1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
4 *
5 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
6 * Jason ported to M54418TWR and MVFA5 (VF610).
7 * Authors: Stefan Agner <stefan.agner@toradex.com>
8 *          Bill Pringlemeir <bpringlemeir@nbsps.com>
9 *          Shaohui Xie <b21989@freescale.com>
10 *          Jason Jin <Jason.jin@freescale.com>
11 *
12 * Based on original driver mpc5121_nfc.c.
13 *
14 * Limitations:
15 * - Untested on MPC5125 and M54418.
16 * - DMA and pipelining not used.
17 * - 2K pages or less.
18 * - HW ECC: Only 2K page with 64+ OOB.
19 * - HW ECC: Only 24 and 32-bit error correction implemented.
20 */
21
22#include <linux/module.h>
23#include <linux/bitops.h>
24#include <linux/clk.h>
25#include <linux/delay.h>
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/mtd/mtd.h>
30#include <linux/mtd/rawnand.h>
31#include <linux/mtd/partitions.h>
32#include <linux/of.h>
33#include <linux/platform_device.h>
34#include <linux/property.h>
35#include <linux/slab.h>
36#include <linux/swab.h>
37
38#define	DRV_NAME		"vf610_nfc"
39
40/* Register Offsets */
41#define NFC_FLASH_CMD1			0x3F00
42#define NFC_FLASH_CMD2			0x3F04
43#define NFC_COL_ADDR			0x3F08
44#define NFC_ROW_ADDR			0x3F0c
45#define NFC_ROW_ADDR_INC		0x3F14
46#define NFC_FLASH_STATUS1		0x3F18
47#define NFC_FLASH_STATUS2		0x3F1c
48#define NFC_CACHE_SWAP			0x3F28
49#define NFC_SECTOR_SIZE			0x3F2c
50#define NFC_FLASH_CONFIG		0x3F30
51#define NFC_IRQ_STATUS			0x3F38
52
53/* Addresses for NFC MAIN RAM BUFFER areas */
54#define NFC_MAIN_AREA(n)		((n) *  0x1000)
55
56#define PAGE_2K				0x0800
57#define OOB_64				0x0040
58#define OOB_MAX				0x0100
59
60/* NFC_CMD2[CODE] controller cycle bit masks */
61#define COMMAND_CMD_BYTE1		BIT(14)
62#define COMMAND_CAR_BYTE1		BIT(13)
63#define COMMAND_CAR_BYTE2		BIT(12)
64#define COMMAND_RAR_BYTE1		BIT(11)
65#define COMMAND_RAR_BYTE2		BIT(10)
66#define COMMAND_RAR_BYTE3		BIT(9)
67#define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) + 1)
68#define COMMAND_WRITE_DATA		BIT(8)
69#define COMMAND_CMD_BYTE2		BIT(7)
70#define COMMAND_RB_HANDSHAKE		BIT(6)
71#define COMMAND_READ_DATA		BIT(5)
72#define COMMAND_CMD_BYTE3		BIT(4)
73#define COMMAND_READ_STATUS		BIT(3)
74#define COMMAND_READ_ID			BIT(2)
75
76/* NFC ECC mode define */
77#define ECC_BYPASS			0
78#define ECC_45_BYTE			6
79#define ECC_60_BYTE			7
80
81/*** Register Mask and bit definitions */
82
83/* NFC_FLASH_CMD1 Field */
84#define CMD_BYTE2_MASK				0xFF000000
85#define CMD_BYTE2_SHIFT				24
86
87/* NFC_FLASH_CM2 Field */
88#define CMD_BYTE1_MASK				0xFF000000
89#define CMD_BYTE1_SHIFT				24
90#define CMD_CODE_MASK				0x00FFFF00
91#define CMD_CODE_SHIFT				8
92#define BUFNO_MASK				0x00000006
93#define BUFNO_SHIFT				1
94#define START_BIT				BIT(0)
95
96/* NFC_COL_ADDR Field */
97#define COL_ADDR_MASK				0x0000FFFF
98#define COL_ADDR_SHIFT				0
99#define COL_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
100
101/* NFC_ROW_ADDR Field */
102#define ROW_ADDR_MASK				0x00FFFFFF
103#define ROW_ADDR_SHIFT				0
104#define ROW_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
105
106#define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
107#define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
108#define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
109#define ROW_ADDR_CHIP_SEL_SHIFT			24
110
111/* NFC_FLASH_STATUS2 Field */
112#define STATUS_BYTE1_MASK			0x000000FF
113
114/* NFC_FLASH_CONFIG Field */
115#define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
116#define CONFIG_ECC_SRAM_ADDR_SHIFT		22
117#define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
118#define CONFIG_DMA_REQ_BIT			BIT(20)
119#define CONFIG_ECC_MODE_MASK			0x000E0000
120#define CONFIG_ECC_MODE_SHIFT			17
121#define CONFIG_FAST_FLASH_BIT			BIT(16)
122#define CONFIG_16BIT				BIT(7)
123#define CONFIG_BOOT_MODE_BIT			BIT(6)
124#define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
125#define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
126#define CONFIG_PAGE_CNT_MASK			0xF
127#define CONFIG_PAGE_CNT_SHIFT			0
128
129/* NFC_IRQ_STATUS Field */
130#define IDLE_IRQ_BIT				BIT(29)
131#define IDLE_EN_BIT				BIT(20)
132#define CMD_DONE_CLEAR_BIT			BIT(18)
133#define IDLE_CLEAR_BIT				BIT(17)
134
135/*
136 * ECC status - seems to consume 8 bytes (double word). The documented
137 * status byte is located in the lowest byte of the second word (which is
138 * the 4th or 7th byte depending on endianness).
139 * Calculate an offset to store the ECC status at the end of the buffer.
140 */
141#define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)
142
143#define ECC_STATUS		0x4
144#define ECC_STATUS_MASK		0x80
145#define ECC_STATUS_ERR_COUNT	0x3F
146
147enum vf610_nfc_variant {
148	NFC_VFC610 = 1,
149};
150
151struct vf610_nfc {
152	struct nand_controller base;
153	struct nand_chip chip;
154	struct device *dev;
155	void __iomem *regs;
156	struct completion cmd_done;
157	/* Status and ID are in alternate locations. */
158	enum vf610_nfc_variant variant;
159	struct clk *clk;
160	/*
161	 * Indicate that user data is accessed (full page/oob). This is
162	 * useful to indicate the driver whether to swap byte endianness.
163	 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
164	 */
165	bool data_access;
166	u32 ecc_mode;
167};
168
169static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
170{
171	return container_of(chip, struct vf610_nfc, chip);
172}
173
174static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
175{
176	return readl(nfc->regs + reg);
177}
178
179static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
180{
181	writel(val, nfc->regs + reg);
182}
183
184static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
185{
186	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
187}
188
189static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
190{
191	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
192}
193
194static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
195				       u32 mask, u32 shift, u32 val)
196{
197	vf610_nfc_write(nfc, reg,
198			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
199}
200
201static inline bool vf610_nfc_kernel_is_little_endian(void)
202{
203#ifdef __LITTLE_ENDIAN
204	return true;
205#else
206	return false;
207#endif
208}
209
210/*
211 * Read accessor for internal SRAM buffer
212 * @dst: destination address in regular memory
213 * @src: source address in SRAM buffer
214 * @len: bytes to copy
215 * @fix_endian: Fix endianness if required
216 *
217 * Use this accessor for the internal SRAM buffers. On the ARM
218 * Freescale Vybrid SoC it's known that the driver can treat
219 * the SRAM buffer as if it's memory. Other platform might need
220 * to treat the buffers differently.
221 *
222 * The controller stores bytes from the NAND chip internally in big
223 * endianness. On little endian platforms such as Vybrid this leads
224 * to reversed byte order.
225 * For performance reason (and earlier probably due to unawareness)
226 * the driver avoids correcting endianness where it has control over
227 * write and read side (e.g. page wise data access).
228 */
229static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
230					  size_t len, bool fix_endian)
231{
232	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
233		unsigned int i;
234
235		for (i = 0; i < len; i += 4) {
236			u32 val = swab32(__raw_readl(src + i));
237
238			memcpy(dst + i, &val, min(sizeof(val), len - i));
239		}
240	} else {
241		memcpy_fromio(dst, src, len);
242	}
243}
244
245/*
246 * Write accessor for internal SRAM buffer
247 * @dst: destination address in SRAM buffer
248 * @src: source address in regular memory
249 * @len: bytes to copy
250 * @fix_endian: Fix endianness if required
251 *
252 * Use this accessor for the internal SRAM buffers. On the ARM
253 * Freescale Vybrid SoC it's known that the driver can treat
254 * the SRAM buffer as if it's memory. Other platform might need
255 * to treat the buffers differently.
256 *
257 * The controller stores bytes from the NAND chip internally in big
258 * endianness. On little endian platforms such as Vybrid this leads
259 * to reversed byte order.
260 * For performance reason (and earlier probably due to unawareness)
261 * the driver avoids correcting endianness where it has control over
262 * write and read side (e.g. page wise data access).
263 */
264static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
265					size_t len, bool fix_endian)
266{
267	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
268		unsigned int i;
269
270		for (i = 0; i < len; i += 4) {
271			u32 val;
272
273			memcpy(&val, src + i, min(sizeof(val), len - i));
274			__raw_writel(swab32(val), dst + i);
275		}
276	} else {
277		memcpy_toio(dst, src, len);
278	}
279}
280
281/* Clear flags for upcoming command */
282static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
283{
284	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
285
286	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
287	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
288}
289
290static void vf610_nfc_done(struct vf610_nfc *nfc)
291{
292	unsigned long timeout = msecs_to_jiffies(100);
293
294	/*
295	 * Barrier is needed after this write. This write need
296	 * to be done before reading the next register the first
297	 * time.
298	 * vf610_nfc_set implicates such a barrier by using writel
299	 * to write to the register.
300	 */
301	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
302	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
303
304	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
305		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
306
307	vf610_nfc_clear_status(nfc);
308}
309
310static irqreturn_t vf610_nfc_irq(int irq, void *data)
311{
312	struct vf610_nfc *nfc = data;
313
314	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
315	complete(&nfc->cmd_done);
316
317	return IRQ_HANDLED;
318}
319
320static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
321{
322	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
323			    CONFIG_ECC_MODE_MASK,
324			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
325}
326
327static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
328				 u32 cmd1, u32 cmd2, u32 trfr_sz)
329{
330	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
331			    COL_ADDR_SHIFT, col);
332
333	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
334			    ROW_ADDR_SHIFT, row);
335
336	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
337	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
338	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
339
340	dev_dbg(nfc->dev,
341		"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
342		col, row, cmd1, cmd2, trfr_sz);
343
344	vf610_nfc_done(nfc);
345}
346
347static inline const struct nand_op_instr *
348vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
349{
350	if (*op_id + 1 >= subop->ninstrs)
351		return NULL;
352
353	(*op_id)++;
354
355	return &subop->instrs[*op_id];
356}
357
358static int vf610_nfc_cmd(struct nand_chip *chip,
359			 const struct nand_subop *subop)
360{
361	const struct nand_op_instr *instr;
362	struct vf610_nfc *nfc = chip_to_nfc(chip);
363	int op_id = -1, trfr_sz = 0, offset = 0;
364	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
365	bool force8bit = false;
366
367	/*
368	 * Some ops are optional, but the hardware requires the operations
369	 * to be in this exact order.
370	 * The op parser enforces the order and makes sure that there isn't
371	 * a read and write element in a single operation.
372	 */
373	instr = vf610_get_next_instr(subop, &op_id);
374	if (!instr)
375		return -EINVAL;
376
377	if (instr && instr->type == NAND_OP_CMD_INSTR) {
378		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
379		code |= COMMAND_CMD_BYTE1;
380
381		instr = vf610_get_next_instr(subop, &op_id);
382	}
383
384	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
385		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
386		int i = nand_subop_get_addr_start_off(subop, op_id);
387
388		for (; i < naddrs; i++) {
389			u8 val = instr->ctx.addr.addrs[i];
390
391			if (i < 2)
392				col |= COL_ADDR(i, val);
393			else
394				row |= ROW_ADDR(i - 2, val);
395		}
396		code |= COMMAND_NADDR_BYTES(naddrs);
397
398		instr = vf610_get_next_instr(subop, &op_id);
399	}
400
401	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
402		trfr_sz = nand_subop_get_data_len(subop, op_id);
403		offset = nand_subop_get_data_start_off(subop, op_id);
404		force8bit = instr->ctx.data.force_8bit;
405
406		/*
407		 * Don't fix endianness on page access for historical reasons.
408		 * See comment in vf610_nfc_wr_to_sram
409		 */
410		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
411				     instr->ctx.data.buf.out + offset,
412				     trfr_sz, !nfc->data_access);
413		code |= COMMAND_WRITE_DATA;
414
415		instr = vf610_get_next_instr(subop, &op_id);
416	}
417
418	if (instr && instr->type == NAND_OP_CMD_INSTR) {
419		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
420		code |= COMMAND_CMD_BYTE2;
421
422		instr = vf610_get_next_instr(subop, &op_id);
423	}
424
425	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
426		code |= COMMAND_RB_HANDSHAKE;
427
428		instr = vf610_get_next_instr(subop, &op_id);
429	}
430
431	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
432		trfr_sz = nand_subop_get_data_len(subop, op_id);
433		offset = nand_subop_get_data_start_off(subop, op_id);
434		force8bit = instr->ctx.data.force_8bit;
435
436		code |= COMMAND_READ_DATA;
437	}
438
439	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
440		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
441
442	cmd2 |= code << CMD_CODE_SHIFT;
443
444	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
445
446	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
447		/*
448		 * Don't fix endianness on page access for historical reasons.
449		 * See comment in vf610_nfc_rd_from_sram
450		 */
451		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
452				       nfc->regs + NFC_MAIN_AREA(0) + offset,
453				       trfr_sz, !nfc->data_access);
454	}
455
456	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
457		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
458
459	return 0;
460}
461
462static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
463	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
464		NAND_OP_PARSER_PAT_CMD_ELEM(true),
465		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
466		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
467		NAND_OP_PARSER_PAT_CMD_ELEM(true),
468		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
469	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
470		NAND_OP_PARSER_PAT_CMD_ELEM(true),
471		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
472		NAND_OP_PARSER_PAT_CMD_ELEM(true),
473		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
474		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
475	);
476
477/*
478 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
479 */
480static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
481{
482	struct vf610_nfc *nfc = chip_to_nfc(chip);
483	u32 tmp;
484
485	/* Vybrid only (MPC5125 would have full RB and four CS) */
486	if (nfc->variant != NFC_VFC610)
487		return;
488
489	tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
490	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
491	tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
492	tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
493
494	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
495}
496
497static int vf610_nfc_exec_op(struct nand_chip *chip,
498			     const struct nand_operation *op,
499			     bool check_only)
500{
501	if (!check_only)
502		vf610_nfc_select_target(chip, op->cs);
503
504	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
505				      check_only);
506}
507
508static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
509					 uint8_t *oob, int page)
510{
511	struct vf610_nfc *nfc = chip_to_nfc(chip);
512	struct mtd_info *mtd = nand_to_mtd(chip);
513	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
514	u8 ecc_status;
515	u8 ecc_count;
516	int flips_threshold = nfc->chip.ecc.strength / 2;
517
518	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
519	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
520
521	if (!(ecc_status & ECC_STATUS_MASK))
522		return ecc_count;
523
524	nfc->data_access = true;
525	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
526	nfc->data_access = false;
527
528	/*
529	 * On an erased page, bit count (including OOB) should be zero or
530	 * at least less then half of the ECC strength.
531	 */
532	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
533					   mtd->oobsize, NULL, 0,
534					   flips_threshold);
535}
536
537static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
538			       u32 *row)
539{
540	*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
541	*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
542
543	if (chip->options & NAND_ROW_ADDR_3) {
544		*row |= ROW_ADDR(2, page >> 16);
545		*code |= COMMAND_RAR_BYTE3;
546	}
547}
548
549static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
550			       int oob_required, int page)
551{
552	struct vf610_nfc *nfc = chip_to_nfc(chip);
553	struct mtd_info *mtd = nand_to_mtd(chip);
554	int trfr_sz = mtd->writesize + mtd->oobsize;
555	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
556	int stat;
557
558	vf610_nfc_select_target(chip, chip->cur_cs);
559
560	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
561	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
562
563	vf610_nfc_fill_row(chip, page, &code, &row);
564
565	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
566	code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
567
568	cmd2 |= code << CMD_CODE_SHIFT;
569
570	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
571	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
572	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
573
574	/*
575	 * Don't fix endianness on page access for historical reasons.
576	 * See comment in vf610_nfc_rd_from_sram
577	 */
578	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
579			       mtd->writesize, false);
580	if (oob_required)
581		vf610_nfc_rd_from_sram(chip->oob_poi,
582				       nfc->regs + NFC_MAIN_AREA(0) +
583						   mtd->writesize,
584				       mtd->oobsize, false);
585
586	stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
587
588	if (stat < 0) {
589		mtd->ecc_stats.failed++;
590		return 0;
591	} else {
592		mtd->ecc_stats.corrected += stat;
593		return stat;
594	}
595}
596
597static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
598				int oob_required, int page)
599{
600	struct vf610_nfc *nfc = chip_to_nfc(chip);
601	struct mtd_info *mtd = nand_to_mtd(chip);
602	int trfr_sz = mtd->writesize + mtd->oobsize;
603	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
604	u8 status;
605	int ret;
606
607	vf610_nfc_select_target(chip, chip->cur_cs);
608
609	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
610	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
611
612	vf610_nfc_fill_row(chip, page, &code, &row);
613
614	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
615	code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
616
617	/*
618	 * Don't fix endianness on page access for historical reasons.
619	 * See comment in vf610_nfc_wr_to_sram
620	 */
621	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
622			     mtd->writesize, false);
623
624	code |= COMMAND_RB_HANDSHAKE;
625	cmd2 |= code << CMD_CODE_SHIFT;
626
627	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
628	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
629	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
630
631	ret = nand_status_op(chip, &status);
632	if (ret)
633		return ret;
634
635	if (status & NAND_STATUS_FAIL)
636		return -EIO;
637
638	return 0;
639}
640
641static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
642				   int oob_required, int page)
643{
644	struct vf610_nfc *nfc = chip_to_nfc(chip);
645	int ret;
646
647	nfc->data_access = true;
648	ret = nand_read_page_raw(chip, buf, oob_required, page);
649	nfc->data_access = false;
650
651	return ret;
652}
653
654static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
655				    int oob_required, int page)
656{
657	struct vf610_nfc *nfc = chip_to_nfc(chip);
658	struct mtd_info *mtd = nand_to_mtd(chip);
659	int ret;
660
661	nfc->data_access = true;
662	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
663	if (!ret && oob_required)
664		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
665					 false);
666	nfc->data_access = false;
667
668	if (ret)
669		return ret;
670
671	return nand_prog_page_end_op(chip);
672}
673
674static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
675{
676	struct vf610_nfc *nfc = chip_to_nfc(chip);
677	int ret;
678
679	nfc->data_access = true;
680	ret = nand_read_oob_std(chip, page);
681	nfc->data_access = false;
682
683	return ret;
684}
685
686static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
687{
688	struct mtd_info *mtd = nand_to_mtd(chip);
689	struct vf610_nfc *nfc = chip_to_nfc(chip);
690	int ret;
691
692	nfc->data_access = true;
693	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
694				      chip->oob_poi, mtd->oobsize);
695	nfc->data_access = false;
696
697	if (ret)
698		return ret;
699
700	return nand_prog_page_end_op(chip);
701}
702
703static const struct of_device_id vf610_nfc_dt_ids[] = {
704	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
705	{ /* sentinel */ }
706};
707MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
708
709static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
710{
711	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
712	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
713	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
714	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
715	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
716	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
717	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
718
719	/* Disable virtual pages, only one elementary transfer unit */
720	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
721			    CONFIG_PAGE_CNT_SHIFT, 1);
722}
723
724static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
725{
726	if (nfc->chip.options & NAND_BUSWIDTH_16)
727		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
728	else
729		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
730
731	if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
732		/* Set ECC status offset in SRAM */
733		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
734				    CONFIG_ECC_SRAM_ADDR_MASK,
735				    CONFIG_ECC_SRAM_ADDR_SHIFT,
736				    ECC_SRAM_ADDR >> 3);
737
738		/* Enable ECC status in SRAM */
739		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
740	}
741}
742
743static int vf610_nfc_attach_chip(struct nand_chip *chip)
744{
745	struct mtd_info *mtd = nand_to_mtd(chip);
746	struct vf610_nfc *nfc = chip_to_nfc(chip);
747
748	vf610_nfc_init_controller(nfc);
749
750	/* Bad block options. */
751	if (chip->bbt_options & NAND_BBT_USE_FLASH)
752		chip->bbt_options |= NAND_BBT_NO_OOB;
753
754	/* Single buffer only, max 256 OOB minus ECC status */
755	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
756		dev_err(nfc->dev, "Unsupported flash page size\n");
757		return -ENXIO;
758	}
759
760	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
761		return 0;
762
763	if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
764		dev_err(nfc->dev, "Unsupported flash with hwecc\n");
765		return -ENXIO;
766	}
767
768	if (chip->ecc.size != mtd->writesize) {
769		dev_err(nfc->dev, "Step size needs to be page size\n");
770		return -ENXIO;
771	}
772
773	/* Only 64 byte ECC layouts known */
774	if (mtd->oobsize > 64)
775		mtd->oobsize = 64;
776
777	/* Use default large page ECC layout defined in NAND core */
778	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
779	if (chip->ecc.strength == 32) {
780		nfc->ecc_mode = ECC_60_BYTE;
781		chip->ecc.bytes = 60;
782	} else if (chip->ecc.strength == 24) {
783		nfc->ecc_mode = ECC_45_BYTE;
784		chip->ecc.bytes = 45;
785	} else {
786		dev_err(nfc->dev, "Unsupported ECC strength\n");
787		return -ENXIO;
788	}
789
790	chip->ecc.read_page = vf610_nfc_read_page;
791	chip->ecc.write_page = vf610_nfc_write_page;
792	chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
793	chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
794	chip->ecc.read_oob = vf610_nfc_read_oob;
795	chip->ecc.write_oob = vf610_nfc_write_oob;
796
797	chip->ecc.size = PAGE_2K;
798
799	return 0;
800}
801
802static const struct nand_controller_ops vf610_nfc_controller_ops = {
803	.attach_chip = vf610_nfc_attach_chip,
804	.exec_op = vf610_nfc_exec_op,
805
806};
807
808static int vf610_nfc_probe(struct platform_device *pdev)
809{
810	struct vf610_nfc *nfc;
811	struct mtd_info *mtd;
812	struct nand_chip *chip;
813	struct device_node *child;
814	int err;
815	int irq;
816
817	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
818	if (!nfc)
819		return -ENOMEM;
820
821	nfc->dev = &pdev->dev;
822	chip = &nfc->chip;
823	mtd = nand_to_mtd(chip);
824
825	mtd->owner = THIS_MODULE;
826	mtd->dev.parent = nfc->dev;
827	mtd->name = DRV_NAME;
828
829	irq = platform_get_irq(pdev, 0);
830	if (irq < 0)
831		return irq;
832
833	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
834	if (IS_ERR(nfc->regs))
835		return PTR_ERR(nfc->regs);
836
837	nfc->clk = devm_clk_get_enabled(&pdev->dev, NULL);
838	if (IS_ERR(nfc->clk)) {
839		dev_err(nfc->dev, "Unable to get and enable clock!\n");
840		return PTR_ERR(nfc->clk);
841	}
842
843	nfc->variant = (enum vf610_nfc_variant)device_get_match_data(&pdev->dev);
844	if (!nfc->variant)
845		return -ENODEV;
846
847	for_each_available_child_of_node(nfc->dev->of_node, child) {
848		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
849
850			if (nand_get_flash_node(chip)) {
851				dev_err(nfc->dev,
852					"Only one NAND chip supported!\n");
853				of_node_put(child);
854				return -EINVAL;
855			}
856
857			nand_set_flash_node(chip, child);
858		}
859	}
860
861	if (!nand_get_flash_node(chip)) {
862		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
863		return -ENODEV;
864	}
865
866	chip->options |= NAND_NO_SUBPAGE_WRITE;
867
868	init_completion(&nfc->cmd_done);
869
870	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
871	if (err) {
872		dev_err(nfc->dev, "Error requesting IRQ!\n");
873		return err;
874	}
875
876	vf610_nfc_preinit_controller(nfc);
877
878	nand_controller_init(&nfc->base);
879	nfc->base.ops = &vf610_nfc_controller_ops;
880	chip->controller = &nfc->base;
881
882	/* Scan the NAND chip */
883	err = nand_scan(chip, 1);
884	if (err)
885		return err;
886
887	platform_set_drvdata(pdev, nfc);
888
889	/* Register device in MTD */
890	err = mtd_device_register(mtd, NULL, 0);
891	if (err)
892		goto err_cleanup_nand;
893	return 0;
894
895err_cleanup_nand:
896	nand_cleanup(chip);
897	return err;
898}
899
900static void vf610_nfc_remove(struct platform_device *pdev)
901{
902	struct vf610_nfc *nfc = platform_get_drvdata(pdev);
903	struct nand_chip *chip = &nfc->chip;
904	int ret;
905
906	ret = mtd_device_unregister(nand_to_mtd(chip));
907	WARN_ON(ret);
908	nand_cleanup(chip);
909}
910
911#ifdef CONFIG_PM_SLEEP
912static int vf610_nfc_suspend(struct device *dev)
913{
914	struct vf610_nfc *nfc = dev_get_drvdata(dev);
915
916	clk_disable_unprepare(nfc->clk);
917	return 0;
918}
919
920static int vf610_nfc_resume(struct device *dev)
921{
922	struct vf610_nfc *nfc = dev_get_drvdata(dev);
923	int err;
924
925	err = clk_prepare_enable(nfc->clk);
926	if (err)
927		return err;
928
929	vf610_nfc_preinit_controller(nfc);
930	vf610_nfc_init_controller(nfc);
931	return 0;
932}
933#endif
934
935static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
936
937static struct platform_driver vf610_nfc_driver = {
938	.driver		= {
939		.name	= DRV_NAME,
940		.of_match_table = vf610_nfc_dt_ids,
941		.pm	= &vf610_nfc_pm_ops,
942	},
943	.probe		= vf610_nfc_probe,
944	.remove_new	= vf610_nfc_remove,
945};
946
947module_platform_driver(vf610_nfc_driver);
948
949MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
950MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
951MODULE_LICENSE("GPL");
952