1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) STMicroelectronics 2018
4 * Author: Christophe Kerello <christophe.kerello@st.com>
5 */
6
7#include <linux/bitfield.h>
8#include <linux/clk.h>
9#include <linux/dmaengine.h>
10#include <linux/dma-mapping.h>
11#include <linux/errno.h>
12#include <linux/gpio/consumer.h>
13#include <linux/interrupt.h>
14#include <linux/iopoll.h>
15#include <linux/mfd/syscon.h>
16#include <linux/module.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/of_address.h>
19#include <linux/of_device.h>
20#include <linux/pinctrl/consumer.h>
21#include <linux/platform_device.h>
22#include <linux/regmap.h>
23#include <linux/reset.h>
24
25/* Bad block marker length */
26#define FMC2_BBM_LEN			2
27
28/* ECC step size */
29#define FMC2_ECC_STEP_SIZE		512
30
31/* BCHDSRx registers length */
32#define FMC2_BCHDSRS_LEN		20
33
34/* HECCR length */
35#define FMC2_HECCR_LEN			4
36
37/* Max requests done for a 8k nand page size */
38#define FMC2_MAX_SG			16
39
40/* Max chip enable */
41#define FMC2_MAX_CE			4
42
43/* Max ECC buffer length */
44#define FMC2_MAX_ECC_BUF_LEN		(FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
45
46#define FMC2_TIMEOUT_MS			5000
47
48/* Timings */
49#define FMC2_THIZ			1
50#define FMC2_TIO			8000
51#define FMC2_TSYNC			3000
52#define FMC2_PCR_TIMING_MASK		0xf
53#define FMC2_PMEM_PATT_TIMING_MASK	0xff
54
55/* FMC2 Controller Registers */
56#define FMC2_BCR1			0x0
57#define FMC2_PCR			0x80
58#define FMC2_SR				0x84
59#define FMC2_PMEM			0x88
60#define FMC2_PATT			0x8c
61#define FMC2_HECCR			0x94
62#define FMC2_ISR			0x184
63#define FMC2_ICR			0x188
64#define FMC2_CSQCR			0x200
65#define FMC2_CSQCFGR1			0x204
66#define FMC2_CSQCFGR2			0x208
67#define FMC2_CSQCFGR3			0x20c
68#define FMC2_CSQAR1			0x210
69#define FMC2_CSQAR2			0x214
70#define FMC2_CSQIER			0x220
71#define FMC2_CSQISR			0x224
72#define FMC2_CSQICR			0x228
73#define FMC2_CSQEMSR			0x230
74#define FMC2_BCHIER			0x250
75#define FMC2_BCHISR			0x254
76#define FMC2_BCHICR			0x258
77#define FMC2_BCHPBR1			0x260
78#define FMC2_BCHPBR2			0x264
79#define FMC2_BCHPBR3			0x268
80#define FMC2_BCHPBR4			0x26c
81#define FMC2_BCHDSR0			0x27c
82#define FMC2_BCHDSR1			0x280
83#define FMC2_BCHDSR2			0x284
84#define FMC2_BCHDSR3			0x288
85#define FMC2_BCHDSR4			0x28c
86
87/* Register: FMC2_BCR1 */
88#define FMC2_BCR1_FMC2EN		BIT(31)
89
90/* Register: FMC2_PCR */
91#define FMC2_PCR_PWAITEN		BIT(1)
92#define FMC2_PCR_PBKEN			BIT(2)
93#define FMC2_PCR_PWID			GENMASK(5, 4)
94#define FMC2_PCR_PWID_BUSWIDTH_8	0
95#define FMC2_PCR_PWID_BUSWIDTH_16	1
96#define FMC2_PCR_ECCEN			BIT(6)
97#define FMC2_PCR_ECCALG			BIT(8)
98#define FMC2_PCR_TCLR			GENMASK(12, 9)
99#define FMC2_PCR_TCLR_DEFAULT		0xf
100#define FMC2_PCR_TAR			GENMASK(16, 13)
101#define FMC2_PCR_TAR_DEFAULT		0xf
102#define FMC2_PCR_ECCSS			GENMASK(19, 17)
103#define FMC2_PCR_ECCSS_512		1
104#define FMC2_PCR_ECCSS_2048		3
105#define FMC2_PCR_BCHECC			BIT(24)
106#define FMC2_PCR_WEN			BIT(25)
107
108/* Register: FMC2_SR */
109#define FMC2_SR_NWRF			BIT(6)
110
111/* Register: FMC2_PMEM */
112#define FMC2_PMEM_MEMSET		GENMASK(7, 0)
113#define FMC2_PMEM_MEMWAIT		GENMASK(15, 8)
114#define FMC2_PMEM_MEMHOLD		GENMASK(23, 16)
115#define FMC2_PMEM_MEMHIZ		GENMASK(31, 24)
116#define FMC2_PMEM_DEFAULT		0x0a0a0a0a
117
118/* Register: FMC2_PATT */
119#define FMC2_PATT_ATTSET		GENMASK(7, 0)
120#define FMC2_PATT_ATTWAIT		GENMASK(15, 8)
121#define FMC2_PATT_ATTHOLD		GENMASK(23, 16)
122#define FMC2_PATT_ATTHIZ		GENMASK(31, 24)
123#define FMC2_PATT_DEFAULT		0x0a0a0a0a
124
125/* Register: FMC2_ISR */
126#define FMC2_ISR_IHLF			BIT(1)
127
128/* Register: FMC2_ICR */
129#define FMC2_ICR_CIHLF			BIT(1)
130
131/* Register: FMC2_CSQCR */
132#define FMC2_CSQCR_CSQSTART		BIT(0)
133
134/* Register: FMC2_CSQCFGR1 */
135#define FMC2_CSQCFGR1_CMD2EN		BIT(1)
136#define FMC2_CSQCFGR1_DMADEN		BIT(2)
137#define FMC2_CSQCFGR1_ACYNBR		GENMASK(6, 4)
138#define FMC2_CSQCFGR1_CMD1		GENMASK(15, 8)
139#define FMC2_CSQCFGR1_CMD2		GENMASK(23, 16)
140#define FMC2_CSQCFGR1_CMD1T		BIT(24)
141#define FMC2_CSQCFGR1_CMD2T		BIT(25)
142
143/* Register: FMC2_CSQCFGR2 */
144#define FMC2_CSQCFGR2_SQSDTEN		BIT(0)
145#define FMC2_CSQCFGR2_RCMD2EN		BIT(1)
146#define FMC2_CSQCFGR2_DMASEN		BIT(2)
147#define FMC2_CSQCFGR2_RCMD1		GENMASK(15, 8)
148#define FMC2_CSQCFGR2_RCMD2		GENMASK(23, 16)
149#define FMC2_CSQCFGR2_RCMD1T		BIT(24)
150#define FMC2_CSQCFGR2_RCMD2T		BIT(25)
151
152/* Register: FMC2_CSQCFGR3 */
153#define FMC2_CSQCFGR3_SNBR		GENMASK(13, 8)
154#define FMC2_CSQCFGR3_AC1T		BIT(16)
155#define FMC2_CSQCFGR3_AC2T		BIT(17)
156#define FMC2_CSQCFGR3_AC3T		BIT(18)
157#define FMC2_CSQCFGR3_AC4T		BIT(19)
158#define FMC2_CSQCFGR3_AC5T		BIT(20)
159#define FMC2_CSQCFGR3_SDT		BIT(21)
160#define FMC2_CSQCFGR3_RAC1T		BIT(22)
161#define FMC2_CSQCFGR3_RAC2T		BIT(23)
162
163/* Register: FMC2_CSQCAR1 */
164#define FMC2_CSQCAR1_ADDC1		GENMASK(7, 0)
165#define FMC2_CSQCAR1_ADDC2		GENMASK(15, 8)
166#define FMC2_CSQCAR1_ADDC3		GENMASK(23, 16)
167#define FMC2_CSQCAR1_ADDC4		GENMASK(31, 24)
168
169/* Register: FMC2_CSQCAR2 */
170#define FMC2_CSQCAR2_ADDC5		GENMASK(7, 0)
171#define FMC2_CSQCAR2_NANDCEN		GENMASK(11, 10)
172#define FMC2_CSQCAR2_SAO		GENMASK(31, 16)
173
174/* Register: FMC2_CSQIER */
175#define FMC2_CSQIER_TCIE		BIT(0)
176
177/* Register: FMC2_CSQICR */
178#define FMC2_CSQICR_CLEAR_IRQ		GENMASK(4, 0)
179
180/* Register: FMC2_CSQEMSR */
181#define FMC2_CSQEMSR_SEM		GENMASK(15, 0)
182
183/* Register: FMC2_BCHIER */
184#define FMC2_BCHIER_DERIE		BIT(1)
185#define FMC2_BCHIER_EPBRIE		BIT(4)
186
187/* Register: FMC2_BCHICR */
188#define FMC2_BCHICR_CLEAR_IRQ		GENMASK(4, 0)
189
190/* Register: FMC2_BCHDSR0 */
191#define FMC2_BCHDSR0_DUE		BIT(0)
192#define FMC2_BCHDSR0_DEF		BIT(1)
193#define FMC2_BCHDSR0_DEN		GENMASK(7, 4)
194
195/* Register: FMC2_BCHDSR1 */
196#define FMC2_BCHDSR1_EBP1		GENMASK(12, 0)
197#define FMC2_BCHDSR1_EBP2		GENMASK(28, 16)
198
199/* Register: FMC2_BCHDSR2 */
200#define FMC2_BCHDSR2_EBP3		GENMASK(12, 0)
201#define FMC2_BCHDSR2_EBP4		GENMASK(28, 16)
202
203/* Register: FMC2_BCHDSR3 */
204#define FMC2_BCHDSR3_EBP5		GENMASK(12, 0)
205#define FMC2_BCHDSR3_EBP6		GENMASK(28, 16)
206
207/* Register: FMC2_BCHDSR4 */
208#define FMC2_BCHDSR4_EBP7		GENMASK(12, 0)
209#define FMC2_BCHDSR4_EBP8		GENMASK(28, 16)
210
211enum stm32_fmc2_ecc {
212	FMC2_ECC_HAM = 1,
213	FMC2_ECC_BCH4 = 4,
214	FMC2_ECC_BCH8 = 8
215};
216
217enum stm32_fmc2_irq_state {
218	FMC2_IRQ_UNKNOWN = 0,
219	FMC2_IRQ_BCH,
220	FMC2_IRQ_SEQ
221};
222
223struct stm32_fmc2_timings {
224	u8 tclr;
225	u8 tar;
226	u8 thiz;
227	u8 twait;
228	u8 thold_mem;
229	u8 tset_mem;
230	u8 thold_att;
231	u8 tset_att;
232};
233
234struct stm32_fmc2_nand {
235	struct nand_chip chip;
236	struct gpio_desc *wp_gpio;
237	struct stm32_fmc2_timings timings;
238	int ncs;
239	int cs_used[FMC2_MAX_CE];
240};
241
242static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
243{
244	return container_of(chip, struct stm32_fmc2_nand, chip);
245}
246
247struct stm32_fmc2_nfc;
248
249struct stm32_fmc2_nfc_data {
250	int max_ncs;
251	int (*set_cdev)(struct stm32_fmc2_nfc *nfc);
252};
253
254struct stm32_fmc2_nfc {
255	struct nand_controller base;
256	struct stm32_fmc2_nand nand;
257	struct device *dev;
258	struct device *cdev;
259	struct regmap *regmap;
260	void __iomem *data_base[FMC2_MAX_CE];
261	void __iomem *cmd_base[FMC2_MAX_CE];
262	void __iomem *addr_base[FMC2_MAX_CE];
263	phys_addr_t io_phys_addr;
264	phys_addr_t data_phys_addr[FMC2_MAX_CE];
265	struct clk *clk;
266	u8 irq_state;
267	const struct stm32_fmc2_nfc_data *data;
268
269	struct dma_chan *dma_tx_ch;
270	struct dma_chan *dma_rx_ch;
271	struct dma_chan *dma_ecc_ch;
272	struct sg_table dma_data_sg;
273	struct sg_table dma_ecc_sg;
274	u8 *ecc_buf;
275	int dma_ecc_len;
276	u32 tx_dma_max_burst;
277	u32 rx_dma_max_burst;
278
279	struct completion complete;
280	struct completion dma_data_complete;
281	struct completion dma_ecc_complete;
282
283	u8 cs_assigned;
284	int cs_sel;
285};
286
287static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
288{
289	return container_of(base, struct stm32_fmc2_nfc, base);
290}
291
292static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
293{
294	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
295	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
296	struct stm32_fmc2_timings *timings = &nand->timings;
297	u32 pmem, patt;
298
299	/* Set tclr/tar timings */
300	regmap_update_bits(nfc->regmap, FMC2_PCR,
301			   FMC2_PCR_TCLR | FMC2_PCR_TAR,
302			   FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
303			   FIELD_PREP(FMC2_PCR_TAR, timings->tar));
304
305	/* Set tset/twait/thold/thiz timings in common bank */
306	pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
307	pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
308	pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
309	pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
310	regmap_write(nfc->regmap, FMC2_PMEM, pmem);
311
312	/* Set tset/twait/thold/thiz timings in attribut bank */
313	patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
314	patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
315	patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
316	patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
317	regmap_write(nfc->regmap, FMC2_PATT, patt);
318}
319
320static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
321{
322	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
323	u32 pcr = 0, pcr_mask;
324
325	/* Configure ECC algorithm (default configuration is Hamming) */
326	pcr_mask = FMC2_PCR_ECCALG;
327	pcr_mask |= FMC2_PCR_BCHECC;
328	if (chip->ecc.strength == FMC2_ECC_BCH8) {
329		pcr |= FMC2_PCR_ECCALG;
330		pcr |= FMC2_PCR_BCHECC;
331	} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
332		pcr |= FMC2_PCR_ECCALG;
333	}
334
335	/* Set buswidth */
336	pcr_mask |= FMC2_PCR_PWID;
337	if (chip->options & NAND_BUSWIDTH_16)
338		pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
339
340	/* Set ECC sector size */
341	pcr_mask |= FMC2_PCR_ECCSS;
342	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
343
344	regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
345}
346
347static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
348{
349	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
350	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
351	struct dma_slave_config dma_cfg;
352	int ret;
353
354	if (nand->cs_used[chipnr] == nfc->cs_sel)
355		return 0;
356
357	nfc->cs_sel = nand->cs_used[chipnr];
358	stm32_fmc2_nfc_setup(chip);
359	stm32_fmc2_nfc_timings_init(chip);
360
361	if (nfc->dma_tx_ch) {
362		memset(&dma_cfg, 0, sizeof(dma_cfg));
363		dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
364		dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
365		dma_cfg.dst_maxburst = nfc->tx_dma_max_burst /
366				       dma_cfg.dst_addr_width;
367
368		ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
369		if (ret) {
370			dev_err(nfc->dev, "tx DMA engine slave config failed\n");
371			return ret;
372		}
373	}
374
375	if (nfc->dma_rx_ch) {
376		memset(&dma_cfg, 0, sizeof(dma_cfg));
377		dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
378		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
379		dma_cfg.src_maxburst = nfc->rx_dma_max_burst /
380				       dma_cfg.src_addr_width;
381
382		ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
383		if (ret) {
384			dev_err(nfc->dev, "rx DMA engine slave config failed\n");
385			return ret;
386		}
387	}
388
389	if (nfc->dma_ecc_ch) {
390		/*
391		 * Hamming: we read HECCR register
392		 * BCH4/BCH8: we read BCHDSRSx registers
393		 */
394		memset(&dma_cfg, 0, sizeof(dma_cfg));
395		dma_cfg.src_addr = nfc->io_phys_addr;
396		dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
397				    FMC2_HECCR : FMC2_BCHDSR0;
398		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
399
400		ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
401		if (ret) {
402			dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
403			return ret;
404		}
405
406		/* Calculate ECC length needed for one sector */
407		nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
408				   FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
409	}
410
411	return 0;
412}
413
414static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
415{
416	u32 pcr;
417
418	pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
419		    FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
420
421	regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
422}
423
424static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
425{
426	regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
427			   enable ? FMC2_PCR_ECCEN : 0);
428}
429
430static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
431{
432	nfc->irq_state = FMC2_IRQ_SEQ;
433
434	regmap_update_bits(nfc->regmap, FMC2_CSQIER,
435			   FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
436}
437
438static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
439{
440	regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
441
442	nfc->irq_state = FMC2_IRQ_UNKNOWN;
443}
444
445static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
446{
447	regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
448}
449
450static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
451{
452	nfc->irq_state = FMC2_IRQ_BCH;
453
454	if (mode == NAND_ECC_WRITE)
455		regmap_update_bits(nfc->regmap, FMC2_BCHIER,
456				   FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
457	else
458		regmap_update_bits(nfc->regmap, FMC2_BCHIER,
459				   FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
460}
461
462static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
463{
464	regmap_update_bits(nfc->regmap, FMC2_BCHIER,
465			   FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
466
467	nfc->irq_state = FMC2_IRQ_UNKNOWN;
468}
469
470static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
471{
472	regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
473}
474
475/*
476 * Enable ECC logic and reset syndrome/parity bits previously calculated
477 * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
478 */
479static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
480{
481	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
482
483	stm32_fmc2_nfc_set_ecc(nfc, false);
484
485	if (chip->ecc.strength != FMC2_ECC_HAM) {
486		regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
487				   mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
488
489		reinit_completion(&nfc->complete);
490		stm32_fmc2_nfc_clear_bch_irq(nfc);
491		stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
492	}
493
494	stm32_fmc2_nfc_set_ecc(nfc, true);
495}
496
497/*
498 * ECC Hamming calculation
499 * ECC is 3 bytes for 512 bytes of data (supports error correction up to
500 * max of 1-bit)
501 */
502static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
503{
504	ecc[0] = ecc_sta;
505	ecc[1] = ecc_sta >> 8;
506	ecc[2] = ecc_sta >> 16;
507}
508
509static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
510					u8 *ecc)
511{
512	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
513	u32 sr, heccr;
514	int ret;
515
516	ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
517				       sr & FMC2_SR_NWRF, 1,
518				       1000 * FMC2_TIMEOUT_MS);
519	if (ret) {
520		dev_err(nfc->dev, "ham timeout\n");
521		return ret;
522	}
523
524	regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
525	stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
526	stm32_fmc2_nfc_set_ecc(nfc, false);
527
528	return 0;
529}
530
531static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
532				      u8 *read_ecc, u8 *calc_ecc)
533{
534	u8 bit_position = 0, b0, b1, b2;
535	u32 byte_addr = 0, b;
536	u32 i, shifting = 1;
537
538	/* Indicate which bit and byte is faulty (if any) */
539	b0 = read_ecc[0] ^ calc_ecc[0];
540	b1 = read_ecc[1] ^ calc_ecc[1];
541	b2 = read_ecc[2] ^ calc_ecc[2];
542	b = b0 | (b1 << 8) | (b2 << 16);
543
544	/* No errors */
545	if (likely(!b))
546		return 0;
547
548	/* Calculate bit position */
549	for (i = 0; i < 3; i++) {
550		switch (b % 4) {
551		case 2:
552			bit_position += shifting;
553			break;
554		case 1:
555			break;
556		default:
557			return -EBADMSG;
558		}
559		shifting <<= 1;
560		b >>= 2;
561	}
562
563	/* Calculate byte position */
564	shifting = 1;
565	for (i = 0; i < 9; i++) {
566		switch (b % 4) {
567		case 2:
568			byte_addr += shifting;
569			break;
570		case 1:
571			break;
572		default:
573			return -EBADMSG;
574		}
575		shifting <<= 1;
576		b >>= 2;
577	}
578
579	/* Flip the bit */
580	dat[byte_addr] ^= (1 << bit_position);
581
582	return 1;
583}
584
585/*
586 * ECC BCH calculation and correction
587 * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
588 * max of 4-bit/8-bit)
589 */
590static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
591					u8 *ecc)
592{
593	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
594	u32 bchpbr;
595
596	/* Wait until the BCH code is ready */
597	if (!wait_for_completion_timeout(&nfc->complete,
598					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
599		dev_err(nfc->dev, "bch timeout\n");
600		stm32_fmc2_nfc_disable_bch_irq(nfc);
601		return -ETIMEDOUT;
602	}
603
604	/* Read parity bits */
605	regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
606	ecc[0] = bchpbr;
607	ecc[1] = bchpbr >> 8;
608	ecc[2] = bchpbr >> 16;
609	ecc[3] = bchpbr >> 24;
610
611	regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
612	ecc[4] = bchpbr;
613	ecc[5] = bchpbr >> 8;
614	ecc[6] = bchpbr >> 16;
615
616	if (chip->ecc.strength == FMC2_ECC_BCH8) {
617		ecc[7] = bchpbr >> 24;
618
619		regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
620		ecc[8] = bchpbr;
621		ecc[9] = bchpbr >> 8;
622		ecc[10] = bchpbr >> 16;
623		ecc[11] = bchpbr >> 24;
624
625		regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
626		ecc[12] = bchpbr;
627	}
628
629	stm32_fmc2_nfc_set_ecc(nfc, false);
630
631	return 0;
632}
633
634static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
635{
636	u32 bchdsr0 = ecc_sta[0];
637	u32 bchdsr1 = ecc_sta[1];
638	u32 bchdsr2 = ecc_sta[2];
639	u32 bchdsr3 = ecc_sta[3];
640	u32 bchdsr4 = ecc_sta[4];
641	u16 pos[8];
642	int i, den;
643	unsigned int nb_errs = 0;
644
645	/* No errors found */
646	if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
647		return 0;
648
649	/* Too many errors detected */
650	if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
651		return -EBADMSG;
652
653	pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
654	pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
655	pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
656	pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
657	pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
658	pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
659	pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
660	pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
661
662	den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
663	for (i = 0; i < den; i++) {
664		if (pos[i] < eccsize * 8) {
665			change_bit(pos[i], (unsigned long *)dat);
666			nb_errs++;
667		}
668	}
669
670	return nb_errs;
671}
672
673static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
674				      u8 *read_ecc, u8 *calc_ecc)
675{
676	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
677	u32 ecc_sta[5];
678
679	/* Wait until the decoding error is ready */
680	if (!wait_for_completion_timeout(&nfc->complete,
681					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
682		dev_err(nfc->dev, "bch timeout\n");
683		stm32_fmc2_nfc_disable_bch_irq(nfc);
684		return -ETIMEDOUT;
685	}
686
687	regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
688
689	stm32_fmc2_nfc_set_ecc(nfc, false);
690
691	return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
692}
693
694static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
695				    int oob_required, int page)
696{
697	struct mtd_info *mtd = nand_to_mtd(chip);
698	int ret, i, s, stat, eccsize = chip->ecc.size;
699	int eccbytes = chip->ecc.bytes;
700	int eccsteps = chip->ecc.steps;
701	int eccstrength = chip->ecc.strength;
702	u8 *p = buf;
703	u8 *ecc_calc = chip->ecc.calc_buf;
704	u8 *ecc_code = chip->ecc.code_buf;
705	unsigned int max_bitflips = 0;
706
707	ret = nand_read_page_op(chip, page, 0, NULL, 0);
708	if (ret)
709		return ret;
710
711	for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
712	     s++, i += eccbytes, p += eccsize) {
713		chip->ecc.hwctl(chip, NAND_ECC_READ);
714
715		/* Read the nand page sector (512 bytes) */
716		ret = nand_change_read_column_op(chip, s * eccsize, p,
717						 eccsize, false);
718		if (ret)
719			return ret;
720
721		/* Read the corresponding ECC bytes */
722		ret = nand_change_read_column_op(chip, i, ecc_code,
723						 eccbytes, false);
724		if (ret)
725			return ret;
726
727		/* Correct the data */
728		stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
729		if (stat == -EBADMSG)
730			/* Check for empty pages with bitflips */
731			stat = nand_check_erased_ecc_chunk(p, eccsize,
732							   ecc_code, eccbytes,
733							   NULL, 0,
734							   eccstrength);
735
736		if (stat < 0) {
737			mtd->ecc_stats.failed++;
738		} else {
739			mtd->ecc_stats.corrected += stat;
740			max_bitflips = max_t(unsigned int, max_bitflips, stat);
741		}
742	}
743
744	/* Read oob */
745	if (oob_required) {
746		ret = nand_change_read_column_op(chip, mtd->writesize,
747						 chip->oob_poi, mtd->oobsize,
748						 false);
749		if (ret)
750			return ret;
751	}
752
753	return max_bitflips;
754}
755
756/* Sequencer read/write configuration */
757static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
758					int raw, bool write_data)
759{
760	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
761	struct mtd_info *mtd = nand_to_mtd(chip);
762	u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
763	/*
764	 * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
765	 * cfg[3] => csqar1, cfg[4] => csqar2
766	 */
767	u32 cfg[5];
768
769	regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
770			   write_data ? FMC2_PCR_WEN : 0);
771
772	/*
773	 * - Set Program Page/Page Read command
774	 * - Enable DMA request data
775	 * - Set timings
776	 */
777	cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
778	if (write_data)
779		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
780	else
781		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
782			  FMC2_CSQCFGR1_CMD2EN |
783			  FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
784			  FMC2_CSQCFGR1_CMD2T;
785
786	/*
787	 * - Set Random Data Input/Random Data Read command
788	 * - Enable the sequencer to access the Spare data area
789	 * - Enable  DMA request status decoding for read
790	 * - Set timings
791	 */
792	if (write_data)
793		cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
794	else
795		cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
796			 FMC2_CSQCFGR2_RCMD2EN |
797			 FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
798			 FMC2_CSQCFGR2_RCMD1T |
799			 FMC2_CSQCFGR2_RCMD2T;
800	if (!raw) {
801		cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
802		cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
803	}
804
805	/*
806	 * - Set the number of sectors to be written
807	 * - Set timings
808	 */
809	cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
810	if (write_data) {
811		cfg[2] |= FMC2_CSQCFGR3_RAC2T;
812		if (chip->options & NAND_ROW_ADDR_3)
813			cfg[2] |= FMC2_CSQCFGR3_AC5T;
814		else
815			cfg[2] |= FMC2_CSQCFGR3_AC4T;
816	}
817
818	/*
819	 * Set the fourth first address cycles
820	 * Byte 1 and byte 2 => column, we start at 0x0
821	 * Byte 3 and byte 4 => page
822	 */
823	cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
824	cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
825
826	/*
827	 * - Set chip enable number
828	 * - Set ECC byte offset in the spare area
829	 * - Calculate the number of address cycles to be issued
830	 * - Set byte 5 of address cycle if needed
831	 */
832	cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
833	if (chip->options & NAND_BUSWIDTH_16)
834		cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
835	else
836		cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
837	if (chip->options & NAND_ROW_ADDR_3) {
838		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
839		cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
840	} else {
841		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
842	}
843
844	regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
845}
846
847static void stm32_fmc2_nfc_dma_callback(void *arg)
848{
849	complete((struct completion *)arg);
850}
851
852/* Read/write data from/to a page */
853static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
854			       int raw, bool write_data)
855{
856	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
857	struct dma_async_tx_descriptor *desc_data, *desc_ecc;
858	struct scatterlist *sg;
859	struct dma_chan *dma_ch = nfc->dma_rx_ch;
860	enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
861	enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
862	int eccsteps = chip->ecc.steps;
863	int eccsize = chip->ecc.size;
864	unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
865	const u8 *p = buf;
866	int s, ret;
867
868	/* Configure DMA data */
869	if (write_data) {
870		dma_data_dir = DMA_TO_DEVICE;
871		dma_transfer_dir = DMA_MEM_TO_DEV;
872		dma_ch = nfc->dma_tx_ch;
873	}
874
875	for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
876		sg_set_buf(sg, p, eccsize);
877		p += eccsize;
878	}
879
880	ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
881			 eccsteps, dma_data_dir);
882	if (!ret)
883		return -EIO;
884
885	desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
886					    eccsteps, dma_transfer_dir,
887					    DMA_PREP_INTERRUPT);
888	if (!desc_data) {
889		ret = -ENOMEM;
890		goto err_unmap_data;
891	}
892
893	reinit_completion(&nfc->dma_data_complete);
894	reinit_completion(&nfc->complete);
895	desc_data->callback = stm32_fmc2_nfc_dma_callback;
896	desc_data->callback_param = &nfc->dma_data_complete;
897	ret = dma_submit_error(dmaengine_submit(desc_data));
898	if (ret)
899		goto err_unmap_data;
900
901	dma_async_issue_pending(dma_ch);
902
903	if (!write_data && !raw) {
904		/* Configure DMA ECC status */
905		p = nfc->ecc_buf;
906		for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
907			sg_set_buf(sg, p, nfc->dma_ecc_len);
908			p += nfc->dma_ecc_len;
909		}
910
911		ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
912				 eccsteps, dma_data_dir);
913		if (!ret) {
914			ret = -EIO;
915			goto err_unmap_data;
916		}
917
918		desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
919						   nfc->dma_ecc_sg.sgl,
920						   eccsteps, dma_transfer_dir,
921						   DMA_PREP_INTERRUPT);
922		if (!desc_ecc) {
923			ret = -ENOMEM;
924			goto err_unmap_ecc;
925		}
926
927		reinit_completion(&nfc->dma_ecc_complete);
928		desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
929		desc_ecc->callback_param = &nfc->dma_ecc_complete;
930		ret = dma_submit_error(dmaengine_submit(desc_ecc));
931		if (ret)
932			goto err_unmap_ecc;
933
934		dma_async_issue_pending(nfc->dma_ecc_ch);
935	}
936
937	stm32_fmc2_nfc_clear_seq_irq(nfc);
938	stm32_fmc2_nfc_enable_seq_irq(nfc);
939
940	/* Start the transfer */
941	regmap_update_bits(nfc->regmap, FMC2_CSQCR,
942			   FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
943
944	/* Wait end of sequencer transfer */
945	if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
946		dev_err(nfc->dev, "seq timeout\n");
947		stm32_fmc2_nfc_disable_seq_irq(nfc);
948		dmaengine_terminate_all(dma_ch);
949		if (!write_data && !raw)
950			dmaengine_terminate_all(nfc->dma_ecc_ch);
951		ret = -ETIMEDOUT;
952		goto err_unmap_ecc;
953	}
954
955	/* Wait DMA data transfer completion */
956	if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
957		dev_err(nfc->dev, "data DMA timeout\n");
958		dmaengine_terminate_all(dma_ch);
959		ret = -ETIMEDOUT;
960	}
961
962	/* Wait DMA ECC transfer completion */
963	if (!write_data && !raw) {
964		if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
965						 timeout)) {
966			dev_err(nfc->dev, "ECC DMA timeout\n");
967			dmaengine_terminate_all(nfc->dma_ecc_ch);
968			ret = -ETIMEDOUT;
969		}
970	}
971
972err_unmap_ecc:
973	if (!write_data && !raw)
974		dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
975			     eccsteps, dma_data_dir);
976
977err_unmap_data:
978	dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
979
980	return ret;
981}
982
983static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
984				    int oob_required, int page, int raw)
985{
986	struct mtd_info *mtd = nand_to_mtd(chip);
987	int ret;
988
989	/* Configure the sequencer */
990	stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
991
992	/* Write the page */
993	ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
994	if (ret)
995		return ret;
996
997	/* Write oob */
998	if (oob_required) {
999		ret = nand_change_write_column_op(chip, mtd->writesize,
1000						  chip->oob_poi, mtd->oobsize,
1001						  false);
1002		if (ret)
1003			return ret;
1004	}
1005
1006	return nand_prog_page_end_op(chip);
1007}
1008
1009static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
1010					 int oob_required, int page)
1011{
1012	int ret;
1013
1014	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1015	if (ret)
1016		return ret;
1017
1018	return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
1019}
1020
1021static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
1022					     const u8 *buf, int oob_required,
1023					     int page)
1024{
1025	int ret;
1026
1027	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1028	if (ret)
1029		return ret;
1030
1031	return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
1032}
1033
1034/* Get a status indicating which sectors have errors */
1035static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
1036{
1037	u32 csqemsr;
1038
1039	regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
1040
1041	return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
1042}
1043
1044static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
1045				      u8 *read_ecc, u8 *calc_ecc)
1046{
1047	struct mtd_info *mtd = nand_to_mtd(chip);
1048	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1049	int eccbytes = chip->ecc.bytes;
1050	int eccsteps = chip->ecc.steps;
1051	int eccstrength = chip->ecc.strength;
1052	int i, s, eccsize = chip->ecc.size;
1053	u32 *ecc_sta = (u32 *)nfc->ecc_buf;
1054	u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1055	unsigned int max_bitflips = 0;
1056
1057	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1058		int stat = 0;
1059
1060		if (eccstrength == FMC2_ECC_HAM) {
1061			/* Ecc_sta = FMC2_HECCR */
1062			if (sta_map & BIT(s)) {
1063				stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
1064							   &calc_ecc[i]);
1065				stat = stm32_fmc2_nfc_ham_correct(chip, dat,
1066								  &read_ecc[i],
1067								  &calc_ecc[i]);
1068			}
1069			ecc_sta++;
1070		} else {
1071			/*
1072			 * Ecc_sta[0] = FMC2_BCHDSR0
1073			 * Ecc_sta[1] = FMC2_BCHDSR1
1074			 * Ecc_sta[2] = FMC2_BCHDSR2
1075			 * Ecc_sta[3] = FMC2_BCHDSR3
1076			 * Ecc_sta[4] = FMC2_BCHDSR4
1077			 */
1078			if (sta_map & BIT(s))
1079				stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
1080								 ecc_sta);
1081			ecc_sta += 5;
1082		}
1083
1084		if (stat == -EBADMSG)
1085			/* Check for empty pages with bitflips */
1086			stat = nand_check_erased_ecc_chunk(dat, eccsize,
1087							   &read_ecc[i],
1088							   eccbytes,
1089							   NULL, 0,
1090							   eccstrength);
1091
1092		if (stat < 0) {
1093			mtd->ecc_stats.failed++;
1094		} else {
1095			mtd->ecc_stats.corrected += stat;
1096			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1097		}
1098	}
1099
1100	return max_bitflips;
1101}
1102
1103static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
1104					int oob_required, int page)
1105{
1106	struct mtd_info *mtd = nand_to_mtd(chip);
1107	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1108	u8 *ecc_calc = chip->ecc.calc_buf;
1109	u8 *ecc_code = chip->ecc.code_buf;
1110	u16 sta_map;
1111	int ret;
1112
1113	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1114	if (ret)
1115		return ret;
1116
1117	/* Configure the sequencer */
1118	stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
1119
1120	/* Read the page */
1121	ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
1122	if (ret)
1123		return ret;
1124
1125	sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1126
1127	/* Check if errors happen */
1128	if (likely(!sta_map)) {
1129		if (oob_required)
1130			return nand_change_read_column_op(chip, mtd->writesize,
1131							  chip->oob_poi,
1132							  mtd->oobsize, false);
1133
1134		return 0;
1135	}
1136
1137	/* Read oob */
1138	ret = nand_change_read_column_op(chip, mtd->writesize,
1139					 chip->oob_poi, mtd->oobsize, false);
1140	if (ret)
1141		return ret;
1142
1143	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1144					 chip->ecc.total);
1145	if (ret)
1146		return ret;
1147
1148	/* Correct data */
1149	return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1150}
1151
1152static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
1153					    int oob_required, int page)
1154{
1155	struct mtd_info *mtd = nand_to_mtd(chip);
1156	int ret;
1157
1158	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1159	if (ret)
1160		return ret;
1161
1162	/* Configure the sequencer */
1163	stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
1164
1165	/* Read the page */
1166	ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
1167	if (ret)
1168		return ret;
1169
1170	/* Read oob */
1171	if (oob_required)
1172		return nand_change_read_column_op(chip, mtd->writesize,
1173						  chip->oob_poi, mtd->oobsize,
1174						  false);
1175
1176	return 0;
1177}
1178
1179static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
1180{
1181	struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
1182
1183	if (nfc->irq_state == FMC2_IRQ_SEQ)
1184		/* Sequencer is used */
1185		stm32_fmc2_nfc_disable_seq_irq(nfc);
1186	else if (nfc->irq_state == FMC2_IRQ_BCH)
1187		/* BCH is used */
1188		stm32_fmc2_nfc_disable_bch_irq(nfc);
1189
1190	complete(&nfc->complete);
1191
1192	return IRQ_HANDLED;
1193}
1194
1195static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
1196				     unsigned int len, bool force_8bit)
1197{
1198	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1199	void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
1200
1201	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1202		/* Reconfigure bus width to 8-bit */
1203		stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1204
1205	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1206		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1207			*(u8 *)buf = readb_relaxed(io_addr_r);
1208			buf += sizeof(u8);
1209			len -= sizeof(u8);
1210		}
1211
1212		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1213		    len >= sizeof(u16)) {
1214			*(u16 *)buf = readw_relaxed(io_addr_r);
1215			buf += sizeof(u16);
1216			len -= sizeof(u16);
1217		}
1218	}
1219
1220	/* Buf is aligned */
1221	while (len >= sizeof(u32)) {
1222		*(u32 *)buf = readl_relaxed(io_addr_r);
1223		buf += sizeof(u32);
1224		len -= sizeof(u32);
1225	}
1226
1227	/* Read remaining bytes */
1228	if (len >= sizeof(u16)) {
1229		*(u16 *)buf = readw_relaxed(io_addr_r);
1230		buf += sizeof(u16);
1231		len -= sizeof(u16);
1232	}
1233
1234	if (len)
1235		*(u8 *)buf = readb_relaxed(io_addr_r);
1236
1237	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1238		/* Reconfigure bus width to 16-bit */
1239		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1240}
1241
1242static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
1243				      unsigned int len, bool force_8bit)
1244{
1245	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1246	void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
1247
1248	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1249		/* Reconfigure bus width to 8-bit */
1250		stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1251
1252	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1253		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1254			writeb_relaxed(*(u8 *)buf, io_addr_w);
1255			buf += sizeof(u8);
1256			len -= sizeof(u8);
1257		}
1258
1259		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1260		    len >= sizeof(u16)) {
1261			writew_relaxed(*(u16 *)buf, io_addr_w);
1262			buf += sizeof(u16);
1263			len -= sizeof(u16);
1264		}
1265	}
1266
1267	/* Buf is aligned */
1268	while (len >= sizeof(u32)) {
1269		writel_relaxed(*(u32 *)buf, io_addr_w);
1270		buf += sizeof(u32);
1271		len -= sizeof(u32);
1272	}
1273
1274	/* Write remaining bytes */
1275	if (len >= sizeof(u16)) {
1276		writew_relaxed(*(u16 *)buf, io_addr_w);
1277		buf += sizeof(u16);
1278		len -= sizeof(u16);
1279	}
1280
1281	if (len)
1282		writeb_relaxed(*(u8 *)buf, io_addr_w);
1283
1284	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1285		/* Reconfigure bus width to 16-bit */
1286		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1287}
1288
1289static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
1290				  unsigned long timeout_ms)
1291{
1292	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1293	const struct nand_sdr_timings *timings;
1294	u32 isr, sr;
1295
1296	/* Check if there is no pending requests to the NAND flash */
1297	if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
1298				     sr & FMC2_SR_NWRF, 1,
1299				     1000 * FMC2_TIMEOUT_MS))
1300		dev_warn(nfc->dev, "Waitrdy timeout\n");
1301
1302	/* Wait tWB before R/B# signal is low */
1303	timings = nand_get_sdr_timings(nand_get_interface_config(chip));
1304	ndelay(PSEC_TO_NSEC(timings->tWB_max));
1305
1306	/* R/B# signal is low, clear high level flag */
1307	regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
1308
1309	/* Wait R/B# signal is high */
1310	return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
1311					isr & FMC2_ISR_IHLF, 5,
1312					1000 * FMC2_TIMEOUT_MS);
1313}
1314
1315static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
1316				  const struct nand_operation *op,
1317				  bool check_only)
1318{
1319	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1320	const struct nand_op_instr *instr = NULL;
1321	unsigned int op_id, i, timeout;
1322	int ret;
1323
1324	if (check_only)
1325		return 0;
1326
1327	ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
1328	if (ret)
1329		return ret;
1330
1331	for (op_id = 0; op_id < op->ninstrs; op_id++) {
1332		instr = &op->instrs[op_id];
1333
1334		switch (instr->type) {
1335		case NAND_OP_CMD_INSTR:
1336			writeb_relaxed(instr->ctx.cmd.opcode,
1337				       nfc->cmd_base[nfc->cs_sel]);
1338			break;
1339
1340		case NAND_OP_ADDR_INSTR:
1341			for (i = 0; i < instr->ctx.addr.naddrs; i++)
1342				writeb_relaxed(instr->ctx.addr.addrs[i],
1343					       nfc->addr_base[nfc->cs_sel]);
1344			break;
1345
1346		case NAND_OP_DATA_IN_INSTR:
1347			stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
1348						 instr->ctx.data.len,
1349						 instr->ctx.data.force_8bit);
1350			break;
1351
1352		case NAND_OP_DATA_OUT_INSTR:
1353			stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
1354						  instr->ctx.data.len,
1355						  instr->ctx.data.force_8bit);
1356			break;
1357
1358		case NAND_OP_WAITRDY_INSTR:
1359			timeout = instr->ctx.waitrdy.timeout_ms;
1360			ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
1361			break;
1362		}
1363	}
1364
1365	return ret;
1366}
1367
1368static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
1369{
1370	u32 pcr;
1371
1372	regmap_read(nfc->regmap, FMC2_PCR, &pcr);
1373
1374	/* Set CS used to undefined */
1375	nfc->cs_sel = -1;
1376
1377	/* Enable wait feature and nand flash memory bank */
1378	pcr |= FMC2_PCR_PWAITEN;
1379	pcr |= FMC2_PCR_PBKEN;
1380
1381	/* Set buswidth to 8 bits mode for identification */
1382	pcr &= ~FMC2_PCR_PWID;
1383
1384	/* ECC logic is disabled */
1385	pcr &= ~FMC2_PCR_ECCEN;
1386
1387	/* Default mode */
1388	pcr &= ~FMC2_PCR_ECCALG;
1389	pcr &= ~FMC2_PCR_BCHECC;
1390	pcr &= ~FMC2_PCR_WEN;
1391
1392	/* Set default ECC sector size */
1393	pcr &= ~FMC2_PCR_ECCSS;
1394	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
1395
1396	/* Set default tclr/tar timings */
1397	pcr &= ~FMC2_PCR_TCLR;
1398	pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
1399	pcr &= ~FMC2_PCR_TAR;
1400	pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
1401
1402	/* Enable FMC2 controller */
1403	if (nfc->dev == nfc->cdev)
1404		regmap_update_bits(nfc->regmap, FMC2_BCR1,
1405				   FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
1406
1407	regmap_write(nfc->regmap, FMC2_PCR, pcr);
1408	regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
1409	regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
1410}
1411
1412static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
1413					const struct nand_sdr_timings *sdrt)
1414{
1415	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1416	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1417	struct stm32_fmc2_timings *tims = &nand->timings;
1418	unsigned long hclk = clk_get_rate(nfc->clk);
1419	unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1420	unsigned long timing, tar, tclr, thiz, twait;
1421	unsigned long tset_mem, tset_att, thold_mem, thold_att;
1422
1423	tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1424	timing = DIV_ROUND_UP(tar, hclkp) - 1;
1425	tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1426
1427	tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1428	timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1429	tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1430
1431	tims->thiz = FMC2_THIZ;
1432	thiz = (tims->thiz + 1) * hclkp;
1433
1434	/*
1435	 * tWAIT > tRP
1436	 * tWAIT > tWP
1437	 * tWAIT > tREA + tIO
1438	 */
1439	twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1440	twait = max_t(unsigned long, twait, sdrt->tWP_min);
1441	twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1442	timing = DIV_ROUND_UP(twait, hclkp);
1443	tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1444
1445	/*
1446	 * tSETUP_MEM > tCS - tWAIT
1447	 * tSETUP_MEM > tALS - tWAIT
1448	 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1449	 */
1450	tset_mem = hclkp;
1451	if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1452		tset_mem = sdrt->tCS_min - twait;
1453	if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1454		tset_mem = sdrt->tALS_min - twait;
1455	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1456	    (tset_mem < sdrt->tDS_min - (twait - thiz)))
1457		tset_mem = sdrt->tDS_min - (twait - thiz);
1458	timing = DIV_ROUND_UP(tset_mem, hclkp);
1459	tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1460
1461	/*
1462	 * tHOLD_MEM > tCH
1463	 * tHOLD_MEM > tREH - tSETUP_MEM
1464	 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1465	 */
1466	thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1467	if (sdrt->tREH_min > tset_mem &&
1468	    (thold_mem < sdrt->tREH_min - tset_mem))
1469		thold_mem = sdrt->tREH_min - tset_mem;
1470	if ((sdrt->tRC_min > tset_mem + twait) &&
1471	    (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1472		thold_mem = sdrt->tRC_min - (tset_mem + twait);
1473	if ((sdrt->tWC_min > tset_mem + twait) &&
1474	    (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1475		thold_mem = sdrt->tWC_min - (tset_mem + twait);
1476	timing = DIV_ROUND_UP(thold_mem, hclkp);
1477	tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1478
1479	/*
1480	 * tSETUP_ATT > tCS - tWAIT
1481	 * tSETUP_ATT > tCLS - tWAIT
1482	 * tSETUP_ATT > tALS - tWAIT
1483	 * tSETUP_ATT > tRHW - tHOLD_MEM
1484	 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1485	 */
1486	tset_att = hclkp;
1487	if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1488		tset_att = sdrt->tCS_min - twait;
1489	if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1490		tset_att = sdrt->tCLS_min - twait;
1491	if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1492		tset_att = sdrt->tALS_min - twait;
1493	if (sdrt->tRHW_min > thold_mem &&
1494	    (tset_att < sdrt->tRHW_min - thold_mem))
1495		tset_att = sdrt->tRHW_min - thold_mem;
1496	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1497	    (tset_att < sdrt->tDS_min - (twait - thiz)))
1498		tset_att = sdrt->tDS_min - (twait - thiz);
1499	timing = DIV_ROUND_UP(tset_att, hclkp);
1500	tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1501
1502	/*
1503	 * tHOLD_ATT > tALH
1504	 * tHOLD_ATT > tCH
1505	 * tHOLD_ATT > tCLH
1506	 * tHOLD_ATT > tCOH
1507	 * tHOLD_ATT > tDH
1508	 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1509	 * tHOLD_ATT > tADL - tSETUP_MEM
1510	 * tHOLD_ATT > tWH - tSETUP_MEM
1511	 * tHOLD_ATT > tWHR - tSETUP_MEM
1512	 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1513	 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1514	 */
1515	thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1516	thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1517	thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1518	thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1519	thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1520	if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1521	    (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1522		thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1523	if (sdrt->tADL_min > tset_mem &&
1524	    (thold_att < sdrt->tADL_min - tset_mem))
1525		thold_att = sdrt->tADL_min - tset_mem;
1526	if (sdrt->tWH_min > tset_mem &&
1527	    (thold_att < sdrt->tWH_min - tset_mem))
1528		thold_att = sdrt->tWH_min - tset_mem;
1529	if (sdrt->tWHR_min > tset_mem &&
1530	    (thold_att < sdrt->tWHR_min - tset_mem))
1531		thold_att = sdrt->tWHR_min - tset_mem;
1532	if ((sdrt->tRC_min > tset_att + twait) &&
1533	    (thold_att < sdrt->tRC_min - (tset_att + twait)))
1534		thold_att = sdrt->tRC_min - (tset_att + twait);
1535	if ((sdrt->tWC_min > tset_att + twait) &&
1536	    (thold_att < sdrt->tWC_min - (tset_att + twait)))
1537		thold_att = sdrt->tWC_min - (tset_att + twait);
1538	timing = DIV_ROUND_UP(thold_att, hclkp);
1539	tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1540}
1541
1542static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
1543					  const struct nand_interface_config *conf)
1544{
1545	const struct nand_sdr_timings *sdrt;
1546
1547	sdrt = nand_get_sdr_timings(conf);
1548	if (IS_ERR(sdrt))
1549		return PTR_ERR(sdrt);
1550
1551	if (conf->timings.mode > 3)
1552		return -EOPNOTSUPP;
1553
1554	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1555		return 0;
1556
1557	stm32_fmc2_nfc_calc_timings(chip, sdrt);
1558	stm32_fmc2_nfc_timings_init(chip);
1559
1560	return 0;
1561}
1562
1563static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
1564{
1565	struct dma_slave_caps caps;
1566	int ret = 0;
1567
1568	nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
1569	if (IS_ERR(nfc->dma_tx_ch)) {
1570		ret = PTR_ERR(nfc->dma_tx_ch);
1571		if (ret != -ENODEV && ret != -EPROBE_DEFER)
1572			dev_err(nfc->dev,
1573				"failed to request tx DMA channel: %d\n", ret);
1574		nfc->dma_tx_ch = NULL;
1575		goto err_dma;
1576	}
1577
1578	ret = dma_get_slave_caps(nfc->dma_tx_ch, &caps);
1579	if (ret)
1580		return ret;
1581	nfc->tx_dma_max_burst = caps.max_burst;
1582
1583	nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
1584	if (IS_ERR(nfc->dma_rx_ch)) {
1585		ret = PTR_ERR(nfc->dma_rx_ch);
1586		if (ret != -ENODEV && ret != -EPROBE_DEFER)
1587			dev_err(nfc->dev,
1588				"failed to request rx DMA channel: %d\n", ret);
1589		nfc->dma_rx_ch = NULL;
1590		goto err_dma;
1591	}
1592
1593	ret = dma_get_slave_caps(nfc->dma_rx_ch, &caps);
1594	if (ret)
1595		return ret;
1596	nfc->rx_dma_max_burst = caps.max_burst;
1597
1598	nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
1599	if (IS_ERR(nfc->dma_ecc_ch)) {
1600		ret = PTR_ERR(nfc->dma_ecc_ch);
1601		if (ret != -ENODEV && ret != -EPROBE_DEFER)
1602			dev_err(nfc->dev,
1603				"failed to request ecc DMA channel: %d\n", ret);
1604		nfc->dma_ecc_ch = NULL;
1605		goto err_dma;
1606	}
1607
1608	ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1609	if (ret)
1610		return ret;
1611
1612	/* Allocate a buffer to store ECC status registers */
1613	nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
1614	if (!nfc->ecc_buf)
1615		return -ENOMEM;
1616
1617	ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1618	if (ret)
1619		return ret;
1620
1621	init_completion(&nfc->dma_data_complete);
1622	init_completion(&nfc->dma_ecc_complete);
1623
1624	return 0;
1625
1626err_dma:
1627	if (ret == -ENODEV) {
1628		dev_warn(nfc->dev,
1629			 "DMAs not defined in the DT, polling mode is used\n");
1630		ret = 0;
1631	}
1632
1633	return ret;
1634}
1635
1636static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
1637{
1638	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1639
1640	/*
1641	 * Specific callbacks to read/write a page depending on
1642	 * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1643	 */
1644	if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
1645		/* DMA => use sequencer mode callbacks */
1646		chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
1647		chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
1648		chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
1649		chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
1650		chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
1651	} else {
1652		/* No DMA => use polling mode callbacks */
1653		chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
1654		if (chip->ecc.strength == FMC2_ECC_HAM) {
1655			/* Hamming is used */
1656			chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
1657			chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
1658			chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1659		} else {
1660			/* BCH is used */
1661			chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
1662			chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
1663			chip->ecc.read_page = stm32_fmc2_nfc_read_page;
1664		}
1665	}
1666
1667	/* Specific configurations depending on the algo used */
1668	if (chip->ecc.strength == FMC2_ECC_HAM)
1669		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1670	else if (chip->ecc.strength == FMC2_ECC_BCH8)
1671		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1672	else
1673		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1674}
1675
1676static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1677					struct mtd_oob_region *oobregion)
1678{
1679	struct nand_chip *chip = mtd_to_nand(mtd);
1680	struct nand_ecc_ctrl *ecc = &chip->ecc;
1681
1682	if (section)
1683		return -ERANGE;
1684
1685	oobregion->length = ecc->total;
1686	oobregion->offset = FMC2_BBM_LEN;
1687
1688	return 0;
1689}
1690
1691static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1692					 struct mtd_oob_region *oobregion)
1693{
1694	struct nand_chip *chip = mtd_to_nand(mtd);
1695	struct nand_ecc_ctrl *ecc = &chip->ecc;
1696
1697	if (section)
1698		return -ERANGE;
1699
1700	oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1701	oobregion->offset = ecc->total + FMC2_BBM_LEN;
1702
1703	return 0;
1704}
1705
1706static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
1707	.ecc = stm32_fmc2_nfc_ooblayout_ecc,
1708	.free = stm32_fmc2_nfc_ooblayout_free,
1709};
1710
1711static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
1712{
1713	/* Hamming */
1714	if (strength == FMC2_ECC_HAM)
1715		return 4;
1716
1717	/* BCH8 */
1718	if (strength == FMC2_ECC_BCH8)
1719		return 14;
1720
1721	/* BCH4 */
1722	return 8;
1723}
1724
1725NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
1726		     FMC2_ECC_STEP_SIZE,
1727		     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1728
1729static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
1730{
1731	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1732	struct mtd_info *mtd = nand_to_mtd(chip);
1733	int ret;
1734
1735	/*
1736	 * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
1737	 * Hamming => ecc.strength = 1
1738	 * BCH4 => ecc.strength = 4
1739	 * BCH8 => ecc.strength = 8
1740	 * ECC sector size = 512
1741	 */
1742	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1743		dev_err(nfc->dev,
1744			"nand_ecc_engine_type is not well defined in the DT\n");
1745		return -EINVAL;
1746	}
1747
1748	/* Default ECC settings in case they are not set in the device tree */
1749	if (!chip->ecc.size)
1750		chip->ecc.size = FMC2_ECC_STEP_SIZE;
1751
1752	if (!chip->ecc.strength)
1753		chip->ecc.strength = FMC2_ECC_BCH8;
1754
1755	ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
1756				   mtd->oobsize - FMC2_BBM_LEN);
1757	if (ret) {
1758		dev_err(nfc->dev, "no valid ECC settings set\n");
1759		return ret;
1760	}
1761
1762	if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1763		dev_err(nfc->dev, "nand page size is not supported\n");
1764		return -EINVAL;
1765	}
1766
1767	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1768		chip->bbt_options |= NAND_BBT_NO_OOB;
1769
1770	stm32_fmc2_nfc_nand_callbacks_setup(chip);
1771
1772	mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
1773
1774	stm32_fmc2_nfc_setup(chip);
1775
1776	return 0;
1777}
1778
1779static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
1780	.attach_chip = stm32_fmc2_nfc_attach_chip,
1781	.exec_op = stm32_fmc2_nfc_exec_op,
1782	.setup_interface = stm32_fmc2_nfc_setup_interface,
1783};
1784
1785static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand)
1786{
1787	if (nand->wp_gpio)
1788		gpiod_set_value(nand->wp_gpio, 1);
1789}
1790
1791static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand)
1792{
1793	if (nand->wp_gpio)
1794		gpiod_set_value(nand->wp_gpio, 0);
1795}
1796
1797static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
1798				      struct device_node *dn)
1799{
1800	struct stm32_fmc2_nand *nand = &nfc->nand;
1801	u32 cs;
1802	int ret, i;
1803
1804	if (!of_get_property(dn, "reg", &nand->ncs))
1805		return -EINVAL;
1806
1807	nand->ncs /= sizeof(u32);
1808	if (!nand->ncs) {
1809		dev_err(nfc->dev, "invalid reg property size\n");
1810		return -EINVAL;
1811	}
1812
1813	for (i = 0; i < nand->ncs; i++) {
1814		ret = of_property_read_u32_index(dn, "reg", i, &cs);
1815		if (ret) {
1816			dev_err(nfc->dev, "could not retrieve reg property: %d\n",
1817				ret);
1818			return ret;
1819		}
1820
1821		if (cs >= nfc->data->max_ncs) {
1822			dev_err(nfc->dev, "invalid reg value: %d\n", cs);
1823			return -EINVAL;
1824		}
1825
1826		if (nfc->cs_assigned & BIT(cs)) {
1827			dev_err(nfc->dev, "cs already assigned: %d\n", cs);
1828			return -EINVAL;
1829		}
1830
1831		nfc->cs_assigned |= BIT(cs);
1832		nand->cs_used[i] = cs;
1833	}
1834
1835	nand->wp_gpio = devm_fwnode_gpiod_get(nfc->dev, of_fwnode_handle(dn),
1836					      "wp", GPIOD_OUT_HIGH, "wp");
1837	if (IS_ERR(nand->wp_gpio)) {
1838		ret = PTR_ERR(nand->wp_gpio);
1839		if (ret != -ENOENT)
1840			return dev_err_probe(nfc->dev, ret,
1841					     "failed to request WP GPIO\n");
1842
1843		nand->wp_gpio = NULL;
1844	}
1845
1846	nand_set_flash_node(&nand->chip, dn);
1847
1848	return 0;
1849}
1850
1851static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
1852{
1853	struct device_node *dn = nfc->dev->of_node;
1854	struct device_node *child;
1855	int nchips = of_get_child_count(dn);
1856	int ret = 0;
1857
1858	if (!nchips) {
1859		dev_err(nfc->dev, "NAND chip not defined\n");
1860		return -EINVAL;
1861	}
1862
1863	if (nchips > 1) {
1864		dev_err(nfc->dev, "too many NAND chips defined\n");
1865		return -EINVAL;
1866	}
1867
1868	for_each_child_of_node(dn, child) {
1869		ret = stm32_fmc2_nfc_parse_child(nfc, child);
1870		if (ret < 0) {
1871			of_node_put(child);
1872			return ret;
1873		}
1874	}
1875
1876	return ret;
1877}
1878
1879static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
1880{
1881	struct device *dev = nfc->dev;
1882	bool ebi_found = false;
1883
1884	if (dev->parent && of_device_is_compatible(dev->parent->of_node,
1885						   "st,stm32mp1-fmc2-ebi"))
1886		ebi_found = true;
1887
1888	if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
1889		if (ebi_found) {
1890			nfc->cdev = dev->parent;
1891
1892			return 0;
1893		}
1894
1895		return -EINVAL;
1896	}
1897
1898	if (ebi_found)
1899		return -EINVAL;
1900
1901	nfc->cdev = dev;
1902
1903	return 0;
1904}
1905
1906static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
1907{
1908	struct device *dev = &pdev->dev;
1909	struct reset_control *rstc;
1910	struct stm32_fmc2_nfc *nfc;
1911	struct stm32_fmc2_nand *nand;
1912	struct resource *res;
1913	struct mtd_info *mtd;
1914	struct nand_chip *chip;
1915	struct resource cres;
1916	int chip_cs, mem_region, ret, irq;
1917	int start_region = 0;
1918
1919	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1920	if (!nfc)
1921		return -ENOMEM;
1922
1923	nfc->dev = dev;
1924	nand_controller_init(&nfc->base);
1925	nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
1926
1927	nfc->data = of_device_get_match_data(dev);
1928	if (!nfc->data)
1929		return -EINVAL;
1930
1931	if (nfc->data->set_cdev) {
1932		ret = nfc->data->set_cdev(nfc);
1933		if (ret)
1934			return ret;
1935	} else {
1936		nfc->cdev = dev->parent;
1937	}
1938
1939	ret = stm32_fmc2_nfc_parse_dt(nfc);
1940	if (ret)
1941		return ret;
1942
1943	ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
1944	if (ret)
1945		return ret;
1946
1947	nfc->io_phys_addr = cres.start;
1948
1949	nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
1950	if (IS_ERR(nfc->regmap))
1951		return PTR_ERR(nfc->regmap);
1952
1953	if (nfc->dev == nfc->cdev)
1954		start_region = 1;
1955
1956	for (chip_cs = 0, mem_region = start_region; chip_cs < nfc->data->max_ncs;
1957	     chip_cs++, mem_region += 3) {
1958		if (!(nfc->cs_assigned & BIT(chip_cs)))
1959			continue;
1960
1961		nfc->data_base[chip_cs] = devm_platform_get_and_ioremap_resource(pdev,
1962						mem_region, &res);
1963		if (IS_ERR(nfc->data_base[chip_cs]))
1964			return PTR_ERR(nfc->data_base[chip_cs]);
1965
1966		nfc->data_phys_addr[chip_cs] = res->start;
1967
1968		nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1);
1969		if (IS_ERR(nfc->cmd_base[chip_cs]))
1970			return PTR_ERR(nfc->cmd_base[chip_cs]);
1971
1972		nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2);
1973		if (IS_ERR(nfc->addr_base[chip_cs]))
1974			return PTR_ERR(nfc->addr_base[chip_cs]);
1975	}
1976
1977	irq = platform_get_irq(pdev, 0);
1978	if (irq < 0)
1979		return irq;
1980
1981	ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
1982			       dev_name(dev), nfc);
1983	if (ret) {
1984		dev_err(dev, "failed to request irq\n");
1985		return ret;
1986	}
1987
1988	init_completion(&nfc->complete);
1989
1990	nfc->clk = devm_clk_get_enabled(nfc->cdev, NULL);
1991	if (IS_ERR(nfc->clk)) {
1992		dev_err(dev, "can not get and enable the clock\n");
1993		return PTR_ERR(nfc->clk);
1994	}
1995
1996	rstc = devm_reset_control_get(dev, NULL);
1997	if (IS_ERR(rstc)) {
1998		ret = PTR_ERR(rstc);
1999		if (ret == -EPROBE_DEFER)
2000			return ret;
2001	} else {
2002		reset_control_assert(rstc);
2003		reset_control_deassert(rstc);
2004	}
2005
2006	ret = stm32_fmc2_nfc_dma_setup(nfc);
2007	if (ret)
2008		goto err_release_dma;
2009
2010	stm32_fmc2_nfc_init(nfc);
2011
2012	nand = &nfc->nand;
2013	chip = &nand->chip;
2014	mtd = nand_to_mtd(chip);
2015	mtd->dev.parent = dev;
2016
2017	chip->controller = &nfc->base;
2018	chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
2019			 NAND_USES_DMA;
2020
2021	stm32_fmc2_nfc_wp_disable(nand);
2022
2023	/* Scan to find existence of the device */
2024	ret = nand_scan(chip, nand->ncs);
2025	if (ret)
2026		goto err_wp_enable;
2027
2028	ret = mtd_device_register(mtd, NULL, 0);
2029	if (ret)
2030		goto err_nand_cleanup;
2031
2032	platform_set_drvdata(pdev, nfc);
2033
2034	return 0;
2035
2036err_nand_cleanup:
2037	nand_cleanup(chip);
2038
2039err_wp_enable:
2040	stm32_fmc2_nfc_wp_enable(nand);
2041
2042err_release_dma:
2043	if (nfc->dma_ecc_ch)
2044		dma_release_channel(nfc->dma_ecc_ch);
2045	if (nfc->dma_tx_ch)
2046		dma_release_channel(nfc->dma_tx_ch);
2047	if (nfc->dma_rx_ch)
2048		dma_release_channel(nfc->dma_rx_ch);
2049
2050	sg_free_table(&nfc->dma_data_sg);
2051	sg_free_table(&nfc->dma_ecc_sg);
2052
2053	return ret;
2054}
2055
2056static void stm32_fmc2_nfc_remove(struct platform_device *pdev)
2057{
2058	struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
2059	struct stm32_fmc2_nand *nand = &nfc->nand;
2060	struct nand_chip *chip = &nand->chip;
2061	int ret;
2062
2063	ret = mtd_device_unregister(nand_to_mtd(chip));
2064	WARN_ON(ret);
2065	nand_cleanup(chip);
2066
2067	if (nfc->dma_ecc_ch)
2068		dma_release_channel(nfc->dma_ecc_ch);
2069	if (nfc->dma_tx_ch)
2070		dma_release_channel(nfc->dma_tx_ch);
2071	if (nfc->dma_rx_ch)
2072		dma_release_channel(nfc->dma_rx_ch);
2073
2074	sg_free_table(&nfc->dma_data_sg);
2075	sg_free_table(&nfc->dma_ecc_sg);
2076
2077	stm32_fmc2_nfc_wp_enable(nand);
2078}
2079
2080static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
2081{
2082	struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2083	struct stm32_fmc2_nand *nand = &nfc->nand;
2084
2085	clk_disable_unprepare(nfc->clk);
2086
2087	stm32_fmc2_nfc_wp_enable(nand);
2088
2089	pinctrl_pm_select_sleep_state(dev);
2090
2091	return 0;
2092}
2093
2094static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
2095{
2096	struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2097	struct stm32_fmc2_nand *nand = &nfc->nand;
2098	int chip_cs, ret;
2099
2100	pinctrl_pm_select_default_state(dev);
2101
2102	ret = clk_prepare_enable(nfc->clk);
2103	if (ret) {
2104		dev_err(dev, "can not enable the clock\n");
2105		return ret;
2106	}
2107
2108	stm32_fmc2_nfc_init(nfc);
2109
2110	stm32_fmc2_nfc_wp_disable(nand);
2111
2112	for (chip_cs = 0; chip_cs < nfc->data->max_ncs; chip_cs++) {
2113		if (!(nfc->cs_assigned & BIT(chip_cs)))
2114			continue;
2115
2116		nand_reset(&nand->chip, chip_cs);
2117	}
2118
2119	return 0;
2120}
2121
2122static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
2123			 stm32_fmc2_nfc_resume);
2124
2125static const struct stm32_fmc2_nfc_data stm32_fmc2_nfc_mp1_data = {
2126	.max_ncs = 2,
2127	.set_cdev = stm32_fmc2_nfc_set_cdev,
2128};
2129
2130static const struct stm32_fmc2_nfc_data stm32_fmc2_nfc_mp25_data = {
2131	.max_ncs = 4,
2132};
2133
2134static const struct of_device_id stm32_fmc2_nfc_match[] = {
2135	{
2136		.compatible = "st,stm32mp15-fmc2",
2137		.data = &stm32_fmc2_nfc_mp1_data,
2138	},
2139	{
2140		.compatible = "st,stm32mp1-fmc2-nfc",
2141		.data = &stm32_fmc2_nfc_mp1_data,
2142	},
2143	{
2144		.compatible = "st,stm32mp25-fmc2-nfc",
2145		.data = &stm32_fmc2_nfc_mp25_data,
2146	},
2147	{}
2148};
2149MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
2150
2151static struct platform_driver stm32_fmc2_nfc_driver = {
2152	.probe	= stm32_fmc2_nfc_probe,
2153	.remove_new = stm32_fmc2_nfc_remove,
2154	.driver	= {
2155		.name = "stm32_fmc2_nfc",
2156		.of_match_table = stm32_fmc2_nfc_match,
2157		.pm = &stm32_fmc2_nfc_pm_ops,
2158	},
2159};
2160module_platform_driver(stm32_fmc2_nfc_driver);
2161
2162MODULE_ALIAS("platform:stm32_fmc2_nfc");
2163MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2164MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
2165MODULE_LICENSE("GPL v2");
2166