1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2017 Free Electrons
4 * Copyright (C) 2017 NextThing Co
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 */
8
9#include <linux/slab.h>
10
11#include "internals.h"
12
13/*
14 * Special Micron status bit 3 indicates that the block has been
15 * corrected by on-die ECC and should be rewritten.
16 */
17#define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3)
18
19/*
20 * On chips with 8-bit ECC and additional bit can be used to distinguish
21 * cases where a errors were corrected without needing a rewrite
22 *
23 * Bit 4 Bit 3 Bit 0 Description
24 * ----- ----- ----- -----------
25 * 0     0     0     No Errors
26 * 0     0     1     Multiple uncorrected errors
27 * 0     1     0     4 - 6 errors corrected, recommend rewrite
28 * 0     1     1     Reserved
29 * 1     0     0     1 - 3 errors corrected
30 * 1     0     1     Reserved
31 * 1     1     0     7 - 8 errors corrected, recommend rewrite
32 */
33#define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0))
34#define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0)
35#define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3)
36#define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4)
37#define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3))
38
39struct nand_onfi_vendor_micron {
40	u8 two_plane_read;
41	u8 read_cache;
42	u8 read_unique_id;
43	u8 dq_imped;
44	u8 dq_imped_num_settings;
45	u8 dq_imped_feat_addr;
46	u8 rb_pulldown_strength;
47	u8 rb_pulldown_strength_feat_addr;
48	u8 rb_pulldown_strength_num_settings;
49	u8 otp_mode;
50	u8 otp_page_start;
51	u8 otp_data_prot_addr;
52	u8 otp_num_pages;
53	u8 otp_feat_addr;
54	u8 read_retry_options;
55	u8 reserved[72];
56	u8 param_revision;
57} __packed;
58
59struct micron_on_die_ecc {
60	bool forced;
61	bool enabled;
62	void *rawbuf;
63};
64
65struct micron_nand {
66	struct micron_on_die_ecc ecc;
67};
68
69static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
70{
71	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
72
73	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
74}
75
76/*
77 * Configure chip properties from Micron vendor-specific ONFI table
78 */
79static int micron_nand_onfi_init(struct nand_chip *chip)
80{
81	struct nand_parameters *p = &chip->parameters;
82
83	if (p->onfi) {
84		struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
85
86		chip->read_retries = micron->read_retry_options;
87		chip->ops.setup_read_retry = micron_nand_setup_read_retry;
88	}
89
90	if (p->supports_set_get_features) {
91		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
92		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
93		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
94		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
95	}
96
97	return 0;
98}
99
100static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
101					      int section,
102					      struct mtd_oob_region *oobregion)
103{
104	if (section >= 4)
105		return -ERANGE;
106
107	oobregion->offset = (section * 16) + 8;
108	oobregion->length = 8;
109
110	return 0;
111}
112
113static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
114					       int section,
115					       struct mtd_oob_region *oobregion)
116{
117	if (section >= 4)
118		return -ERANGE;
119
120	oobregion->offset = (section * 16) + 2;
121	oobregion->length = 6;
122
123	return 0;
124}
125
126static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
127	.ecc = micron_nand_on_die_4_ooblayout_ecc,
128	.free = micron_nand_on_die_4_ooblayout_free,
129};
130
131static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
132					      int section,
133					      struct mtd_oob_region *oobregion)
134{
135	struct nand_chip *chip = mtd_to_nand(mtd);
136
137	if (section)
138		return -ERANGE;
139
140	oobregion->offset = mtd->oobsize - chip->ecc.total;
141	oobregion->length = chip->ecc.total;
142
143	return 0;
144}
145
146static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
147					       int section,
148					       struct mtd_oob_region *oobregion)
149{
150	struct nand_chip *chip = mtd_to_nand(mtd);
151
152	if (section)
153		return -ERANGE;
154
155	oobregion->offset = 2;
156	oobregion->length = mtd->oobsize - chip->ecc.total - 2;
157
158	return 0;
159}
160
161static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
162	.ecc = micron_nand_on_die_8_ooblayout_ecc,
163	.free = micron_nand_on_die_8_ooblayout_free,
164};
165
166static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
167{
168	struct micron_nand *micron = nand_get_manufacturer_data(chip);
169	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
170	int ret;
171
172	if (micron->ecc.forced)
173		return 0;
174
175	if (micron->ecc.enabled == enable)
176		return 0;
177
178	if (enable)
179		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
180
181	ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
182	if (!ret)
183		micron->ecc.enabled = enable;
184
185	return ret;
186}
187
188static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
189					   void *buf, int page,
190					   int oob_required)
191{
192	struct micron_nand *micron = nand_get_manufacturer_data(chip);
193	struct mtd_info *mtd = nand_to_mtd(chip);
194	unsigned int step, max_bitflips = 0;
195	bool use_datain = false;
196	int ret;
197
198	if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
199		if (status & NAND_STATUS_FAIL)
200			mtd->ecc_stats.failed++;
201
202		return 0;
203	}
204
205	/*
206	 * The internal ECC doesn't tell us the number of bitflips that have
207	 * been corrected, but tells us if it recommends to rewrite the block.
208	 * If it's the case, we need to read the page in raw mode and compare
209	 * its content to the corrected version to extract the actual number of
210	 * bitflips.
211	 * But before we do that, we must make sure we have all OOB bytes read
212	 * in non-raw mode, even if the user did not request those bytes.
213	 */
214	if (!oob_required) {
215		/*
216		 * We first check which operation is supported by the controller
217		 * before running it. This trick makes it possible to support
218		 * all controllers, even the most constraints, without almost
219		 * any performance hit.
220		 *
221		 * TODO: could be enhanced to avoid repeating the same check
222		 * over and over in the fast path.
223		 */
224		if (!nand_has_exec_op(chip) ||
225		    !nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
226				       true))
227			use_datain = true;
228
229		if (use_datain)
230			ret = nand_read_data_op(chip, chip->oob_poi,
231						mtd->oobsize, false, false);
232		else
233			ret = nand_change_read_column_op(chip, mtd->writesize,
234							 chip->oob_poi,
235							 mtd->oobsize, false);
236		if (ret)
237			return ret;
238	}
239
240	micron_nand_on_die_ecc_setup(chip, false);
241
242	ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
243				mtd->writesize + mtd->oobsize);
244	if (ret)
245		return ret;
246
247	for (step = 0; step < chip->ecc.steps; step++) {
248		unsigned int offs, i, nbitflips = 0;
249		u8 *rawbuf, *corrbuf;
250
251		offs = step * chip->ecc.size;
252		rawbuf = micron->ecc.rawbuf + offs;
253		corrbuf = buf + offs;
254
255		for (i = 0; i < chip->ecc.size; i++)
256			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
257
258		offs = (step * 16) + 4;
259		rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
260		corrbuf = chip->oob_poi + offs;
261
262		for (i = 0; i < chip->ecc.bytes + 4; i++)
263			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
264
265		if (WARN_ON(nbitflips > chip->ecc.strength))
266			return -EINVAL;
267
268		max_bitflips = max(nbitflips, max_bitflips);
269		mtd->ecc_stats.corrected += nbitflips;
270	}
271
272	return max_bitflips;
273}
274
275static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
276{
277	struct mtd_info *mtd = nand_to_mtd(chip);
278
279	/*
280	 * With 8/512 we have more information but still don't know precisely
281	 * how many bit-flips were seen.
282	 */
283	switch (status & NAND_ECC_STATUS_MASK) {
284	case NAND_ECC_STATUS_UNCORRECTABLE:
285		mtd->ecc_stats.failed++;
286		return 0;
287	case NAND_ECC_STATUS_1_3_CORRECTED:
288		mtd->ecc_stats.corrected += 3;
289		return 3;
290	case NAND_ECC_STATUS_4_6_CORRECTED:
291		mtd->ecc_stats.corrected += 6;
292		/* rewrite recommended */
293		return 6;
294	case NAND_ECC_STATUS_7_8_CORRECTED:
295		mtd->ecc_stats.corrected += 8;
296		/* rewrite recommended */
297		return 8;
298	default:
299		return 0;
300	}
301}
302
303static int
304micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf,
305				 int oob_required, int page)
306{
307	struct mtd_info *mtd = nand_to_mtd(chip);
308	bool use_datain = false;
309	u8 status;
310	int ret, max_bitflips = 0;
311
312	ret = micron_nand_on_die_ecc_setup(chip, true);
313	if (ret)
314		return ret;
315
316	ret = nand_read_page_op(chip, page, 0, NULL, 0);
317	if (ret)
318		goto out;
319
320	ret = nand_status_op(chip, &status);
321	if (ret)
322		goto out;
323
324	/*
325	 * We first check which operation is supported by the controller before
326	 * running it. This trick makes it possible to support all controllers,
327	 * even the most constraints, without almost any performance hit.
328	 *
329	 * TODO: could be enhanced to avoid repeating the same check over and
330	 * over in the fast path.
331	 */
332	if (!nand_has_exec_op(chip) ||
333	    !nand_read_data_op(chip, buf, mtd->writesize, false, true))
334		use_datain = true;
335
336	if (use_datain) {
337		ret = nand_exit_status_op(chip);
338		if (ret)
339			goto out;
340
341		ret = nand_read_data_op(chip, buf, mtd->writesize, false,
342					false);
343		if (!ret && oob_required)
344			ret = nand_read_data_op(chip, chip->oob_poi,
345						mtd->oobsize, false, false);
346	} else {
347		ret = nand_change_read_column_op(chip, 0, buf, mtd->writesize,
348						 false);
349		if (!ret && oob_required)
350			ret = nand_change_read_column_op(chip, mtd->writesize,
351							 chip->oob_poi,
352							 mtd->oobsize, false);
353	}
354
355	if (chip->ecc.strength == 4)
356		max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
357							       buf, page,
358							       oob_required);
359	else
360		max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
361
362out:
363	micron_nand_on_die_ecc_setup(chip, false);
364
365	return ret ? ret : max_bitflips;
366}
367
368static int
369micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf,
370				  int oob_required, int page)
371{
372	int ret;
373
374	ret = micron_nand_on_die_ecc_setup(chip, true);
375	if (ret)
376		return ret;
377
378	ret = nand_write_page_raw(chip, buf, oob_required, page);
379	micron_nand_on_die_ecc_setup(chip, false);
380
381	return ret;
382}
383
384enum {
385	/* The NAND flash doesn't support on-die ECC */
386	MICRON_ON_DIE_UNSUPPORTED,
387
388	/*
389	 * The NAND flash supports on-die ECC and it can be
390	 * enabled/disabled by a set features command.
391	 */
392	MICRON_ON_DIE_SUPPORTED,
393
394	/*
395	 * The NAND flash supports on-die ECC, and it cannot be
396	 * disabled.
397	 */
398	MICRON_ON_DIE_MANDATORY,
399};
400
401#define MICRON_ID_INTERNAL_ECC_MASK	GENMASK(1, 0)
402#define MICRON_ID_ECC_ENABLED		BIT(7)
403
404/*
405 * Try to detect if the NAND support on-die ECC. To do this, we enable
406 * the feature, and read back if it has been enabled as expected. We
407 * also check if it can be disabled, because some Micron NANDs do not
408 * allow disabling the on-die ECC and we don't support such NANDs for
409 * now.
410 *
411 * This function also has the side effect of disabling on-die ECC if
412 * it had been left enabled by the firmware/bootloader.
413 */
414static int micron_supports_on_die_ecc(struct nand_chip *chip)
415{
416	const struct nand_ecc_props *requirements =
417		nanddev_get_ecc_requirements(&chip->base);
418	u8 id[5];
419	int ret;
420
421	if (!chip->parameters.onfi)
422		return MICRON_ON_DIE_UNSUPPORTED;
423
424	if (nanddev_bits_per_cell(&chip->base) != 1)
425		return MICRON_ON_DIE_UNSUPPORTED;
426
427	/*
428	 * We only support on-die ECC of 4/512 or 8/512
429	 */
430	if  (requirements->strength != 4 && requirements->strength != 8)
431		return MICRON_ON_DIE_UNSUPPORTED;
432
433	/* 0x2 means on-die ECC is available. */
434	if (chip->id.len != 5 ||
435	    (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
436		return MICRON_ON_DIE_UNSUPPORTED;
437
438	/*
439	 * It seems that there are devices which do not support ECC officially.
440	 * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
441	 * enabling the ECC feature but don't reflect that to the READ_ID table.
442	 * So we have to guarantee that we disable the ECC feature directly
443	 * after we did the READ_ID table command. Later we can evaluate the
444	 * ECC_ENABLE support.
445	 */
446	ret = micron_nand_on_die_ecc_setup(chip, true);
447	if (ret)
448		return MICRON_ON_DIE_UNSUPPORTED;
449
450	ret = nand_readid_op(chip, 0, id, sizeof(id));
451	if (ret)
452		return MICRON_ON_DIE_UNSUPPORTED;
453
454	ret = micron_nand_on_die_ecc_setup(chip, false);
455	if (ret)
456		return MICRON_ON_DIE_UNSUPPORTED;
457
458	if (!(id[4] & MICRON_ID_ECC_ENABLED))
459		return MICRON_ON_DIE_UNSUPPORTED;
460
461	ret = nand_readid_op(chip, 0, id, sizeof(id));
462	if (ret)
463		return MICRON_ON_DIE_UNSUPPORTED;
464
465	if (id[4] & MICRON_ID_ECC_ENABLED)
466		return MICRON_ON_DIE_MANDATORY;
467
468	/*
469	 * We only support on-die ECC of 4/512 or 8/512
470	 */
471	if  (requirements->strength != 4 && requirements->strength != 8)
472		return MICRON_ON_DIE_UNSUPPORTED;
473
474	return MICRON_ON_DIE_SUPPORTED;
475}
476
477static int micron_nand_init(struct nand_chip *chip)
478{
479	struct nand_device *base = &chip->base;
480	const struct nand_ecc_props *requirements =
481		nanddev_get_ecc_requirements(base);
482	struct mtd_info *mtd = nand_to_mtd(chip);
483	struct micron_nand *micron;
484	int ondie;
485	int ret;
486
487	micron = kzalloc(sizeof(*micron), GFP_KERNEL);
488	if (!micron)
489		return -ENOMEM;
490
491	nand_set_manufacturer_data(chip, micron);
492
493	ret = micron_nand_onfi_init(chip);
494	if (ret)
495		goto err_free_manuf_data;
496
497	chip->options |= NAND_BBM_FIRSTPAGE;
498
499	if (mtd->writesize == 2048)
500		chip->options |= NAND_BBM_SECONDPAGE;
501
502	ondie = micron_supports_on_die_ecc(chip);
503
504	if (ondie == MICRON_ON_DIE_MANDATORY &&
505	    chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_DIE) {
506		pr_err("On-die ECC forcefully enabled, not supported\n");
507		ret = -EINVAL;
508		goto err_free_manuf_data;
509	}
510
511	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE) {
512		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
513			pr_err("On-die ECC selected but not supported\n");
514			ret = -EINVAL;
515			goto err_free_manuf_data;
516		}
517
518		if (ondie == MICRON_ON_DIE_MANDATORY) {
519			micron->ecc.forced = true;
520			micron->ecc.enabled = true;
521		}
522
523		/*
524		 * In case of 4bit on-die ECC, we need a buffer to store a
525		 * page dumped in raw mode so that we can compare its content
526		 * to the same page after ECC correction happened and extract
527		 * the real number of bitflips from this comparison.
528		 * That's not needed for 8-bit ECC, because the status expose
529		 * a better approximation of the number of bitflips in a page.
530		 */
531		if (requirements->strength == 4) {
532			micron->ecc.rawbuf = kmalloc(mtd->writesize +
533						     mtd->oobsize,
534						     GFP_KERNEL);
535			if (!micron->ecc.rawbuf) {
536				ret = -ENOMEM;
537				goto err_free_manuf_data;
538			}
539		}
540
541		if (requirements->strength == 4)
542			mtd_set_ooblayout(mtd,
543					  &micron_nand_on_die_4_ooblayout_ops);
544		else
545			mtd_set_ooblayout(mtd,
546					  &micron_nand_on_die_8_ooblayout_ops);
547
548		chip->ecc.bytes = requirements->strength * 2;
549		chip->ecc.size = 512;
550		chip->ecc.strength = requirements->strength;
551		chip->ecc.algo = NAND_ECC_ALGO_BCH;
552		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
553		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
554
555		if (ondie == MICRON_ON_DIE_MANDATORY) {
556			chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
557			chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
558		} else {
559			if (!chip->ecc.read_page_raw)
560				chip->ecc.read_page_raw = nand_read_page_raw;
561			if (!chip->ecc.write_page_raw)
562				chip->ecc.write_page_raw = nand_write_page_raw;
563		}
564	}
565
566	return 0;
567
568err_free_manuf_data:
569	kfree(micron->ecc.rawbuf);
570	kfree(micron);
571
572	return ret;
573}
574
575static void micron_nand_cleanup(struct nand_chip *chip)
576{
577	struct micron_nand *micron = nand_get_manufacturer_data(chip);
578
579	kfree(micron->ecc.rawbuf);
580	kfree(micron);
581}
582
583static void micron_fixup_onfi_param_page(struct nand_chip *chip,
584					 struct nand_onfi_params *p)
585{
586	/*
587	 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
588	 * revision number field of the ONFI parameter page. Assume ONFI
589	 * version 1.0 if the revision number is 00 00.
590	 */
591	if (le16_to_cpu(p->revision) == 0)
592		p->revision = cpu_to_le16(ONFI_VERSION_1_0);
593}
594
595const struct nand_manufacturer_ops micron_nand_manuf_ops = {
596	.init = micron_nand_init,
597	.cleanup = micron_nand_cleanup,
598	.fixup_onfi_param_page = micron_fixup_onfi_param_page,
599};
600