1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * MTK NAND Flash controller driver.
4 * Copyright (C) 2016 MediaTek Inc.
5 * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
6 *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
7 */
8
9#include <linux/platform_device.h>
10#include <linux/dma-mapping.h>
11#include <linux/interrupt.h>
12#include <linux/delay.h>
13#include <linux/clk.h>
14#include <linux/mtd/rawnand.h>
15#include <linux/mtd/mtd.h>
16#include <linux/module.h>
17#include <linux/iopoll.h>
18#include <linux/of.h>
19#include <linux/mtd/nand-ecc-mtk.h>
20
21/* NAND controller register definition */
22#define NFI_CNFG		(0x00)
23#define		CNFG_AHB		BIT(0)
24#define		CNFG_READ_EN		BIT(1)
25#define		CNFG_DMA_BURST_EN	BIT(2)
26#define		CNFG_BYTE_RW		BIT(6)
27#define		CNFG_HW_ECC_EN		BIT(8)
28#define		CNFG_AUTO_FMT_EN	BIT(9)
29#define		CNFG_OP_CUST		(6 << 12)
30#define NFI_PAGEFMT		(0x04)
31#define		PAGEFMT_FDM_ECC_SHIFT	(12)
32#define		PAGEFMT_FDM_SHIFT	(8)
33#define		PAGEFMT_SEC_SEL_512	BIT(2)
34#define		PAGEFMT_512_2K		(0)
35#define		PAGEFMT_2K_4K		(1)
36#define		PAGEFMT_4K_8K		(2)
37#define		PAGEFMT_8K_16K		(3)
38/* NFI control */
39#define NFI_CON			(0x08)
40#define		CON_FIFO_FLUSH		BIT(0)
41#define		CON_NFI_RST		BIT(1)
42#define		CON_BRD			BIT(8)  /* burst  read */
43#define		CON_BWR			BIT(9)	/* burst  write */
44#define		CON_SEC_SHIFT		(12)
45/* Timming control register */
46#define NFI_ACCCON		(0x0C)
47#define NFI_INTR_EN		(0x10)
48#define		INTR_AHB_DONE_EN	BIT(6)
49#define NFI_INTR_STA		(0x14)
50#define NFI_CMD			(0x20)
51#define NFI_ADDRNOB		(0x30)
52#define NFI_COLADDR		(0x34)
53#define NFI_ROWADDR		(0x38)
54#define NFI_STRDATA		(0x40)
55#define		STAR_EN			(1)
56#define		STAR_DE			(0)
57#define NFI_CNRNB		(0x44)
58#define NFI_DATAW		(0x50)
59#define NFI_DATAR		(0x54)
60#define NFI_PIO_DIRDY		(0x58)
61#define		PIO_DI_RDY		(0x01)
62#define NFI_STA			(0x60)
63#define		STA_CMD			BIT(0)
64#define		STA_ADDR		BIT(1)
65#define		STA_BUSY		BIT(8)
66#define		STA_EMP_PAGE		BIT(12)
67#define		NFI_FSM_CUSTDATA	(0xe << 16)
68#define		NFI_FSM_MASK		(0xf << 16)
69#define NFI_ADDRCNTR		(0x70)
70#define		CNTR_MASK		GENMASK(16, 12)
71#define		ADDRCNTR_SEC_SHIFT	(12)
72#define		ADDRCNTR_SEC(val) \
73		(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
74#define NFI_STRADDR		(0x80)
75#define NFI_BYTELEN		(0x84)
76#define NFI_CSEL		(0x90)
77#define NFI_FDML(x)		(0xA0 + (x) * sizeof(u32) * 2)
78#define NFI_FDMM(x)		(0xA4 + (x) * sizeof(u32) * 2)
79#define NFI_FDM_MAX_SIZE	(8)
80#define NFI_FDM_MIN_SIZE	(1)
81#define NFI_DEBUG_CON1		(0x220)
82#define		STROBE_MASK		GENMASK(4, 3)
83#define		STROBE_SHIFT		(3)
84#define		MAX_STROBE_DLY		(3)
85#define NFI_MASTER_STA		(0x224)
86#define		MASTER_STA_MASK		(0x0FFF)
87#define NFI_EMPTY_THRESH	(0x23C)
88
89#define MTK_NAME		"mtk-nand"
90#define KB(x)			((x) * 1024UL)
91#define MB(x)			(KB(x) * 1024UL)
92
93#define MTK_TIMEOUT		(500000)
94#define MTK_RESET_TIMEOUT	(1000000)
95#define MTK_NAND_MAX_NSELS	(2)
96#define MTK_NFC_MIN_SPARE	(16)
97#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
98	((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
99	(tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
100
101struct mtk_nfc_caps {
102	const u8 *spare_size;
103	u8 num_spare_size;
104	u8 pageformat_spare_shift;
105	u8 nfi_clk_div;
106	u8 max_sector;
107	u32 max_sector_size;
108};
109
110struct mtk_nfc_bad_mark_ctl {
111	void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
112	u32 sec;
113	u32 pos;
114};
115
116/*
117 * FDM: region used to store free OOB data
118 */
119struct mtk_nfc_fdm {
120	u32 reg_size;
121	u32 ecc_size;
122};
123
124struct mtk_nfc_nand_chip {
125	struct list_head node;
126	struct nand_chip nand;
127
128	struct mtk_nfc_bad_mark_ctl bad_mark;
129	struct mtk_nfc_fdm fdm;
130	u32 spare_per_sector;
131
132	int nsels;
133	u8 sels[] __counted_by(nsels);
134	/* nothing after this field */
135};
136
137struct mtk_nfc_clk {
138	struct clk *nfi_clk;
139	struct clk *pad_clk;
140};
141
142struct mtk_nfc {
143	struct nand_controller controller;
144	struct mtk_ecc_config ecc_cfg;
145	struct mtk_nfc_clk clk;
146	struct mtk_ecc *ecc;
147
148	struct device *dev;
149	const struct mtk_nfc_caps *caps;
150	void __iomem *regs;
151
152	struct completion done;
153	struct list_head chips;
154
155	u8 *buffer;
156
157	unsigned long assigned_cs;
158};
159
160/*
161 * supported spare size of each IP.
162 * order should be the same with the spare size bitfiled defination of
163 * register NFI_PAGEFMT.
164 */
165static const u8 spare_size_mt2701[] = {
166	16, 26, 27, 28, 32, 36, 40, 44,	48, 49, 50, 51, 52, 62, 63, 64
167};
168
169static const u8 spare_size_mt2712[] = {
170	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
171	74
172};
173
174static const u8 spare_size_mt7622[] = {
175	16, 26, 27, 28
176};
177
178static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
179{
180	return container_of(nand, struct mtk_nfc_nand_chip, nand);
181}
182
183static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
184{
185	return (u8 *)p + i * chip->ecc.size;
186}
187
188static inline u8 *oob_ptr(struct nand_chip *chip, int i)
189{
190	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
191	u8 *poi;
192
193	/* map the sector's FDM data to free oob:
194	 * the beginning of the oob area stores the FDM data of bad mark sectors
195	 */
196
197	if (i < mtk_nand->bad_mark.sec)
198		poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
199	else if (i == mtk_nand->bad_mark.sec)
200		poi = chip->oob_poi;
201	else
202		poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
203
204	return poi;
205}
206
207static inline int mtk_data_len(struct nand_chip *chip)
208{
209	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
210
211	return chip->ecc.size + mtk_nand->spare_per_sector;
212}
213
214static inline u8 *mtk_data_ptr(struct nand_chip *chip,  int i)
215{
216	struct mtk_nfc *nfc = nand_get_controller_data(chip);
217
218	return nfc->buffer + i * mtk_data_len(chip);
219}
220
221static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
222{
223	struct mtk_nfc *nfc = nand_get_controller_data(chip);
224
225	return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
226}
227
228static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
229{
230	writel(val, nfc->regs + reg);
231}
232
233static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
234{
235	writew(val, nfc->regs + reg);
236}
237
238static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
239{
240	writeb(val, nfc->regs + reg);
241}
242
243static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
244{
245	return readl_relaxed(nfc->regs + reg);
246}
247
248static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
249{
250	return readw_relaxed(nfc->regs + reg);
251}
252
253static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
254{
255	return readb_relaxed(nfc->regs + reg);
256}
257
258static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
259{
260	struct device *dev = nfc->dev;
261	u32 val;
262	int ret;
263
264	/* reset all registers and force the NFI master to terminate */
265	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
266
267	/* wait for the master to finish the last transaction */
268	ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
269				 !(val & MASTER_STA_MASK), 50,
270				 MTK_RESET_TIMEOUT);
271	if (ret)
272		dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
273			 NFI_MASTER_STA, val);
274
275	/* ensure any status register affected by the NFI master is reset */
276	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
277	nfi_writew(nfc, STAR_DE, NFI_STRDATA);
278}
279
280static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
281{
282	struct device *dev = nfc->dev;
283	u32 val;
284	int ret;
285
286	nfi_writel(nfc, command, NFI_CMD);
287
288	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
289					!(val & STA_CMD), 10,  MTK_TIMEOUT);
290	if (ret) {
291		dev_warn(dev, "nfi core timed out entering command mode\n");
292		return -EIO;
293	}
294
295	return 0;
296}
297
298static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
299{
300	struct device *dev = nfc->dev;
301	u32 val;
302	int ret;
303
304	nfi_writel(nfc, addr, NFI_COLADDR);
305	nfi_writel(nfc, 0, NFI_ROWADDR);
306	nfi_writew(nfc, 1, NFI_ADDRNOB);
307
308	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
309					!(val & STA_ADDR), 10, MTK_TIMEOUT);
310	if (ret) {
311		dev_warn(dev, "nfi core timed out entering address mode\n");
312		return -EIO;
313	}
314
315	return 0;
316}
317
318static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
319{
320	struct nand_chip *chip = mtd_to_nand(mtd);
321	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
322	struct mtk_nfc *nfc = nand_get_controller_data(chip);
323	u32 fmt, spare, i;
324
325	if (!mtd->writesize)
326		return 0;
327
328	spare = mtk_nand->spare_per_sector;
329
330	switch (mtd->writesize) {
331	case 512:
332		fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
333		break;
334	case KB(2):
335		if (chip->ecc.size == 512)
336			fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
337		else
338			fmt = PAGEFMT_512_2K;
339		break;
340	case KB(4):
341		if (chip->ecc.size == 512)
342			fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
343		else
344			fmt = PAGEFMT_2K_4K;
345		break;
346	case KB(8):
347		if (chip->ecc.size == 512)
348			fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
349		else
350			fmt = PAGEFMT_4K_8K;
351		break;
352	case KB(16):
353		fmt = PAGEFMT_8K_16K;
354		break;
355	default:
356		dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
357		return -EINVAL;
358	}
359
360	/*
361	 * the hardware will double the value for this eccsize, so we need to
362	 * halve it
363	 */
364	if (chip->ecc.size == 1024)
365		spare >>= 1;
366
367	for (i = 0; i < nfc->caps->num_spare_size; i++) {
368		if (nfc->caps->spare_size[i] == spare)
369			break;
370	}
371
372	if (i == nfc->caps->num_spare_size) {
373		dev_err(nfc->dev, "invalid spare size %d\n", spare);
374		return -EINVAL;
375	}
376
377	fmt |= i << nfc->caps->pageformat_spare_shift;
378
379	fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
380	fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
381	nfi_writel(nfc, fmt, NFI_PAGEFMT);
382
383	nfc->ecc_cfg.strength = chip->ecc.strength;
384	nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
385
386	return 0;
387}
388
389static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
390{
391	int rc;
392	u8 val;
393
394	rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
395				       val & PIO_DI_RDY, 10, MTK_TIMEOUT);
396	if (rc < 0)
397		dev_err(nfc->dev, "data not ready\n");
398}
399
400static inline u8 mtk_nfc_read_byte(struct nand_chip *chip)
401{
402	struct mtk_nfc *nfc = nand_get_controller_data(chip);
403	u32 reg;
404
405	/* after each byte read, the NFI_STA reg is reset by the hardware */
406	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
407	if (reg != NFI_FSM_CUSTDATA) {
408		reg = nfi_readw(nfc, NFI_CNFG);
409		reg |= CNFG_BYTE_RW | CNFG_READ_EN;
410		nfi_writew(nfc, reg, NFI_CNFG);
411
412		/*
413		 * set to max sector to allow the HW to continue reading over
414		 * unaligned accesses
415		 */
416		reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
417		nfi_writel(nfc, reg, NFI_CON);
418
419		/* trigger to fetch data */
420		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
421	}
422
423	mtk_nfc_wait_ioready(nfc);
424
425	return nfi_readb(nfc, NFI_DATAR);
426}
427
428static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
429{
430	int i;
431
432	for (i = 0; i < len; i++)
433		buf[i] = mtk_nfc_read_byte(chip);
434}
435
436static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte)
437{
438	struct mtk_nfc *nfc = nand_get_controller_data(chip);
439	u32 reg;
440
441	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
442
443	if (reg != NFI_FSM_CUSTDATA) {
444		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
445		nfi_writew(nfc, reg, NFI_CNFG);
446
447		reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
448		nfi_writel(nfc, reg, NFI_CON);
449
450		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
451	}
452
453	mtk_nfc_wait_ioready(nfc);
454	nfi_writeb(nfc, byte, NFI_DATAW);
455}
456
457static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
458{
459	int i;
460
461	for (i = 0; i < len; i++)
462		mtk_nfc_write_byte(chip, buf[i]);
463}
464
465static int mtk_nfc_exec_instr(struct nand_chip *chip,
466			      const struct nand_op_instr *instr)
467{
468	struct mtk_nfc *nfc = nand_get_controller_data(chip);
469	unsigned int i;
470	u32 status;
471
472	switch (instr->type) {
473	case NAND_OP_CMD_INSTR:
474		mtk_nfc_send_command(nfc, instr->ctx.cmd.opcode);
475		return 0;
476	case NAND_OP_ADDR_INSTR:
477		for (i = 0; i < instr->ctx.addr.naddrs; i++)
478			mtk_nfc_send_address(nfc, instr->ctx.addr.addrs[i]);
479		return 0;
480	case NAND_OP_DATA_IN_INSTR:
481		mtk_nfc_read_buf(chip, instr->ctx.data.buf.in,
482				 instr->ctx.data.len);
483		return 0;
484	case NAND_OP_DATA_OUT_INSTR:
485		mtk_nfc_write_buf(chip, instr->ctx.data.buf.out,
486				  instr->ctx.data.len);
487		return 0;
488	case NAND_OP_WAITRDY_INSTR:
489		return readl_poll_timeout(nfc->regs + NFI_STA, status,
490					  !(status & STA_BUSY), 20,
491					  instr->ctx.waitrdy.timeout_ms * 1000);
492	default:
493		break;
494	}
495
496	return -EINVAL;
497}
498
499static void mtk_nfc_select_target(struct nand_chip *nand, unsigned int cs)
500{
501	struct mtk_nfc *nfc = nand_get_controller_data(nand);
502	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
503
504	mtk_nfc_hw_runtime_config(nand_to_mtd(nand));
505
506	nfi_writel(nfc, mtk_nand->sels[cs], NFI_CSEL);
507}
508
509static int mtk_nfc_exec_op(struct nand_chip *chip,
510			   const struct nand_operation *op,
511			   bool check_only)
512{
513	struct mtk_nfc *nfc = nand_get_controller_data(chip);
514	unsigned int i;
515	int ret = 0;
516
517	if (check_only)
518		return 0;
519
520	mtk_nfc_hw_reset(nfc);
521	nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
522	mtk_nfc_select_target(chip, op->cs);
523
524	for (i = 0; i < op->ninstrs; i++) {
525		ret = mtk_nfc_exec_instr(chip, &op->instrs[i]);
526		if (ret)
527			break;
528	}
529
530	return ret;
531}
532
533static int mtk_nfc_setup_interface(struct nand_chip *chip, int csline,
534				   const struct nand_interface_config *conf)
535{
536	struct mtk_nfc *nfc = nand_get_controller_data(chip);
537	const struct nand_sdr_timings *timings;
538	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0;
539	u32 temp, tsel = 0;
540
541	timings = nand_get_sdr_timings(conf);
542	if (IS_ERR(timings))
543		return -ENOTSUPP;
544
545	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
546		return 0;
547
548	rate = clk_get_rate(nfc->clk.nfi_clk);
549	/* There is a frequency divider in some IPs */
550	rate /= nfc->caps->nfi_clk_div;
551
552	/* turn clock rate into KHZ */
553	rate /= 1000;
554
555	tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
556	tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
557	tpoecs &= 0xf;
558
559	tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
560	tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
561	tprecs &= 0x3f;
562
563	/* sdr interface has no tCR which means CE# low to RE# low */
564	tc2r = 0;
565
566	tw2r = timings->tWHR_min / 1000;
567	tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
568	tw2r = DIV_ROUND_UP(tw2r - 1, 2);
569	tw2r &= 0xf;
570
571	twh = max(timings->tREH_min, timings->tWH_min) / 1000;
572	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
573	twh &= 0xf;
574
575	/* Calculate real WE#/RE# hold time in nanosecond */
576	temp = (twh + 1) * 1000000 / rate;
577	/* nanosecond to picosecond */
578	temp *= 1000;
579
580	/*
581	 * WE# low level time should be expaned to meet WE# pulse time
582	 * and WE# cycle time at the same time.
583	 */
584	if (temp < timings->tWC_min)
585		twst = timings->tWC_min - temp;
586	twst = max(timings->tWP_min, twst) / 1000;
587	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
588	twst &= 0xf;
589
590	/*
591	 * RE# low level time should be expaned to meet RE# pulse time
592	 * and RE# cycle time at the same time.
593	 */
594	if (temp < timings->tRC_min)
595		trlt = timings->tRC_min - temp;
596	trlt = max(trlt, timings->tRP_min) / 1000;
597	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
598	trlt &= 0xf;
599
600	/* Calculate RE# pulse time in nanosecond. */
601	temp = (trlt + 1) * 1000000 / rate;
602	/* nanosecond to picosecond */
603	temp *= 1000;
604	/*
605	 * If RE# access time is bigger than RE# pulse time,
606	 * delay sampling data timing.
607	 */
608	if (temp < timings->tREA_max) {
609		tsel = timings->tREA_max / 1000;
610		tsel = DIV_ROUND_UP(tsel * rate, 1000000);
611		tsel -= (trlt + 1);
612		if (tsel > MAX_STROBE_DLY) {
613			trlt += tsel - MAX_STROBE_DLY;
614			tsel = MAX_STROBE_DLY;
615		}
616	}
617	temp = nfi_readl(nfc, NFI_DEBUG_CON1);
618	temp &= ~STROBE_MASK;
619	temp |= tsel << STROBE_SHIFT;
620	nfi_writel(nfc, temp, NFI_DEBUG_CON1);
621
622	/*
623	 * ACCON: access timing control register
624	 * -------------------------------------
625	 * 31:28: tpoecs, minimum required time for CS post pulling down after
626	 *        accessing the device
627	 * 27:22: tprecs, minimum required time for CS pre pulling down before
628	 *        accessing the device
629	 * 21:16: tc2r, minimum required time from NCEB low to NREB low
630	 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
631	 * 11:08: twh, write enable hold time
632	 * 07:04: twst, write wait states
633	 * 03:00: trlt, read wait states
634	 */
635	trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
636	nfi_writel(nfc, trlt, NFI_ACCCON);
637
638	return 0;
639}
640
641static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
642{
643	struct mtk_nfc *nfc = nand_get_controller_data(chip);
644	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
645	int size = chip->ecc.size + mtk_nand->fdm.reg_size;
646
647	nfc->ecc_cfg.mode = ECC_DMA_MODE;
648	nfc->ecc_cfg.op = ECC_ENCODE;
649
650	return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
651}
652
653static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
654{
655	/* nop */
656}
657
658static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
659{
660	struct nand_chip *chip = mtd_to_nand(mtd);
661	struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
662	u32 bad_pos = nand->bad_mark.pos;
663
664	if (raw)
665		bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
666	else
667		bad_pos += nand->bad_mark.sec * chip->ecc.size;
668
669	swap(chip->oob_poi[0], buf[bad_pos]);
670}
671
672static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
673				  u32 len, const u8 *buf)
674{
675	struct nand_chip *chip = mtd_to_nand(mtd);
676	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
677	struct mtk_nfc *nfc = nand_get_controller_data(chip);
678	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
679	u32 start, end;
680	int i, ret;
681
682	start = offset / chip->ecc.size;
683	end = DIV_ROUND_UP(offset + len, chip->ecc.size);
684
685	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
686	for (i = 0; i < chip->ecc.steps; i++) {
687		memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
688		       chip->ecc.size);
689
690		if (start > i || i >= end)
691			continue;
692
693		if (i == mtk_nand->bad_mark.sec)
694			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
695
696		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
697
698		/* program the CRC back to the OOB */
699		ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
700		if (ret < 0)
701			return ret;
702	}
703
704	return 0;
705}
706
707static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
708{
709	struct nand_chip *chip = mtd_to_nand(mtd);
710	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
711	struct mtk_nfc *nfc = nand_get_controller_data(chip);
712	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
713	u32 i;
714
715	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
716	for (i = 0; i < chip->ecc.steps; i++) {
717		if (buf)
718			memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
719			       chip->ecc.size);
720
721		if (i == mtk_nand->bad_mark.sec)
722			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
723
724		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
725	}
726}
727
728static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
729				    u32 sectors)
730{
731	struct mtk_nfc *nfc = nand_get_controller_data(chip);
732	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
733	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
734	u32 vall, valm;
735	u8 *oobptr;
736	int i, j;
737
738	for (i = 0; i < sectors; i++) {
739		oobptr = oob_ptr(chip, start + i);
740		vall = nfi_readl(nfc, NFI_FDML(i));
741		valm = nfi_readl(nfc, NFI_FDMM(i));
742
743		for (j = 0; j < fdm->reg_size; j++)
744			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
745	}
746}
747
748static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
749{
750	struct mtk_nfc *nfc = nand_get_controller_data(chip);
751	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
752	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
753	u32 vall, valm;
754	u8 *oobptr;
755	int i, j;
756
757	for (i = 0; i < chip->ecc.steps; i++) {
758		oobptr = oob_ptr(chip, i);
759		vall = 0;
760		valm = 0;
761		for (j = 0; j < 8; j++) {
762			if (j < 4)
763				vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
764						<< (j * 8);
765			else
766				valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
767						<< ((j - 4) * 8);
768		}
769		nfi_writel(nfc, vall, NFI_FDML(i));
770		nfi_writel(nfc, valm, NFI_FDMM(i));
771	}
772}
773
774static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
775				 const u8 *buf, int page, int len)
776{
777	struct mtk_nfc *nfc = nand_get_controller_data(chip);
778	struct device *dev = nfc->dev;
779	dma_addr_t addr;
780	u32 reg;
781	int ret;
782
783	addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
784	ret = dma_mapping_error(nfc->dev, addr);
785	if (ret) {
786		dev_err(nfc->dev, "dma mapping error\n");
787		return -EINVAL;
788	}
789
790	reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
791	nfi_writew(nfc, reg, NFI_CNFG);
792
793	nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
794	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
795	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
796
797	init_completion(&nfc->done);
798
799	reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
800	nfi_writel(nfc, reg, NFI_CON);
801	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
802
803	ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
804	if (!ret) {
805		dev_err(dev, "program ahb done timeout\n");
806		nfi_writew(nfc, 0, NFI_INTR_EN);
807		ret = -ETIMEDOUT;
808		goto timeout;
809	}
810
811	ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
812					ADDRCNTR_SEC(reg) >= chip->ecc.steps,
813					10, MTK_TIMEOUT);
814	if (ret)
815		dev_err(dev, "hwecc write timeout\n");
816
817timeout:
818
819	dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
820	nfi_writel(nfc, 0, NFI_CON);
821
822	return ret;
823}
824
825static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
826			      const u8 *buf, int page, int raw)
827{
828	struct mtk_nfc *nfc = nand_get_controller_data(chip);
829	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
830	size_t len;
831	const u8 *bufpoi;
832	u32 reg;
833	int ret;
834
835	mtk_nfc_select_target(chip, chip->cur_cs);
836	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
837
838	if (!raw) {
839		/* OOB => FDM: from register,  ECC: from HW */
840		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
841		nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
842
843		nfc->ecc_cfg.op = ECC_ENCODE;
844		nfc->ecc_cfg.mode = ECC_NFI_MODE;
845		ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
846		if (ret) {
847			/* clear NFI config */
848			reg = nfi_readw(nfc, NFI_CNFG);
849			reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
850			nfi_writew(nfc, reg, NFI_CNFG);
851
852			return ret;
853		}
854
855		memcpy(nfc->buffer, buf, mtd->writesize);
856		mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
857		bufpoi = nfc->buffer;
858
859		/* write OOB into the FDM registers (OOB area in MTK NAND) */
860		mtk_nfc_write_fdm(chip);
861	} else {
862		bufpoi = buf;
863	}
864
865	len = mtd->writesize + (raw ? mtd->oobsize : 0);
866	ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
867
868	if (!raw)
869		mtk_ecc_disable(nfc->ecc);
870
871	if (ret)
872		return ret;
873
874	return nand_prog_page_end_op(chip);
875}
876
877static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
878				    int oob_on, int page)
879{
880	return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
881}
882
883static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
884				  int oob_on, int pg)
885{
886	struct mtd_info *mtd = nand_to_mtd(chip);
887	struct mtk_nfc *nfc = nand_get_controller_data(chip);
888
889	mtk_nfc_format_page(mtd, buf);
890	return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
891}
892
893static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
894				       u32 data_len, const u8 *buf,
895				       int oob_on, int page)
896{
897	struct mtd_info *mtd = nand_to_mtd(chip);
898	struct mtk_nfc *nfc = nand_get_controller_data(chip);
899	int ret;
900
901	ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
902	if (ret < 0)
903		return ret;
904
905	/* use the data in the private buffer (now with FDM and CRC) */
906	return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
907}
908
909static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
910{
911	return mtk_nfc_write_page_raw(chip, NULL, 1, page);
912}
913
914static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start,
915				    u32 sectors)
916{
917	struct nand_chip *chip = mtd_to_nand(mtd);
918	struct mtk_nfc *nfc = nand_get_controller_data(chip);
919	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
920	struct mtk_ecc_stats stats;
921	u32 reg_size = mtk_nand->fdm.reg_size;
922	int rc, i;
923
924	rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
925	if (rc) {
926		memset(buf, 0xff, sectors * chip->ecc.size);
927		for (i = 0; i < sectors; i++)
928			memset(oob_ptr(chip, start + i), 0xff, reg_size);
929		return 0;
930	}
931
932	mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
933	mtd->ecc_stats.corrected += stats.corrected;
934	mtd->ecc_stats.failed += stats.failed;
935
936	return stats.bitflips;
937}
938
939static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
940				u32 data_offs, u32 readlen,
941				u8 *bufpoi, int page, int raw)
942{
943	struct mtk_nfc *nfc = nand_get_controller_data(chip);
944	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
945	u32 spare = mtk_nand->spare_per_sector;
946	u32 column, sectors, start, end, reg;
947	dma_addr_t addr;
948	int bitflips = 0;
949	size_t len;
950	u8 *buf;
951	int rc;
952
953	mtk_nfc_select_target(chip, chip->cur_cs);
954	start = data_offs / chip->ecc.size;
955	end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
956
957	sectors = end - start;
958	column = start * (chip->ecc.size + spare);
959
960	len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
961	buf = bufpoi + start * chip->ecc.size;
962
963	nand_read_page_op(chip, page, column, NULL, 0);
964
965	addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
966	rc = dma_mapping_error(nfc->dev, addr);
967	if (rc) {
968		dev_err(nfc->dev, "dma mapping error\n");
969
970		return -EINVAL;
971	}
972
973	reg = nfi_readw(nfc, NFI_CNFG);
974	reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
975	if (!raw) {
976		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
977		nfi_writew(nfc, reg, NFI_CNFG);
978
979		nfc->ecc_cfg.mode = ECC_NFI_MODE;
980		nfc->ecc_cfg.sectors = sectors;
981		nfc->ecc_cfg.op = ECC_DECODE;
982		rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
983		if (rc) {
984			dev_err(nfc->dev, "ecc enable\n");
985			/* clear NFI_CNFG */
986			reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
987				CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
988			nfi_writew(nfc, reg, NFI_CNFG);
989			dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
990
991			return rc;
992		}
993	} else {
994		nfi_writew(nfc, reg, NFI_CNFG);
995	}
996
997	nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
998	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
999	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
1000
1001	init_completion(&nfc->done);
1002	reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
1003	nfi_writel(nfc, reg, NFI_CON);
1004	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
1005
1006	rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
1007	if (!rc)
1008		dev_warn(nfc->dev, "read ahb/dma done timeout\n");
1009
1010	rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
1011				       ADDRCNTR_SEC(reg) >= sectors, 10,
1012				       MTK_TIMEOUT);
1013	if (rc < 0) {
1014		dev_err(nfc->dev, "subpage done timeout\n");
1015		bitflips = -EIO;
1016	} else if (!raw) {
1017		rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
1018		bitflips = rc < 0 ? -ETIMEDOUT :
1019			mtk_nfc_update_ecc_stats(mtd, buf, start, sectors);
1020		mtk_nfc_read_fdm(chip, start, sectors);
1021	}
1022
1023	dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
1024
1025	if (raw)
1026		goto done;
1027
1028	mtk_ecc_disable(nfc->ecc);
1029
1030	if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
1031		mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
1032done:
1033	nfi_writel(nfc, 0, NFI_CON);
1034
1035	return bitflips;
1036}
1037
1038static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off,
1039				      u32 len, u8 *p, int pg)
1040{
1041	return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg,
1042				    0);
1043}
1044
1045static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
1046				   int pg)
1047{
1048	struct mtd_info *mtd = nand_to_mtd(chip);
1049
1050	return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
1051}
1052
1053static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
1054				 int page)
1055{
1056	struct mtd_info *mtd = nand_to_mtd(chip);
1057	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1058	struct mtk_nfc *nfc = nand_get_controller_data(chip);
1059	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1060	int i, ret;
1061
1062	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
1063	ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
1064				   page, 1);
1065	if (ret < 0)
1066		return ret;
1067
1068	for (i = 0; i < chip->ecc.steps; i++) {
1069		memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
1070
1071		if (i == mtk_nand->bad_mark.sec)
1072			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
1073
1074		if (buf)
1075			memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1076			       chip->ecc.size);
1077	}
1078
1079	return ret;
1080}
1081
1082static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page)
1083{
1084	return mtk_nfc_read_page_raw(chip, NULL, 1, page);
1085}
1086
1087static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1088{
1089	/*
1090	 * CNRNB: nand ready/busy register
1091	 * -------------------------------
1092	 * 7:4: timeout register for polling the NAND busy/ready signal
1093	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
1094	 */
1095	nfi_writew(nfc, 0xf1, NFI_CNRNB);
1096	nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1097
1098	mtk_nfc_hw_reset(nfc);
1099
1100	nfi_readl(nfc, NFI_INTR_STA);
1101	nfi_writel(nfc, 0, NFI_INTR_EN);
1102}
1103
1104static irqreturn_t mtk_nfc_irq(int irq, void *id)
1105{
1106	struct mtk_nfc *nfc = id;
1107	u16 sta, ien;
1108
1109	sta = nfi_readw(nfc, NFI_INTR_STA);
1110	ien = nfi_readw(nfc, NFI_INTR_EN);
1111
1112	if (!(sta & ien))
1113		return IRQ_NONE;
1114
1115	nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1116	complete(&nfc->done);
1117
1118	return IRQ_HANDLED;
1119}
1120
1121static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1122				  struct mtd_oob_region *oob_region)
1123{
1124	struct nand_chip *chip = mtd_to_nand(mtd);
1125	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1126	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1127	u32 eccsteps;
1128
1129	eccsteps = mtd->writesize / chip->ecc.size;
1130
1131	if (section >= eccsteps)
1132		return -ERANGE;
1133
1134	oob_region->length = fdm->reg_size - fdm->ecc_size;
1135	oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1136
1137	return 0;
1138}
1139
1140static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1141				 struct mtd_oob_region *oob_region)
1142{
1143	struct nand_chip *chip = mtd_to_nand(mtd);
1144	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1145	u32 eccsteps;
1146
1147	if (section)
1148		return -ERANGE;
1149
1150	eccsteps = mtd->writesize / chip->ecc.size;
1151	oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1152	oob_region->length = mtd->oobsize - oob_region->offset;
1153
1154	return 0;
1155}
1156
1157static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1158	.free = mtk_nfc_ooblayout_free,
1159	.ecc = mtk_nfc_ooblayout_ecc,
1160};
1161
1162static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1163{
1164	struct nand_chip *nand = mtd_to_nand(mtd);
1165	struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1166	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1167	u32 ecc_bytes;
1168
1169	ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
1170				 mtk_ecc_get_parity_bits(nfc->ecc), 8);
1171
1172	fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1173	if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1174		fdm->reg_size = NFI_FDM_MAX_SIZE;
1175
1176	/* bad block mark storage */
1177	fdm->ecc_size = 1;
1178}
1179
1180static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1181				     struct mtd_info *mtd)
1182{
1183	struct nand_chip *nand = mtd_to_nand(mtd);
1184
1185	if (mtd->writesize == 512) {
1186		bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1187	} else {
1188		bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1189		bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1190		bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1191	}
1192}
1193
1194static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1195{
1196	struct nand_chip *nand = mtd_to_nand(mtd);
1197	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1198	const u8 *spare = nfc->caps->spare_size;
1199	u32 eccsteps, i, closest_spare = 0;
1200
1201	eccsteps = mtd->writesize / nand->ecc.size;
1202	*sps = mtd->oobsize / eccsteps;
1203
1204	if (nand->ecc.size == 1024)
1205		*sps >>= 1;
1206
1207	if (*sps < MTK_NFC_MIN_SPARE)
1208		return -EINVAL;
1209
1210	for (i = 0; i < nfc->caps->num_spare_size; i++) {
1211		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1212			closest_spare = i;
1213			if (*sps == spare[i])
1214				break;
1215		}
1216	}
1217
1218	*sps = spare[closest_spare];
1219
1220	if (nand->ecc.size == 1024)
1221		*sps <<= 1;
1222
1223	return 0;
1224}
1225
1226static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1227{
1228	struct nand_chip *nand = mtd_to_nand(mtd);
1229	const struct nand_ecc_props *requirements =
1230		nanddev_get_ecc_requirements(&nand->base);
1231	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1232	u32 spare;
1233	int free, ret;
1234
1235	/* support only ecc hw mode */
1236	if (nand->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1237		dev_err(dev, "ecc.engine_type not supported\n");
1238		return -EINVAL;
1239	}
1240
1241	/* if optional dt settings not present */
1242	if (!nand->ecc.size || !nand->ecc.strength) {
1243		/* use datasheet requirements */
1244		nand->ecc.strength = requirements->strength;
1245		nand->ecc.size = requirements->step_size;
1246
1247		/*
1248		 * align eccstrength and eccsize
1249		 * this controller only supports 512 and 1024 sizes
1250		 */
1251		if (nand->ecc.size < 1024) {
1252			if (mtd->writesize > 512 &&
1253			    nfc->caps->max_sector_size > 512) {
1254				nand->ecc.size = 1024;
1255				nand->ecc.strength <<= 1;
1256			} else {
1257				nand->ecc.size = 512;
1258			}
1259		} else {
1260			nand->ecc.size = 1024;
1261		}
1262
1263		ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1264		if (ret)
1265			return ret;
1266
1267		/* calculate oob bytes except ecc parity data */
1268		free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
1269			+ 7) >> 3;
1270		free = spare - free;
1271
1272		/*
1273		 * enhance ecc strength if oob left is bigger than max FDM size
1274		 * or reduce ecc strength if oob size is not enough for ecc
1275		 * parity data.
1276		 */
1277		if (free > NFI_FDM_MAX_SIZE) {
1278			spare -= NFI_FDM_MAX_SIZE;
1279			nand->ecc.strength = (spare << 3) /
1280					     mtk_ecc_get_parity_bits(nfc->ecc);
1281		} else if (free < 0) {
1282			spare -= NFI_FDM_MIN_SIZE;
1283			nand->ecc.strength = (spare << 3) /
1284					     mtk_ecc_get_parity_bits(nfc->ecc);
1285		}
1286	}
1287
1288	mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1289
1290	dev_info(dev, "eccsize %d eccstrength %d\n",
1291		 nand->ecc.size, nand->ecc.strength);
1292
1293	return 0;
1294}
1295
1296static int mtk_nfc_attach_chip(struct nand_chip *chip)
1297{
1298	struct mtd_info *mtd = nand_to_mtd(chip);
1299	struct device *dev = mtd->dev.parent;
1300	struct mtk_nfc *nfc = nand_get_controller_data(chip);
1301	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1302	int len;
1303	int ret;
1304
1305	if (chip->options & NAND_BUSWIDTH_16) {
1306		dev_err(dev, "16bits buswidth not supported");
1307		return -EINVAL;
1308	}
1309
1310	/* store bbt magic in page, cause OOB is not protected */
1311	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1312		chip->bbt_options |= NAND_BBT_NO_OOB;
1313
1314	ret = mtk_nfc_ecc_init(dev, mtd);
1315	if (ret)
1316		return ret;
1317
1318	ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
1319	if (ret)
1320		return ret;
1321
1322	mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
1323	mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
1324
1325	len = mtd->writesize + mtd->oobsize;
1326	nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1327	if (!nfc->buffer)
1328		return  -ENOMEM;
1329
1330	return 0;
1331}
1332
1333static const struct nand_controller_ops mtk_nfc_controller_ops = {
1334	.attach_chip = mtk_nfc_attach_chip,
1335	.setup_interface = mtk_nfc_setup_interface,
1336	.exec_op = mtk_nfc_exec_op,
1337};
1338
1339static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1340				  struct device_node *np)
1341{
1342	struct mtk_nfc_nand_chip *chip;
1343	struct nand_chip *nand;
1344	struct mtd_info *mtd;
1345	int nsels;
1346	u32 tmp;
1347	int ret;
1348	int i;
1349
1350	if (!of_get_property(np, "reg", &nsels))
1351		return -ENODEV;
1352
1353	nsels /= sizeof(u32);
1354	if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1355		dev_err(dev, "invalid reg property size %d\n", nsels);
1356		return -EINVAL;
1357	}
1358
1359	chip = devm_kzalloc(dev, struct_size(chip, sels, nsels),
1360			    GFP_KERNEL);
1361	if (!chip)
1362		return -ENOMEM;
1363
1364	chip->nsels = nsels;
1365	for (i = 0; i < nsels; i++) {
1366		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1367		if (ret) {
1368			dev_err(dev, "reg property failure : %d\n", ret);
1369			return ret;
1370		}
1371
1372		if (tmp >= MTK_NAND_MAX_NSELS) {
1373			dev_err(dev, "invalid CS: %u\n", tmp);
1374			return -EINVAL;
1375		}
1376
1377		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1378			dev_err(dev, "CS %u already assigned\n", tmp);
1379			return -EINVAL;
1380		}
1381
1382		chip->sels[i] = tmp;
1383	}
1384
1385	nand = &chip->nand;
1386	nand->controller = &nfc->controller;
1387
1388	nand_set_flash_node(nand, np);
1389	nand_set_controller_data(nand, nfc);
1390
1391	nand->options |= NAND_USES_DMA | NAND_SUBPAGE_READ;
1392
1393	/* set default mode in case dt entry is missing */
1394	nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1395
1396	nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1397	nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1398	nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1399	nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1400	nand->ecc.write_oob = mtk_nfc_write_oob_std;
1401
1402	nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1403	nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1404	nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1405	nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1406	nand->ecc.read_oob = mtk_nfc_read_oob_std;
1407
1408	mtd = nand_to_mtd(nand);
1409	mtd->owner = THIS_MODULE;
1410	mtd->dev.parent = dev;
1411	mtd->name = MTK_NAME;
1412	mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1413
1414	mtk_nfc_hw_init(nfc);
1415
1416	ret = nand_scan(nand, nsels);
1417	if (ret)
1418		return ret;
1419
1420	ret = mtd_device_register(mtd, NULL, 0);
1421	if (ret) {
1422		dev_err(dev, "mtd parse partition error\n");
1423		nand_cleanup(nand);
1424		return ret;
1425	}
1426
1427	list_add_tail(&chip->node, &nfc->chips);
1428
1429	return 0;
1430}
1431
1432static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1433{
1434	struct device_node *np = dev->of_node;
1435	struct device_node *nand_np;
1436	int ret;
1437
1438	for_each_child_of_node(np, nand_np) {
1439		ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1440		if (ret) {
1441			of_node_put(nand_np);
1442			return ret;
1443		}
1444	}
1445
1446	return 0;
1447}
1448
1449static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1450	.spare_size = spare_size_mt2701,
1451	.num_spare_size = 16,
1452	.pageformat_spare_shift = 4,
1453	.nfi_clk_div = 1,
1454	.max_sector = 16,
1455	.max_sector_size = 1024,
1456};
1457
1458static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1459	.spare_size = spare_size_mt2712,
1460	.num_spare_size = 19,
1461	.pageformat_spare_shift = 16,
1462	.nfi_clk_div = 2,
1463	.max_sector = 16,
1464	.max_sector_size = 1024,
1465};
1466
1467static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
1468	.spare_size = spare_size_mt7622,
1469	.num_spare_size = 4,
1470	.pageformat_spare_shift = 4,
1471	.nfi_clk_div = 1,
1472	.max_sector = 8,
1473	.max_sector_size = 512,
1474};
1475
1476static const struct of_device_id mtk_nfc_id_table[] = {
1477	{
1478		.compatible = "mediatek,mt2701-nfc",
1479		.data = &mtk_nfc_caps_mt2701,
1480	}, {
1481		.compatible = "mediatek,mt2712-nfc",
1482		.data = &mtk_nfc_caps_mt2712,
1483	}, {
1484		.compatible = "mediatek,mt7622-nfc",
1485		.data = &mtk_nfc_caps_mt7622,
1486	},
1487	{}
1488};
1489MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1490
1491static int mtk_nfc_probe(struct platform_device *pdev)
1492{
1493	struct device *dev = &pdev->dev;
1494	struct device_node *np = dev->of_node;
1495	struct mtk_nfc *nfc;
1496	int ret, irq;
1497
1498	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1499	if (!nfc)
1500		return -ENOMEM;
1501
1502	nand_controller_init(&nfc->controller);
1503	INIT_LIST_HEAD(&nfc->chips);
1504	nfc->controller.ops = &mtk_nfc_controller_ops;
1505
1506	/* probe defer if not ready */
1507	nfc->ecc = of_mtk_ecc_get(np);
1508	if (IS_ERR(nfc->ecc))
1509		return PTR_ERR(nfc->ecc);
1510	else if (!nfc->ecc)
1511		return -ENODEV;
1512
1513	nfc->caps = of_device_get_match_data(dev);
1514	nfc->dev = dev;
1515
1516	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
1517	if (IS_ERR(nfc->regs)) {
1518		ret = PTR_ERR(nfc->regs);
1519		goto release_ecc;
1520	}
1521
1522	nfc->clk.nfi_clk = devm_clk_get_enabled(dev, "nfi_clk");
1523	if (IS_ERR(nfc->clk.nfi_clk)) {
1524		dev_err(dev, "no clk\n");
1525		ret = PTR_ERR(nfc->clk.nfi_clk);
1526		goto release_ecc;
1527	}
1528
1529	nfc->clk.pad_clk = devm_clk_get_enabled(dev, "pad_clk");
1530	if (IS_ERR(nfc->clk.pad_clk)) {
1531		dev_err(dev, "no pad clk\n");
1532		ret = PTR_ERR(nfc->clk.pad_clk);
1533		goto release_ecc;
1534	}
1535
1536	irq = platform_get_irq(pdev, 0);
1537	if (irq < 0) {
1538		ret = -EINVAL;
1539		goto release_ecc;
1540	}
1541
1542	ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1543	if (ret) {
1544		dev_err(dev, "failed to request nfi irq\n");
1545		goto release_ecc;
1546	}
1547
1548	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1549	if (ret) {
1550		dev_err(dev, "failed to set dma mask\n");
1551		goto release_ecc;
1552	}
1553
1554	platform_set_drvdata(pdev, nfc);
1555
1556	ret = mtk_nfc_nand_chips_init(dev, nfc);
1557	if (ret) {
1558		dev_err(dev, "failed to init nand chips\n");
1559		goto release_ecc;
1560	}
1561
1562	return 0;
1563
1564release_ecc:
1565	mtk_ecc_release(nfc->ecc);
1566
1567	return ret;
1568}
1569
1570static void mtk_nfc_remove(struct platform_device *pdev)
1571{
1572	struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1573	struct mtk_nfc_nand_chip *mtk_chip;
1574	struct nand_chip *chip;
1575	int ret;
1576
1577	while (!list_empty(&nfc->chips)) {
1578		mtk_chip = list_first_entry(&nfc->chips,
1579					    struct mtk_nfc_nand_chip, node);
1580		chip = &mtk_chip->nand;
1581		ret = mtd_device_unregister(nand_to_mtd(chip));
1582		WARN_ON(ret);
1583		nand_cleanup(chip);
1584		list_del(&mtk_chip->node);
1585	}
1586
1587	mtk_ecc_release(nfc->ecc);
1588}
1589
1590#ifdef CONFIG_PM_SLEEP
1591static int mtk_nfc_suspend(struct device *dev)
1592{
1593	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1594
1595	clk_disable_unprepare(nfc->clk.nfi_clk);
1596	clk_disable_unprepare(nfc->clk.pad_clk);
1597
1598	return 0;
1599}
1600
1601static int mtk_nfc_resume(struct device *dev)
1602{
1603	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1604	struct mtk_nfc_nand_chip *chip;
1605	struct nand_chip *nand;
1606	int ret;
1607	u32 i;
1608
1609	udelay(200);
1610
1611	ret = clk_prepare_enable(nfc->clk.nfi_clk);
1612	if (ret) {
1613		dev_err(dev, "failed to enable nfi clk\n");
1614		return ret;
1615	}
1616
1617	ret = clk_prepare_enable(nfc->clk.pad_clk);
1618	if (ret) {
1619		dev_err(dev, "failed to enable pad clk\n");
1620		clk_disable_unprepare(nfc->clk.nfi_clk);
1621		return ret;
1622	}
1623
1624	/* reset NAND chip if VCC was powered off */
1625	list_for_each_entry(chip, &nfc->chips, node) {
1626		nand = &chip->nand;
1627		for (i = 0; i < chip->nsels; i++)
1628			nand_reset(nand, i);
1629	}
1630
1631	return 0;
1632}
1633
1634static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1635#endif
1636
1637static struct platform_driver mtk_nfc_driver = {
1638	.probe  = mtk_nfc_probe,
1639	.remove_new = mtk_nfc_remove,
1640	.driver = {
1641		.name  = MTK_NAME,
1642		.of_match_table = mtk_nfc_id_table,
1643#ifdef CONFIG_PM_SLEEP
1644		.pm = &mtk_nfc_pm_ops,
1645#endif
1646	},
1647};
1648
1649module_platform_driver(mtk_nfc_driver);
1650
1651MODULE_LICENSE("Dual MIT/GPL");
1652MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1653MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
1654