1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright �� 2010-2015 Broadcom Corporation
4 */
5
6#include <linux/clk.h>
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/delay.h>
10#include <linux/device.h>
11#include <linux/platform_device.h>
12#include <linux/platform_data/brcmnand.h>
13#include <linux/err.h>
14#include <linux/completion.h>
15#include <linux/interrupt.h>
16#include <linux/spinlock.h>
17#include <linux/dma-mapping.h>
18#include <linux/ioport.h>
19#include <linux/bug.h>
20#include <linux/kernel.h>
21#include <linux/bitops.h>
22#include <linux/mm.h>
23#include <linux/mtd/mtd.h>
24#include <linux/mtd/rawnand.h>
25#include <linux/mtd/partitions.h>
26#include <linux/of.h>
27#include <linux/of_platform.h>
28#include <linux/slab.h>
29#include <linux/static_key.h>
30#include <linux/list.h>
31#include <linux/log2.h>
32
33#include "brcmnand.h"
34
35/*
36 * This flag controls if WP stays on between erase/write commands to mitigate
37 * flash corruption due to power glitches. Values:
38 * 0: NAND_WP is not used or not available
39 * 1: NAND_WP is set by default, cleared for erase/write operations
40 * 2: NAND_WP is always cleared
41 */
42static int wp_on = 1;
43module_param(wp_on, int, 0444);
44
45/***********************************************************************
46 * Definitions
47 ***********************************************************************/
48
49#define DRV_NAME			"brcmnand"
50
51#define CMD_NULL			0x00
52#define CMD_PAGE_READ			0x01
53#define CMD_SPARE_AREA_READ		0x02
54#define CMD_STATUS_READ			0x03
55#define CMD_PROGRAM_PAGE		0x04
56#define CMD_PROGRAM_SPARE_AREA		0x05
57#define CMD_COPY_BACK			0x06
58#define CMD_DEVICE_ID_READ		0x07
59#define CMD_BLOCK_ERASE			0x08
60#define CMD_FLASH_RESET			0x09
61#define CMD_BLOCKS_LOCK			0x0a
62#define CMD_BLOCKS_LOCK_DOWN		0x0b
63#define CMD_BLOCKS_UNLOCK		0x0c
64#define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
65#define CMD_PARAMETER_READ		0x0e
66#define CMD_PARAMETER_CHANGE_COL	0x0f
67#define CMD_LOW_LEVEL_OP		0x10
68
69struct brcm_nand_dma_desc {
70	u32 next_desc;
71	u32 next_desc_ext;
72	u32 cmd_irq;
73	u32 dram_addr;
74	u32 dram_addr_ext;
75	u32 tfr_len;
76	u32 total_len;
77	u32 flash_addr;
78	u32 flash_addr_ext;
79	u32 cs;
80	u32 pad2[5];
81	u32 status_valid;
82} __packed;
83
84/* Bitfields for brcm_nand_dma_desc::status_valid */
85#define FLASH_DMA_ECC_ERROR	(1 << 8)
86#define FLASH_DMA_CORR_ERROR	(1 << 9)
87
88/* Bitfields for DMA_MODE */
89#define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
90#define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
91#define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
92						FLASH_DMA_MODE_MODE)
93
94/* 512B flash cache in the NAND controller HW */
95#define FC_SHIFT		9U
96#define FC_BYTES		512U
97#define FC_WORDS		(FC_BYTES >> 2)
98
99#define BRCMNAND_MIN_PAGESIZE	512
100#define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
101#define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
102
103#define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
104#define NAND_POLL_STATUS_TIMEOUT_MS	100
105
106#define EDU_CMD_WRITE          0x00
107#define EDU_CMD_READ           0x01
108#define EDU_STATUS_ACTIVE      BIT(0)
109#define EDU_ERR_STATUS_ERRACK  BIT(0)
110#define EDU_DONE_MASK		GENMASK(1, 0)
111
112#define EDU_CONFIG_MODE_NAND   BIT(0)
113#define EDU_CONFIG_SWAP_BYTE   BIT(1)
114#ifdef CONFIG_CPU_BIG_ENDIAN
115#define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
116#else
117#define EDU_CONFIG_SWAP_CFG     0
118#endif
119
120/* edu registers */
121enum edu_reg {
122	EDU_CONFIG = 0,
123	EDU_DRAM_ADDR,
124	EDU_EXT_ADDR,
125	EDU_LENGTH,
126	EDU_CMD,
127	EDU_STOP,
128	EDU_STATUS,
129	EDU_DONE,
130	EDU_ERR_STATUS,
131};
132
133static const u16  edu_regs[] = {
134	[EDU_CONFIG] = 0x00,
135	[EDU_DRAM_ADDR] = 0x04,
136	[EDU_EXT_ADDR] = 0x08,
137	[EDU_LENGTH] = 0x0c,
138	[EDU_CMD] = 0x10,
139	[EDU_STOP] = 0x14,
140	[EDU_STATUS] = 0x18,
141	[EDU_DONE] = 0x1c,
142	[EDU_ERR_STATUS] = 0x20,
143};
144
145/* flash_dma registers */
146enum flash_dma_reg {
147	FLASH_DMA_REVISION = 0,
148	FLASH_DMA_FIRST_DESC,
149	FLASH_DMA_FIRST_DESC_EXT,
150	FLASH_DMA_CTRL,
151	FLASH_DMA_MODE,
152	FLASH_DMA_STATUS,
153	FLASH_DMA_INTERRUPT_DESC,
154	FLASH_DMA_INTERRUPT_DESC_EXT,
155	FLASH_DMA_ERROR_STATUS,
156	FLASH_DMA_CURRENT_DESC,
157	FLASH_DMA_CURRENT_DESC_EXT,
158};
159
160/* flash_dma registers v0*/
161static const u16 flash_dma_regs_v0[] = {
162	[FLASH_DMA_REVISION]		= 0x00,
163	[FLASH_DMA_FIRST_DESC]		= 0x04,
164	[FLASH_DMA_CTRL]		= 0x08,
165	[FLASH_DMA_MODE]		= 0x0c,
166	[FLASH_DMA_STATUS]		= 0x10,
167	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
168	[FLASH_DMA_ERROR_STATUS]	= 0x18,
169	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
170};
171
172/* flash_dma registers v1*/
173static const u16 flash_dma_regs_v1[] = {
174	[FLASH_DMA_REVISION]		= 0x00,
175	[FLASH_DMA_FIRST_DESC]		= 0x04,
176	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
177	[FLASH_DMA_CTRL]		= 0x0c,
178	[FLASH_DMA_MODE]		= 0x10,
179	[FLASH_DMA_STATUS]		= 0x14,
180	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
181	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
182	[FLASH_DMA_ERROR_STATUS]	= 0x20,
183	[FLASH_DMA_CURRENT_DESC]	= 0x24,
184	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
185};
186
187/* flash_dma registers v4 */
188static const u16 flash_dma_regs_v4[] = {
189	[FLASH_DMA_REVISION]		= 0x00,
190	[FLASH_DMA_FIRST_DESC]		= 0x08,
191	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
192	[FLASH_DMA_CTRL]		= 0x10,
193	[FLASH_DMA_MODE]		= 0x14,
194	[FLASH_DMA_STATUS]		= 0x18,
195	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
196	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
197	[FLASH_DMA_ERROR_STATUS]	= 0x28,
198	[FLASH_DMA_CURRENT_DESC]	= 0x30,
199	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
200};
201
202/* Controller feature flags */
203enum {
204	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
205	BRCMNAND_HAS_PREFETCH			= BIT(1),
206	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
207	BRCMNAND_HAS_WP				= BIT(3),
208};
209
210struct brcmnand_host;
211
212static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
213
214struct brcmnand_controller {
215	struct device		*dev;
216	struct nand_controller	controller;
217	void __iomem		*nand_base;
218	void __iomem		*nand_fc; /* flash cache */
219	void __iomem		*flash_dma_base;
220	int			irq;
221	unsigned int		dma_irq;
222	int			nand_version;
223
224	/* Some SoCs provide custom interrupt status register(s) */
225	struct brcmnand_soc	*soc;
226
227	/* Some SoCs have a gateable clock for the controller */
228	struct clk		*clk;
229
230	int			cmd_pending;
231	bool			dma_pending;
232	bool                    edu_pending;
233	struct completion	done;
234	struct completion	dma_done;
235	struct completion       edu_done;
236
237	/* List of NAND hosts (one for each chip-select) */
238	struct list_head host_list;
239
240	/* EDU info, per-transaction */
241	const u16               *edu_offsets;
242	void __iomem            *edu_base;
243	int			edu_irq;
244	int                     edu_count;
245	u64                     edu_dram_addr;
246	u32                     edu_ext_addr;
247	u32                     edu_cmd;
248	u32                     edu_config;
249	int			sas; /* spare area size, per flash cache */
250	int			sector_size_1k;
251	u8			*oob;
252
253	/* flash_dma reg */
254	const u16		*flash_dma_offsets;
255	struct brcm_nand_dma_desc *dma_desc;
256	dma_addr_t		dma_pa;
257
258	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
259			 u8 *oob, u32 len, u8 dma_cmd);
260
261	/* in-memory cache of the FLASH_CACHE, used only for some commands */
262	u8			flash_cache[FC_BYTES];
263
264	/* Controller revision details */
265	const u16		*reg_offsets;
266	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
267	const u8		*cs_offsets; /* within each chip-select */
268	const u8		*cs0_offsets; /* within CS0, if different */
269	unsigned int		max_block_size;
270	const unsigned int	*block_sizes;
271	unsigned int		max_page_size;
272	const unsigned int	*page_sizes;
273	unsigned int		page_size_shift;
274	unsigned int		max_oob;
275	u32			ecc_level_shift;
276	u32			features;
277
278	/* for low-power standby/resume only */
279	u32			nand_cs_nand_select;
280	u32			nand_cs_nand_xor;
281	u32			corr_stat_threshold;
282	u32			flash_dma_mode;
283	u32                     flash_edu_mode;
284	bool			pio_poll_mode;
285};
286
287struct brcmnand_cfg {
288	u64			device_size;
289	unsigned int		block_size;
290	unsigned int		page_size;
291	unsigned int		spare_area_size;
292	unsigned int		device_width;
293	unsigned int		col_adr_bytes;
294	unsigned int		blk_adr_bytes;
295	unsigned int		ful_adr_bytes;
296	unsigned int		sector_size_1k;
297	unsigned int		ecc_level;
298	/* use for low-power standby/resume only */
299	u32			acc_control;
300	u32			config;
301	u32			config_ext;
302	u32			timing_1;
303	u32			timing_2;
304};
305
306struct brcmnand_host {
307	struct list_head	node;
308
309	struct nand_chip	chip;
310	struct platform_device	*pdev;
311	int			cs;
312
313	unsigned int		last_cmd;
314	unsigned int		last_byte;
315	u64			last_addr;
316	struct brcmnand_cfg	hwcfg;
317	struct brcmnand_controller *ctrl;
318};
319
320enum brcmnand_reg {
321	BRCMNAND_CMD_START = 0,
322	BRCMNAND_CMD_EXT_ADDRESS,
323	BRCMNAND_CMD_ADDRESS,
324	BRCMNAND_INTFC_STATUS,
325	BRCMNAND_CS_SELECT,
326	BRCMNAND_CS_XOR,
327	BRCMNAND_LL_OP,
328	BRCMNAND_CS0_BASE,
329	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
330	BRCMNAND_CORR_THRESHOLD,
331	BRCMNAND_CORR_THRESHOLD_EXT,
332	BRCMNAND_UNCORR_COUNT,
333	BRCMNAND_CORR_COUNT,
334	BRCMNAND_CORR_EXT_ADDR,
335	BRCMNAND_CORR_ADDR,
336	BRCMNAND_UNCORR_EXT_ADDR,
337	BRCMNAND_UNCORR_ADDR,
338	BRCMNAND_SEMAPHORE,
339	BRCMNAND_ID,
340	BRCMNAND_ID_EXT,
341	BRCMNAND_LL_RDATA,
342	BRCMNAND_OOB_READ_BASE,
343	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
344	BRCMNAND_OOB_WRITE_BASE,
345	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
346	BRCMNAND_FC_BASE,
347};
348
349/* BRCMNAND v2.1-v2.2 */
350static const u16 brcmnand_regs_v21[] = {
351	[BRCMNAND_CMD_START]		=  0x04,
352	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
353	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
354	[BRCMNAND_INTFC_STATUS]		=  0x5c,
355	[BRCMNAND_CS_SELECT]		=  0x14,
356	[BRCMNAND_CS_XOR]		=  0x18,
357	[BRCMNAND_LL_OP]		=     0,
358	[BRCMNAND_CS0_BASE]		=  0x40,
359	[BRCMNAND_CS1_BASE]		=     0,
360	[BRCMNAND_CORR_THRESHOLD]	=     0,
361	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
362	[BRCMNAND_UNCORR_COUNT]		=     0,
363	[BRCMNAND_CORR_COUNT]		=     0,
364	[BRCMNAND_CORR_EXT_ADDR]	=  0x60,
365	[BRCMNAND_CORR_ADDR]		=  0x64,
366	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x68,
367	[BRCMNAND_UNCORR_ADDR]		=  0x6c,
368	[BRCMNAND_SEMAPHORE]		=  0x50,
369	[BRCMNAND_ID]			=  0x54,
370	[BRCMNAND_ID_EXT]		=     0,
371	[BRCMNAND_LL_RDATA]		=     0,
372	[BRCMNAND_OOB_READ_BASE]	=  0x20,
373	[BRCMNAND_OOB_READ_10_BASE]	=     0,
374	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
375	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
376	[BRCMNAND_FC_BASE]		= 0x200,
377};
378
379/* BRCMNAND v3.3-v4.0 */
380static const u16 brcmnand_regs_v33[] = {
381	[BRCMNAND_CMD_START]		=  0x04,
382	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
383	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
384	[BRCMNAND_INTFC_STATUS]		=  0x6c,
385	[BRCMNAND_CS_SELECT]		=  0x14,
386	[BRCMNAND_CS_XOR]		=  0x18,
387	[BRCMNAND_LL_OP]		= 0x178,
388	[BRCMNAND_CS0_BASE]		=  0x40,
389	[BRCMNAND_CS1_BASE]		=  0xd0,
390	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
391	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
392	[BRCMNAND_UNCORR_COUNT]		=     0,
393	[BRCMNAND_CORR_COUNT]		=     0,
394	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
395	[BRCMNAND_CORR_ADDR]		=  0x74,
396	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
397	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
398	[BRCMNAND_SEMAPHORE]		=  0x58,
399	[BRCMNAND_ID]			=  0x60,
400	[BRCMNAND_ID_EXT]		=  0x64,
401	[BRCMNAND_LL_RDATA]		= 0x17c,
402	[BRCMNAND_OOB_READ_BASE]	=  0x20,
403	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
404	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
405	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
406	[BRCMNAND_FC_BASE]		= 0x200,
407};
408
409/* BRCMNAND v5.0 */
410static const u16 brcmnand_regs_v50[] = {
411	[BRCMNAND_CMD_START]		=  0x04,
412	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
413	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
414	[BRCMNAND_INTFC_STATUS]		=  0x6c,
415	[BRCMNAND_CS_SELECT]		=  0x14,
416	[BRCMNAND_CS_XOR]		=  0x18,
417	[BRCMNAND_LL_OP]		= 0x178,
418	[BRCMNAND_CS0_BASE]		=  0x40,
419	[BRCMNAND_CS1_BASE]		=  0xd0,
420	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
421	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
422	[BRCMNAND_UNCORR_COUNT]		=     0,
423	[BRCMNAND_CORR_COUNT]		=     0,
424	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
425	[BRCMNAND_CORR_ADDR]		=  0x74,
426	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
427	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
428	[BRCMNAND_SEMAPHORE]		=  0x58,
429	[BRCMNAND_ID]			=  0x60,
430	[BRCMNAND_ID_EXT]		=  0x64,
431	[BRCMNAND_LL_RDATA]		= 0x17c,
432	[BRCMNAND_OOB_READ_BASE]	=  0x20,
433	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
434	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
435	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
436	[BRCMNAND_FC_BASE]		= 0x200,
437};
438
439/* BRCMNAND v6.0 - v7.1 */
440static const u16 brcmnand_regs_v60[] = {
441	[BRCMNAND_CMD_START]		=  0x04,
442	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
443	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
444	[BRCMNAND_INTFC_STATUS]		=  0x14,
445	[BRCMNAND_CS_SELECT]		=  0x18,
446	[BRCMNAND_CS_XOR]		=  0x1c,
447	[BRCMNAND_LL_OP]		=  0x20,
448	[BRCMNAND_CS0_BASE]		=  0x50,
449	[BRCMNAND_CS1_BASE]		=     0,
450	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
451	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
452	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
453	[BRCMNAND_CORR_COUNT]		= 0x100,
454	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
455	[BRCMNAND_CORR_ADDR]		= 0x110,
456	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
457	[BRCMNAND_UNCORR_ADDR]		= 0x118,
458	[BRCMNAND_SEMAPHORE]		= 0x150,
459	[BRCMNAND_ID]			= 0x194,
460	[BRCMNAND_ID_EXT]		= 0x198,
461	[BRCMNAND_LL_RDATA]		= 0x19c,
462	[BRCMNAND_OOB_READ_BASE]	= 0x200,
463	[BRCMNAND_OOB_READ_10_BASE]	=     0,
464	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
465	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
466	[BRCMNAND_FC_BASE]		= 0x400,
467};
468
469/* BRCMNAND v7.1 */
470static const u16 brcmnand_regs_v71[] = {
471	[BRCMNAND_CMD_START]		=  0x04,
472	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
473	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
474	[BRCMNAND_INTFC_STATUS]		=  0x14,
475	[BRCMNAND_CS_SELECT]		=  0x18,
476	[BRCMNAND_CS_XOR]		=  0x1c,
477	[BRCMNAND_LL_OP]		=  0x20,
478	[BRCMNAND_CS0_BASE]		=  0x50,
479	[BRCMNAND_CS1_BASE]		=     0,
480	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
481	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
482	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
483	[BRCMNAND_CORR_COUNT]		= 0x100,
484	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
485	[BRCMNAND_CORR_ADDR]		= 0x110,
486	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
487	[BRCMNAND_UNCORR_ADDR]		= 0x118,
488	[BRCMNAND_SEMAPHORE]		= 0x150,
489	[BRCMNAND_ID]			= 0x194,
490	[BRCMNAND_ID_EXT]		= 0x198,
491	[BRCMNAND_LL_RDATA]		= 0x19c,
492	[BRCMNAND_OOB_READ_BASE]	= 0x200,
493	[BRCMNAND_OOB_READ_10_BASE]	=     0,
494	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
495	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
496	[BRCMNAND_FC_BASE]		= 0x400,
497};
498
499/* BRCMNAND v7.2 */
500static const u16 brcmnand_regs_v72[] = {
501	[BRCMNAND_CMD_START]		=  0x04,
502	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
503	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
504	[BRCMNAND_INTFC_STATUS]		=  0x14,
505	[BRCMNAND_CS_SELECT]		=  0x18,
506	[BRCMNAND_CS_XOR]		=  0x1c,
507	[BRCMNAND_LL_OP]		=  0x20,
508	[BRCMNAND_CS0_BASE]		=  0x50,
509	[BRCMNAND_CS1_BASE]		=     0,
510	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
511	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
512	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
513	[BRCMNAND_CORR_COUNT]		= 0x100,
514	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
515	[BRCMNAND_CORR_ADDR]		= 0x110,
516	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
517	[BRCMNAND_UNCORR_ADDR]		= 0x118,
518	[BRCMNAND_SEMAPHORE]		= 0x150,
519	[BRCMNAND_ID]			= 0x194,
520	[BRCMNAND_ID_EXT]		= 0x198,
521	[BRCMNAND_LL_RDATA]		= 0x19c,
522	[BRCMNAND_OOB_READ_BASE]	= 0x200,
523	[BRCMNAND_OOB_READ_10_BASE]	=     0,
524	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
525	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
526	[BRCMNAND_FC_BASE]		= 0x600,
527};
528
529enum brcmnand_cs_reg {
530	BRCMNAND_CS_CFG_EXT = 0,
531	BRCMNAND_CS_CFG,
532	BRCMNAND_CS_ACC_CONTROL,
533	BRCMNAND_CS_TIMING1,
534	BRCMNAND_CS_TIMING2,
535};
536
537/* Per chip-select offsets for v7.1 */
538static const u8 brcmnand_cs_offsets_v71[] = {
539	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
540	[BRCMNAND_CS_CFG_EXT]		= 0x04,
541	[BRCMNAND_CS_CFG]		= 0x08,
542	[BRCMNAND_CS_TIMING1]		= 0x0c,
543	[BRCMNAND_CS_TIMING2]		= 0x10,
544};
545
546/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
547static const u8 brcmnand_cs_offsets[] = {
548	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
549	[BRCMNAND_CS_CFG_EXT]		= 0x04,
550	[BRCMNAND_CS_CFG]		= 0x04,
551	[BRCMNAND_CS_TIMING1]		= 0x08,
552	[BRCMNAND_CS_TIMING2]		= 0x0c,
553};
554
555/* Per chip-select offset for <= v5.0 on CS0 only */
556static const u8 brcmnand_cs_offsets_cs0[] = {
557	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
558	[BRCMNAND_CS_CFG_EXT]		= 0x08,
559	[BRCMNAND_CS_CFG]		= 0x08,
560	[BRCMNAND_CS_TIMING1]		= 0x10,
561	[BRCMNAND_CS_TIMING2]		= 0x14,
562};
563
564/*
565 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
566 * one config register, but once the bitfields overflowed, newer controllers
567 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
568 */
569enum {
570	CFG_BLK_ADR_BYTES_SHIFT		= 8,
571	CFG_COL_ADR_BYTES_SHIFT		= 12,
572	CFG_FUL_ADR_BYTES_SHIFT		= 16,
573	CFG_BUS_WIDTH_SHIFT		= 23,
574	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
575	CFG_DEVICE_SIZE_SHIFT		= 24,
576
577	/* Only for v2.1 */
578	CFG_PAGE_SIZE_SHIFT_v2_1	= 30,
579
580	/* Only for pre-v7.1 (with no CFG_EXT register) */
581	CFG_PAGE_SIZE_SHIFT		= 20,
582	CFG_BLK_SIZE_SHIFT		= 28,
583
584	/* Only for v7.1+ (with CFG_EXT register) */
585	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
586	CFG_EXT_BLK_SIZE_SHIFT		= 4,
587};
588
589/* BRCMNAND_INTFC_STATUS */
590enum {
591	INTFC_FLASH_STATUS		= GENMASK(7, 0),
592
593	INTFC_ERASED			= BIT(27),
594	INTFC_OOB_VALID			= BIT(28),
595	INTFC_CACHE_VALID		= BIT(29),
596	INTFC_FLASH_READY		= BIT(30),
597	INTFC_CTLR_READY		= BIT(31),
598};
599
600/***********************************************************************
601 * NAND ACC CONTROL bitfield
602 *
603 * Some bits have remained constant throughout hardware revision, while
604 * others have shifted around.
605 ***********************************************************************/
606
607/* Constant for all versions (where supported) */
608enum {
609	/* See BRCMNAND_HAS_CACHE_MODE */
610	ACC_CONTROL_CACHE_MODE				= BIT(22),
611
612	/* See BRCMNAND_HAS_PREFETCH */
613	ACC_CONTROL_PREFETCH				= BIT(23),
614
615	ACC_CONTROL_PAGE_HIT				= BIT(24),
616	ACC_CONTROL_WR_PREEMPT				= BIT(25),
617	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
618	ACC_CONTROL_RD_ERASED				= BIT(27),
619	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
620	ACC_CONTROL_WR_ECC				= BIT(30),
621	ACC_CONTROL_RD_ECC				= BIT(31),
622};
623
624#define	ACC_CONTROL_ECC_SHIFT			16
625/* Only for v7.2 */
626#define	ACC_CONTROL_ECC_EXT_SHIFT		13
627
628static int brcmnand_status(struct brcmnand_host *host);
629
630static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
631{
632#if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
633	return static_branch_unlikely(&brcmnand_soc_has_ops_key);
634#else
635	return false;
636#endif
637}
638
639static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
640{
641	if (brcmnand_non_mmio_ops(ctrl))
642		return brcmnand_soc_read(ctrl->soc, offs);
643	return brcmnand_readl(ctrl->nand_base + offs);
644}
645
646static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
647				 u32 val)
648{
649	if (brcmnand_non_mmio_ops(ctrl))
650		brcmnand_soc_write(ctrl->soc, val, offs);
651	else
652		brcmnand_writel(val, ctrl->nand_base + offs);
653}
654
655static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
656{
657	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
658	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
659	static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
660	static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
661	static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
662	static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
663	static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
664
665	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
666
667	/* Only support v2.1+ */
668	if (ctrl->nand_version < 0x0201) {
669		dev_err(ctrl->dev, "version %#x not supported\n",
670			ctrl->nand_version);
671		return -ENODEV;
672	}
673
674	/* Register offsets */
675	if (ctrl->nand_version >= 0x0702)
676		ctrl->reg_offsets = brcmnand_regs_v72;
677	else if (ctrl->nand_version == 0x0701)
678		ctrl->reg_offsets = brcmnand_regs_v71;
679	else if (ctrl->nand_version >= 0x0600)
680		ctrl->reg_offsets = brcmnand_regs_v60;
681	else if (ctrl->nand_version >= 0x0500)
682		ctrl->reg_offsets = brcmnand_regs_v50;
683	else if (ctrl->nand_version >= 0x0303)
684		ctrl->reg_offsets = brcmnand_regs_v33;
685	else if (ctrl->nand_version >= 0x0201)
686		ctrl->reg_offsets = brcmnand_regs_v21;
687
688	/* Chip-select stride */
689	if (ctrl->nand_version >= 0x0701)
690		ctrl->reg_spacing = 0x14;
691	else
692		ctrl->reg_spacing = 0x10;
693
694	/* Per chip-select registers */
695	if (ctrl->nand_version >= 0x0701) {
696		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
697	} else {
698		ctrl->cs_offsets = brcmnand_cs_offsets;
699
700		/* v3.3-5.0 have a different CS0 offset layout */
701		if (ctrl->nand_version >= 0x0303 &&
702		    ctrl->nand_version <= 0x0500)
703			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
704	}
705
706	/* Page / block sizes */
707	if (ctrl->nand_version >= 0x0701) {
708		/* >= v7.1 use nice power-of-2 values! */
709		ctrl->max_page_size = 16 * 1024;
710		ctrl->max_block_size = 2 * 1024 * 1024;
711	} else {
712		if (ctrl->nand_version >= 0x0304)
713			ctrl->page_sizes = page_sizes_v3_4;
714		else if (ctrl->nand_version >= 0x0202)
715			ctrl->page_sizes = page_sizes_v2_2;
716		else
717			ctrl->page_sizes = page_sizes_v2_1;
718
719		if (ctrl->nand_version >= 0x0202)
720			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
721		else
722			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
723
724		if (ctrl->nand_version >= 0x0600)
725			ctrl->block_sizes = block_sizes_v6;
726		else if (ctrl->nand_version >= 0x0400)
727			ctrl->block_sizes = block_sizes_v4;
728		else if (ctrl->nand_version >= 0x0202)
729			ctrl->block_sizes = block_sizes_v2_2;
730		else
731			ctrl->block_sizes = block_sizes_v2_1;
732
733		if (ctrl->nand_version < 0x0400) {
734			if (ctrl->nand_version < 0x0202)
735				ctrl->max_page_size = 2048;
736			else
737				ctrl->max_page_size = 4096;
738			ctrl->max_block_size = 512 * 1024;
739		}
740	}
741
742	/* Maximum spare area sector size (per 512B) */
743	if (ctrl->nand_version == 0x0702)
744		ctrl->max_oob = 128;
745	else if (ctrl->nand_version >= 0x0600)
746		ctrl->max_oob = 64;
747	else if (ctrl->nand_version >= 0x0500)
748		ctrl->max_oob = 32;
749	else
750		ctrl->max_oob = 16;
751
752	/* v6.0 and newer (except v6.1) have prefetch support */
753	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
754		ctrl->features |= BRCMNAND_HAS_PREFETCH;
755
756	/*
757	 * v6.x has cache mode, but it's implemented differently. Ignore it for
758	 * now.
759	 */
760	if (ctrl->nand_version >= 0x0700)
761		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
762
763	if (ctrl->nand_version >= 0x0500)
764		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
765
766	if (ctrl->nand_version >= 0x0700)
767		ctrl->features |= BRCMNAND_HAS_WP;
768	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
769		ctrl->features |= BRCMNAND_HAS_WP;
770
771	/* v7.2 has different ecc level shift in the acc register */
772	if (ctrl->nand_version == 0x0702)
773		ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
774	else
775		ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
776
777	return 0;
778}
779
780static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
781{
782	/* flash_dma register offsets */
783	if (ctrl->nand_version >= 0x0703)
784		ctrl->flash_dma_offsets = flash_dma_regs_v4;
785	else if (ctrl->nand_version == 0x0602)
786		ctrl->flash_dma_offsets = flash_dma_regs_v0;
787	else
788		ctrl->flash_dma_offsets = flash_dma_regs_v1;
789}
790
791static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
792		enum brcmnand_reg reg)
793{
794	u16 offs = ctrl->reg_offsets[reg];
795
796	if (offs)
797		return nand_readreg(ctrl, offs);
798	else
799		return 0;
800}
801
802static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
803				      enum brcmnand_reg reg, u32 val)
804{
805	u16 offs = ctrl->reg_offsets[reg];
806
807	if (offs)
808		nand_writereg(ctrl, offs, val);
809}
810
811static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
812				    enum brcmnand_reg reg, u32 mask, unsigned
813				    int shift, u32 val)
814{
815	u32 tmp = brcmnand_read_reg(ctrl, reg);
816
817	tmp &= ~mask;
818	tmp |= val << shift;
819	brcmnand_write_reg(ctrl, reg, tmp);
820}
821
822static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
823{
824	if (brcmnand_non_mmio_ops(ctrl))
825		return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
826	return __raw_readl(ctrl->nand_fc + word * 4);
827}
828
829static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
830				     int word, u32 val)
831{
832	if (brcmnand_non_mmio_ops(ctrl))
833		brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
834	else
835		__raw_writel(val, ctrl->nand_fc + word * 4);
836}
837
838static inline void edu_writel(struct brcmnand_controller *ctrl,
839			      enum edu_reg reg, u32 val)
840{
841	u16 offs = ctrl->edu_offsets[reg];
842
843	brcmnand_writel(val, ctrl->edu_base + offs);
844}
845
846static inline u32 edu_readl(struct brcmnand_controller *ctrl,
847			    enum edu_reg reg)
848{
849	u16 offs = ctrl->edu_offsets[reg];
850
851	return brcmnand_readl(ctrl->edu_base + offs);
852}
853
854static inline void brcmnand_read_data_bus(struct brcmnand_controller *ctrl,
855					  void __iomem *flash_cache, u32 *buffer, int fc_words)
856{
857	struct brcmnand_soc *soc = ctrl->soc;
858	int i;
859
860	if (soc && soc->read_data_bus) {
861		soc->read_data_bus(soc, flash_cache, buffer, fc_words);
862	} else {
863		for (i = 0; i < fc_words; i++)
864			buffer[i] = brcmnand_read_fc(ctrl, i);
865	}
866}
867
868static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
869{
870
871	/* Clear error addresses */
872	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
873	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
874	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
875	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
876}
877
878static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
879{
880	u64 err_addr;
881
882	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
883	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
884					     BRCMNAND_UNCORR_EXT_ADDR)
885					     & 0xffff) << 32);
886
887	return err_addr;
888}
889
890static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
891{
892	u64 err_addr;
893
894	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
895	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
896					     BRCMNAND_CORR_EXT_ADDR)
897					     & 0xffff) << 32);
898
899	return err_addr;
900}
901
902static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
903{
904	struct nand_chip *chip =  mtd_to_nand(mtd);
905	struct brcmnand_host *host = nand_get_controller_data(chip);
906	struct brcmnand_controller *ctrl = host->ctrl;
907
908	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
909			   (host->cs << 16) | ((addr >> 32) & 0xffff));
910	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
911	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
912			   lower_32_bits(addr));
913	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
914}
915
916static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
917				     enum brcmnand_cs_reg reg)
918{
919	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
920	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
921	u8 cs_offs;
922
923	if (cs == 0 && ctrl->cs0_offsets)
924		cs_offs = ctrl->cs0_offsets[reg];
925	else
926		cs_offs = ctrl->cs_offsets[reg];
927
928	if (cs && offs_cs1)
929		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
930
931	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
932}
933
934static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
935{
936	if (ctrl->nand_version < 0x0600)
937		return 1;
938	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
939}
940
941static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
942{
943	struct brcmnand_controller *ctrl = host->ctrl;
944	unsigned int shift = 0, bits;
945	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
946	int cs = host->cs;
947
948	if (!ctrl->reg_offsets[reg])
949		return;
950
951	if (ctrl->nand_version == 0x0702)
952		bits = 7;
953	else if (ctrl->nand_version >= 0x0600)
954		bits = 6;
955	else if (ctrl->nand_version >= 0x0500)
956		bits = 5;
957	else
958		bits = 4;
959
960	if (ctrl->nand_version >= 0x0702) {
961		if (cs >= 4)
962			reg = BRCMNAND_CORR_THRESHOLD_EXT;
963		shift = (cs % 4) * bits;
964	} else if (ctrl->nand_version >= 0x0600) {
965		if (cs >= 5)
966			reg = BRCMNAND_CORR_THRESHOLD_EXT;
967		shift = (cs % 5) * bits;
968	}
969	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
970}
971
972static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
973{
974	/* Kludge for the BCMA-based NAND controller which does not actually
975	 * shift the command
976	 */
977	if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
978		return 0;
979
980	if (ctrl->nand_version < 0x0602)
981		return 24;
982	return 0;
983}
984
985static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
986{
987	if (ctrl->nand_version == 0x0702)
988		return GENMASK(7, 0);
989	else if (ctrl->nand_version >= 0x0600)
990		return GENMASK(6, 0);
991	else if (ctrl->nand_version >= 0x0303)
992		return GENMASK(5, 0);
993	else
994		return GENMASK(4, 0);
995}
996
997static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
998{
999	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
1000
1001	mask <<= ACC_CONTROL_ECC_SHIFT;
1002
1003	/* v7.2 includes additional ECC levels */
1004	if (ctrl->nand_version == 0x0702)
1005		mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
1006
1007	return mask;
1008}
1009
1010static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
1011{
1012	struct brcmnand_controller *ctrl = host->ctrl;
1013	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
1014	u32 acc_control = nand_readreg(ctrl, offs);
1015	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
1016
1017	if (en) {
1018		acc_control |= ecc_flags; /* enable RD/WR ECC */
1019		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1020		acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
1021	} else {
1022		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
1023		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1024	}
1025
1026	nand_writereg(ctrl, offs, acc_control);
1027}
1028
1029static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1030{
1031	if (ctrl->nand_version >= 0x0702)
1032		return 9;
1033	else if (ctrl->nand_version >= 0x0600)
1034		return 7;
1035	else if (ctrl->nand_version >= 0x0500)
1036		return 6;
1037	else
1038		return -1;
1039}
1040
1041static bool brcmnand_get_sector_size_1k(struct brcmnand_host *host)
1042{
1043	struct brcmnand_controller *ctrl = host->ctrl;
1044	int sector_size_bit = brcmnand_sector_1k_shift(ctrl);
1045	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1046						  BRCMNAND_CS_ACC_CONTROL);
1047	u32 acc_control;
1048
1049	if (sector_size_bit < 0)
1050		return false;
1051
1052	acc_control = nand_readreg(ctrl, acc_control_offs);
1053
1054	return ((acc_control & BIT(sector_size_bit)) != 0);
1055}
1056
1057static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1058{
1059	struct brcmnand_controller *ctrl = host->ctrl;
1060	int shift = brcmnand_sector_1k_shift(ctrl);
1061	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1062						  BRCMNAND_CS_ACC_CONTROL);
1063	u32 tmp;
1064
1065	if (shift < 0)
1066		return;
1067
1068	tmp = nand_readreg(ctrl, acc_control_offs);
1069	tmp &= ~(1 << shift);
1070	tmp |= (!!val) << shift;
1071	nand_writereg(ctrl, acc_control_offs, tmp);
1072}
1073
1074static int brcmnand_get_spare_size(struct brcmnand_host *host)
1075{
1076	struct brcmnand_controller *ctrl = host->ctrl;
1077	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1078						  BRCMNAND_CS_ACC_CONTROL);
1079	u32 acc = nand_readreg(ctrl, acc_control_offs);
1080
1081	return (acc & brcmnand_spare_area_mask(ctrl));
1082}
1083
1084static void brcmnand_get_ecc_settings(struct brcmnand_host *host, struct nand_chip *chip)
1085{
1086	struct brcmnand_controller *ctrl = host->ctrl;
1087	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1088						  BRCMNAND_CS_ACC_CONTROL);
1089	bool sector_size_1k = brcmnand_get_sector_size_1k(host);
1090	int spare_area_size, ecc_level;
1091	u32 acc;
1092
1093	spare_area_size = brcmnand_get_spare_size(host);
1094	acc = nand_readreg(ctrl, acc_control_offs);
1095	ecc_level = (acc & brcmnand_ecc_level_mask(ctrl)) >> ctrl->ecc_level_shift;
1096	if (sector_size_1k)
1097		chip->ecc.strength = ecc_level * 2;
1098	else if (spare_area_size == 16 && ecc_level == 15)
1099		chip->ecc.strength = 1; /* hamming */
1100	else
1101		chip->ecc.strength = ecc_level;
1102
1103	if (chip->ecc.size == 0) {
1104		if (sector_size_1k)
1105			chip->ecc.size = 1024;
1106		else
1107			chip->ecc.size = 512;
1108	}
1109}
1110
1111/***********************************************************************
1112 * CS_NAND_SELECT
1113 ***********************************************************************/
1114
1115enum {
1116	CS_SELECT_NAND_WP			= BIT(29),
1117	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
1118};
1119
1120static int bcmnand_ctrl_poll_status(struct brcmnand_host *host,
1121				    u32 mask, u32 expected_val,
1122				    unsigned long timeout_ms)
1123{
1124	struct brcmnand_controller *ctrl = host->ctrl;
1125	unsigned long limit;
1126	u32 val;
1127
1128	if (!timeout_ms)
1129		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1130
1131	limit = jiffies + msecs_to_jiffies(timeout_ms);
1132	do {
1133		if (mask & INTFC_FLASH_STATUS)
1134			brcmnand_status(host);
1135
1136		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1137		if ((val & mask) == expected_val)
1138			return 0;
1139
1140		cpu_relax();
1141	} while (time_after(limit, jiffies));
1142
1143	/*
1144	 * do a final check after time out in case the CPU was busy and the driver
1145	 * did not get enough time to perform the polling to avoid false alarms
1146	 */
1147	if (mask & INTFC_FLASH_STATUS)
1148		brcmnand_status(host);
1149
1150	val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1151	if ((val & mask) == expected_val)
1152		return 0;
1153
1154	dev_err(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1155		expected_val, val & mask);
1156
1157	return -ETIMEDOUT;
1158}
1159
1160static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1161{
1162	u32 val = en ? CS_SELECT_NAND_WP : 0;
1163
1164	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1165}
1166
1167/***********************************************************************
1168 * Flash DMA
1169 ***********************************************************************/
1170
1171static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1172{
1173	return ctrl->flash_dma_base;
1174}
1175
1176static inline bool has_edu(struct brcmnand_controller *ctrl)
1177{
1178	return ctrl->edu_base;
1179}
1180
1181static inline bool use_dma(struct brcmnand_controller *ctrl)
1182{
1183	return has_flash_dma(ctrl) || has_edu(ctrl);
1184}
1185
1186static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1187{
1188	if (ctrl->pio_poll_mode)
1189		return;
1190
1191	if (has_flash_dma(ctrl)) {
1192		ctrl->flash_dma_base = NULL;
1193		disable_irq(ctrl->dma_irq);
1194	}
1195
1196	disable_irq(ctrl->irq);
1197	ctrl->pio_poll_mode = true;
1198}
1199
1200static inline bool flash_dma_buf_ok(const void *buf)
1201{
1202	return buf && !is_vmalloc_addr(buf) &&
1203		likely(IS_ALIGNED((uintptr_t)buf, 4));
1204}
1205
1206static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1207				    enum flash_dma_reg dma_reg, u32 val)
1208{
1209	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1210
1211	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1212}
1213
1214static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1215				  enum flash_dma_reg dma_reg)
1216{
1217	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1218
1219	return brcmnand_readl(ctrl->flash_dma_base + offs);
1220}
1221
1222/* Low-level operation types: command, address, write, or read */
1223enum brcmnand_llop_type {
1224	LL_OP_CMD,
1225	LL_OP_ADDR,
1226	LL_OP_WR,
1227	LL_OP_RD,
1228};
1229
1230/***********************************************************************
1231 * Internal support functions
1232 ***********************************************************************/
1233
1234static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1235				  struct brcmnand_cfg *cfg)
1236{
1237	if (ctrl->nand_version <= 0x0701)
1238		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1239			cfg->ecc_level == 15;
1240	else
1241		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1242			cfg->ecc_level == 15) ||
1243			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1244}
1245
1246/*
1247 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1248 * the layout/configuration.
1249 * Returns -ERRCODE on failure.
1250 */
1251static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1252					  struct mtd_oob_region *oobregion)
1253{
1254	struct nand_chip *chip = mtd_to_nand(mtd);
1255	struct brcmnand_host *host = nand_get_controller_data(chip);
1256	struct brcmnand_cfg *cfg = &host->hwcfg;
1257	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1258	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1259
1260	if (section >= sectors)
1261		return -ERANGE;
1262
1263	oobregion->offset = (section * sas) + 6;
1264	oobregion->length = 3;
1265
1266	return 0;
1267}
1268
1269static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1270					   struct mtd_oob_region *oobregion)
1271{
1272	struct nand_chip *chip = mtd_to_nand(mtd);
1273	struct brcmnand_host *host = nand_get_controller_data(chip);
1274	struct brcmnand_cfg *cfg = &host->hwcfg;
1275	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1276	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1277	u32 next;
1278
1279	if (section > sectors)
1280		return -ERANGE;
1281
1282	next = (section * sas);
1283	if (section < sectors)
1284		next += 6;
1285
1286	if (section) {
1287		oobregion->offset = ((section - 1) * sas) + 9;
1288	} else {
1289		if (cfg->page_size > 512) {
1290			/* Large page NAND uses first 2 bytes for BBI */
1291			oobregion->offset = 2;
1292		} else {
1293			/* Small page NAND uses last byte before ECC for BBI */
1294			oobregion->offset = 0;
1295			next--;
1296		}
1297	}
1298
1299	oobregion->length = next - oobregion->offset;
1300
1301	return 0;
1302}
1303
1304static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1305	.ecc = brcmnand_hamming_ooblayout_ecc,
1306	.free = brcmnand_hamming_ooblayout_free,
1307};
1308
1309static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1310				      struct mtd_oob_region *oobregion)
1311{
1312	struct nand_chip *chip = mtd_to_nand(mtd);
1313	struct brcmnand_host *host = nand_get_controller_data(chip);
1314	struct brcmnand_cfg *cfg = &host->hwcfg;
1315	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1316	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1317
1318	if (section >= sectors)
1319		return -ERANGE;
1320
1321	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1322	oobregion->length = chip->ecc.bytes;
1323
1324	return 0;
1325}
1326
1327static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1328					  struct mtd_oob_region *oobregion)
1329{
1330	struct nand_chip *chip = mtd_to_nand(mtd);
1331	struct brcmnand_host *host = nand_get_controller_data(chip);
1332	struct brcmnand_cfg *cfg = &host->hwcfg;
1333	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1334	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1335
1336	if (section >= sectors)
1337		return -ERANGE;
1338
1339	if (sas <= chip->ecc.bytes)
1340		return 0;
1341
1342	oobregion->offset = section * sas;
1343	oobregion->length = sas - chip->ecc.bytes;
1344
1345	if (!section) {
1346		oobregion->offset++;
1347		oobregion->length--;
1348	}
1349
1350	return 0;
1351}
1352
1353static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1354					  struct mtd_oob_region *oobregion)
1355{
1356	struct nand_chip *chip = mtd_to_nand(mtd);
1357	struct brcmnand_host *host = nand_get_controller_data(chip);
1358	struct brcmnand_cfg *cfg = &host->hwcfg;
1359	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1360
1361	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1362	    (section && sas - chip->ecc.bytes == 6))
1363		return -ERANGE;
1364
1365	if (!section) {
1366		oobregion->offset = 0;
1367		oobregion->length = 5;
1368	} else {
1369		oobregion->offset = 6;
1370		oobregion->length = sas - chip->ecc.bytes - 6;
1371	}
1372
1373	return 0;
1374}
1375
1376static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1377	.ecc = brcmnand_bch_ooblayout_ecc,
1378	.free = brcmnand_bch_ooblayout_free_lp,
1379};
1380
1381static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1382	.ecc = brcmnand_bch_ooblayout_ecc,
1383	.free = brcmnand_bch_ooblayout_free_sp,
1384};
1385
1386static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1387{
1388	struct brcmnand_cfg *p = &host->hwcfg;
1389	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1390	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1391	unsigned int ecc_level = p->ecc_level;
1392	int sas = p->spare_area_size << p->sector_size_1k;
1393	int sectors = p->page_size / (512 << p->sector_size_1k);
1394
1395	if (p->sector_size_1k)
1396		ecc_level <<= 1;
1397
1398	if (is_hamming_ecc(host->ctrl, p)) {
1399		ecc->bytes = 3 * sectors;
1400		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1401		return 0;
1402	}
1403
1404	/*
1405	 * CONTROLLER_VERSION:
1406	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1407	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1408	 * But we will just be conservative.
1409	 */
1410	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1411	if (p->page_size == 512)
1412		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1413	else
1414		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1415
1416	if (ecc->bytes >= sas) {
1417		dev_err(&host->pdev->dev,
1418			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1419			ecc->bytes, sas);
1420		return -EINVAL;
1421	}
1422
1423	return 0;
1424}
1425
1426static void brcmnand_wp(struct mtd_info *mtd, int wp)
1427{
1428	struct nand_chip *chip = mtd_to_nand(mtd);
1429	struct brcmnand_host *host = nand_get_controller_data(chip);
1430	struct brcmnand_controller *ctrl = host->ctrl;
1431
1432	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1433		static int old_wp = -1;
1434		int ret;
1435
1436		if (old_wp != wp) {
1437			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1438			old_wp = wp;
1439		}
1440
1441		/*
1442		 * make sure ctrl/flash ready before and after
1443		 * changing state of #WP pin
1444		 */
1445		ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY |
1446					       NAND_STATUS_READY,
1447					       NAND_CTRL_RDY |
1448					       NAND_STATUS_READY, 0);
1449		if (ret)
1450			return;
1451
1452		brcmnand_set_wp(ctrl, wp);
1453		/* force controller operation to update internal copy of NAND chip status */
1454		brcmnand_status(host);
1455		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1456		ret = bcmnand_ctrl_poll_status(host,
1457					       NAND_CTRL_RDY |
1458					       NAND_STATUS_READY |
1459					       NAND_STATUS_WP,
1460					       NAND_CTRL_RDY |
1461					       NAND_STATUS_READY |
1462					       (wp ? 0 : NAND_STATUS_WP), 0);
1463
1464		if (ret)
1465			dev_err_ratelimited(&host->pdev->dev,
1466					    "nand #WP expected %s\n",
1467					    wp ? "on" : "off");
1468	}
1469}
1470
1471/* Helper functions for reading and writing OOB registers */
1472static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1473{
1474	u16 offset0, offset10, reg_offs;
1475
1476	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1477	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1478
1479	if (offs >= ctrl->max_oob)
1480		return 0x77;
1481
1482	if (offs >= 16 && offset10)
1483		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1484	else
1485		reg_offs = offset0 + (offs & ~0x03);
1486
1487	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1488}
1489
1490static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1491				 u32 data)
1492{
1493	u16 offset0, offset10, reg_offs;
1494
1495	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1496	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1497
1498	if (offs >= ctrl->max_oob)
1499		return;
1500
1501	if (offs >= 16 && offset10)
1502		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1503	else
1504		reg_offs = offset0 + (offs & ~0x03);
1505
1506	nand_writereg(ctrl, reg_offs, data);
1507}
1508
1509/*
1510 * read_oob_from_regs - read data from OOB registers
1511 * @ctrl: NAND controller
1512 * @i: sub-page sector index
1513 * @oob: buffer to read to
1514 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1515 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1516 */
1517static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1518			      int sas, int sector_1k)
1519{
1520	int tbytes = sas << sector_1k;
1521	int j;
1522
1523	/* Adjust OOB values for 1K sector size */
1524	if (sector_1k && (i & 0x01))
1525		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1526	tbytes = min_t(int, tbytes, ctrl->max_oob);
1527
1528	for (j = 0; j < tbytes; j++)
1529		oob[j] = oob_reg_read(ctrl, j);
1530	return tbytes;
1531}
1532
1533/*
1534 * write_oob_to_regs - write data to OOB registers
1535 * @i: sub-page sector index
1536 * @oob: buffer to write from
1537 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1538 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1539 */
1540static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1541			     const u8 *oob, int sas, int sector_1k)
1542{
1543	int tbytes = sas << sector_1k;
1544	int j, k = 0;
1545	u32 last = 0xffffffff;
1546	u8 *plast = (u8 *)&last;
1547
1548	/* Adjust OOB values for 1K sector size */
1549	if (sector_1k && (i & 0x01))
1550		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1551	tbytes = min_t(int, tbytes, ctrl->max_oob);
1552
1553	/*
1554	 * tbytes may not be multiple of words. Make sure we don't read out of
1555	 * the boundary and stop at last word.
1556	 */
1557	for (j = 0; (j + 3) < tbytes; j += 4)
1558		oob_reg_write(ctrl, j,
1559				(oob[j + 0] << 24) |
1560				(oob[j + 1] << 16) |
1561				(oob[j + 2] <<  8) |
1562				(oob[j + 3] <<  0));
1563
1564	/* handle the remaing bytes */
1565	while (j < tbytes)
1566		plast[k++] = oob[j++];
1567
1568	if (tbytes & 0x3)
1569		oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
1570
1571	return tbytes;
1572}
1573
1574static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1575{
1576	/* initialize edu */
1577	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1578	edu_readl(ctrl, EDU_ERR_STATUS);
1579	edu_writel(ctrl, EDU_DONE, 0);
1580	edu_writel(ctrl, EDU_DONE, 0);
1581	edu_writel(ctrl, EDU_DONE, 0);
1582	edu_writel(ctrl, EDU_DONE, 0);
1583	edu_readl(ctrl, EDU_DONE);
1584}
1585
1586/* edu irq */
1587static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1588{
1589	struct brcmnand_controller *ctrl = data;
1590
1591	if (ctrl->edu_count) {
1592		ctrl->edu_count--;
1593		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1594			udelay(1);
1595		edu_writel(ctrl, EDU_DONE, 0);
1596		edu_readl(ctrl, EDU_DONE);
1597	}
1598
1599	if (ctrl->edu_count) {
1600		ctrl->edu_dram_addr += FC_BYTES;
1601		ctrl->edu_ext_addr += FC_BYTES;
1602
1603		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1604		edu_readl(ctrl, EDU_DRAM_ADDR);
1605		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1606		edu_readl(ctrl, EDU_EXT_ADDR);
1607
1608		if (ctrl->oob) {
1609			if (ctrl->edu_cmd == EDU_CMD_READ) {
1610				ctrl->oob += read_oob_from_regs(ctrl,
1611							ctrl->edu_count + 1,
1612							ctrl->oob, ctrl->sas,
1613							ctrl->sector_size_1k);
1614			} else {
1615				brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1616						   ctrl->edu_ext_addr);
1617				brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1618				ctrl->oob += write_oob_to_regs(ctrl,
1619							       ctrl->edu_count,
1620							       ctrl->oob, ctrl->sas,
1621							       ctrl->sector_size_1k);
1622			}
1623		}
1624
1625		mb(); /* flush previous writes */
1626		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1627		edu_readl(ctrl, EDU_CMD);
1628
1629		return IRQ_HANDLED;
1630	}
1631
1632	complete(&ctrl->edu_done);
1633
1634	return IRQ_HANDLED;
1635}
1636
1637static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1638{
1639	struct brcmnand_controller *ctrl = data;
1640
1641	/* Discard all NAND_CTLRDY interrupts during DMA */
1642	if (ctrl->dma_pending)
1643		return IRQ_HANDLED;
1644
1645	/* check if you need to piggy back on the ctrlrdy irq */
1646	if (ctrl->edu_pending) {
1647		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1648	/* Discard interrupts while using dedicated edu irq */
1649			return IRQ_HANDLED;
1650
1651	/* no registered edu irq, call handler */
1652		return brcmnand_edu_irq(irq, data);
1653	}
1654
1655	complete(&ctrl->done);
1656	return IRQ_HANDLED;
1657}
1658
1659/* Handle SoC-specific interrupt hardware */
1660static irqreturn_t brcmnand_irq(int irq, void *data)
1661{
1662	struct brcmnand_controller *ctrl = data;
1663
1664	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1665		return brcmnand_ctlrdy_irq(irq, data);
1666
1667	return IRQ_NONE;
1668}
1669
1670static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1671{
1672	struct brcmnand_controller *ctrl = data;
1673
1674	complete(&ctrl->dma_done);
1675
1676	return IRQ_HANDLED;
1677}
1678
1679static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1680{
1681	struct brcmnand_controller *ctrl = host->ctrl;
1682	int ret;
1683	u64 cmd_addr;
1684
1685	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1686
1687	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1688
1689	/*
1690	 * If we came here through _panic_write and there is a pending
1691	 * command, try to wait for it. If it times out, rather than
1692	 * hitting BUG_ON, just return so we don't crash while crashing.
1693	 */
1694	if (oops_in_progress) {
1695		if (ctrl->cmd_pending &&
1696			bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
1697			return;
1698	} else
1699		BUG_ON(ctrl->cmd_pending != 0);
1700	ctrl->cmd_pending = cmd;
1701
1702	ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1703	WARN_ON(ret);
1704
1705	mb(); /* flush previous writes */
1706	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1707			   cmd << brcmnand_cmd_shift(ctrl));
1708}
1709
1710static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1711{
1712	struct brcmnand_host *host = nand_get_controller_data(chip);
1713	struct brcmnand_controller *ctrl = host->ctrl;
1714	struct mtd_info *mtd = nand_to_mtd(chip);
1715	bool err = false;
1716	int sts;
1717
1718	if (mtd->oops_panic_write || ctrl->irq < 0) {
1719		/* switch to interrupt polling and PIO mode */
1720		disable_ctrl_irqs(ctrl);
1721		sts = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY,
1722					       NAND_CTRL_RDY, 0);
1723		err = sts < 0;
1724	} else {
1725		unsigned long timeo = msecs_to_jiffies(
1726						NAND_POLL_STATUS_TIMEOUT_MS);
1727		/* wait for completion interrupt */
1728		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1729		err = !sts;
1730	}
1731
1732	return err;
1733}
1734
1735static int brcmnand_waitfunc(struct nand_chip *chip)
1736{
1737	struct brcmnand_host *host = nand_get_controller_data(chip);
1738	struct brcmnand_controller *ctrl = host->ctrl;
1739	bool err = false;
1740
1741	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1742	if (ctrl->cmd_pending)
1743		err = brcmstb_nand_wait_for_completion(chip);
1744
1745	ctrl->cmd_pending = 0;
1746	if (err) {
1747		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1748					>> brcmnand_cmd_shift(ctrl);
1749
1750		dev_err_ratelimited(ctrl->dev,
1751			"timeout waiting for command %#02x\n", cmd);
1752		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1753			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1754		return -ETIMEDOUT;
1755	}
1756	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1757				 INTFC_FLASH_STATUS;
1758}
1759
1760static int brcmnand_status(struct brcmnand_host *host)
1761{
1762	struct nand_chip *chip = &host->chip;
1763	struct mtd_info *mtd = nand_to_mtd(chip);
1764
1765	brcmnand_set_cmd_addr(mtd, 0);
1766	brcmnand_send_cmd(host, CMD_STATUS_READ);
1767
1768	return brcmnand_waitfunc(chip);
1769}
1770
1771static int brcmnand_reset(struct brcmnand_host *host)
1772{
1773	struct nand_chip *chip = &host->chip;
1774
1775	brcmnand_send_cmd(host, CMD_FLASH_RESET);
1776
1777	return brcmnand_waitfunc(chip);
1778}
1779
1780enum {
1781	LLOP_RE				= BIT(16),
1782	LLOP_WE				= BIT(17),
1783	LLOP_ALE			= BIT(18),
1784	LLOP_CLE			= BIT(19),
1785	LLOP_RETURN_IDLE		= BIT(31),
1786
1787	LLOP_DATA_MASK			= GENMASK(15, 0),
1788};
1789
1790static int brcmnand_low_level_op(struct brcmnand_host *host,
1791				 enum brcmnand_llop_type type, u32 data,
1792				 bool last_op)
1793{
1794	struct nand_chip *chip = &host->chip;
1795	struct brcmnand_controller *ctrl = host->ctrl;
1796	u32 tmp;
1797
1798	tmp = data & LLOP_DATA_MASK;
1799	switch (type) {
1800	case LL_OP_CMD:
1801		tmp |= LLOP_WE | LLOP_CLE;
1802		break;
1803	case LL_OP_ADDR:
1804		/* WE | ALE */
1805		tmp |= LLOP_WE | LLOP_ALE;
1806		break;
1807	case LL_OP_WR:
1808		/* WE */
1809		tmp |= LLOP_WE;
1810		break;
1811	case LL_OP_RD:
1812		/* RE */
1813		tmp |= LLOP_RE;
1814		break;
1815	}
1816	if (last_op)
1817		/* RETURN_IDLE */
1818		tmp |= LLOP_RETURN_IDLE;
1819
1820	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1821
1822	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1823	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1824
1825	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1826	return brcmnand_waitfunc(chip);
1827}
1828
1829/*
1830 *  Kick EDU engine
1831 */
1832static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1833			      u8 *oob, u32 len, u8 cmd)
1834{
1835	struct brcmnand_controller *ctrl = host->ctrl;
1836	struct brcmnand_cfg *cfg = &host->hwcfg;
1837	unsigned long timeo = msecs_to_jiffies(200);
1838	int ret = 0;
1839	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1840	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1841	unsigned int trans = len >> FC_SHIFT;
1842	dma_addr_t pa;
1843
1844	dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
1845					      "read" : "write"), buf, oob);
1846
1847	pa = dma_map_single(ctrl->dev, buf, len, dir);
1848	if (dma_mapping_error(ctrl->dev, pa)) {
1849		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1850		return -ENOMEM;
1851	}
1852
1853	ctrl->edu_pending = true;
1854	ctrl->edu_dram_addr = pa;
1855	ctrl->edu_ext_addr = addr;
1856	ctrl->edu_cmd = edu_cmd;
1857	ctrl->edu_count = trans;
1858	ctrl->sas = cfg->spare_area_size;
1859	ctrl->oob = oob;
1860
1861	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1862	edu_readl(ctrl,  EDU_DRAM_ADDR);
1863	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1864	edu_readl(ctrl, EDU_EXT_ADDR);
1865	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1866	edu_readl(ctrl, EDU_LENGTH);
1867
1868	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
1869		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1870				   ctrl->edu_ext_addr);
1871		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1872		ctrl->oob += write_oob_to_regs(ctrl,
1873					       1,
1874					       ctrl->oob, ctrl->sas,
1875					       ctrl->sector_size_1k);
1876	}
1877
1878	/* Start edu engine */
1879	mb(); /* flush previous writes */
1880	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1881	edu_readl(ctrl, EDU_CMD);
1882
1883	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1884		dev_err(ctrl->dev,
1885			"timeout waiting for EDU; status %#x, error status %#x\n",
1886			edu_readl(ctrl, EDU_STATUS),
1887			edu_readl(ctrl, EDU_ERR_STATUS));
1888	}
1889
1890	dma_unmap_single(ctrl->dev, pa, len, dir);
1891
1892	/* read last subpage oob */
1893	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
1894		ctrl->oob += read_oob_from_regs(ctrl,
1895						1,
1896						ctrl->oob, ctrl->sas,
1897						ctrl->sector_size_1k);
1898	}
1899
1900	/* for program page check NAND status */
1901	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1902	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1903	    edu_cmd == EDU_CMD_WRITE) {
1904		dev_info(ctrl->dev, "program failed at %llx\n",
1905			 (unsigned long long)addr);
1906		ret = -EIO;
1907	}
1908
1909	/* Make sure the EDU status is clean */
1910	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1911		dev_warn(ctrl->dev, "EDU still active: %#x\n",
1912			 edu_readl(ctrl, EDU_STATUS));
1913
1914	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1915		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1916			 (unsigned long long)addr);
1917		ret = -EIO;
1918	}
1919
1920	ctrl->edu_pending = false;
1921	brcmnand_edu_init(ctrl);
1922	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1923	edu_readl(ctrl, EDU_STOP);
1924
1925	if (!ret && edu_cmd == EDU_CMD_READ) {
1926		u64 err_addr = 0;
1927
1928		/*
1929		 * check for ECC errors here, subpage ECC errors are
1930		 * retained in ECC error address register
1931		 */
1932		err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1933		if (!err_addr) {
1934			err_addr = brcmnand_get_correcc_addr(ctrl);
1935			if (err_addr)
1936				ret = -EUCLEAN;
1937		} else
1938			ret = -EBADMSG;
1939	}
1940
1941	return ret;
1942}
1943
1944/*
1945 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1946 * following ahead of time:
1947 *  - Is this descriptor the beginning or end of a linked list?
1948 *  - What is the (DMA) address of the next descriptor in the linked list?
1949 */
1950static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1951				  struct brcm_nand_dma_desc *desc, u64 addr,
1952				  dma_addr_t buf, u32 len, u8 dma_cmd,
1953				  bool begin, bool end,
1954				  dma_addr_t next_desc)
1955{
1956	memset(desc, 0, sizeof(*desc));
1957	/* Descriptors are written in native byte order (wordwise) */
1958	desc->next_desc = lower_32_bits(next_desc);
1959	desc->next_desc_ext = upper_32_bits(next_desc);
1960	desc->cmd_irq = (dma_cmd << 24) |
1961		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1962		(!!begin) | ((!!end) << 1); /* head, tail */
1963#ifdef CONFIG_CPU_BIG_ENDIAN
1964	desc->cmd_irq |= 0x01 << 12;
1965#endif
1966	desc->dram_addr = lower_32_bits(buf);
1967	desc->dram_addr_ext = upper_32_bits(buf);
1968	desc->tfr_len = len;
1969	desc->total_len = len;
1970	desc->flash_addr = lower_32_bits(addr);
1971	desc->flash_addr_ext = upper_32_bits(addr);
1972	desc->cs = host->cs;
1973	desc->status_valid = 0x01;
1974	return 0;
1975}
1976
1977/*
1978 * Kick the FLASH_DMA engine, with a given DMA descriptor
1979 */
1980static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1981{
1982	struct brcmnand_controller *ctrl = host->ctrl;
1983	unsigned long timeo = msecs_to_jiffies(100);
1984
1985	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1986	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1987	if (ctrl->nand_version > 0x0602) {
1988		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
1989				 upper_32_bits(desc));
1990		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1991	}
1992
1993	/* Start FLASH_DMA engine */
1994	ctrl->dma_pending = true;
1995	mb(); /* flush previous writes */
1996	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1997
1998	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1999		dev_err(ctrl->dev,
2000				"timeout waiting for DMA; status %#x, error status %#x\n",
2001				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2002				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2003	}
2004	ctrl->dma_pending = false;
2005	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2006}
2007
2008static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2009			      u8 *oob, u32 len, u8 dma_cmd)
2010{
2011	struct brcmnand_controller *ctrl = host->ctrl;
2012	dma_addr_t buf_pa;
2013	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2014
2015	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2016	if (dma_mapping_error(ctrl->dev, buf_pa)) {
2017		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2018		return -ENOMEM;
2019	}
2020
2021	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2022				   dma_cmd, true, true, 0);
2023
2024	brcmnand_dma_run(host, ctrl->dma_pa);
2025
2026	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2027
2028	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2029		return -EBADMSG;
2030	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2031		return -EUCLEAN;
2032
2033	return 0;
2034}
2035
2036/*
2037 * Assumes proper CS is already set
2038 */
2039static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2040				u64 addr, unsigned int trans, u32 *buf,
2041				u8 *oob, u64 *err_addr)
2042{
2043	struct brcmnand_host *host = nand_get_controller_data(chip);
2044	struct brcmnand_controller *ctrl = host->ctrl;
2045	int i, ret = 0;
2046
2047	brcmnand_clear_ecc_addr(ctrl);
2048
2049	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2050		brcmnand_set_cmd_addr(mtd, addr);
2051		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2052		brcmnand_send_cmd(host, CMD_PAGE_READ);
2053		brcmnand_waitfunc(chip);
2054
2055		if (likely(buf)) {
2056			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2057
2058			brcmnand_read_data_bus(ctrl, ctrl->nand_fc, buf, FC_WORDS);
2059			buf += FC_WORDS;
2060
2061			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2062		}
2063
2064		if (oob)
2065			oob += read_oob_from_regs(ctrl, i, oob,
2066					mtd->oobsize / trans,
2067					host->hwcfg.sector_size_1k);
2068
2069		if (ret != -EBADMSG) {
2070			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2071
2072			if (*err_addr)
2073				ret = -EBADMSG;
2074		}
2075
2076		if (!ret) {
2077			*err_addr = brcmnand_get_correcc_addr(ctrl);
2078
2079			if (*err_addr)
2080				ret = -EUCLEAN;
2081		}
2082	}
2083
2084	return ret;
2085}
2086
2087/*
2088 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2089 * error
2090 *
2091 * Because the HW ECC signals an ECC error if an erase paged has even a single
2092 * bitflip, we must check each ECC error to see if it is actually an erased
2093 * page with bitflips, not a truly corrupted page.
2094 *
2095 * On a real error, return a negative error code (-EBADMSG for ECC error), and
2096 * buf will contain raw data.
2097 * Otherwise, buf gets filled with 0xffs and return the maximum number of
2098 * bitflips-per-ECC-sector to the caller.
2099 *
2100 */
2101static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2102		  struct nand_chip *chip, void *buf, u64 addr)
2103{
2104	struct mtd_oob_region ecc;
2105	int i;
2106	int bitflips = 0;
2107	int page = addr >> chip->page_shift;
2108	int ret;
2109	void *ecc_bytes;
2110	void *ecc_chunk;
2111
2112	if (!buf)
2113		buf = nand_get_data_buf(chip);
2114
2115	/* read without ecc for verification */
2116	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2117	if (ret)
2118		return ret;
2119
2120	for (i = 0; i < chip->ecc.steps; i++) {
2121		ecc_chunk = buf + chip->ecc.size * i;
2122
2123		mtd_ooblayout_ecc(mtd, i, &ecc);
2124		ecc_bytes = chip->oob_poi + ecc.offset;
2125
2126		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2127						  ecc_bytes, ecc.length,
2128						  NULL, 0,
2129						  chip->ecc.strength);
2130		if (ret < 0)
2131			return ret;
2132
2133		bitflips = max(bitflips, ret);
2134	}
2135
2136	return bitflips;
2137}
2138
2139static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2140			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2141{
2142	struct brcmnand_host *host = nand_get_controller_data(chip);
2143	struct brcmnand_controller *ctrl = host->ctrl;
2144	u64 err_addr = 0;
2145	int err;
2146	bool retry = true;
2147	bool edu_err = false;
2148
2149	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2150
2151try_dmaread:
2152	brcmnand_clear_ecc_addr(ctrl);
2153
2154	if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
2155	    flash_dma_buf_ok(buf)) {
2156		err = ctrl->dma_trans(host, addr, buf, oob,
2157				      trans * FC_BYTES,
2158				      CMD_PAGE_READ);
2159
2160		if (err) {
2161			if (mtd_is_bitflip_or_eccerr(err))
2162				err_addr = addr;
2163			else
2164				return -EIO;
2165		}
2166
2167		if (has_edu(ctrl) && err_addr)
2168			edu_err = true;
2169
2170	} else {
2171		if (oob)
2172			memset(oob, 0x99, mtd->oobsize);
2173
2174		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2175					       oob, &err_addr);
2176	}
2177
2178	if (mtd_is_eccerr(err)) {
2179		/*
2180		 * On controller version and 7.0, 7.1 , DMA read after a
2181		 * prior PIO read that reported uncorrectable error,
2182		 * the DMA engine captures this error following DMA read
2183		 * cleared only on subsequent DMA read, so just retry once
2184		 * to clear a possible false error reported for current DMA
2185		 * read
2186		 */
2187		if ((ctrl->nand_version == 0x0700) ||
2188		    (ctrl->nand_version == 0x0701)) {
2189			if (retry) {
2190				retry = false;
2191				goto try_dmaread;
2192			}
2193		}
2194
2195		/*
2196		 * Controller version 7.2 has hw encoder to detect erased page
2197		 * bitflips, apply sw verification for older controllers only
2198		 */
2199		if (ctrl->nand_version < 0x0702) {
2200			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2201							      addr);
2202			/* erased page bitflips corrected */
2203			if (err >= 0)
2204				return err;
2205		}
2206
2207		dev_err(ctrl->dev, "uncorrectable error at 0x%llx\n",
2208			(unsigned long long)err_addr);
2209		mtd->ecc_stats.failed++;
2210		/* NAND layer expects zero on ECC errors */
2211		return 0;
2212	}
2213
2214	if (mtd_is_bitflip(err)) {
2215		unsigned int corrected = brcmnand_count_corrected(ctrl);
2216
2217		/* in case of EDU correctable error we read again using PIO */
2218		if (edu_err)
2219			err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2220						   oob, &err_addr);
2221
2222		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2223			(unsigned long long)err_addr);
2224		mtd->ecc_stats.corrected += corrected;
2225		/* Always exceed the software-imposed threshold */
2226		return max(mtd->bitflip_threshold, corrected);
2227	}
2228
2229	return 0;
2230}
2231
2232static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2233			      int oob_required, int page)
2234{
2235	struct mtd_info *mtd = nand_to_mtd(chip);
2236	struct brcmnand_host *host = nand_get_controller_data(chip);
2237	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2238	u64 addr = (u64)page << chip->page_shift;
2239
2240	host->last_addr = addr;
2241
2242	return brcmnand_read(mtd, chip, host->last_addr,
2243			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2244}
2245
2246static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2247				  int oob_required, int page)
2248{
2249	struct brcmnand_host *host = nand_get_controller_data(chip);
2250	struct mtd_info *mtd = nand_to_mtd(chip);
2251	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2252	int ret;
2253	u64 addr = (u64)page << chip->page_shift;
2254
2255	host->last_addr = addr;
2256
2257	brcmnand_set_ecc_enabled(host, 0);
2258	ret = brcmnand_read(mtd, chip, host->last_addr,
2259			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2260	brcmnand_set_ecc_enabled(host, 1);
2261	return ret;
2262}
2263
2264static int brcmnand_read_oob(struct nand_chip *chip, int page)
2265{
2266	struct mtd_info *mtd = nand_to_mtd(chip);
2267
2268	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2269			mtd->writesize >> FC_SHIFT,
2270			NULL, (u8 *)chip->oob_poi);
2271}
2272
2273static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2274{
2275	struct mtd_info *mtd = nand_to_mtd(chip);
2276	struct brcmnand_host *host = nand_get_controller_data(chip);
2277
2278	brcmnand_set_ecc_enabled(host, 0);
2279	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2280		mtd->writesize >> FC_SHIFT,
2281		NULL, (u8 *)chip->oob_poi);
2282	brcmnand_set_ecc_enabled(host, 1);
2283	return 0;
2284}
2285
2286static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2287			  u64 addr, const u32 *buf, u8 *oob)
2288{
2289	struct brcmnand_host *host = nand_get_controller_data(chip);
2290	struct brcmnand_controller *ctrl = host->ctrl;
2291	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2292	int status, ret = 0;
2293
2294	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2295
2296	if (unlikely((unsigned long)buf & 0x03)) {
2297		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2298		buf = (u32 *)((unsigned long)buf & ~0x03);
2299	}
2300
2301	brcmnand_wp(mtd, 0);
2302
2303	for (i = 0; i < ctrl->max_oob; i += 4)
2304		oob_reg_write(ctrl, i, 0xffffffff);
2305
2306	if (mtd->oops_panic_write)
2307		/* switch to interrupt polling and PIO mode */
2308		disable_ctrl_irqs(ctrl);
2309
2310	if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
2311		if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
2312				    CMD_PROGRAM_PAGE))
2313
2314			ret = -EIO;
2315
2316		goto out;
2317	}
2318
2319	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2320		/* full address MUST be set before populating FC */
2321		brcmnand_set_cmd_addr(mtd, addr);
2322
2323		if (buf) {
2324			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2325
2326			for (j = 0; j < FC_WORDS; j++, buf++)
2327				brcmnand_write_fc(ctrl, j, *buf);
2328
2329			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2330		} else if (oob) {
2331			for (j = 0; j < FC_WORDS; j++)
2332				brcmnand_write_fc(ctrl, j, 0xffffffff);
2333		}
2334
2335		if (oob) {
2336			oob += write_oob_to_regs(ctrl, i, oob,
2337					mtd->oobsize / trans,
2338					host->hwcfg.sector_size_1k);
2339		}
2340
2341		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2342		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2343		status = brcmnand_waitfunc(chip);
2344
2345		if (status & NAND_STATUS_FAIL) {
2346			dev_info(ctrl->dev, "program failed at %llx\n",
2347				(unsigned long long)addr);
2348			ret = -EIO;
2349			goto out;
2350		}
2351	}
2352out:
2353	brcmnand_wp(mtd, 1);
2354	return ret;
2355}
2356
2357static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2358			       int oob_required, int page)
2359{
2360	struct mtd_info *mtd = nand_to_mtd(chip);
2361	struct brcmnand_host *host = nand_get_controller_data(chip);
2362	void *oob = oob_required ? chip->oob_poi : NULL;
2363	u64 addr = (u64)page << chip->page_shift;
2364
2365	host->last_addr = addr;
2366
2367	return brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2368}
2369
2370static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2371				   int oob_required, int page)
2372{
2373	struct mtd_info *mtd = nand_to_mtd(chip);
2374	struct brcmnand_host *host = nand_get_controller_data(chip);
2375	void *oob = oob_required ? chip->oob_poi : NULL;
2376	u64 addr = (u64)page << chip->page_shift;
2377	int ret = 0;
2378
2379	host->last_addr = addr;
2380	brcmnand_set_ecc_enabled(host, 0);
2381	ret = brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2382	brcmnand_set_ecc_enabled(host, 1);
2383
2384	return ret;
2385}
2386
2387static int brcmnand_write_oob(struct nand_chip *chip, int page)
2388{
2389	return brcmnand_write(nand_to_mtd(chip), chip,
2390			      (u64)page << chip->page_shift, NULL,
2391			      chip->oob_poi);
2392}
2393
2394static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2395{
2396	struct mtd_info *mtd = nand_to_mtd(chip);
2397	struct brcmnand_host *host = nand_get_controller_data(chip);
2398	int ret;
2399
2400	brcmnand_set_ecc_enabled(host, 0);
2401	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2402				 (u8 *)chip->oob_poi);
2403	brcmnand_set_ecc_enabled(host, 1);
2404
2405	return ret;
2406}
2407
2408static int brcmnand_exec_instr(struct brcmnand_host *host, int i,
2409		const struct nand_operation *op)
2410{
2411	const struct nand_op_instr *instr = &op->instrs[i];
2412	struct brcmnand_controller *ctrl = host->ctrl;
2413	const u8 *out;
2414	bool last_op;
2415	int ret = 0;
2416	u8 *in;
2417
2418	/*
2419	 * The controller needs to be aware of the last command in the operation
2420	 * (WAITRDY excepted).
2421	 */
2422	last_op = ((i == (op->ninstrs - 1)) && (instr->type != NAND_OP_WAITRDY_INSTR)) ||
2423		  ((i == (op->ninstrs - 2)) && (op->instrs[i + 1].type == NAND_OP_WAITRDY_INSTR));
2424
2425	switch (instr->type) {
2426	case NAND_OP_CMD_INSTR:
2427		brcmnand_low_level_op(host, LL_OP_CMD, instr->ctx.cmd.opcode, last_op);
2428		break;
2429
2430	case NAND_OP_ADDR_INSTR:
2431		for (i = 0; i < instr->ctx.addr.naddrs; i++)
2432			brcmnand_low_level_op(host, LL_OP_ADDR, instr->ctx.addr.addrs[i],
2433					      last_op && (i == (instr->ctx.addr.naddrs - 1)));
2434		break;
2435
2436	case NAND_OP_DATA_IN_INSTR:
2437		in = instr->ctx.data.buf.in;
2438		for (i = 0; i < instr->ctx.data.len; i++) {
2439			brcmnand_low_level_op(host, LL_OP_RD, 0,
2440					      last_op && (i == (instr->ctx.data.len - 1)));
2441			in[i] = brcmnand_read_reg(host->ctrl, BRCMNAND_LL_RDATA);
2442		}
2443		break;
2444
2445	case NAND_OP_DATA_OUT_INSTR:
2446		out = instr->ctx.data.buf.out;
2447		for (i = 0; i < instr->ctx.data.len; i++)
2448			brcmnand_low_level_op(host, LL_OP_WR, out[i],
2449					      last_op && (i == (instr->ctx.data.len - 1)));
2450		break;
2451
2452	case NAND_OP_WAITRDY_INSTR:
2453		ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
2454		break;
2455
2456	default:
2457		dev_err(ctrl->dev, "unsupported instruction type: %d\n",
2458			instr->type);
2459		ret = -EINVAL;
2460		break;
2461	}
2462
2463	return ret;
2464}
2465
2466static int brcmnand_op_is_status(const struct nand_operation *op)
2467{
2468	if (op->ninstrs == 2 &&
2469	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
2470	    op->instrs[0].ctx.cmd.opcode == NAND_CMD_STATUS &&
2471	    op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
2472		return 1;
2473
2474	return 0;
2475}
2476
2477static int brcmnand_op_is_reset(const struct nand_operation *op)
2478{
2479	if (op->ninstrs == 2 &&
2480	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
2481	    op->instrs[0].ctx.cmd.opcode == NAND_CMD_RESET &&
2482	    op->instrs[1].type == NAND_OP_WAITRDY_INSTR)
2483		return 1;
2484
2485	return 0;
2486}
2487
2488static int brcmnand_exec_op(struct nand_chip *chip,
2489			    const struct nand_operation *op,
2490			    bool check_only)
2491{
2492	struct brcmnand_host *host = nand_get_controller_data(chip);
2493	struct mtd_info *mtd = nand_to_mtd(chip);
2494	u8 *status;
2495	unsigned int i;
2496	int ret = 0;
2497
2498	if (check_only)
2499		return 0;
2500
2501	if (brcmnand_op_is_status(op)) {
2502		status = op->instrs[1].ctx.data.buf.in;
2503		ret = brcmnand_status(host);
2504		if (ret < 0)
2505			return ret;
2506
2507		*status = ret & 0xFF;
2508
2509		return 0;
2510	} else if (brcmnand_op_is_reset(op)) {
2511		ret = brcmnand_reset(host);
2512		if (ret < 0)
2513			return ret;
2514
2515		brcmnand_wp(mtd, 1);
2516
2517		return 0;
2518	}
2519
2520	if (op->deassert_wp)
2521		brcmnand_wp(mtd, 0);
2522
2523	for (i = 0; i < op->ninstrs; i++) {
2524		ret = brcmnand_exec_instr(host, i, op);
2525		if (ret)
2526			break;
2527	}
2528
2529	if (op->deassert_wp)
2530		brcmnand_wp(mtd, 1);
2531
2532	return ret;
2533}
2534
2535/***********************************************************************
2536 * Per-CS setup (1 NAND device)
2537 ***********************************************************************/
2538
2539static int brcmnand_set_cfg(struct brcmnand_host *host,
2540			    struct brcmnand_cfg *cfg)
2541{
2542	struct brcmnand_controller *ctrl = host->ctrl;
2543	struct nand_chip *chip = &host->chip;
2544	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2545	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2546			BRCMNAND_CS_CFG_EXT);
2547	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2548			BRCMNAND_CS_ACC_CONTROL);
2549	u8 block_size = 0, page_size = 0, device_size = 0;
2550	u32 tmp;
2551
2552	if (ctrl->block_sizes) {
2553		int i, found;
2554
2555		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2556			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2557				block_size = i;
2558				found = 1;
2559			}
2560		if (!found) {
2561			dev_warn(ctrl->dev, "invalid block size %u\n",
2562					cfg->block_size);
2563			return -EINVAL;
2564		}
2565	} else {
2566		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2567	}
2568
2569	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2570				cfg->block_size > ctrl->max_block_size)) {
2571		dev_warn(ctrl->dev, "invalid block size %u\n",
2572				cfg->block_size);
2573		block_size = 0;
2574	}
2575
2576	if (ctrl->page_sizes) {
2577		int i, found;
2578
2579		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2580			if (ctrl->page_sizes[i] == cfg->page_size) {
2581				page_size = i;
2582				found = 1;
2583			}
2584		if (!found) {
2585			dev_warn(ctrl->dev, "invalid page size %u\n",
2586					cfg->page_size);
2587			return -EINVAL;
2588		}
2589	} else {
2590		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2591	}
2592
2593	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2594				cfg->page_size > ctrl->max_page_size)) {
2595		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2596		return -EINVAL;
2597	}
2598
2599	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2600		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2601			(unsigned long long)cfg->device_size);
2602		return -EINVAL;
2603	}
2604	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2605
2606	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2607		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2608		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2609		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2610		(device_size << CFG_DEVICE_SIZE_SHIFT);
2611	if (cfg_offs == cfg_ext_offs) {
2612		tmp |= (page_size << ctrl->page_size_shift) |
2613		       (block_size << CFG_BLK_SIZE_SHIFT);
2614		nand_writereg(ctrl, cfg_offs, tmp);
2615	} else {
2616		nand_writereg(ctrl, cfg_offs, tmp);
2617		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2618		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2619		nand_writereg(ctrl, cfg_ext_offs, tmp);
2620	}
2621
2622	tmp = nand_readreg(ctrl, acc_control_offs);
2623	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2624	tmp &= ~brcmnand_spare_area_mask(ctrl);
2625	if (ctrl->nand_version >= 0x0302) {
2626		tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2627		tmp |= cfg->spare_area_size;
2628	}
2629	nand_writereg(ctrl, acc_control_offs, tmp);
2630
2631	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2632
2633	/* threshold = ceil(BCH-level * 0.75) */
2634	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2635
2636	return 0;
2637}
2638
2639static void brcmnand_print_cfg(struct brcmnand_host *host,
2640			       char *buf, struct brcmnand_cfg *cfg)
2641{
2642	buf += sprintf(buf,
2643		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2644		(unsigned long long)cfg->device_size >> 20,
2645		cfg->block_size >> 10,
2646		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2647		cfg->page_size >= 1024 ? "KiB" : "B",
2648		cfg->spare_area_size, cfg->device_width);
2649
2650	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2651	if (is_hamming_ecc(host->ctrl, cfg))
2652		sprintf(buf, ", Hamming ECC");
2653	else if (cfg->sector_size_1k)
2654		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2655	else
2656		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2657}
2658
2659/*
2660 * Minimum number of bytes to address a page. Calculated as:
2661 *     roundup(log2(size / page-size) / 8)
2662 *
2663 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2664 *     OK because many other things will break if 'size' is irregular...
2665 */
2666static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2667{
2668	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2669}
2670
2671static int brcmnand_setup_dev(struct brcmnand_host *host)
2672{
2673	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2674	struct nand_chip *chip = &host->chip;
2675	const struct nand_ecc_props *requirements =
2676		nanddev_get_ecc_requirements(&chip->base);
2677	struct nand_memory_organization *memorg =
2678		nanddev_get_memorg(&chip->base);
2679	struct brcmnand_controller *ctrl = host->ctrl;
2680	struct brcmnand_cfg *cfg = &host->hwcfg;
2681	struct device_node *np = nand_get_flash_node(chip);
2682	u32 offs, tmp, oob_sector;
2683	bool use_strap = false;
2684	char msg[128];
2685	int ret;
2686
2687	memset(cfg, 0, sizeof(*cfg));
2688	use_strap = of_property_read_bool(np, "brcm,nand-ecc-use-strap");
2689
2690	/*
2691	 * Either nand-ecc-xxx or brcm,nand-ecc-use-strap can be set. Error out
2692	 * if both exist.
2693	 */
2694	if (chip->ecc.strength && use_strap) {
2695		dev_err(ctrl->dev,
2696			"ECC strap and DT ECC configuration properties are mutually exclusive\n");
2697		return -EINVAL;
2698	}
2699
2700	if (use_strap)
2701		brcmnand_get_ecc_settings(host, chip);
2702
2703	ret = of_property_read_u32(np, "brcm,nand-oob-sector-size",
2704				   &oob_sector);
2705	if (ret) {
2706		if (use_strap)
2707			cfg->spare_area_size = brcmnand_get_spare_size(host);
2708		else
2709			/* Use detected size */
2710			cfg->spare_area_size = mtd->oobsize /
2711						(mtd->writesize >> FC_SHIFT);
2712	} else {
2713		cfg->spare_area_size = oob_sector;
2714	}
2715	if (cfg->spare_area_size > ctrl->max_oob)
2716		cfg->spare_area_size = ctrl->max_oob;
2717	/*
2718	 * Set mtd and memorg oobsize to be consistent with controller's
2719	 * spare_area_size, as the rest is inaccessible.
2720	 */
2721	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2722	memorg->oobsize = mtd->oobsize;
2723
2724	cfg->device_size = mtd->size;
2725	cfg->block_size = mtd->erasesize;
2726	cfg->page_size = mtd->writesize;
2727	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2728	cfg->col_adr_bytes = 2;
2729	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2730
2731	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2732		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2733			chip->ecc.engine_type);
2734		return -EINVAL;
2735	}
2736
2737	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2738		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2739			/* Default to Hamming for 1-bit ECC, if unspecified */
2740			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2741		else
2742			/* Otherwise, BCH */
2743			chip->ecc.algo = NAND_ECC_ALGO_BCH;
2744	}
2745
2746	if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2747	    (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2748		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2749			chip->ecc.strength, chip->ecc.size);
2750		return -EINVAL;
2751	}
2752
2753	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2754	    (!chip->ecc.size || !chip->ecc.strength)) {
2755		if (requirements->step_size && requirements->strength) {
2756			/* use detected ECC parameters */
2757			chip->ecc.size = requirements->step_size;
2758			chip->ecc.strength = requirements->strength;
2759			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2760				chip->ecc.size, chip->ecc.strength);
2761		}
2762	}
2763
2764	switch (chip->ecc.size) {
2765	case 512:
2766		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2767			cfg->ecc_level = 15;
2768		else
2769			cfg->ecc_level = chip->ecc.strength;
2770		cfg->sector_size_1k = 0;
2771		break;
2772	case 1024:
2773		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2774			dev_err(ctrl->dev, "1KB sectors not supported\n");
2775			return -EINVAL;
2776		}
2777		if (chip->ecc.strength & 0x1) {
2778			dev_err(ctrl->dev,
2779				"odd ECC not supported with 1KB sectors\n");
2780			return -EINVAL;
2781		}
2782
2783		cfg->ecc_level = chip->ecc.strength >> 1;
2784		cfg->sector_size_1k = 1;
2785		break;
2786	default:
2787		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2788			chip->ecc.size);
2789		return -EINVAL;
2790	}
2791
2792	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2793	if (mtd->writesize > 512)
2794		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2795	else
2796		cfg->ful_adr_bytes += 1;
2797
2798	ret = brcmnand_set_cfg(host, cfg);
2799	if (ret)
2800		return ret;
2801
2802	brcmnand_set_ecc_enabled(host, 1);
2803
2804	brcmnand_print_cfg(host, msg, cfg);
2805	dev_info(ctrl->dev, "detected %s\n", msg);
2806
2807	/* Configure ACC_CONTROL */
2808	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2809	tmp = nand_readreg(ctrl, offs);
2810	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2811	tmp &= ~ACC_CONTROL_RD_ERASED;
2812
2813	/* We need to turn on Read from erased paged protected by ECC */
2814	if (ctrl->nand_version >= 0x0702)
2815		tmp |= ACC_CONTROL_RD_ERASED;
2816	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2817	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2818		tmp &= ~ACC_CONTROL_PREFETCH;
2819
2820	nand_writereg(ctrl, offs, tmp);
2821
2822	return 0;
2823}
2824
2825static int brcmnand_attach_chip(struct nand_chip *chip)
2826{
2827	struct mtd_info *mtd = nand_to_mtd(chip);
2828	struct brcmnand_host *host = nand_get_controller_data(chip);
2829	int ret;
2830
2831	chip->options |= NAND_NO_SUBPAGE_WRITE;
2832	/*
2833	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2834	 * to/from, and have nand_base pass us a bounce buffer instead, as
2835	 * needed.
2836	 */
2837	chip->options |= NAND_USES_DMA;
2838
2839	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2840		chip->bbt_options |= NAND_BBT_NO_OOB;
2841
2842	if (brcmnand_setup_dev(host))
2843		return -ENXIO;
2844
2845	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2846
2847	/* only use our internal HW threshold */
2848	mtd->bitflip_threshold = 1;
2849
2850	ret = brcmstb_choose_ecc_layout(host);
2851
2852	/* If OOB is written with ECC enabled it will cause ECC errors */
2853	if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2854		chip->ecc.write_oob = brcmnand_write_oob_raw;
2855		chip->ecc.read_oob = brcmnand_read_oob_raw;
2856	}
2857
2858	return ret;
2859}
2860
2861static const struct nand_controller_ops brcmnand_controller_ops = {
2862	.attach_chip = brcmnand_attach_chip,
2863	.exec_op = brcmnand_exec_op,
2864};
2865
2866static int brcmnand_init_cs(struct brcmnand_host *host,
2867			    const char * const *part_probe_types)
2868{
2869	struct brcmnand_controller *ctrl = host->ctrl;
2870	struct device *dev = ctrl->dev;
2871	struct mtd_info *mtd;
2872	struct nand_chip *chip;
2873	int ret;
2874	u16 cfg_offs;
2875
2876	mtd = nand_to_mtd(&host->chip);
2877	chip = &host->chip;
2878
2879	nand_set_controller_data(chip, host);
2880	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
2881				   host->cs);
2882	if (!mtd->name)
2883		return -ENOMEM;
2884
2885	mtd->owner = THIS_MODULE;
2886	mtd->dev.parent = dev;
2887
2888	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2889	chip->ecc.read_page = brcmnand_read_page;
2890	chip->ecc.write_page = brcmnand_write_page;
2891	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2892	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2893	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2894	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2895	chip->ecc.read_oob = brcmnand_read_oob;
2896	chip->ecc.write_oob = brcmnand_write_oob;
2897
2898	chip->controller = &ctrl->controller;
2899	ctrl->controller.controller_wp = 1;
2900
2901	/*
2902	 * The bootloader might have configured 16bit mode but
2903	 * NAND READID command only works in 8bit mode. We force
2904	 * 8bit mode here to ensure that NAND READID commands works.
2905	 */
2906	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2907	nand_writereg(ctrl, cfg_offs,
2908		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2909
2910	ret = nand_scan(chip, 1);
2911	if (ret)
2912		return ret;
2913
2914	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
2915	if (ret)
2916		nand_cleanup(chip);
2917
2918	return ret;
2919}
2920
2921static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2922					    int restore)
2923{
2924	struct brcmnand_controller *ctrl = host->ctrl;
2925	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2926	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2927			BRCMNAND_CS_CFG_EXT);
2928	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2929			BRCMNAND_CS_ACC_CONTROL);
2930	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2931	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2932
2933	if (restore) {
2934		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2935		if (cfg_offs != cfg_ext_offs)
2936			nand_writereg(ctrl, cfg_ext_offs,
2937				      host->hwcfg.config_ext);
2938		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2939		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2940		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2941	} else {
2942		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2943		if (cfg_offs != cfg_ext_offs)
2944			host->hwcfg.config_ext =
2945				nand_readreg(ctrl, cfg_ext_offs);
2946		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2947		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2948		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2949	}
2950}
2951
2952static int brcmnand_suspend(struct device *dev)
2953{
2954	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2955	struct brcmnand_host *host;
2956
2957	list_for_each_entry(host, &ctrl->host_list, node)
2958		brcmnand_save_restore_cs_config(host, 0);
2959
2960	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2961	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2962	ctrl->corr_stat_threshold =
2963		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2964
2965	if (has_flash_dma(ctrl))
2966		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2967	else if (has_edu(ctrl))
2968		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2969
2970	return 0;
2971}
2972
2973static int brcmnand_resume(struct device *dev)
2974{
2975	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2976	struct brcmnand_host *host;
2977
2978	if (has_flash_dma(ctrl)) {
2979		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2980		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2981	}
2982
2983	if (has_edu(ctrl)) {
2984		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2985		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2986		edu_readl(ctrl, EDU_CONFIG);
2987		brcmnand_edu_init(ctrl);
2988	}
2989
2990	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2991	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2992	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2993			ctrl->corr_stat_threshold);
2994	if (ctrl->soc) {
2995		/* Clear/re-enable interrupt */
2996		ctrl->soc->ctlrdy_ack(ctrl->soc);
2997		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2998	}
2999
3000	list_for_each_entry(host, &ctrl->host_list, node) {
3001		struct nand_chip *chip = &host->chip;
3002
3003		brcmnand_save_restore_cs_config(host, 1);
3004
3005		/* Reset the chip, required by some chips after power-up */
3006		nand_reset_op(chip);
3007	}
3008
3009	return 0;
3010}
3011
3012const struct dev_pm_ops brcmnand_pm_ops = {
3013	.suspend		= brcmnand_suspend,
3014	.resume			= brcmnand_resume,
3015};
3016EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
3017
3018static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
3019	{ .compatible = "brcm,brcmnand-v2.1" },
3020	{ .compatible = "brcm,brcmnand-v2.2" },
3021	{ .compatible = "brcm,brcmnand-v4.0" },
3022	{ .compatible = "brcm,brcmnand-v5.0" },
3023	{ .compatible = "brcm,brcmnand-v6.0" },
3024	{ .compatible = "brcm,brcmnand-v6.1" },
3025	{ .compatible = "brcm,brcmnand-v6.2" },
3026	{ .compatible = "brcm,brcmnand-v7.0" },
3027	{ .compatible = "brcm,brcmnand-v7.1" },
3028	{ .compatible = "brcm,brcmnand-v7.2" },
3029	{ .compatible = "brcm,brcmnand-v7.3" },
3030	{},
3031};
3032MODULE_DEVICE_TABLE(of, brcmnand_of_match);
3033
3034/***********************************************************************
3035 * Platform driver setup (per controller)
3036 ***********************************************************************/
3037static int brcmnand_edu_setup(struct platform_device *pdev)
3038{
3039	struct device *dev = &pdev->dev;
3040	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3041	struct resource *res;
3042	int ret;
3043
3044	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
3045	if (res) {
3046		ctrl->edu_base = devm_ioremap_resource(dev, res);
3047		if (IS_ERR(ctrl->edu_base))
3048			return PTR_ERR(ctrl->edu_base);
3049
3050		ctrl->edu_offsets = edu_regs;
3051
3052		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
3053			   EDU_CONFIG_SWAP_CFG);
3054		edu_readl(ctrl, EDU_CONFIG);
3055
3056		/* initialize edu */
3057		brcmnand_edu_init(ctrl);
3058
3059		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
3060		if (ctrl->edu_irq < 0) {
3061			dev_warn(dev,
3062				 "FLASH EDU enabled, using ctlrdy irq\n");
3063		} else {
3064			ret = devm_request_irq(dev, ctrl->edu_irq,
3065					       brcmnand_edu_irq, 0,
3066					       "brcmnand-edu", ctrl);
3067			if (ret < 0) {
3068				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
3069					ctrl->edu_irq, ret);
3070				return ret;
3071			}
3072
3073			dev_info(dev, "FLASH EDU enabled using irq %u\n",
3074				 ctrl->edu_irq);
3075		}
3076	}
3077
3078	return 0;
3079}
3080
3081int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
3082{
3083	struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
3084	struct device *dev = &pdev->dev;
3085	struct device_node *dn = dev->of_node, *child;
3086	struct brcmnand_controller *ctrl;
3087	struct brcmnand_host *host;
3088	struct resource *res;
3089	int ret;
3090
3091	if (dn && !of_match_node(brcmnand_of_match, dn))
3092		return -ENODEV;
3093
3094	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3095	if (!ctrl)
3096		return -ENOMEM;
3097
3098	dev_set_drvdata(dev, ctrl);
3099	ctrl->dev = dev;
3100	ctrl->soc = soc;
3101
3102	/* Enable the static key if the soc provides I/O operations indicating
3103	 * that a non-memory mapped IO access path must be used
3104	 */
3105	if (brcmnand_soc_has_ops(ctrl->soc))
3106		static_branch_enable(&brcmnand_soc_has_ops_key);
3107
3108	init_completion(&ctrl->done);
3109	init_completion(&ctrl->dma_done);
3110	init_completion(&ctrl->edu_done);
3111	nand_controller_init(&ctrl->controller);
3112	ctrl->controller.ops = &brcmnand_controller_ops;
3113	INIT_LIST_HEAD(&ctrl->host_list);
3114
3115	/* NAND register range */
3116	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3117	ctrl->nand_base = devm_ioremap_resource(dev, res);
3118	if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
3119		return PTR_ERR(ctrl->nand_base);
3120
3121	/* Enable clock before using NAND registers */
3122	ctrl->clk = devm_clk_get(dev, "nand");
3123	if (!IS_ERR(ctrl->clk)) {
3124		ret = clk_prepare_enable(ctrl->clk);
3125		if (ret)
3126			return ret;
3127	} else {
3128		ret = PTR_ERR(ctrl->clk);
3129		if (ret == -EPROBE_DEFER)
3130			return ret;
3131
3132		ctrl->clk = NULL;
3133	}
3134
3135	/* Initialize NAND revision */
3136	ret = brcmnand_revision_init(ctrl);
3137	if (ret)
3138		goto err;
3139
3140	/*
3141	 * Most chips have this cache at a fixed offset within 'nand' block.
3142	 * Some must specify this region separately.
3143	 */
3144	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3145	if (res) {
3146		ctrl->nand_fc = devm_ioremap_resource(dev, res);
3147		if (IS_ERR(ctrl->nand_fc)) {
3148			ret = PTR_ERR(ctrl->nand_fc);
3149			goto err;
3150		}
3151	} else {
3152		ctrl->nand_fc = ctrl->nand_base +
3153				ctrl->reg_offsets[BRCMNAND_FC_BASE];
3154	}
3155
3156	/* FLASH_DMA */
3157	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3158	if (res) {
3159		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3160		if (IS_ERR(ctrl->flash_dma_base)) {
3161			ret = PTR_ERR(ctrl->flash_dma_base);
3162			goto err;
3163		}
3164
3165		/* initialize the dma version */
3166		brcmnand_flash_dma_revision_init(ctrl);
3167
3168		ret = -EIO;
3169		if (ctrl->nand_version >= 0x0700)
3170			ret = dma_set_mask_and_coherent(&pdev->dev,
3171							DMA_BIT_MASK(40));
3172		if (ret)
3173			ret = dma_set_mask_and_coherent(&pdev->dev,
3174							DMA_BIT_MASK(32));
3175		if (ret)
3176			goto err;
3177
3178		/* linked-list and stop on error */
3179		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3180		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3181
3182		/* Allocate descriptor(s) */
3183		ctrl->dma_desc = dmam_alloc_coherent(dev,
3184						     sizeof(*ctrl->dma_desc),
3185						     &ctrl->dma_pa, GFP_KERNEL);
3186		if (!ctrl->dma_desc) {
3187			ret = -ENOMEM;
3188			goto err;
3189		}
3190
3191		ctrl->dma_irq = platform_get_irq(pdev, 1);
3192		if ((int)ctrl->dma_irq < 0) {
3193			dev_err(dev, "missing FLASH_DMA IRQ\n");
3194			ret = -ENODEV;
3195			goto err;
3196		}
3197
3198		ret = devm_request_irq(dev, ctrl->dma_irq,
3199				brcmnand_dma_irq, 0, DRV_NAME,
3200				ctrl);
3201		if (ret < 0) {
3202			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3203					ctrl->dma_irq, ret);
3204			goto err;
3205		}
3206
3207		dev_info(dev, "enabling FLASH_DMA\n");
3208		/* set flash dma transfer function to call */
3209		ctrl->dma_trans = brcmnand_dma_trans;
3210	} else	{
3211		ret = brcmnand_edu_setup(pdev);
3212		if (ret < 0)
3213			goto err;
3214
3215		if (has_edu(ctrl))
3216			/* set edu transfer function to call */
3217			ctrl->dma_trans = brcmnand_edu_trans;
3218	}
3219
3220	/* Disable automatic device ID config, direct addressing */
3221	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3222			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3223	/* Disable XOR addressing */
3224	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3225
3226	/* Check if the board connects the WP pin */
3227	if (of_property_read_bool(dn, "brcm,wp-not-connected"))
3228		wp_on = 0;
3229
3230	if (ctrl->features & BRCMNAND_HAS_WP) {
3231		/* Permanently disable write protection */
3232		if (wp_on == 2)
3233			brcmnand_set_wp(ctrl, false);
3234	} else {
3235		wp_on = 0;
3236	}
3237
3238	/* IRQ */
3239	ctrl->irq = platform_get_irq_optional(pdev, 0);
3240	if (ctrl->irq > 0) {
3241		/*
3242		 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3243		 * interesting ways
3244		 */
3245		if (soc) {
3246			ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3247					       DRV_NAME, ctrl);
3248
3249			/* Enable interrupt */
3250			ctrl->soc->ctlrdy_ack(ctrl->soc);
3251			ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3252		} else {
3253			/* Use standard interrupt infrastructure */
3254			ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3255					       DRV_NAME, ctrl);
3256		}
3257		if (ret < 0) {
3258			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3259				ctrl->irq, ret);
3260			goto err;
3261		}
3262	}
3263
3264	for_each_available_child_of_node(dn, child) {
3265		if (of_device_is_compatible(child, "brcm,nandcs")) {
3266
3267			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3268			if (!host) {
3269				of_node_put(child);
3270				ret = -ENOMEM;
3271				goto err;
3272			}
3273			host->pdev = pdev;
3274			host->ctrl = ctrl;
3275
3276			ret = of_property_read_u32(child, "reg", &host->cs);
3277			if (ret) {
3278				dev_err(dev, "can't get chip-select\n");
3279				devm_kfree(dev, host);
3280				continue;
3281			}
3282
3283			nand_set_flash_node(&host->chip, child);
3284
3285			ret = brcmnand_init_cs(host, NULL);
3286			if (ret) {
3287				if (ret == -EPROBE_DEFER) {
3288					of_node_put(child);
3289					goto err;
3290				}
3291				devm_kfree(dev, host);
3292				continue; /* Try all chip-selects */
3293			}
3294
3295			list_add_tail(&host->node, &ctrl->host_list);
3296		}
3297	}
3298
3299	if (!list_empty(&ctrl->host_list))
3300		return 0;
3301
3302	if (!pd) {
3303		ret = -ENODEV;
3304		goto err;
3305	}
3306
3307	/* If we got there we must have been probing via platform data */
3308	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3309	if (!host) {
3310		ret = -ENOMEM;
3311		goto err;
3312	}
3313	host->pdev = pdev;
3314	host->ctrl = ctrl;
3315	host->cs = pd->chip_select;
3316	host->chip.ecc.size = pd->ecc_stepsize;
3317	host->chip.ecc.strength = pd->ecc_strength;
3318
3319	ret = brcmnand_init_cs(host, pd->part_probe_types);
3320	if (ret)
3321		goto err;
3322
3323	list_add_tail(&host->node, &ctrl->host_list);
3324
3325	/* No chip-selects could initialize properly */
3326	if (list_empty(&ctrl->host_list)) {
3327		ret = -ENODEV;
3328		goto err;
3329	}
3330
3331	return 0;
3332
3333err:
3334	clk_disable_unprepare(ctrl->clk);
3335	return ret;
3336
3337}
3338EXPORT_SYMBOL_GPL(brcmnand_probe);
3339
3340void brcmnand_remove(struct platform_device *pdev)
3341{
3342	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3343	struct brcmnand_host *host;
3344	struct nand_chip *chip;
3345	int ret;
3346
3347	list_for_each_entry(host, &ctrl->host_list, node) {
3348		chip = &host->chip;
3349		ret = mtd_device_unregister(nand_to_mtd(chip));
3350		WARN_ON(ret);
3351		nand_cleanup(chip);
3352	}
3353
3354	clk_disable_unprepare(ctrl->clk);
3355
3356	dev_set_drvdata(&pdev->dev, NULL);
3357}
3358EXPORT_SYMBOL_GPL(brcmnand_remove);
3359
3360MODULE_LICENSE("GPL v2");
3361MODULE_AUTHOR("Kevin Cernekee");
3362MODULE_AUTHOR("Brian Norris");
3363MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3364MODULE_ALIAS("platform:brcmnand");
3365