1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Rockchip NAND Flash controller driver.
4 * Copyright (C) 2020 Rockchip Inc.
5 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
6 */
7
8#include <linux/clk.h>
9#include <linux/delay.h>
10#include <linux/dma-mapping.h>
11#include <linux/dmaengine.h>
12#include <linux/interrupt.h>
13#include <linux/iopoll.h>
14#include <linux/module.h>
15#include <linux/mtd/mtd.h>
16#include <linux/mtd/rawnand.h>
17#include <linux/of.h>
18#include <linux/platform_device.h>
19#include <linux/slab.h>
20
21/*
22 * NFC Page Data Layout:
23 *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
24 *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
25 *	......
26 * NAND Page Data Layout:
27 *	1024 * n data + m Bytes oob
28 * Original Bad Block Mask Location:
29 *	First byte of oob(spare).
30 * nand_chip->oob_poi data layout:
31 *	4Bytes sys data + .... + 4Bytes sys data + ECC data.
32 */
33
34/* NAND controller register definition */
35#define NFC_READ			(0)
36#define NFC_WRITE			(1)
37
38#define NFC_FMCTL			(0x00)
39#define   FMCTL_CE_SEL_M		0xFF
40#define   FMCTL_CE_SEL(x)		(1 << (x))
41#define   FMCTL_WP			BIT(8)
42#define   FMCTL_RDY			BIT(9)
43
44#define NFC_FMWAIT			(0x04)
45#define   FLCTL_RST			BIT(0)
46#define   FLCTL_WR			(1)	/* 0: read, 1: write */
47#define   FLCTL_XFER_ST			BIT(2)
48#define   FLCTL_XFER_EN			BIT(3)
49#define   FLCTL_ACORRECT		BIT(10) /* Auto correct error bits. */
50#define   FLCTL_XFER_READY		BIT(20)
51#define   FLCTL_XFER_SECTOR		(22)
52#define   FLCTL_TOG_FIX			BIT(29)
53
54#define   BCHCTL_BANK_M			(7 << 5)
55#define   BCHCTL_BANK			(5)
56
57#define   DMA_ST			BIT(0)
58#define   DMA_WR			(1)	/* 0: write, 1: read */
59#define   DMA_EN			BIT(2)
60#define   DMA_AHB_SIZE			(3)	/* 0: 1, 1: 2, 2: 4 */
61#define   DMA_BURST_SIZE		(6)	/* 0: 1, 3: 4, 5: 8, 7: 16 */
62#define   DMA_INC_NUM			(9)	/* 1 - 16 */
63
64#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
65	  (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
66#define   INT_DMA			BIT(0)
67#define NFC_BANK			(0x800)
68#define NFC_BANK_STEP			(0x100)
69#define   BANK_DATA			(0x00)
70#define   BANK_ADDR			(0x04)
71#define   BANK_CMD			(0x08)
72#define NFC_SRAM0			(0x1000)
73#define NFC_SRAM1			(0x1400)
74#define NFC_SRAM_SIZE			(0x400)
75#define NFC_TIMEOUT			(500000)
76#define NFC_MAX_OOB_PER_STEP		128
77#define NFC_MIN_OOB_PER_STEP		64
78#define MAX_DATA_SIZE			0xFFFC
79#define MAX_ADDRESS_CYC			6
80#define NFC_ECC_MAX_MODES		4
81#define NFC_MAX_NSELS			(8) /* Some Socs only have 1 or 2 CSs. */
82#define NFC_SYS_DATA_SIZE		(4) /* 4 bytes sys data in oob pre 1024 data.*/
83#define RK_DEFAULT_CLOCK_RATE		(150 * 1000 * 1000) /* 150 Mhz */
84#define ACCTIMING(csrw, rwpw, rwcs)	((csrw) << 12 | (rwpw) << 5 | (rwcs))
85
86enum nfc_type {
87	NFC_V6,
88	NFC_V8,
89	NFC_V9,
90};
91
92/**
93 * struct rk_ecc_cnt_status: represent a ecc status data.
94 * @err_flag_bit: error flag bit index at register.
95 * @low: ECC count low bit index at register.
96 * @low_mask: mask bit.
97 * @low_bn: ECC count low bit number.
98 * @high: ECC count high bit index at register.
99 * @high_mask: mask bit
100 */
101struct rk_ecc_cnt_status {
102	u8 err_flag_bit;
103	u8 low;
104	u8 low_mask;
105	u8 low_bn;
106	u8 high;
107	u8 high_mask;
108};
109
110/**
111 * struct nfc_cfg: Rockchip NAND controller configuration
112 * @type: NFC version
113 * @ecc_strengths: ECC strengths
114 * @ecc_cfgs: ECC config values
115 * @flctl_off: FLCTL register offset
116 * @bchctl_off: BCHCTL register offset
117 * @dma_data_buf_off: DMA_DATA_BUF register offset
118 * @dma_oob_buf_off: DMA_OOB_BUF register offset
119 * @dma_cfg_off: DMA_CFG register offset
120 * @dma_st_off: DMA_ST register offset
121 * @bch_st_off: BCG_ST register offset
122 * @randmz_off: RANDMZ register offset
123 * @int_en_off: interrupt enable register offset
124 * @int_clr_off: interrupt clean register offset
125 * @int_st_off: interrupt status register offset
126 * @oob0_off: oob0 register offset
127 * @oob1_off: oob1 register offset
128 * @ecc0: represent ECC0 status data
129 * @ecc1: represent ECC1 status data
130 */
131struct nfc_cfg {
132	enum nfc_type type;
133	u8 ecc_strengths[NFC_ECC_MAX_MODES];
134	u32 ecc_cfgs[NFC_ECC_MAX_MODES];
135	u32 flctl_off;
136	u32 bchctl_off;
137	u32 dma_cfg_off;
138	u32 dma_data_buf_off;
139	u32 dma_oob_buf_off;
140	u32 dma_st_off;
141	u32 bch_st_off;
142	u32 randmz_off;
143	u32 int_en_off;
144	u32 int_clr_off;
145	u32 int_st_off;
146	u32 oob0_off;
147	u32 oob1_off;
148	struct rk_ecc_cnt_status ecc0;
149	struct rk_ecc_cnt_status ecc1;
150};
151
152struct rk_nfc_nand_chip {
153	struct list_head node;
154	struct nand_chip chip;
155
156	u16 boot_blks;
157	u16 metadata_size;
158	u32 boot_ecc;
159	u32 timing;
160
161	u8 nsels;
162	u8 sels[] __counted_by(nsels);
163};
164
165struct rk_nfc {
166	struct nand_controller controller;
167	const struct nfc_cfg *cfg;
168	struct device *dev;
169
170	struct clk *nfc_clk;
171	struct clk *ahb_clk;
172	void __iomem *regs;
173
174	u32 selected_bank;
175	u32 band_offset;
176	u32 cur_ecc;
177	u32 cur_timing;
178
179	struct completion done;
180	struct list_head chips;
181
182	u8 *page_buf;
183	u32 *oob_buf;
184	u32 page_buf_size;
185	u32 oob_buf_size;
186
187	unsigned long assigned_cs;
188};
189
190static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
191{
192	return container_of(chip, struct rk_nfc_nand_chip, chip);
193}
194
195static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
196{
197	return (u8 *)p + i * chip->ecc.size;
198}
199
200static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
201{
202	u8 *poi;
203
204	poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
205
206	return poi;
207}
208
209static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
210{
211	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
212	u8 *poi;
213
214	poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
215
216	return poi;
217}
218
219static inline int rk_nfc_data_len(struct nand_chip *chip)
220{
221	return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
222}
223
224static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
225{
226	struct rk_nfc *nfc = nand_get_controller_data(chip);
227
228	return nfc->page_buf + i * rk_nfc_data_len(chip);
229}
230
231static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
232{
233	struct rk_nfc *nfc = nand_get_controller_data(chip);
234
235	return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
236}
237
238static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
239{
240	struct rk_nfc *nfc = nand_get_controller_data(chip);
241	u32 reg, i;
242
243	for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
244		if (strength == nfc->cfg->ecc_strengths[i]) {
245			reg = nfc->cfg->ecc_cfgs[i];
246			break;
247		}
248	}
249
250	if (i >= NFC_ECC_MAX_MODES)
251		return -EINVAL;
252
253	writel(reg, nfc->regs + nfc->cfg->bchctl_off);
254
255	/* Save chip ECC setting */
256	nfc->cur_ecc = strength;
257
258	return 0;
259}
260
261static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
262{
263	struct rk_nfc *nfc = nand_get_controller_data(chip);
264	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
265	struct nand_ecc_ctrl *ecc = &chip->ecc;
266	u32 val;
267
268	if (cs < 0) {
269		nfc->selected_bank = -1;
270		/* Deselect the currently selected target. */
271		val = readl_relaxed(nfc->regs + NFC_FMCTL);
272		val &= ~FMCTL_CE_SEL_M;
273		writel(val, nfc->regs + NFC_FMCTL);
274		return;
275	}
276
277	nfc->selected_bank = rknand->sels[cs];
278	nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
279
280	val = readl_relaxed(nfc->regs + NFC_FMCTL);
281	val &= ~FMCTL_CE_SEL_M;
282	val |= FMCTL_CE_SEL(nfc->selected_bank);
283
284	writel(val, nfc->regs + NFC_FMCTL);
285
286	/*
287	 * Compare current chip timing with selected chip timing and
288	 * change if needed.
289	 */
290	if (nfc->cur_timing != rknand->timing) {
291		writel(rknand->timing, nfc->regs + NFC_FMWAIT);
292		nfc->cur_timing = rknand->timing;
293	}
294
295	/*
296	 * Compare current chip ECC setting with selected chip ECC setting and
297	 * change if needed.
298	 */
299	if (nfc->cur_ecc != ecc->strength)
300		rk_nfc_hw_ecc_setup(chip, ecc->strength);
301}
302
303static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
304{
305	int rc;
306	u32 val;
307
308	rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
309					val & FMCTL_RDY, 10, NFC_TIMEOUT);
310
311	return rc;
312}
313
314static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
315{
316	int i;
317
318	for (i = 0; i < len; i++)
319		buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
320				       BANK_DATA);
321}
322
323static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
324{
325	int i;
326
327	for (i = 0; i < len; i++)
328		writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
329}
330
331static int rk_nfc_cmd(struct nand_chip *chip,
332		      const struct nand_subop *subop)
333{
334	struct rk_nfc *nfc = nand_get_controller_data(chip);
335	unsigned int i, j, remaining, start;
336	int reg_offset = nfc->band_offset;
337	u8 *inbuf = NULL;
338	const u8 *outbuf;
339	u32 cnt = 0;
340	int ret = 0;
341
342	for (i = 0; i < subop->ninstrs; i++) {
343		const struct nand_op_instr *instr = &subop->instrs[i];
344
345		switch (instr->type) {
346		case NAND_OP_CMD_INSTR:
347			writeb(instr->ctx.cmd.opcode,
348			       nfc->regs + reg_offset + BANK_CMD);
349			break;
350
351		case NAND_OP_ADDR_INSTR:
352			remaining = nand_subop_get_num_addr_cyc(subop, i);
353			start = nand_subop_get_addr_start_off(subop, i);
354
355			for (j = 0; j < 8 && j + start < remaining; j++)
356				writeb(instr->ctx.addr.addrs[j + start],
357				       nfc->regs + reg_offset + BANK_ADDR);
358			break;
359
360		case NAND_OP_DATA_IN_INSTR:
361		case NAND_OP_DATA_OUT_INSTR:
362			start = nand_subop_get_data_start_off(subop, i);
363			cnt = nand_subop_get_data_len(subop, i);
364
365			if (instr->type == NAND_OP_DATA_OUT_INSTR) {
366				outbuf = instr->ctx.data.buf.out + start;
367				rk_nfc_write_buf(nfc, outbuf, cnt);
368			} else {
369				inbuf = instr->ctx.data.buf.in + start;
370				rk_nfc_read_buf(nfc, inbuf, cnt);
371			}
372			break;
373
374		case NAND_OP_WAITRDY_INSTR:
375			if (rk_nfc_wait_ioready(nfc) < 0) {
376				ret = -ETIMEDOUT;
377				dev_err(nfc->dev, "IO not ready\n");
378			}
379			break;
380		}
381	}
382
383	return ret;
384}
385
386static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
387	NAND_OP_PARSER_PATTERN(
388		rk_nfc_cmd,
389		NAND_OP_PARSER_PAT_CMD_ELEM(true),
390		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
391		NAND_OP_PARSER_PAT_CMD_ELEM(true),
392		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
393		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
394	NAND_OP_PARSER_PATTERN(
395		rk_nfc_cmd,
396		NAND_OP_PARSER_PAT_CMD_ELEM(true),
397		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
398		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
399		NAND_OP_PARSER_PAT_CMD_ELEM(true),
400		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
401);
402
403static int rk_nfc_exec_op(struct nand_chip *chip,
404			  const struct nand_operation *op,
405			  bool check_only)
406{
407	if (!check_only)
408		rk_nfc_select_chip(chip, op->cs);
409
410	return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
411				      check_only);
412}
413
414static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
415				  const struct nand_interface_config *conf)
416{
417	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
418	struct rk_nfc *nfc = nand_get_controller_data(chip);
419	const struct nand_sdr_timings *timings;
420	u32 rate, tc2rw, trwpw, trw2c;
421	u32 temp;
422
423	if (target < 0)
424		return 0;
425
426	timings = nand_get_sdr_timings(conf);
427	if (IS_ERR(timings))
428		return -EOPNOTSUPP;
429
430	if (IS_ERR(nfc->nfc_clk))
431		rate = clk_get_rate(nfc->ahb_clk);
432	else
433		rate = clk_get_rate(nfc->nfc_clk);
434
435	/* Turn clock rate into kHz. */
436	rate /= 1000;
437
438	tc2rw = 1;
439	trw2c = 1;
440
441	trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
442	trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
443
444	temp = timings->tREA_max / 1000;
445	temp = DIV_ROUND_UP(temp * rate, 1000000);
446
447	if (trwpw < temp)
448		trwpw = temp;
449
450	/*
451	 * ACCON: access timing control register
452	 * -------------------------------------
453	 * 31:18: reserved
454	 * 17:12: csrw, clock cycles from the falling edge of CSn to the
455	 *   falling edge of RDn or WRn
456	 * 11:11: reserved
457	 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
458	 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
459	 *   rising edge of CSn
460	 */
461
462	/* Save chip timing */
463	rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
464
465	return 0;
466}
467
468static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
469			      dma_addr_t dma_data, dma_addr_t dma_oob)
470{
471	u32 dma_reg, fl_reg, bch_reg;
472
473	dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
474	      (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
475
476	fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
477		 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
478
479	if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
480		bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
481		bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
482			  (nfc->selected_bank << BCHCTL_BANK);
483		writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
484	}
485
486	writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
487	writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
488	writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
489	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
490	fl_reg |= FLCTL_XFER_ST;
491	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
492}
493
494static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
495{
496	void __iomem *ptr;
497	u32 reg;
498
499	ptr = nfc->regs + nfc->cfg->flctl_off;
500
501	return readl_relaxed_poll_timeout(ptr, reg,
502					 reg & FLCTL_XFER_READY,
503					 10, NFC_TIMEOUT);
504}
505
506static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
507				 int oob_on, int page)
508{
509	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
510	struct rk_nfc *nfc = nand_get_controller_data(chip);
511	struct mtd_info *mtd = nand_to_mtd(chip);
512	struct nand_ecc_ctrl *ecc = &chip->ecc;
513	int i, pages_per_blk;
514
515	pages_per_blk = mtd->erasesize / mtd->writesize;
516	if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
517	    (page < (pages_per_blk * rknand->boot_blks)) &&
518	    rknand->boot_ecc != ecc->strength) {
519		/*
520		 * There's currently no method to notify the MTD framework that
521		 * a different ECC strength is in use for the boot blocks.
522		 */
523		return -EIO;
524	}
525
526	if (!buf)
527		memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
528
529	for (i = 0; i < ecc->steps; i++) {
530		/* Copy data to the NFC buffer. */
531		if (buf)
532			memcpy(rk_nfc_data_ptr(chip, i),
533			       rk_nfc_buf_to_data_ptr(chip, buf, i),
534			       ecc->size);
535		/*
536		 * The first four bytes of OOB are reserved for the
537		 * boot ROM. In some debugging cases, such as with a
538		 * read, erase and write back test these 4 bytes stored
539		 * in OOB also need to be written back.
540		 *
541		 * The function nand_block_bad detects bad blocks like:
542		 *
543		 * bad = chip->oob_poi[chip->badblockpos];
544		 *
545		 * chip->badblockpos == 0 for a large page NAND Flash,
546		 * so chip->oob_poi[0] is the bad block mask (BBM).
547		 *
548		 * The OOB data layout on the NFC is:
549		 *
550		 *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
551		 *
552		 * or
553		 *
554		 *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
555		 *
556		 * The code here just swaps the first 4 bytes with the last
557		 * 4 bytes without losing any data.
558		 *
559		 * The chip->oob_poi data layout:
560		 *
561		 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
562		 *
563		 * The rk_nfc_ooblayout_free() function already has reserved
564		 * these 4 bytes together with 2 bytes for BBM
565		 * by reducing it's length:
566		 *
567		 * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
568		 */
569		if (!i)
570			memcpy(rk_nfc_oob_ptr(chip, i),
571			       rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
572			       NFC_SYS_DATA_SIZE);
573		else
574			memcpy(rk_nfc_oob_ptr(chip, i),
575			       rk_nfc_buf_to_oob_ptr(chip, i - 1),
576			       NFC_SYS_DATA_SIZE);
577		/* Copy ECC data to the NFC buffer. */
578		memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
579		       rk_nfc_buf_to_oob_ecc_ptr(chip, i),
580		       ecc->bytes);
581	}
582
583	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
584	rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
585	return nand_prog_page_end_op(chip);
586}
587
588static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
589				   int oob_on, int page)
590{
591	struct mtd_info *mtd = nand_to_mtd(chip);
592	struct rk_nfc *nfc = nand_get_controller_data(chip);
593	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
594	struct nand_ecc_ctrl *ecc = &chip->ecc;
595	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
596			NFC_MIN_OOB_PER_STEP;
597	int pages_per_blk = mtd->erasesize / mtd->writesize;
598	int ret = 0, i, boot_rom_mode = 0;
599	dma_addr_t dma_data, dma_oob;
600	u32 tmp;
601	u8 *oob;
602
603	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
604
605	if (buf)
606		memcpy(nfc->page_buf, buf, mtd->writesize);
607	else
608		memset(nfc->page_buf, 0xFF, mtd->writesize);
609
610	/*
611	 * The first blocks (4, 8 or 16 depending on the device) are used
612	 * by the boot ROM and the first 32 bits of OOB need to link to
613	 * the next page address in the same block. We can't directly copy
614	 * OOB data from the MTD framework, because this page address
615	 * conflicts for example with the bad block marker (BBM),
616	 * so we shift all OOB data including the BBM with 4 byte positions.
617	 * As a consequence the OOB size available to the MTD framework is
618	 * also reduced with 4 bytes.
619	 *
620	 *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
621	 *
622	 * If a NAND is not a boot medium or the page is not a boot block,
623	 * the first 4 bytes are left untouched by writing 0xFF to them.
624	 *
625	 *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
626	 *
627	 * The code here just swaps the first 4 bytes with the last
628	 * 4 bytes without losing any data.
629	 *
630	 * The chip->oob_poi data layout:
631	 *
632	 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
633	 *
634	 * Configure the ECC algorithm supported by the boot ROM.
635	 */
636	if ((page < (pages_per_blk * rknand->boot_blks)) &&
637	    (chip->options & NAND_IS_BOOT_MEDIUM)) {
638		boot_rom_mode = 1;
639		if (rknand->boot_ecc != ecc->strength)
640			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
641	}
642
643	for (i = 0; i < ecc->steps; i++) {
644		if (!i)
645			oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
646		else
647			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
648
649		tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
650
651		if (nfc->cfg->type == NFC_V9)
652			nfc->oob_buf[i] = tmp;
653		else
654			nfc->oob_buf[i * (oob_step / 4)] = tmp;
655	}
656
657	dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
658				  mtd->writesize, DMA_TO_DEVICE);
659	dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
660				 ecc->steps * oob_step,
661				 DMA_TO_DEVICE);
662
663	reinit_completion(&nfc->done);
664	writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
665
666	rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
667			  dma_oob);
668	ret = wait_for_completion_timeout(&nfc->done,
669					  msecs_to_jiffies(100));
670	if (!ret)
671		dev_warn(nfc->dev, "write: wait dma done timeout.\n");
672	/*
673	 * Whether the DMA transfer is completed or not. The driver
674	 * needs to check the NFC`s status register to see if the data
675	 * transfer was completed.
676	 */
677	ret = rk_nfc_wait_for_xfer_done(nfc);
678
679	dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
680			 DMA_TO_DEVICE);
681	dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
682			 DMA_TO_DEVICE);
683
684	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
685		rk_nfc_hw_ecc_setup(chip, ecc->strength);
686
687	if (ret) {
688		dev_err(nfc->dev, "write: wait transfer done timeout.\n");
689		return -ETIMEDOUT;
690	}
691
692	return nand_prog_page_end_op(chip);
693}
694
695static int rk_nfc_write_oob(struct nand_chip *chip, int page)
696{
697	return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
698}
699
700static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
701				int page)
702{
703	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
704	struct rk_nfc *nfc = nand_get_controller_data(chip);
705	struct mtd_info *mtd = nand_to_mtd(chip);
706	struct nand_ecc_ctrl *ecc = &chip->ecc;
707	int i, pages_per_blk;
708
709	pages_per_blk = mtd->erasesize / mtd->writesize;
710	if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
711	    (page < (pages_per_blk * rknand->boot_blks)) &&
712	    rknand->boot_ecc != ecc->strength) {
713		/*
714		 * There's currently no method to notify the MTD framework that
715		 * a different ECC strength is in use for the boot blocks.
716		 */
717		return -EIO;
718	}
719
720	nand_read_page_op(chip, page, 0, NULL, 0);
721	rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
722	for (i = 0; i < ecc->steps; i++) {
723		/*
724		 * The first four bytes of OOB are reserved for the
725		 * boot ROM. In some debugging cases, such as with a read,
726		 * erase and write back test, these 4 bytes also must be
727		 * saved somewhere, otherwise this information will be
728		 * lost during a write back.
729		 */
730		if (!i)
731			memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
732			       rk_nfc_oob_ptr(chip, i),
733			       NFC_SYS_DATA_SIZE);
734		else
735			memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
736			       rk_nfc_oob_ptr(chip, i),
737			       NFC_SYS_DATA_SIZE);
738
739		/* Copy ECC data from the NFC buffer. */
740		memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
741		       rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
742		       ecc->bytes);
743
744		/* Copy data from the NFC buffer. */
745		if (buf)
746			memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
747			       rk_nfc_data_ptr(chip, i),
748			       ecc->size);
749	}
750
751	return 0;
752}
753
754static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
755				  int page)
756{
757	struct mtd_info *mtd = nand_to_mtd(chip);
758	struct rk_nfc *nfc = nand_get_controller_data(chip);
759	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
760	struct nand_ecc_ctrl *ecc = &chip->ecc;
761	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
762			NFC_MIN_OOB_PER_STEP;
763	int pages_per_blk = mtd->erasesize / mtd->writesize;
764	dma_addr_t dma_data, dma_oob;
765	int ret = 0, i, cnt, boot_rom_mode = 0;
766	int max_bitflips = 0, bch_st, ecc_fail = 0;
767	u8 *oob;
768	u32 tmp;
769
770	nand_read_page_op(chip, page, 0, NULL, 0);
771
772	dma_data = dma_map_single(nfc->dev, nfc->page_buf,
773				  mtd->writesize,
774				  DMA_FROM_DEVICE);
775	dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
776				 ecc->steps * oob_step,
777				 DMA_FROM_DEVICE);
778
779	/*
780	 * The first blocks (4, 8 or 16 depending on the device)
781	 * are used by the boot ROM.
782	 * Configure the ECC algorithm supported by the boot ROM.
783	 */
784	if ((page < (pages_per_blk * rknand->boot_blks)) &&
785	    (chip->options & NAND_IS_BOOT_MEDIUM)) {
786		boot_rom_mode = 1;
787		if (rknand->boot_ecc != ecc->strength)
788			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
789	}
790
791	reinit_completion(&nfc->done);
792	writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
793	rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
794			  dma_oob);
795	ret = wait_for_completion_timeout(&nfc->done,
796					  msecs_to_jiffies(100));
797	if (!ret)
798		dev_warn(nfc->dev, "read: wait dma done timeout.\n");
799	/*
800	 * Whether the DMA transfer is completed or not. The driver
801	 * needs to check the NFC`s status register to see if the data
802	 * transfer was completed.
803	 */
804	ret = rk_nfc_wait_for_xfer_done(nfc);
805
806	dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
807			 DMA_FROM_DEVICE);
808	dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
809			 DMA_FROM_DEVICE);
810
811	if (ret) {
812		ret = -ETIMEDOUT;
813		dev_err(nfc->dev, "read: wait transfer done timeout.\n");
814		goto timeout_err;
815	}
816
817	for (i = 0; i < ecc->steps; i++) {
818		if (!i)
819			oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
820		else
821			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
822
823		if (nfc->cfg->type == NFC_V9)
824			tmp = nfc->oob_buf[i];
825		else
826			tmp = nfc->oob_buf[i * (oob_step / 4)];
827
828		*oob++ = (u8)tmp;
829		*oob++ = (u8)(tmp >> 8);
830		*oob++ = (u8)(tmp >> 16);
831		*oob++ = (u8)(tmp >> 24);
832	}
833
834	for (i = 0; i < (ecc->steps / 2); i++) {
835		bch_st = readl_relaxed(nfc->regs +
836				       nfc->cfg->bch_st_off + i * 4);
837		if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
838		    bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
839			mtd->ecc_stats.failed++;
840			ecc_fail = 1;
841		} else {
842			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
843			mtd->ecc_stats.corrected += cnt;
844			max_bitflips = max_t(u32, max_bitflips, cnt);
845
846			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
847			mtd->ecc_stats.corrected += cnt;
848			max_bitflips = max_t(u32, max_bitflips, cnt);
849		}
850	}
851
852	if (buf)
853		memcpy(buf, nfc->page_buf, mtd->writesize);
854
855timeout_err:
856	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
857		rk_nfc_hw_ecc_setup(chip, ecc->strength);
858
859	if (ret)
860		return ret;
861
862	if (ecc_fail) {
863		dev_err(nfc->dev, "read page: %x ecc error!\n", page);
864		return 0;
865	}
866
867	return max_bitflips;
868}
869
870static int rk_nfc_read_oob(struct nand_chip *chip, int page)
871{
872	return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
873}
874
875static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
876{
877	/* Disable flash wp. */
878	writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
879	/* Config default timing 40ns at 150 Mhz NFC clock. */
880	writel(0x1081, nfc->regs + NFC_FMWAIT);
881	nfc->cur_timing = 0x1081;
882	/* Disable randomizer and DMA. */
883	writel(0, nfc->regs + nfc->cfg->randmz_off);
884	writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
885	writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
886}
887
888static irqreturn_t rk_nfc_irq(int irq, void *id)
889{
890	struct rk_nfc *nfc = id;
891	u32 sta, ien;
892
893	sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
894	ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
895
896	if (!(sta & ien))
897		return IRQ_NONE;
898
899	writel(sta, nfc->regs + nfc->cfg->int_clr_off);
900	writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
901
902	complete(&nfc->done);
903
904	return IRQ_HANDLED;
905}
906
907static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
908{
909	int ret;
910
911	if (!IS_ERR(nfc->nfc_clk)) {
912		ret = clk_prepare_enable(nfc->nfc_clk);
913		if (ret) {
914			dev_err(dev, "failed to enable NFC clk\n");
915			return ret;
916		}
917	}
918
919	ret = clk_prepare_enable(nfc->ahb_clk);
920	if (ret) {
921		dev_err(dev, "failed to enable ahb clk\n");
922		clk_disable_unprepare(nfc->nfc_clk);
923		return ret;
924	}
925
926	return 0;
927}
928
929static void rk_nfc_disable_clks(struct rk_nfc *nfc)
930{
931	clk_disable_unprepare(nfc->nfc_clk);
932	clk_disable_unprepare(nfc->ahb_clk);
933}
934
935static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
936				 struct mtd_oob_region *oob_region)
937{
938	struct nand_chip *chip = mtd_to_nand(mtd);
939	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
940
941	if (section)
942		return -ERANGE;
943
944	oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
945	oob_region->offset = 2;
946
947	return 0;
948}
949
950static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
951				struct mtd_oob_region *oob_region)
952{
953	struct nand_chip *chip = mtd_to_nand(mtd);
954	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
955
956	if (section)
957		return -ERANGE;
958
959	oob_region->length = mtd->oobsize - rknand->metadata_size;
960	oob_region->offset = rknand->metadata_size;
961
962	return 0;
963}
964
965static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
966	.free = rk_nfc_ooblayout_free,
967	.ecc = rk_nfc_ooblayout_ecc,
968};
969
970static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
971{
972	struct nand_chip *chip = mtd_to_nand(mtd);
973	struct rk_nfc *nfc = nand_get_controller_data(chip);
974	struct nand_ecc_ctrl *ecc = &chip->ecc;
975	const u8 *strengths = nfc->cfg->ecc_strengths;
976	u8 max_strength, nfc_max_strength;
977	int i;
978
979	nfc_max_strength = nfc->cfg->ecc_strengths[0];
980	/* If optional dt settings not present. */
981	if (!ecc->size || !ecc->strength ||
982	    ecc->strength > nfc_max_strength) {
983		chip->ecc.size = 1024;
984		ecc->steps = mtd->writesize / ecc->size;
985
986		/*
987		 * HW ECC always requests the number of ECC bytes per 1024 byte
988		 * blocks. The first 4 OOB bytes are reserved for sys data.
989		 */
990		max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
991				 fls(8 * 1024);
992		if (max_strength > nfc_max_strength)
993			max_strength = nfc_max_strength;
994
995		for (i = 0; i < 4; i++) {
996			if (max_strength >= strengths[i])
997				break;
998		}
999
1000		if (i >= 4) {
1001			dev_err(nfc->dev, "unsupported ECC strength\n");
1002			return -EOPNOTSUPP;
1003		}
1004
1005		ecc->strength = strengths[i];
1006	}
1007	ecc->steps = mtd->writesize / ecc->size;
1008	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
1009
1010	return 0;
1011}
1012
1013static int rk_nfc_attach_chip(struct nand_chip *chip)
1014{
1015	struct mtd_info *mtd = nand_to_mtd(chip);
1016	struct device *dev = mtd->dev.parent;
1017	struct rk_nfc *nfc = nand_get_controller_data(chip);
1018	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
1019	struct nand_ecc_ctrl *ecc = &chip->ecc;
1020	int new_page_len, new_oob_len;
1021	void *buf;
1022	int ret;
1023
1024	if (chip->options & NAND_BUSWIDTH_16) {
1025		dev_err(dev, "16 bits bus width not supported");
1026		return -EINVAL;
1027	}
1028
1029	if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1030		return 0;
1031
1032	ret = rk_nfc_ecc_init(dev, mtd);
1033	if (ret)
1034		return ret;
1035
1036	rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
1037
1038	if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
1039		dev_err(dev,
1040			"driver needs at least %d bytes of meta data\n",
1041			NFC_SYS_DATA_SIZE + 2);
1042		return -EIO;
1043	}
1044
1045	/* Check buffer first, avoid duplicate alloc buffer. */
1046	new_page_len = mtd->writesize + mtd->oobsize;
1047	if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
1048		buf = krealloc(nfc->page_buf, new_page_len,
1049			       GFP_KERNEL | GFP_DMA);
1050		if (!buf)
1051			return -ENOMEM;
1052		nfc->page_buf = buf;
1053		nfc->page_buf_size = new_page_len;
1054	}
1055
1056	new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
1057	if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
1058		buf = krealloc(nfc->oob_buf, new_oob_len,
1059			       GFP_KERNEL | GFP_DMA);
1060		if (!buf) {
1061			kfree(nfc->page_buf);
1062			nfc->page_buf = NULL;
1063			return -ENOMEM;
1064		}
1065		nfc->oob_buf = buf;
1066		nfc->oob_buf_size = new_oob_len;
1067	}
1068
1069	if (!nfc->page_buf) {
1070		nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
1071		if (!nfc->page_buf)
1072			return -ENOMEM;
1073		nfc->page_buf_size = new_page_len;
1074	}
1075
1076	if (!nfc->oob_buf) {
1077		nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
1078		if (!nfc->oob_buf) {
1079			kfree(nfc->page_buf);
1080			nfc->page_buf = NULL;
1081			return -ENOMEM;
1082		}
1083		nfc->oob_buf_size = new_oob_len;
1084	}
1085
1086	chip->ecc.write_page_raw = rk_nfc_write_page_raw;
1087	chip->ecc.write_page = rk_nfc_write_page_hwecc;
1088	chip->ecc.write_oob = rk_nfc_write_oob;
1089
1090	chip->ecc.read_page_raw = rk_nfc_read_page_raw;
1091	chip->ecc.read_page = rk_nfc_read_page_hwecc;
1092	chip->ecc.read_oob = rk_nfc_read_oob;
1093
1094	return 0;
1095}
1096
1097static const struct nand_controller_ops rk_nfc_controller_ops = {
1098	.attach_chip = rk_nfc_attach_chip,
1099	.exec_op = rk_nfc_exec_op,
1100	.setup_interface = rk_nfc_setup_interface,
1101};
1102
1103static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
1104				 struct device_node *np)
1105{
1106	struct rk_nfc_nand_chip *rknand;
1107	struct nand_chip *chip;
1108	struct mtd_info *mtd;
1109	int nsels;
1110	u32 tmp;
1111	int ret;
1112	int i;
1113
1114	if (!of_get_property(np, "reg", &nsels))
1115		return -ENODEV;
1116	nsels /= sizeof(u32);
1117	if (!nsels || nsels > NFC_MAX_NSELS) {
1118		dev_err(dev, "invalid reg property size %d\n", nsels);
1119		return -EINVAL;
1120	}
1121
1122	rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels),
1123			      GFP_KERNEL);
1124	if (!rknand)
1125		return -ENOMEM;
1126
1127	rknand->nsels = nsels;
1128	for (i = 0; i < nsels; i++) {
1129		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1130		if (ret) {
1131			dev_err(dev, "reg property failure : %d\n", ret);
1132			return ret;
1133		}
1134
1135		if (tmp >= NFC_MAX_NSELS) {
1136			dev_err(dev, "invalid CS: %u\n", tmp);
1137			return -EINVAL;
1138		}
1139
1140		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1141			dev_err(dev, "CS %u already assigned\n", tmp);
1142			return -EINVAL;
1143		}
1144
1145		rknand->sels[i] = tmp;
1146	}
1147
1148	chip = &rknand->chip;
1149	chip->controller = &nfc->controller;
1150
1151	nand_set_flash_node(chip, np);
1152
1153	nand_set_controller_data(chip, nfc);
1154
1155	chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1156	chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1157
1158	/* Set default mode in case dt entry is missing. */
1159	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1160
1161	mtd = nand_to_mtd(chip);
1162	mtd->owner = THIS_MODULE;
1163	mtd->dev.parent = dev;
1164
1165	if (!mtd->name) {
1166		dev_err(nfc->dev, "NAND label property is mandatory\n");
1167		return -EINVAL;
1168	}
1169
1170	mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
1171	rk_nfc_hw_init(nfc);
1172	ret = nand_scan(chip, nsels);
1173	if (ret)
1174		return ret;
1175
1176	if (chip->options & NAND_IS_BOOT_MEDIUM) {
1177		ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
1178		rknand->boot_blks = ret ? 0 : tmp;
1179
1180		ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
1181					   &tmp);
1182		rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
1183	}
1184
1185	ret = mtd_device_register(mtd, NULL, 0);
1186	if (ret) {
1187		dev_err(dev, "MTD parse partition error\n");
1188		nand_cleanup(chip);
1189		return ret;
1190	}
1191
1192	list_add_tail(&rknand->node, &nfc->chips);
1193
1194	return 0;
1195}
1196
1197static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
1198{
1199	struct rk_nfc_nand_chip *rknand, *tmp;
1200	struct nand_chip *chip;
1201	int ret;
1202
1203	list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
1204		chip = &rknand->chip;
1205		ret = mtd_device_unregister(nand_to_mtd(chip));
1206		WARN_ON(ret);
1207		nand_cleanup(chip);
1208		list_del(&rknand->node);
1209	}
1210}
1211
1212static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
1213{
1214	struct device_node *np = dev->of_node, *nand_np;
1215	int nchips = of_get_child_count(np);
1216	int ret;
1217
1218	if (!nchips || nchips > NFC_MAX_NSELS) {
1219		dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
1220			nchips);
1221		return -EINVAL;
1222	}
1223
1224	for_each_child_of_node(np, nand_np) {
1225		ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
1226		if (ret) {
1227			of_node_put(nand_np);
1228			rk_nfc_chips_cleanup(nfc);
1229			return ret;
1230		}
1231	}
1232
1233	return 0;
1234}
1235
1236static struct nfc_cfg nfc_v6_cfg = {
1237		.type			= NFC_V6,
1238		.ecc_strengths		= {60, 40, 24, 16},
1239		.ecc_cfgs		= {
1240			0x00040011, 0x00040001, 0x00000011, 0x00000001,
1241		},
1242		.flctl_off		= 0x08,
1243		.bchctl_off		= 0x0C,
1244		.dma_cfg_off		= 0x10,
1245		.dma_data_buf_off	= 0x14,
1246		.dma_oob_buf_off	= 0x18,
1247		.dma_st_off		= 0x1C,
1248		.bch_st_off		= 0x20,
1249		.randmz_off		= 0x150,
1250		.int_en_off		= 0x16C,
1251		.int_clr_off		= 0x170,
1252		.int_st_off		= 0x174,
1253		.oob0_off		= 0x200,
1254		.oob1_off		= 0x230,
1255		.ecc0			= {
1256			.err_flag_bit	= 2,
1257			.low		= 3,
1258			.low_mask	= 0x1F,
1259			.low_bn		= 5,
1260			.high		= 27,
1261			.high_mask	= 0x1,
1262		},
1263		.ecc1			= {
1264			.err_flag_bit	= 15,
1265			.low		= 16,
1266			.low_mask	= 0x1F,
1267			.low_bn		= 5,
1268			.high		= 29,
1269			.high_mask	= 0x1,
1270		},
1271};
1272
1273static struct nfc_cfg nfc_v8_cfg = {
1274		.type			= NFC_V8,
1275		.ecc_strengths		= {16, 16, 16, 16},
1276		.ecc_cfgs		= {
1277			0x00000001, 0x00000001, 0x00000001, 0x00000001,
1278		},
1279		.flctl_off		= 0x08,
1280		.bchctl_off		= 0x0C,
1281		.dma_cfg_off		= 0x10,
1282		.dma_data_buf_off	= 0x14,
1283		.dma_oob_buf_off	= 0x18,
1284		.dma_st_off		= 0x1C,
1285		.bch_st_off		= 0x20,
1286		.randmz_off		= 0x150,
1287		.int_en_off		= 0x16C,
1288		.int_clr_off		= 0x170,
1289		.int_st_off		= 0x174,
1290		.oob0_off		= 0x200,
1291		.oob1_off		= 0x230,
1292		.ecc0			= {
1293			.err_flag_bit	= 2,
1294			.low		= 3,
1295			.low_mask	= 0x1F,
1296			.low_bn		= 5,
1297			.high		= 27,
1298			.high_mask	= 0x1,
1299		},
1300		.ecc1			= {
1301			.err_flag_bit	= 15,
1302			.low		= 16,
1303			.low_mask	= 0x1F,
1304			.low_bn		= 5,
1305			.high		= 29,
1306			.high_mask	= 0x1,
1307		},
1308};
1309
1310static struct nfc_cfg nfc_v9_cfg = {
1311		.type			= NFC_V9,
1312		.ecc_strengths		= {70, 60, 40, 16},
1313		.ecc_cfgs		= {
1314			0x00000001, 0x06000001, 0x04000001, 0x02000001,
1315		},
1316		.flctl_off		= 0x10,
1317		.bchctl_off		= 0x20,
1318		.dma_cfg_off		= 0x30,
1319		.dma_data_buf_off	= 0x34,
1320		.dma_oob_buf_off	= 0x38,
1321		.dma_st_off		= 0x3C,
1322		.bch_st_off		= 0x150,
1323		.randmz_off		= 0x208,
1324		.int_en_off		= 0x120,
1325		.int_clr_off		= 0x124,
1326		.int_st_off		= 0x128,
1327		.oob0_off		= 0x200,
1328		.oob1_off		= 0x204,
1329		.ecc0			= {
1330			.err_flag_bit	= 2,
1331			.low		= 3,
1332			.low_mask	= 0x7F,
1333			.low_bn		= 7,
1334			.high		= 0,
1335			.high_mask	= 0x0,
1336		},
1337		.ecc1			= {
1338			.err_flag_bit	= 18,
1339			.low		= 19,
1340			.low_mask	= 0x7F,
1341			.low_bn		= 7,
1342			.high		= 0,
1343			.high_mask	= 0x0,
1344		},
1345};
1346
1347static const struct of_device_id rk_nfc_id_table[] = {
1348	{
1349		.compatible = "rockchip,px30-nfc",
1350		.data = &nfc_v9_cfg
1351	},
1352	{
1353		.compatible = "rockchip,rk2928-nfc",
1354		.data = &nfc_v6_cfg
1355	},
1356	{
1357		.compatible = "rockchip,rv1108-nfc",
1358		.data = &nfc_v8_cfg
1359	},
1360	{ /* sentinel */ }
1361};
1362MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
1363
1364static int rk_nfc_probe(struct platform_device *pdev)
1365{
1366	struct device *dev = &pdev->dev;
1367	struct rk_nfc *nfc;
1368	int ret, irq;
1369
1370	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1371	if (!nfc)
1372		return -ENOMEM;
1373
1374	nand_controller_init(&nfc->controller);
1375	INIT_LIST_HEAD(&nfc->chips);
1376	nfc->controller.ops = &rk_nfc_controller_ops;
1377
1378	nfc->cfg = of_device_get_match_data(dev);
1379	nfc->dev = dev;
1380
1381	init_completion(&nfc->done);
1382
1383	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
1384	if (IS_ERR(nfc->regs)) {
1385		ret = PTR_ERR(nfc->regs);
1386		goto release_nfc;
1387	}
1388
1389	nfc->nfc_clk = devm_clk_get(dev, "nfc");
1390	if (IS_ERR(nfc->nfc_clk)) {
1391		dev_dbg(dev, "no NFC clk\n");
1392		/* Some earlier models, such as rk3066, have no NFC clk. */
1393	}
1394
1395	nfc->ahb_clk = devm_clk_get(dev, "ahb");
1396	if (IS_ERR(nfc->ahb_clk)) {
1397		dev_err(dev, "no ahb clk\n");
1398		ret = PTR_ERR(nfc->ahb_clk);
1399		goto release_nfc;
1400	}
1401
1402	ret = rk_nfc_enable_clks(dev, nfc);
1403	if (ret)
1404		goto release_nfc;
1405
1406	irq = platform_get_irq(pdev, 0);
1407	if (irq < 0) {
1408		ret = -EINVAL;
1409		goto clk_disable;
1410	}
1411
1412	writel(0, nfc->regs + nfc->cfg->int_en_off);
1413	ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
1414	if (ret) {
1415		dev_err(dev, "failed to request NFC irq\n");
1416		goto clk_disable;
1417	}
1418
1419	platform_set_drvdata(pdev, nfc);
1420
1421	ret = rk_nfc_nand_chips_init(dev, nfc);
1422	if (ret) {
1423		dev_err(dev, "failed to init NAND chips\n");
1424		goto clk_disable;
1425	}
1426	return 0;
1427
1428clk_disable:
1429	rk_nfc_disable_clks(nfc);
1430release_nfc:
1431	return ret;
1432}
1433
1434static void rk_nfc_remove(struct platform_device *pdev)
1435{
1436	struct rk_nfc *nfc = platform_get_drvdata(pdev);
1437
1438	kfree(nfc->page_buf);
1439	kfree(nfc->oob_buf);
1440	rk_nfc_chips_cleanup(nfc);
1441	rk_nfc_disable_clks(nfc);
1442}
1443
1444static int __maybe_unused rk_nfc_suspend(struct device *dev)
1445{
1446	struct rk_nfc *nfc = dev_get_drvdata(dev);
1447
1448	rk_nfc_disable_clks(nfc);
1449
1450	return 0;
1451}
1452
1453static int __maybe_unused rk_nfc_resume(struct device *dev)
1454{
1455	struct rk_nfc *nfc = dev_get_drvdata(dev);
1456	struct rk_nfc_nand_chip *rknand;
1457	struct nand_chip *chip;
1458	int ret;
1459	u32 i;
1460
1461	ret = rk_nfc_enable_clks(dev, nfc);
1462	if (ret)
1463		return ret;
1464
1465	/* Reset NAND chip if VCC was powered off. */
1466	list_for_each_entry(rknand, &nfc->chips, node) {
1467		chip = &rknand->chip;
1468		for (i = 0; i < rknand->nsels; i++)
1469			nand_reset(chip, i);
1470	}
1471
1472	return 0;
1473}
1474
1475static const struct dev_pm_ops rk_nfc_pm_ops = {
1476	SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
1477};
1478
1479static struct platform_driver rk_nfc_driver = {
1480	.probe = rk_nfc_probe,
1481	.remove_new = rk_nfc_remove,
1482	.driver = {
1483		.name = "rockchip-nfc",
1484		.of_match_table = rk_nfc_id_table,
1485		.pm = &rk_nfc_pm_ops,
1486	},
1487};
1488
1489module_platform_driver(rk_nfc_driver);
1490
1491MODULE_LICENSE("Dual MIT/GPL");
1492MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
1493MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
1494MODULE_ALIAS("platform:rockchip-nand-controller");
1495