 0 on success, -errno otherwise.
1377 */
1378int spi_nor_check_sfdp_signature(struct spi_nor *nor)
1379{
1380	u32 signature;
1381	int err;
1382
1383	/* Get the SFDP header. */
1384	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature),
1385					   &signature);
1386	if (err < 0)
1387		return err;
1388
1389	/* Check the SFDP signature. */
1390	if (le32_to_cpu(signature) != SFDP_SIGNATURE)
1391		return -EINVAL;
1392
1393	return 0;
1394}
1395
1396/**
1397 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1398 * @nor:		pointer to a 'struct spi_nor'
1399 *
1400 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1401 * specification. This is a standard which tends to supported by almost all
1402 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1403 * runtime the main parameters needed to perform basic SPI flash operations such
1404 * as Fast Read, Page Program or Sector Erase commands.
1405 *
1406 * Return: 0 on success, -errno otherwise.
1407 */
1408int spi_nor_parse_sfdp(struct spi_nor *nor)
1409{
1410	const struct sfdp_parameter_header *param_header, *bfpt_header;
1411	struct sfdp_parameter_header *param_headers = NULL;
1412	struct sfdp_header header;
1413	struct device *dev = nor->dev;
1414	struct sfdp *sfdp;
1415	size_t sfdp_size;
1416	size_t psize;
1417	int i, err;
1418
1419	/* Get the SFDP header. */
1420	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1421	if (err < 0)
1422		return err;
1423
1424	/* Check the SFDP header version. */
1425	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1426	    header.major != SFDP_JESD216_MAJOR)
1427		return -EINVAL;
1428
1429	/*
1430	 * Verify that the first and only mandatory parameter header is a
1431	 * Basic Flash Parameter Table header as specified in JESD216.
1432	 */
1433	bfpt_header = &header.bfpt_header;
1434	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1435	    bfpt_header->major != SFDP_JESD216_MAJOR)
1436		return -EINVAL;
1437
1438	sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1439		    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1440
1441	/*
1442	 * Allocate memory then read all parameter headers with a single
1443	 * Read SFDP command. These parameter headers will actually be parsed
1444	 * twice: a first time to get the latest revision of the basic flash
1445	 * parameter table, then a second time to handle the supported optional
1446	 * tables.
1447	 * Hence we read the parameter headers once for all to reduce the
1448	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1449	 * because we don't need to keep these parameter headers: the allocated
1450	 * memory is always released with kfree() before exiting this function.
1451	 */
1452	if (header.nph) {
1453		psize = header.nph * sizeof(*param_headers);
1454
1455		param_headers = kmalloc(psize, GFP_KERNEL);
1456		if (!param_headers)
1457			return -ENOMEM;
1458
1459		err = spi_nor_read_sfdp(nor, sizeof(header),
1460					psize, param_headers);
1461		if (err < 0) {
1462			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1463			goto exit;
1464		}
1465	}
1466
1467	/*
1468	 * Cache the complete SFDP data. It is not (easily) possible to fetch
1469	 * SFDP after probe time and we need it for the sysfs access.
1470	 */
1471	for (i = 0; i < header.nph; i++) {
1472		param_header = &param_headers[i];
1473		sfdp_size = max_t(size_t, sfdp_size,
1474				  SFDP_PARAM_HEADER_PTP(param_header) +
1475				  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1476	}
1477
1478	/*
1479	 * Limit the total size to a reasonable value to avoid allocating too
1480	 * much memory just of because the flash returned some insane values.
1481	 */
1482	if (sfdp_size > PAGE_SIZE) {
1483		dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1484			sfdp_size);
1485		sfdp_size = PAGE_SIZE;
1486	}
1487
1488	sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1489	if (!sfdp) {
1490		err = -ENOMEM;
1491		goto exit;
1492	}
1493
1494	/*
1495	 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1496	 * sfdp_size should be a multiple of DWORDs. But in case a flash
1497	 * is not spec compliant, make sure that we have enough space to store
1498	 * the complete SFDP data.
1499	 */
1500	sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1501	sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1502				    sizeof(*sfdp->dwords), GFP_KERNEL);
1503	if (!sfdp->dwords) {
1504		err = -ENOMEM;
1505		devm_kfree(dev, sfdp);
1506		goto exit;
1507	}
1508
1509	err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1510	if (err < 0) {
1511		dev_dbg(dev, "failed to read SFDP data\n");
1512		devm_kfree(dev, sfdp->dwords);
1513		devm_kfree(dev, sfdp);
1514		goto exit;
1515	}
1516
1517	nor->sfdp = sfdp;
1518
1519	/*
1520	 * Check other parameter headers to get the latest revision of
1521	 * the basic flash parameter table.
1522	 */
1523	for (i = 0; i < header.nph; i++) {
1524		param_header = &param_headers[i];
1525
1526		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1527		    param_header->major == SFDP_JESD216_MAJOR &&
1528		    (param_header->minor > bfpt_header->minor ||
1529		     (param_header->minor == bfpt_header->minor &&
1530		      param_header->length > bfpt_header->length)))
1531			bfpt_header = param_header;
1532	}
1533
1534	err = spi_nor_parse_bfpt(nor, bfpt_header);
1535	if (err)
1536		goto exit;
1537
1538	/* Parse optional parameter tables. */
1539	for (i = 0; i < header.nph; i++) {
1540		param_header = &param_headers[i];
1541
1542		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1543		case SFDP_SECTOR_MAP_ID:
1544			err = spi_nor_parse_smpt(nor, param_header);
1545			break;
1546
1547		case SFDP_4BAIT_ID:
1548			err = spi_nor_parse_4bait(nor, param_header);
1549			break;
1550
1551		case SFDP_PROFILE1_ID:
1552			err = spi_nor_parse_profile1(nor, param_header);
1553			break;
1554
1555		case SFDP_SCCR_MAP_ID:
1556			err = spi_nor_parse_sccr(nor, param_header);
1557			break;
1558
1559		case SFDP_SCCR_MAP_MC_ID:
1560			err = spi_nor_parse_sccr_mc(nor, param_header);
1561			break;
1562
1563		default:
1564			break;
1565		}
1566
1567		if (err) {
1568			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1569				 SFDP_PARAM_HEADER_ID(param_header));
1570			/*
1571			 * Let's not drop all information we extracted so far
1572			 * if optional table parsers fail. In case of failing,
1573			 * each optional parser is responsible to roll back to
1574			 * the previously known spi_nor data.
1575			 */
1576			err = 0;
1577		}
1578	}
1579
1580	err = spi_nor_post_sfdp_fixups(nor);
1581exit:
1582	kfree(param_headers);
1583	return err;
1584}
1585