1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NXP LPC32XX NAND SLC driver
4 *
5 * Authors:
6 *    Kevin Wells <kevin.wells@nxp.com>
7 *    Roland Stigge <stigge@antcom.de>
8 *
9 * Copyright �� 2011 NXP Semiconductors
10 * Copyright �� 2012 Roland Stigge
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/mtd/partitions.h>
19#include <linux/clk.h>
20#include <linux/err.h>
21#include <linux/delay.h>
22#include <linux/io.h>
23#include <linux/mm.h>
24#include <linux/dma-mapping.h>
25#include <linux/dmaengine.h>
26#include <linux/gpio/consumer.h>
27#include <linux/of.h>
28#include <linux/mtd/lpc32xx_slc.h>
29
30#define LPC32XX_MODNAME		"lpc32xx-nand"
31
32/**********************************************************************
33* SLC NAND controller register offsets
34**********************************************************************/
35
36#define SLC_DATA(x)		(x + 0x000)
37#define SLC_ADDR(x)		(x + 0x004)
38#define SLC_CMD(x)		(x + 0x008)
39#define SLC_STOP(x)		(x + 0x00C)
40#define SLC_CTRL(x)		(x + 0x010)
41#define SLC_CFG(x)		(x + 0x014)
42#define SLC_STAT(x)		(x + 0x018)
43#define SLC_INT_STAT(x)		(x + 0x01C)
44#define SLC_IEN(x)		(x + 0x020)
45#define SLC_ISR(x)		(x + 0x024)
46#define SLC_ICR(x)		(x + 0x028)
47#define SLC_TAC(x)		(x + 0x02C)
48#define SLC_TC(x)		(x + 0x030)
49#define SLC_ECC(x)		(x + 0x034)
50#define SLC_DMA_DATA(x)		(x + 0x038)
51
52/**********************************************************************
53* slc_ctrl register definitions
54**********************************************************************/
55#define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */
56#define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */
57#define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */
58
59/**********************************************************************
60* slc_cfg register definitions
61**********************************************************************/
62#define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */
63#define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
64#define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */
65#define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */
66#define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
67#define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */
68
69/**********************************************************************
70* slc_stat register definitions
71**********************************************************************/
72#define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */
73#define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */
74#define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */
75
76/**********************************************************************
77* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
78**********************************************************************/
79#define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */
80#define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */
81
82/**********************************************************************
83* slc_tac register definitions
84**********************************************************************/
85/* Computation of clock cycles on basis of controller and device clock rates */
86#define SLCTAC_CLOCKS(c, n, s)	(min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
87
88/* Clock setting for RDY write sample wait time in 2*n clocks */
89#define SLCTAC_WDR(n)		(((n) & 0xF) << 28)
90/* Write pulse width in clock cycles, 1 to 16 clocks */
91#define SLCTAC_WWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 24))
92/* Write hold time of control and data signals, 1 to 16 clocks */
93#define SLCTAC_WHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 20))
94/* Write setup time of control and data signals, 1 to 16 clocks */
95#define SLCTAC_WSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 16))
96/* Clock setting for RDY read sample wait time in 2*n clocks */
97#define SLCTAC_RDR(n)		(((n) & 0xF) << 12)
98/* Read pulse width in clock cycles, 1 to 16 clocks */
99#define SLCTAC_RWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 8))
100/* Read hold time of control and data signals, 1 to 16 clocks */
101#define SLCTAC_RHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 4))
102/* Read setup time of control and data signals, 1 to 16 clocks */
103#define SLCTAC_RSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 0))
104
105/**********************************************************************
106* slc_ecc register definitions
107**********************************************************************/
108/* ECC line party fetch macro */
109#define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF)
110#define SLCECC_TO_COLPAR(n)	((n) & 0x3F)
111
112/*
113 * DMA requires storage space for the DMA local buffer and the hardware ECC
114 * storage area. The DMA local buffer is only used if DMA mapping fails
115 * during runtime.
116 */
117#define LPC32XX_DMA_DATA_SIZE		4096
118#define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4)
119
120/* Number of bytes used for ECC stored in NAND per 256 bytes */
121#define LPC32XX_SLC_DEV_ECC_BYTES	3
122
123/*
124 * If the NAND base clock frequency can't be fetched, this frequency will be
125 * used instead as the base. This rate is used to setup the timing registers
126 * used for NAND accesses.
127 */
128#define LPC32XX_DEF_BUS_RATE		133250000
129
130/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
131#define LPC32XX_DMA_TIMEOUT		100
132
133/*
134 * NAND ECC Layout for small page NAND devices
135 * Note: For large and huge page devices, the default layouts are used
136 */
137static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
138				 struct mtd_oob_region *oobregion)
139{
140	if (section)
141		return -ERANGE;
142
143	oobregion->length = 6;
144	oobregion->offset = 10;
145
146	return 0;
147}
148
149static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
150				  struct mtd_oob_region *oobregion)
151{
152	if (section > 1)
153		return -ERANGE;
154
155	if (!section) {
156		oobregion->offset = 0;
157		oobregion->length = 4;
158	} else {
159		oobregion->offset = 6;
160		oobregion->length = 4;
161	}
162
163	return 0;
164}
165
166static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
167	.ecc = lpc32xx_ooblayout_ecc,
168	.free = lpc32xx_ooblayout_free,
169};
170
171static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
172static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
173
174/*
175 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
176 * Note: Large page devices used the default layout
177 */
178static struct nand_bbt_descr bbt_smallpage_main_descr = {
179	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
180		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
181	.offs =	0,
182	.len = 4,
183	.veroffs = 6,
184	.maxblocks = 4,
185	.pattern = bbt_pattern
186};
187
188static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
189	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
190		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
191	.offs =	0,
192	.len = 4,
193	.veroffs = 6,
194	.maxblocks = 4,
195	.pattern = mirror_pattern
196};
197
198/*
199 * NAND platform configuration structure
200 */
201struct lpc32xx_nand_cfg_slc {
202	uint32_t wdr_clks;
203	uint32_t wwidth;
204	uint32_t whold;
205	uint32_t wsetup;
206	uint32_t rdr_clks;
207	uint32_t rwidth;
208	uint32_t rhold;
209	uint32_t rsetup;
210	struct mtd_partition *parts;
211	unsigned num_parts;
212};
213
214struct lpc32xx_nand_host {
215	struct nand_chip	nand_chip;
216	struct lpc32xx_slc_platform_data *pdata;
217	struct clk		*clk;
218	struct gpio_desc	*wp_gpio;
219	void __iomem		*io_base;
220	struct lpc32xx_nand_cfg_slc *ncfg;
221
222	struct completion	comp;
223	struct dma_chan		*dma_chan;
224	uint32_t		dma_buf_len;
225	struct dma_slave_config	dma_slave_config;
226	struct scatterlist	sgl;
227
228	/*
229	 * DMA and CPU addresses of ECC work area and data buffer
230	 */
231	uint32_t		*ecc_buf;
232	uint8_t			*data_buf;
233	dma_addr_t		io_base_dma;
234};
235
236static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
237{
238	uint32_t clkrate, tmp;
239
240	/* Reset SLC controller */
241	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
242	udelay(1000);
243
244	/* Basic setup */
245	writel(0, SLC_CFG(host->io_base));
246	writel(0, SLC_IEN(host->io_base));
247	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
248		SLC_ICR(host->io_base));
249
250	/* Get base clock for SLC block */
251	clkrate = clk_get_rate(host->clk);
252	if (clkrate == 0)
253		clkrate = LPC32XX_DEF_BUS_RATE;
254
255	/* Compute clock setup values */
256	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
257		SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
258		SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
259		SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
260		SLCTAC_RDR(host->ncfg->rdr_clks) |
261		SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
262		SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
263		SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
264	writel(tmp, SLC_TAC(host->io_base));
265}
266
267/*
268 * Hardware specific access to control lines
269 */
270static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
271				  unsigned int ctrl)
272{
273	uint32_t tmp;
274	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
275
276	/* Does CE state need to be changed? */
277	tmp = readl(SLC_CFG(host->io_base));
278	if (ctrl & NAND_NCE)
279		tmp |= SLCCFG_CE_LOW;
280	else
281		tmp &= ~SLCCFG_CE_LOW;
282	writel(tmp, SLC_CFG(host->io_base));
283
284	if (cmd != NAND_CMD_NONE) {
285		if (ctrl & NAND_CLE)
286			writel(cmd, SLC_CMD(host->io_base));
287		else
288			writel(cmd, SLC_ADDR(host->io_base));
289	}
290}
291
292/*
293 * Read the Device Ready pin
294 */
295static int lpc32xx_nand_device_ready(struct nand_chip *chip)
296{
297	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
298	int rdy = 0;
299
300	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
301		rdy = 1;
302
303	return rdy;
304}
305
306/*
307 * Enable NAND write protect
308 */
309static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
310{
311	if (host->wp_gpio)
312		gpiod_set_value_cansleep(host->wp_gpio, 1);
313}
314
315/*
316 * Disable NAND write protect
317 */
318static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
319{
320	if (host->wp_gpio)
321		gpiod_set_value_cansleep(host->wp_gpio, 0);
322}
323
324/*
325 * Prepares SLC for transfers with H/W ECC enabled
326 */
327static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
328{
329	/* Hardware ECC is enabled automatically in hardware as needed */
330}
331
332/*
333 * Calculates the ECC for the data
334 */
335static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
336				      const unsigned char *buf,
337				      unsigned char *code)
338{
339	/*
340	 * ECC is calculated automatically in hardware during syndrome read
341	 * and write operations, so it doesn't need to be calculated here.
342	 */
343	return 0;
344}
345
346/*
347 * Read a single byte from NAND device
348 */
349static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
350{
351	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
352
353	return (uint8_t)readl(SLC_DATA(host->io_base));
354}
355
356/*
357 * Simple device read without ECC
358 */
359static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
360{
361	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
362
363	/* Direct device read with no ECC */
364	while (len-- > 0)
365		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
366}
367
368/*
369 * Simple device write without ECC
370 */
371static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
372				   int len)
373{
374	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
375
376	/* Direct device write with no ECC */
377	while (len-- > 0)
378		writel((uint32_t)*buf++, SLC_DATA(host->io_base));
379}
380
381/*
382 * Read the OOB data from the device without ECC using FIFO method
383 */
384static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
385{
386	struct mtd_info *mtd = nand_to_mtd(chip);
387
388	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
389}
390
391/*
392 * Write the OOB data to the device without ECC using FIFO method
393 */
394static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
395{
396	struct mtd_info *mtd = nand_to_mtd(chip);
397
398	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
399				 mtd->oobsize);
400}
401
402/*
403 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
404 */
405static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
406{
407	int i;
408
409	for (i = 0; i < (count * 3); i += 3) {
410		uint32_t ce = ecc[i / 3];
411		ce = ~(ce << 2) & 0xFFFFFF;
412		spare[i + 2] = (uint8_t)(ce & 0xFF);
413		ce >>= 8;
414		spare[i + 1] = (uint8_t)(ce & 0xFF);
415		ce >>= 8;
416		spare[i] = (uint8_t)(ce & 0xFF);
417	}
418}
419
420static void lpc32xx_dma_complete_func(void *completion)
421{
422	complete(completion);
423}
424
425static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
426			    void *mem, int len, enum dma_transfer_direction dir)
427{
428	struct nand_chip *chip = mtd_to_nand(mtd);
429	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
430	struct dma_async_tx_descriptor *desc;
431	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
432	int res;
433
434	host->dma_slave_config.direction = dir;
435	host->dma_slave_config.src_addr = dma;
436	host->dma_slave_config.dst_addr = dma;
437	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
438	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
439	host->dma_slave_config.src_maxburst = 4;
440	host->dma_slave_config.dst_maxburst = 4;
441	/* DMA controller does flow control: */
442	host->dma_slave_config.device_fc = false;
443	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
444		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
445		return -ENXIO;
446	}
447
448	sg_init_one(&host->sgl, mem, len);
449
450	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
451			 DMA_BIDIRECTIONAL);
452	if (res != 1) {
453		dev_err(mtd->dev.parent, "Failed to map sg list\n");
454		return -ENXIO;
455	}
456	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
457				       flags);
458	if (!desc) {
459		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
460		goto out1;
461	}
462
463	init_completion(&host->comp);
464	desc->callback = lpc32xx_dma_complete_func;
465	desc->callback_param = &host->comp;
466
467	dmaengine_submit(desc);
468	dma_async_issue_pending(host->dma_chan);
469
470	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
471
472	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
473		     DMA_BIDIRECTIONAL);
474
475	return 0;
476out1:
477	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
478		     DMA_BIDIRECTIONAL);
479	return -ENXIO;
480}
481
482/*
483 * DMA read/write transfers with ECC support
484 */
485static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
486			int read)
487{
488	struct nand_chip *chip = mtd_to_nand(mtd);
489	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
490	int i, status = 0;
491	unsigned long timeout;
492	int res;
493	enum dma_transfer_direction dir =
494		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
495	uint8_t *dma_buf;
496	bool dma_mapped;
497
498	if ((void *)buf <= high_memory) {
499		dma_buf = buf;
500		dma_mapped = true;
501	} else {
502		dma_buf = host->data_buf;
503		dma_mapped = false;
504		if (!read)
505			memcpy(host->data_buf, buf, mtd->writesize);
506	}
507
508	if (read) {
509		writel(readl(SLC_CFG(host->io_base)) |
510		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
511		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
512	} else {
513		writel((readl(SLC_CFG(host->io_base)) |
514			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
515		       ~SLCCFG_DMA_DIR,
516			SLC_CFG(host->io_base));
517	}
518
519	/* Clear initial ECC */
520	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
521
522	/* Transfer size is data area only */
523	writel(mtd->writesize, SLC_TC(host->io_base));
524
525	/* Start transfer in the NAND controller */
526	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
527	       SLC_CTRL(host->io_base));
528
529	for (i = 0; i < chip->ecc.steps; i++) {
530		/* Data */
531		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
532				       dma_buf + i * chip->ecc.size,
533				       mtd->writesize / chip->ecc.steps, dir);
534		if (res)
535			return res;
536
537		/* Always _read_ ECC */
538		if (i == chip->ecc.steps - 1)
539			break;
540		if (!read) /* ECC availability delayed on write */
541			udelay(10);
542		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
543				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
544		if (res)
545			return res;
546	}
547
548	/*
549	 * According to NXP, the DMA can be finished here, but the NAND
550	 * controller may still have buffered data. After porting to using the
551	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
552	 * appears to be always true, according to tests. Keeping the check for
553	 * safety reasons for now.
554	 */
555	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
556		dev_warn(mtd->dev.parent, "FIFO not empty!\n");
557		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
558		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
559		       time_before(jiffies, timeout))
560			cpu_relax();
561		if (!time_before(jiffies, timeout)) {
562			dev_err(mtd->dev.parent, "FIFO held data too long\n");
563			status = -EIO;
564		}
565	}
566
567	/* Read last calculated ECC value */
568	if (!read)
569		udelay(10);
570	host->ecc_buf[chip->ecc.steps - 1] =
571		readl(SLC_ECC(host->io_base));
572
573	/* Flush DMA */
574	dmaengine_terminate_all(host->dma_chan);
575
576	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
577	    readl(SLC_TC(host->io_base))) {
578		/* Something is left in the FIFO, something is wrong */
579		dev_err(mtd->dev.parent, "DMA FIFO failure\n");
580		status = -EIO;
581	}
582
583	/* Stop DMA & HW ECC */
584	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
585	       SLC_CTRL(host->io_base));
586	writel(readl(SLC_CFG(host->io_base)) &
587	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
588		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
589
590	if (!dma_mapped && read)
591		memcpy(buf, host->data_buf, mtd->writesize);
592
593	return status;
594}
595
596/*
597 * Read the data and OOB data from the device, use ECC correction with the
598 * data, disable ECC for the OOB data
599 */
600static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
601					   int oob_required, int page)
602{
603	struct mtd_info *mtd = nand_to_mtd(chip);
604	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
605	struct mtd_oob_region oobregion = { };
606	int stat, i, status, error;
607	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
608
609	/* Issue read command */
610	nand_read_page_op(chip, page, 0, NULL, 0);
611
612	/* Read data and oob, calculate ECC */
613	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
614
615	/* Get OOB data */
616	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
617
618	/* Convert to stored ECC format */
619	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
620
621	/* Pointer to ECC data retrieved from NAND spare area */
622	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
623	if (error)
624		return error;
625
626	oobecc = chip->oob_poi + oobregion.offset;
627
628	for (i = 0; i < chip->ecc.steps; i++) {
629		stat = chip->ecc.correct(chip, buf, oobecc,
630					 &tmpecc[i * chip->ecc.bytes]);
631		if (stat < 0)
632			mtd->ecc_stats.failed++;
633		else
634			mtd->ecc_stats.corrected += stat;
635
636		buf += chip->ecc.size;
637		oobecc += chip->ecc.bytes;
638	}
639
640	return status;
641}
642
643/*
644 * Read the data and OOB data from the device, no ECC correction with the
645 * data or OOB data
646 */
647static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
648					       uint8_t *buf, int oob_required,
649					       int page)
650{
651	struct mtd_info *mtd = nand_to_mtd(chip);
652
653	/* Issue read command */
654	nand_read_page_op(chip, page, 0, NULL, 0);
655
656	/* Raw reads can just use the FIFO interface */
657	chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
658	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
659
660	return 0;
661}
662
663/*
664 * Write the data and OOB data to the device, use ECC with the data,
665 * disable ECC for the OOB data
666 */
667static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
668					    const uint8_t *buf,
669					    int oob_required, int page)
670{
671	struct mtd_info *mtd = nand_to_mtd(chip);
672	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
673	struct mtd_oob_region oobregion = { };
674	uint8_t *pb;
675	int error;
676
677	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
678
679	/* Write data, calculate ECC on outbound data */
680	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
681	if (error)
682		return error;
683
684	/*
685	 * The calculated ECC needs some manual work done to it before
686	 * committing it to NAND. Process the calculated ECC and place
687	 * the resultant values directly into the OOB buffer. */
688	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
689	if (error)
690		return error;
691
692	pb = chip->oob_poi + oobregion.offset;
693	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
694
695	/* Write ECC data to device */
696	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
697
698	return nand_prog_page_end_op(chip);
699}
700
701/*
702 * Write the data and OOB data to the device, no ECC correction with the
703 * data or OOB data
704 */
705static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
706						const uint8_t *buf,
707						int oob_required, int page)
708{
709	struct mtd_info *mtd = nand_to_mtd(chip);
710
711	/* Raw writes can just use the FIFO interface */
712	nand_prog_page_begin_op(chip, page, 0, buf,
713				chip->ecc.size * chip->ecc.steps);
714	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
715
716	return nand_prog_page_end_op(chip);
717}
718
719static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
720{
721	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
722	dma_cap_mask_t mask;
723
724	if (!host->pdata || !host->pdata->dma_filter) {
725		dev_err(mtd->dev.parent, "no DMA platform data\n");
726		return -ENOENT;
727	}
728
729	dma_cap_zero(mask);
730	dma_cap_set(DMA_SLAVE, mask);
731	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
732					     "nand-slc");
733	if (!host->dma_chan) {
734		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
735		return -EBUSY;
736	}
737
738	return 0;
739}
740
741static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
742{
743	struct lpc32xx_nand_cfg_slc *ncfg;
744	struct device_node *np = dev->of_node;
745
746	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
747	if (!ncfg)
748		return NULL;
749
750	of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
751	of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
752	of_property_read_u32(np, "nxp,whold", &ncfg->whold);
753	of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
754	of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
755	of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
756	of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
757	of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
758
759	if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
760	    !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
761	    !ncfg->rhold || !ncfg->rsetup) {
762		dev_err(dev, "chip parameters not specified correctly\n");
763		return NULL;
764	}
765
766	return ncfg;
767}
768
769static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
770{
771	struct mtd_info *mtd = nand_to_mtd(chip);
772	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
773
774	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
775		return 0;
776
777	/* OOB and ECC CPU and DMA work areas */
778	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
779
780	/*
781	 * Small page FLASH has a unique OOB layout, but large and huge
782	 * page FLASH use the standard layout. Small page FLASH uses a
783	 * custom BBT marker layout.
784	 */
785	if (mtd->writesize <= 512)
786		mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
787
788	chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
789	/* These sizes remain the same regardless of page size */
790	chip->ecc.size = 256;
791	chip->ecc.strength = 1;
792	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
793	chip->ecc.prepad = 0;
794	chip->ecc.postpad = 0;
795	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
796	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
797	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
798	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
799	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
800	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
801	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
802	chip->ecc.correct = rawnand_sw_hamming_correct;
803	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
804
805	/*
806	 * Use a custom BBT marker setup for small page FLASH that
807	 * won't interfere with the ECC layout. Large and huge page
808	 * FLASH use the standard layout.
809	 */
810	if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
811	    mtd->writesize <= 512) {
812		chip->bbt_td = &bbt_smallpage_main_descr;
813		chip->bbt_md = &bbt_smallpage_mirror_descr;
814	}
815
816	return 0;
817}
818
819static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
820	.attach_chip = lpc32xx_nand_attach_chip,
821};
822
823/*
824 * Probe for NAND controller
825 */
826static int lpc32xx_nand_probe(struct platform_device *pdev)
827{
828	struct lpc32xx_nand_host *host;
829	struct mtd_info *mtd;
830	struct nand_chip *chip;
831	struct resource *rc;
832	int res;
833
834	/* Allocate memory for the device structure (and zero it) */
835	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
836	if (!host)
837		return -ENOMEM;
838
839	host->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &rc);
840	if (IS_ERR(host->io_base))
841		return PTR_ERR(host->io_base);
842
843	host->io_base_dma = rc->start;
844	if (pdev->dev.of_node)
845		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
846	if (!host->ncfg) {
847		dev_err(&pdev->dev,
848			"Missing or bad NAND config from device tree\n");
849		return -ENOENT;
850	}
851
852	/* Start with WP disabled, if available */
853	host->wp_gpio = gpiod_get_optional(&pdev->dev, NULL, GPIOD_OUT_LOW);
854	res = PTR_ERR_OR_ZERO(host->wp_gpio);
855	if (res) {
856		if (res != -EPROBE_DEFER)
857			dev_err(&pdev->dev, "WP GPIO is not available: %d\n",
858				res);
859		return res;
860	}
861
862	gpiod_set_consumer_name(host->wp_gpio, "NAND WP");
863
864	host->pdata = dev_get_platdata(&pdev->dev);
865
866	chip = &host->nand_chip;
867	mtd = nand_to_mtd(chip);
868	nand_set_controller_data(chip, host);
869	nand_set_flash_node(chip, pdev->dev.of_node);
870	mtd->owner = THIS_MODULE;
871	mtd->dev.parent = &pdev->dev;
872
873	/* Get NAND clock */
874	host->clk = devm_clk_get_enabled(&pdev->dev, NULL);
875	if (IS_ERR(host->clk)) {
876		dev_err(&pdev->dev, "Clock failure\n");
877		res = -ENOENT;
878		goto enable_wp;
879	}
880
881	/* Set NAND IO addresses and command/ready functions */
882	chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
883	chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
884	chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
885	chip->legacy.dev_ready = lpc32xx_nand_device_ready;
886	chip->legacy.chip_delay = 20; /* 20us command delay time */
887
888	/* Init NAND controller */
889	lpc32xx_nand_setup(host);
890
891	platform_set_drvdata(pdev, host);
892
893	/* NAND callbacks for LPC32xx SLC hardware */
894	chip->legacy.read_byte = lpc32xx_nand_read_byte;
895	chip->legacy.read_buf = lpc32xx_nand_read_buf;
896	chip->legacy.write_buf = lpc32xx_nand_write_buf;
897
898	/*
899	 * Allocate a large enough buffer for a single huge page plus
900	 * extra space for the spare area and ECC storage area
901	 */
902	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
903	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
904				      GFP_KERNEL);
905	if (host->data_buf == NULL) {
906		res = -ENOMEM;
907		goto enable_wp;
908	}
909
910	res = lpc32xx_nand_dma_setup(host);
911	if (res) {
912		res = -EIO;
913		goto enable_wp;
914	}
915
916	/* Find NAND device */
917	chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
918	res = nand_scan(chip, 1);
919	if (res)
920		goto release_dma;
921
922	mtd->name = "nxp_lpc3220_slc";
923	res = mtd_device_register(mtd, host->ncfg->parts,
924				  host->ncfg->num_parts);
925	if (res)
926		goto cleanup_nand;
927
928	return 0;
929
930cleanup_nand:
931	nand_cleanup(chip);
932release_dma:
933	dma_release_channel(host->dma_chan);
934enable_wp:
935	lpc32xx_wp_enable(host);
936
937	return res;
938}
939
940/*
941 * Remove NAND device.
942 */
943static void lpc32xx_nand_remove(struct platform_device *pdev)
944{
945	uint32_t tmp;
946	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
947	struct nand_chip *chip = &host->nand_chip;
948	int ret;
949
950	ret = mtd_device_unregister(nand_to_mtd(chip));
951	WARN_ON(ret);
952	nand_cleanup(chip);
953	dma_release_channel(host->dma_chan);
954
955	/* Force CE high */
956	tmp = readl(SLC_CTRL(host->io_base));
957	tmp &= ~SLCCFG_CE_LOW;
958	writel(tmp, SLC_CTRL(host->io_base));
959
960	lpc32xx_wp_enable(host);
961}
962
963static int lpc32xx_nand_resume(struct platform_device *pdev)
964{
965	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
966	int ret;
967
968	/* Re-enable NAND clock */
969	ret = clk_prepare_enable(host->clk);
970	if (ret)
971		return ret;
972
973	/* Fresh init of NAND controller */
974	lpc32xx_nand_setup(host);
975
976	/* Disable write protect */
977	lpc32xx_wp_disable(host);
978
979	return 0;
980}
981
982static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
983{
984	uint32_t tmp;
985	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
986
987	/* Force CE high */
988	tmp = readl(SLC_CTRL(host->io_base));
989	tmp &= ~SLCCFG_CE_LOW;
990	writel(tmp, SLC_CTRL(host->io_base));
991
992	/* Enable write protect for safety */
993	lpc32xx_wp_enable(host);
994
995	/* Disable clock */
996	clk_disable_unprepare(host->clk);
997
998	return 0;
999}
1000
1001static const struct of_device_id lpc32xx_nand_match[] = {
1002	{ .compatible = "nxp,lpc3220-slc" },
1003	{ /* sentinel */ },
1004};
1005MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1006
1007static struct platform_driver lpc32xx_nand_driver = {
1008	.probe		= lpc32xx_nand_probe,
1009	.remove_new	= lpc32xx_nand_remove,
1010	.resume		= pm_ptr(lpc32xx_nand_resume),
1011	.suspend	= pm_ptr(lpc32xx_nand_suspend),
1012	.driver		= {
1013		.name	= LPC32XX_MODNAME,
1014		.of_match_table = lpc32xx_nand_match,
1015	},
1016};
1017
1018module_platform_driver(lpc32xx_nand_driver);
1019
1020MODULE_LICENSE("GPL");
1021MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1022MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1023MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
1024