1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2017 ATMEL
4 * Copyright 2017 Free Electrons
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 *
8 * Derived from the atmel_nand.c driver which contained the following
9 * copyrights:
10 *
11 *   Copyright 2003 Rick Bronson
12 *
13 *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15 *
16 *   Derived from drivers/mtd/spia.c (removed in v3.8)
17 *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18 *
19 *
20 *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21 *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22 *
23 *   Derived from Das U-Boot source code
24 *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25 *	Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26 *
27 *   Add Programmable Multibit ECC support for various AT91 SoC
28 *	Copyright 2012 ATMEL, Hong Xu
29 *
30 *   Add Nand Flash Controller support for SAMA5 SoC
31 *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32 *
33 * A few words about the naming convention in this file. This convention
34 * applies to structure and function names.
35 *
36 * Prefixes:
37 *
38 * - atmel_nand_: all generic structures/functions
39 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40 *		      (at91sam9 and avr32 SoCs)
41 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42 *		       (sama5 SoCs and later)
43 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44 *		 that is available in the HSMC block
45 * - <soc>_nand_: all SoC specific structures/functions
46 */
47
48#include <linux/clk.h>
49#include <linux/dma-mapping.h>
50#include <linux/dmaengine.h>
51#include <linux/genalloc.h>
52#include <linux/gpio/consumer.h>
53#include <linux/interrupt.h>
54#include <linux/mfd/syscon.h>
55#include <linux/mfd/syscon/atmel-matrix.h>
56#include <linux/mfd/syscon/atmel-smc.h>
57#include <linux/module.h>
58#include <linux/mtd/rawnand.h>
59#include <linux/of_address.h>
60#include <linux/of_irq.h>
61#include <linux/of_platform.h>
62#include <linux/iopoll.h>
63#include <linux/platform_device.h>
64#include <linux/regmap.h>
65#include <soc/at91/atmel-sfr.h>
66
67#include "pmecc.h"
68
69#define ATMEL_HSMC_NFC_CFG			0x0
70#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)		(((x) / 4) << 24)
71#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK	GENMASK(30, 24)
72#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)	(((cyc) << 16) | ((mul) << 20))
73#define ATMEL_HSMC_NFC_CFG_DTO_MAX		GENMASK(22, 16)
74#define ATMEL_HSMC_NFC_CFG_RBEDGE		BIT(13)
75#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE		BIT(12)
76#define ATMEL_HSMC_NFC_CFG_RSPARE		BIT(9)
77#define ATMEL_HSMC_NFC_CFG_WSPARE		BIT(8)
78#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK	GENMASK(2, 0)
79#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)		(fls((x) / 512) - 1)
80
81#define ATMEL_HSMC_NFC_CTRL			0x4
82#define ATMEL_HSMC_NFC_CTRL_EN			BIT(0)
83#define ATMEL_HSMC_NFC_CTRL_DIS			BIT(1)
84
85#define ATMEL_HSMC_NFC_SR			0x8
86#define ATMEL_HSMC_NFC_IER			0xc
87#define ATMEL_HSMC_NFC_IDR			0x10
88#define ATMEL_HSMC_NFC_IMR			0x14
89#define ATMEL_HSMC_NFC_SR_ENABLED		BIT(1)
90#define ATMEL_HSMC_NFC_SR_RB_RISE		BIT(4)
91#define ATMEL_HSMC_NFC_SR_RB_FALL		BIT(5)
92#define ATMEL_HSMC_NFC_SR_BUSY			BIT(8)
93#define ATMEL_HSMC_NFC_SR_WR			BIT(11)
94#define ATMEL_HSMC_NFC_SR_CSID			GENMASK(14, 12)
95#define ATMEL_HSMC_NFC_SR_XFRDONE		BIT(16)
96#define ATMEL_HSMC_NFC_SR_CMDDONE		BIT(17)
97#define ATMEL_HSMC_NFC_SR_DTOE			BIT(20)
98#define ATMEL_HSMC_NFC_SR_UNDEF			BIT(21)
99#define ATMEL_HSMC_NFC_SR_AWB			BIT(22)
100#define ATMEL_HSMC_NFC_SR_NFCASE		BIT(23)
101#define ATMEL_HSMC_NFC_SR_ERRORS		(ATMEL_HSMC_NFC_SR_DTOE | \
102						 ATMEL_HSMC_NFC_SR_UNDEF | \
103						 ATMEL_HSMC_NFC_SR_AWB | \
104						 ATMEL_HSMC_NFC_SR_NFCASE)
105#define ATMEL_HSMC_NFC_SR_RBEDGE(x)		BIT((x) + 24)
106
107#define ATMEL_HSMC_NFC_ADDR			0x18
108#define ATMEL_HSMC_NFC_BANK			0x1c
109
110#define ATMEL_NFC_MAX_RB_ID			7
111
112#define ATMEL_NFC_SRAM_SIZE			0x2400
113
114#define ATMEL_NFC_CMD(pos, cmd)			((cmd) << (((pos) * 8) + 2))
115#define ATMEL_NFC_VCMD2				BIT(18)
116#define ATMEL_NFC_ACYCLE(naddrs)		((naddrs) << 19)
117#define ATMEL_NFC_CSID(cs)			((cs) << 22)
118#define ATMEL_NFC_DATAEN			BIT(25)
119#define ATMEL_NFC_NFCWR				BIT(26)
120
121#define ATMEL_NFC_MAX_ADDR_CYCLES		5
122
123#define ATMEL_NAND_ALE_OFFSET			BIT(21)
124#define ATMEL_NAND_CLE_OFFSET			BIT(22)
125
126#define DEFAULT_TIMEOUT_MS			1000
127#define MIN_DMA_LEN				128
128
129static bool atmel_nand_avoid_dma __read_mostly;
130
131MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133
134enum atmel_nand_rb_type {
135	ATMEL_NAND_NO_RB,
136	ATMEL_NAND_NATIVE_RB,
137	ATMEL_NAND_GPIO_RB,
138};
139
140struct atmel_nand_rb {
141	enum atmel_nand_rb_type type;
142	union {
143		struct gpio_desc *gpio;
144		int id;
145	};
146};
147
148struct atmel_nand_cs {
149	int id;
150	struct atmel_nand_rb rb;
151	struct gpio_desc *csgpio;
152	struct {
153		void __iomem *virt;
154		dma_addr_t dma;
155	} io;
156
157	struct atmel_smc_cs_conf smcconf;
158};
159
160struct atmel_nand {
161	struct list_head node;
162	struct device *dev;
163	struct nand_chip base;
164	struct atmel_nand_cs *activecs;
165	struct atmel_pmecc_user *pmecc;
166	struct gpio_desc *cdgpio;
167	int numcs;
168	struct atmel_nand_cs cs[] __counted_by(numcs);
169};
170
171static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172{
173	return container_of(chip, struct atmel_nand, base);
174}
175
176enum atmel_nfc_data_xfer {
177	ATMEL_NFC_NO_DATA,
178	ATMEL_NFC_READ_DATA,
179	ATMEL_NFC_WRITE_DATA,
180};
181
182struct atmel_nfc_op {
183	u8 cs;
184	u8 ncmds;
185	u8 cmds[2];
186	u8 naddrs;
187	u8 addrs[5];
188	enum atmel_nfc_data_xfer data;
189	u32 wait;
190	u32 errors;
191};
192
193struct atmel_nand_controller;
194struct atmel_nand_controller_caps;
195
196struct atmel_nand_controller_ops {
197	int (*probe)(struct platform_device *pdev,
198		     const struct atmel_nand_controller_caps *caps);
199	int (*remove)(struct atmel_nand_controller *nc);
200	void (*nand_init)(struct atmel_nand_controller *nc,
201			  struct atmel_nand *nand);
202	int (*ecc_init)(struct nand_chip *chip);
203	int (*setup_interface)(struct atmel_nand *nand, int csline,
204			       const struct nand_interface_config *conf);
205	int (*exec_op)(struct atmel_nand *nand,
206		       const struct nand_operation *op, bool check_only);
207};
208
209struct atmel_nand_controller_caps {
210	bool has_dma;
211	bool legacy_of_bindings;
212	u32 ale_offs;
213	u32 cle_offs;
214	const char *ebi_csa_regmap_name;
215	const struct atmel_nand_controller_ops *ops;
216};
217
218struct atmel_nand_controller {
219	struct nand_controller base;
220	const struct atmel_nand_controller_caps *caps;
221	struct device *dev;
222	struct regmap *smc;
223	struct dma_chan *dmac;
224	struct atmel_pmecc *pmecc;
225	struct list_head chips;
226	struct clk *mck;
227};
228
229static inline struct atmel_nand_controller *
230to_nand_controller(struct nand_controller *ctl)
231{
232	return container_of(ctl, struct atmel_nand_controller, base);
233}
234
235struct atmel_smc_nand_ebi_csa_cfg {
236	u32 offs;
237	u32 nfd0_on_d16;
238};
239
240struct atmel_smc_nand_controller {
241	struct atmel_nand_controller base;
242	struct regmap *ebi_csa_regmap;
243	struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
244};
245
246static inline struct atmel_smc_nand_controller *
247to_smc_nand_controller(struct nand_controller *ctl)
248{
249	return container_of(to_nand_controller(ctl),
250			    struct atmel_smc_nand_controller, base);
251}
252
253struct atmel_hsmc_nand_controller {
254	struct atmel_nand_controller base;
255	struct {
256		struct gen_pool *pool;
257		void __iomem *virt;
258		dma_addr_t dma;
259	} sram;
260	const struct atmel_hsmc_reg_layout *hsmc_layout;
261	struct regmap *io;
262	struct atmel_nfc_op op;
263	struct completion complete;
264	u32 cfg;
265	int irq;
266
267	/* Only used when instantiating from legacy DT bindings. */
268	struct clk *clk;
269};
270
271static inline struct atmel_hsmc_nand_controller *
272to_hsmc_nand_controller(struct nand_controller *ctl)
273{
274	return container_of(to_nand_controller(ctl),
275			    struct atmel_hsmc_nand_controller, base);
276}
277
278static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
279{
280	op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
281	op->wait ^= status & op->wait;
282
283	return !op->wait || op->errors;
284}
285
286static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
287{
288	struct atmel_hsmc_nand_controller *nc = data;
289	u32 sr, rcvd;
290	bool done;
291
292	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
293
294	rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
295	done = atmel_nfc_op_done(&nc->op, sr);
296
297	if (rcvd)
298		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
299
300	if (done)
301		complete(&nc->complete);
302
303	return rcvd ? IRQ_HANDLED : IRQ_NONE;
304}
305
306static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
307			  unsigned int timeout_ms)
308{
309	int ret;
310
311	if (!timeout_ms)
312		timeout_ms = DEFAULT_TIMEOUT_MS;
313
314	if (poll) {
315		u32 status;
316
317		ret = regmap_read_poll_timeout(nc->base.smc,
318					       ATMEL_HSMC_NFC_SR, status,
319					       atmel_nfc_op_done(&nc->op,
320								 status),
321					       0, timeout_ms * 1000);
322	} else {
323		init_completion(&nc->complete);
324		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
325			     nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
326		ret = wait_for_completion_timeout(&nc->complete,
327						msecs_to_jiffies(timeout_ms));
328		if (!ret)
329			ret = -ETIMEDOUT;
330		else
331			ret = 0;
332
333		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
334	}
335
336	if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
337		dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
338		ret = -ETIMEDOUT;
339	}
340
341	if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
342		dev_err(nc->base.dev, "Access to an undefined area\n");
343		ret = -EIO;
344	}
345
346	if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
347		dev_err(nc->base.dev, "Access while busy\n");
348		ret = -EIO;
349	}
350
351	if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
352		dev_err(nc->base.dev, "Wrong access size\n");
353		ret = -EIO;
354	}
355
356	return ret;
357}
358
359static void atmel_nand_dma_transfer_finished(void *data)
360{
361	struct completion *finished = data;
362
363	complete(finished);
364}
365
366static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
367				   void *buf, dma_addr_t dev_dma, size_t len,
368				   enum dma_data_direction dir)
369{
370	DECLARE_COMPLETION_ONSTACK(finished);
371	dma_addr_t src_dma, dst_dma, buf_dma;
372	struct dma_async_tx_descriptor *tx;
373	dma_cookie_t cookie;
374
375	buf_dma = dma_map_single(nc->dev, buf, len, dir);
376	if (dma_mapping_error(nc->dev, dev_dma)) {
377		dev_err(nc->dev,
378			"Failed to prepare a buffer for DMA access\n");
379		goto err;
380	}
381
382	if (dir == DMA_FROM_DEVICE) {
383		src_dma = dev_dma;
384		dst_dma = buf_dma;
385	} else {
386		src_dma = buf_dma;
387		dst_dma = dev_dma;
388	}
389
390	tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
391				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
392	if (!tx) {
393		dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
394		goto err_unmap;
395	}
396
397	tx->callback = atmel_nand_dma_transfer_finished;
398	tx->callback_param = &finished;
399
400	cookie = dmaengine_submit(tx);
401	if (dma_submit_error(cookie)) {
402		dev_err(nc->dev, "Failed to do DMA tx_submit\n");
403		goto err_unmap;
404	}
405
406	dma_async_issue_pending(nc->dmac);
407	wait_for_completion(&finished);
408	dma_unmap_single(nc->dev, buf_dma, len, dir);
409
410	return 0;
411
412err_unmap:
413	dma_unmap_single(nc->dev, buf_dma, len, dir);
414
415err:
416	dev_dbg(nc->dev, "Fall back to CPU I/O\n");
417
418	return -EIO;
419}
420
421static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
422{
423	u8 *addrs = nc->op.addrs;
424	unsigned int op = 0;
425	u32 addr, val;
426	int i, ret;
427
428	nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
429
430	for (i = 0; i < nc->op.ncmds; i++)
431		op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
432
433	if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
434		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
435
436	op |= ATMEL_NFC_CSID(nc->op.cs) |
437	      ATMEL_NFC_ACYCLE(nc->op.naddrs);
438
439	if (nc->op.ncmds > 1)
440		op |= ATMEL_NFC_VCMD2;
441
442	addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
443	       (addrs[3] << 24);
444
445	if (nc->op.data != ATMEL_NFC_NO_DATA) {
446		op |= ATMEL_NFC_DATAEN;
447		nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
448
449		if (nc->op.data == ATMEL_NFC_WRITE_DATA)
450			op |= ATMEL_NFC_NFCWR;
451	}
452
453	/* Clear all flags. */
454	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
455
456	/* Send the command. */
457	regmap_write(nc->io, op, addr);
458
459	ret = atmel_nfc_wait(nc, poll, 0);
460	if (ret)
461		dev_err(nc->base.dev,
462			"Failed to send NAND command (err = %d)!",
463			ret);
464
465	/* Reset the op state. */
466	memset(&nc->op, 0, sizeof(nc->op));
467
468	return ret;
469}
470
471static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
472			       unsigned int len, bool force_8bit)
473{
474	struct atmel_nand_controller *nc;
475
476	nc = to_nand_controller(nand->base.controller);
477
478	/*
479	 * If the controller supports DMA, the buffer address is DMA-able and
480	 * len is long enough to make DMA transfers profitable, let's trigger
481	 * a DMA transfer. If it fails, fallback to PIO mode.
482	 */
483	if (nc->dmac && virt_addr_valid(buf) &&
484	    len >= MIN_DMA_LEN && !force_8bit &&
485	    !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
486				     DMA_FROM_DEVICE))
487		return;
488
489	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
490		ioread16_rep(nand->activecs->io.virt, buf, len / 2);
491	else
492		ioread8_rep(nand->activecs->io.virt, buf, len);
493}
494
495static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
496				unsigned int len, bool force_8bit)
497{
498	struct atmel_nand_controller *nc;
499
500	nc = to_nand_controller(nand->base.controller);
501
502	/*
503	 * If the controller supports DMA, the buffer address is DMA-able and
504	 * len is long enough to make DMA transfers profitable, let's trigger
505	 * a DMA transfer. If it fails, fallback to PIO mode.
506	 */
507	if (nc->dmac && virt_addr_valid(buf) &&
508	    len >= MIN_DMA_LEN && !force_8bit &&
509	    !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
510				     len, DMA_TO_DEVICE))
511		return;
512
513	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
514		iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
515	else
516		iowrite8_rep(nand->activecs->io.virt, buf, len);
517}
518
519static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
520{
521	if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
522		return nand_soft_waitrdy(&nand->base, timeout_ms);
523
524	return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
525				 timeout_ms);
526}
527
528static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
529				   unsigned int timeout_ms)
530{
531	struct atmel_hsmc_nand_controller *nc;
532	u32 status, mask;
533
534	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
535		return atmel_nand_waitrdy(nand, timeout_ms);
536
537	nc = to_hsmc_nand_controller(nand->base.controller);
538	mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
539	return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
540					       status, status & mask,
541					       10, timeout_ms * 1000);
542}
543
544static void atmel_nand_select_target(struct atmel_nand *nand,
545				     unsigned int cs)
546{
547	nand->activecs = &nand->cs[cs];
548}
549
550static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
551					  unsigned int cs)
552{
553	struct mtd_info *mtd = nand_to_mtd(&nand->base);
554	struct atmel_hsmc_nand_controller *nc;
555	u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
556		  ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
557		  ATMEL_HSMC_NFC_CFG_RSPARE;
558
559	nand->activecs = &nand->cs[cs];
560	nc = to_hsmc_nand_controller(nand->base.controller);
561	if (nc->cfg == cfg)
562		return;
563
564	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
565			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
566			   ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
567			   ATMEL_HSMC_NFC_CFG_RSPARE |
568			   ATMEL_HSMC_NFC_CFG_WSPARE,
569			   cfg);
570	nc->cfg = cfg;
571}
572
573static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
574				     const struct nand_op_instr *instr)
575{
576	struct atmel_nand_controller *nc;
577	unsigned int i;
578
579	nc = to_nand_controller(nand->base.controller);
580	switch (instr->type) {
581	case NAND_OP_CMD_INSTR:
582		writeb(instr->ctx.cmd.opcode,
583		       nand->activecs->io.virt + nc->caps->cle_offs);
584		return 0;
585	case NAND_OP_ADDR_INSTR:
586		for (i = 0; i < instr->ctx.addr.naddrs; i++)
587			writeb(instr->ctx.addr.addrs[i],
588			       nand->activecs->io.virt + nc->caps->ale_offs);
589		return 0;
590	case NAND_OP_DATA_IN_INSTR:
591		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
592				   instr->ctx.data.len,
593				   instr->ctx.data.force_8bit);
594		return 0;
595	case NAND_OP_DATA_OUT_INSTR:
596		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
597				    instr->ctx.data.len,
598				    instr->ctx.data.force_8bit);
599		return 0;
600	case NAND_OP_WAITRDY_INSTR:
601		return atmel_nand_waitrdy(nand,
602					  instr->ctx.waitrdy.timeout_ms);
603	default:
604		break;
605	}
606
607	return -EINVAL;
608}
609
610static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
611				  const struct nand_operation *op,
612				  bool check_only)
613{
614	unsigned int i;
615	int ret = 0;
616
617	if (check_only)
618		return 0;
619
620	atmel_nand_select_target(nand, op->cs);
621	gpiod_set_value(nand->activecs->csgpio, 0);
622	for (i = 0; i < op->ninstrs; i++) {
623		ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
624		if (ret)
625			break;
626	}
627	gpiod_set_value(nand->activecs->csgpio, 1);
628
629	return ret;
630}
631
632static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
633				    const struct nand_subop *subop)
634{
635	struct atmel_nand *nand = to_atmel_nand(chip);
636	struct atmel_hsmc_nand_controller *nc;
637	unsigned int i, j;
638
639	nc = to_hsmc_nand_controller(chip->controller);
640
641	nc->op.cs = nand->activecs->id;
642	for (i = 0; i < subop->ninstrs; i++) {
643		const struct nand_op_instr *instr = &subop->instrs[i];
644
645		if (instr->type == NAND_OP_CMD_INSTR) {
646			nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
647			continue;
648		}
649
650		for (j = nand_subop_get_addr_start_off(subop, i);
651		     j < nand_subop_get_num_addr_cyc(subop, i); j++) {
652			nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
653			nc->op.naddrs++;
654		}
655	}
656
657	return atmel_nfc_exec_op(nc, true);
658}
659
660static int atmel_hsmc_exec_rw(struct nand_chip *chip,
661			      const struct nand_subop *subop)
662{
663	const struct nand_op_instr *instr = subop->instrs;
664	struct atmel_nand *nand = to_atmel_nand(chip);
665
666	if (instr->type == NAND_OP_DATA_IN_INSTR)
667		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
668				   instr->ctx.data.len,
669				   instr->ctx.data.force_8bit);
670	else
671		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
672				    instr->ctx.data.len,
673				    instr->ctx.data.force_8bit);
674
675	return 0;
676}
677
678static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
679				   const struct nand_subop *subop)
680{
681	const struct nand_op_instr *instr = subop->instrs;
682	struct atmel_nand *nand = to_atmel_nand(chip);
683
684	return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
685}
686
687static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
688	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
689		NAND_OP_PARSER_PAT_CMD_ELEM(true),
690		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
691		NAND_OP_PARSER_PAT_CMD_ELEM(true)),
692	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
693		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
694	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
695		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
696	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
697		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
698);
699
700static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
701				   const struct nand_operation *op,
702				   bool check_only)
703{
704	int ret;
705
706	if (check_only)
707		return nand_op_parser_exec_op(&nand->base,
708					      &atmel_hsmc_op_parser, op, true);
709
710	atmel_hsmc_nand_select_target(nand, op->cs);
711	ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
712				     false);
713
714	return ret;
715}
716
717static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
718				   bool oob_required)
719{
720	struct mtd_info *mtd = nand_to_mtd(chip);
721	struct atmel_hsmc_nand_controller *nc;
722	int ret = -EIO;
723
724	nc = to_hsmc_nand_controller(chip->controller);
725
726	if (nc->base.dmac)
727		ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
728					      nc->sram.dma, mtd->writesize,
729					      DMA_TO_DEVICE);
730
731	/* Falling back to CPU copy. */
732	if (ret)
733		memcpy_toio(nc->sram.virt, buf, mtd->writesize);
734
735	if (oob_required)
736		memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
737			    mtd->oobsize);
738}
739
740static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
741				     bool oob_required)
742{
743	struct mtd_info *mtd = nand_to_mtd(chip);
744	struct atmel_hsmc_nand_controller *nc;
745	int ret = -EIO;
746
747	nc = to_hsmc_nand_controller(chip->controller);
748
749	if (nc->base.dmac)
750		ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
751					      mtd->writesize, DMA_FROM_DEVICE);
752
753	/* Falling back to CPU copy. */
754	if (ret)
755		memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
756
757	if (oob_required)
758		memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
759			      mtd->oobsize);
760}
761
762static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
763{
764	struct mtd_info *mtd = nand_to_mtd(chip);
765	struct atmel_hsmc_nand_controller *nc;
766
767	nc = to_hsmc_nand_controller(chip->controller);
768
769	if (column >= 0) {
770		nc->op.addrs[nc->op.naddrs++] = column;
771
772		/*
773		 * 2 address cycles for the column offset on large page NANDs.
774		 */
775		if (mtd->writesize > 512)
776			nc->op.addrs[nc->op.naddrs++] = column >> 8;
777	}
778
779	if (page >= 0) {
780		nc->op.addrs[nc->op.naddrs++] = page;
781		nc->op.addrs[nc->op.naddrs++] = page >> 8;
782
783		if (chip->options & NAND_ROW_ADDR_3)
784			nc->op.addrs[nc->op.naddrs++] = page >> 16;
785	}
786}
787
788static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
789{
790	struct atmel_nand *nand = to_atmel_nand(chip);
791	struct atmel_nand_controller *nc;
792	int ret;
793
794	nc = to_nand_controller(chip->controller);
795
796	if (raw)
797		return 0;
798
799	ret = atmel_pmecc_enable(nand->pmecc, op);
800	if (ret)
801		dev_err(nc->dev,
802			"Failed to enable ECC engine (err = %d)\n", ret);
803
804	return ret;
805}
806
807static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
808{
809	struct atmel_nand *nand = to_atmel_nand(chip);
810
811	if (!raw)
812		atmel_pmecc_disable(nand->pmecc);
813}
814
815static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
816{
817	struct atmel_nand *nand = to_atmel_nand(chip);
818	struct mtd_info *mtd = nand_to_mtd(chip);
819	struct atmel_nand_controller *nc;
820	struct mtd_oob_region oobregion;
821	void *eccbuf;
822	int ret, i;
823
824	nc = to_nand_controller(chip->controller);
825
826	if (raw)
827		return 0;
828
829	ret = atmel_pmecc_wait_rdy(nand->pmecc);
830	if (ret) {
831		dev_err(nc->dev,
832			"Failed to transfer NAND page data (err = %d)\n",
833			ret);
834		return ret;
835	}
836
837	mtd_ooblayout_ecc(mtd, 0, &oobregion);
838	eccbuf = chip->oob_poi + oobregion.offset;
839
840	for (i = 0; i < chip->ecc.steps; i++) {
841		atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
842						   eccbuf);
843		eccbuf += chip->ecc.bytes;
844	}
845
846	return 0;
847}
848
849static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
850					 bool raw)
851{
852	struct atmel_nand *nand = to_atmel_nand(chip);
853	struct mtd_info *mtd = nand_to_mtd(chip);
854	struct atmel_nand_controller *nc;
855	struct mtd_oob_region oobregion;
856	int ret, i, max_bitflips = 0;
857	void *databuf, *eccbuf;
858
859	nc = to_nand_controller(chip->controller);
860
861	if (raw)
862		return 0;
863
864	ret = atmel_pmecc_wait_rdy(nand->pmecc);
865	if (ret) {
866		dev_err(nc->dev,
867			"Failed to read NAND page data (err = %d)\n",
868			ret);
869		return ret;
870	}
871
872	mtd_ooblayout_ecc(mtd, 0, &oobregion);
873	eccbuf = chip->oob_poi + oobregion.offset;
874	databuf = buf;
875
876	for (i = 0; i < chip->ecc.steps; i++) {
877		ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
878						 eccbuf);
879		if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
880			ret = nand_check_erased_ecc_chunk(databuf,
881							  chip->ecc.size,
882							  eccbuf,
883							  chip->ecc.bytes,
884							  NULL, 0,
885							  chip->ecc.strength);
886
887		if (ret >= 0) {
888			mtd->ecc_stats.corrected += ret;
889			max_bitflips = max(ret, max_bitflips);
890		} else {
891			mtd->ecc_stats.failed++;
892		}
893
894		databuf += chip->ecc.size;
895		eccbuf += chip->ecc.bytes;
896	}
897
898	return max_bitflips;
899}
900
901static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
902				     bool oob_required, int page, bool raw)
903{
904	struct mtd_info *mtd = nand_to_mtd(chip);
905	struct atmel_nand *nand = to_atmel_nand(chip);
906	int ret;
907
908	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
909
910	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
911	if (ret)
912		return ret;
913
914	nand_write_data_op(chip, buf, mtd->writesize, false);
915
916	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
917	if (ret) {
918		atmel_pmecc_disable(nand->pmecc);
919		return ret;
920	}
921
922	atmel_nand_pmecc_disable(chip, raw);
923
924	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
925
926	return nand_prog_page_end_op(chip);
927}
928
929static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
930				       int oob_required, int page)
931{
932	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
933}
934
935static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
936					   const u8 *buf, int oob_required,
937					   int page)
938{
939	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
940}
941
942static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
943				    bool oob_required, int page, bool raw)
944{
945	struct mtd_info *mtd = nand_to_mtd(chip);
946	int ret;
947
948	nand_read_page_op(chip, page, 0, NULL, 0);
949
950	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
951	if (ret)
952		return ret;
953
954	ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
955	if (ret)
956		goto out_disable;
957
958	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
959	if (ret)
960		goto out_disable;
961
962	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
963
964out_disable:
965	atmel_nand_pmecc_disable(chip, raw);
966
967	return ret;
968}
969
970static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
971				      int oob_required, int page)
972{
973	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
974}
975
976static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
977					  int oob_required, int page)
978{
979	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
980}
981
982static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
983					  const u8 *buf, bool oob_required,
984					  int page, bool raw)
985{
986	struct mtd_info *mtd = nand_to_mtd(chip);
987	struct atmel_nand *nand = to_atmel_nand(chip);
988	struct atmel_hsmc_nand_controller *nc;
989	int ret;
990
991	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
992	nc = to_hsmc_nand_controller(chip->controller);
993
994	atmel_nfc_copy_to_sram(chip, buf, false);
995
996	nc->op.cmds[0] = NAND_CMD_SEQIN;
997	nc->op.ncmds = 1;
998	atmel_nfc_set_op_addr(chip, page, 0x0);
999	nc->op.cs = nand->activecs->id;
1000	nc->op.data = ATMEL_NFC_WRITE_DATA;
1001
1002	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
1003	if (ret)
1004		return ret;
1005
1006	ret = atmel_nfc_exec_op(nc, false);
1007	if (ret) {
1008		atmel_nand_pmecc_disable(chip, raw);
1009		dev_err(nc->base.dev,
1010			"Failed to transfer NAND page data (err = %d)\n",
1011			ret);
1012		return ret;
1013	}
1014
1015	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
1016
1017	atmel_nand_pmecc_disable(chip, raw);
1018
1019	if (ret)
1020		return ret;
1021
1022	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
1023
1024	return nand_prog_page_end_op(chip);
1025}
1026
1027static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
1028					    const u8 *buf, int oob_required,
1029					    int page)
1030{
1031	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1032					      false);
1033}
1034
1035static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
1036						const u8 *buf,
1037						int oob_required, int page)
1038{
1039	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1040					      true);
1041}
1042
1043static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
1044					 bool oob_required, int page,
1045					 bool raw)
1046{
1047	struct mtd_info *mtd = nand_to_mtd(chip);
1048	struct atmel_nand *nand = to_atmel_nand(chip);
1049	struct atmel_hsmc_nand_controller *nc;
1050	int ret;
1051
1052	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
1053	nc = to_hsmc_nand_controller(chip->controller);
1054
1055	/*
1056	 * Optimized read page accessors only work when the NAND R/B pin is
1057	 * connected to a native SoC R/B pin. If that's not the case, fallback
1058	 * to the non-optimized one.
1059	 */
1060	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
1061		return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1062						raw);
1063
1064	nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1065
1066	if (mtd->writesize > 512)
1067		nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1068
1069	atmel_nfc_set_op_addr(chip, page, 0x0);
1070	nc->op.cs = nand->activecs->id;
1071	nc->op.data = ATMEL_NFC_READ_DATA;
1072
1073	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1074	if (ret)
1075		return ret;
1076
1077	ret = atmel_nfc_exec_op(nc, false);
1078	if (ret) {
1079		atmel_nand_pmecc_disable(chip, raw);
1080		dev_err(nc->base.dev,
1081			"Failed to load NAND page data (err = %d)\n",
1082			ret);
1083		return ret;
1084	}
1085
1086	atmel_nfc_copy_from_sram(chip, buf, true);
1087
1088	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1089
1090	atmel_nand_pmecc_disable(chip, raw);
1091
1092	return ret;
1093}
1094
1095static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1096					   int oob_required, int page)
1097{
1098	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1099					     false);
1100}
1101
1102static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1103					       u8 *buf, int oob_required,
1104					       int page)
1105{
1106	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1107					     true);
1108}
1109
1110static int atmel_nand_pmecc_init(struct nand_chip *chip)
1111{
1112	const struct nand_ecc_props *requirements =
1113		nanddev_get_ecc_requirements(&chip->base);
1114	struct mtd_info *mtd = nand_to_mtd(chip);
1115	struct nand_device *nanddev = mtd_to_nanddev(mtd);
1116	struct atmel_nand *nand = to_atmel_nand(chip);
1117	struct atmel_nand_controller *nc;
1118	struct atmel_pmecc_user_req req;
1119
1120	nc = to_nand_controller(chip->controller);
1121
1122	if (!nc->pmecc) {
1123		dev_err(nc->dev, "HW ECC not supported\n");
1124		return -ENOTSUPP;
1125	}
1126
1127	if (nc->caps->legacy_of_bindings) {
1128		u32 val;
1129
1130		if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1131					  &val))
1132			chip->ecc.strength = val;
1133
1134		if (!of_property_read_u32(nc->dev->of_node,
1135					  "atmel,pmecc-sector-size",
1136					  &val))
1137			chip->ecc.size = val;
1138	}
1139
1140	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
1141		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1142	else if (chip->ecc.strength)
1143		req.ecc.strength = chip->ecc.strength;
1144	else if (requirements->strength)
1145		req.ecc.strength = requirements->strength;
1146	else
1147		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1148
1149	if (chip->ecc.size)
1150		req.ecc.sectorsize = chip->ecc.size;
1151	else if (requirements->step_size)
1152		req.ecc.sectorsize = requirements->step_size;
1153	else
1154		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1155
1156	req.pagesize = mtd->writesize;
1157	req.oobsize = mtd->oobsize;
1158
1159	if (mtd->writesize <= 512) {
1160		req.ecc.bytes = 4;
1161		req.ecc.ooboffset = 0;
1162	} else {
1163		req.ecc.bytes = mtd->oobsize - 2;
1164		req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1165	}
1166
1167	nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1168	if (IS_ERR(nand->pmecc))
1169		return PTR_ERR(nand->pmecc);
1170
1171	chip->ecc.algo = NAND_ECC_ALGO_BCH;
1172	chip->ecc.size = req.ecc.sectorsize;
1173	chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1174	chip->ecc.strength = req.ecc.strength;
1175
1176	chip->options |= NAND_NO_SUBPAGE_WRITE;
1177
1178	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1179
1180	return 0;
1181}
1182
1183static int atmel_nand_ecc_init(struct nand_chip *chip)
1184{
1185	struct atmel_nand_controller *nc;
1186	int ret;
1187
1188	nc = to_nand_controller(chip->controller);
1189
1190	switch (chip->ecc.engine_type) {
1191	case NAND_ECC_ENGINE_TYPE_NONE:
1192	case NAND_ECC_ENGINE_TYPE_SOFT:
1193		/*
1194		 * Nothing to do, the core will initialize everything for us.
1195		 */
1196		break;
1197
1198	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1199		ret = atmel_nand_pmecc_init(chip);
1200		if (ret)
1201			return ret;
1202
1203		chip->ecc.read_page = atmel_nand_pmecc_read_page;
1204		chip->ecc.write_page = atmel_nand_pmecc_write_page;
1205		chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1206		chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1207		break;
1208
1209	default:
1210		/* Other modes are not supported. */
1211		dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1212			chip->ecc.engine_type);
1213		return -ENOTSUPP;
1214	}
1215
1216	return 0;
1217}
1218
1219static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1220{
1221	int ret;
1222
1223	ret = atmel_nand_ecc_init(chip);
1224	if (ret)
1225		return ret;
1226
1227	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1228		return 0;
1229
1230	/* Adjust the ECC operations for the HSMC IP. */
1231	chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1232	chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1233	chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1234	chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1235
1236	return 0;
1237}
1238
1239static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1240					const struct nand_interface_config *conf,
1241					struct atmel_smc_cs_conf *smcconf)
1242{
1243	u32 ncycles, totalcycles, timeps, mckperiodps;
1244	struct atmel_nand_controller *nc;
1245	int ret;
1246
1247	nc = to_nand_controller(nand->base.controller);
1248
1249	/* DDR interface not supported. */
1250	if (!nand_interface_is_sdr(conf))
1251		return -ENOTSUPP;
1252
1253	/*
1254	 * tRC < 30ns implies EDO mode. This controller does not support this
1255	 * mode.
1256	 */
1257	if (conf->timings.sdr.tRC_min < 30000)
1258		return -ENOTSUPP;
1259
1260	atmel_smc_cs_conf_init(smcconf);
1261
1262	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1263	mckperiodps *= 1000;
1264
1265	/*
1266	 * Set write pulse timing. This one is easy to extract:
1267	 *
1268	 * NWE_PULSE = tWP
1269	 */
1270	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1271	totalcycles = ncycles;
1272	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1273					  ncycles);
1274	if (ret)
1275		return ret;
1276
1277	/*
1278	 * The write setup timing depends on the operation done on the NAND.
1279	 * All operations goes through the same data bus, but the operation
1280	 * type depends on the address we are writing to (ALE/CLE address
1281	 * lines).
1282	 * Since we have no way to differentiate the different operations at
1283	 * the SMC level, we must consider the worst case (the biggest setup
1284	 * time among all operation types):
1285	 *
1286	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1287	 */
1288	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1289		      conf->timings.sdr.tALS_min);
1290	timeps = max(timeps, conf->timings.sdr.tDS_min);
1291	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1292	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1293	totalcycles += ncycles;
1294	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1295					  ncycles);
1296	if (ret)
1297		return ret;
1298
1299	/*
1300	 * As for the write setup timing, the write hold timing depends on the
1301	 * operation done on the NAND:
1302	 *
1303	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1304	 */
1305	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1306		      conf->timings.sdr.tALH_min);
1307	timeps = max3(timeps, conf->timings.sdr.tDH_min,
1308		      conf->timings.sdr.tWH_min);
1309	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1310	totalcycles += ncycles;
1311
1312	/*
1313	 * The write cycle timing is directly matching tWC, but is also
1314	 * dependent on the other timings on the setup and hold timings we
1315	 * calculated earlier, which gives:
1316	 *
1317	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1318	 */
1319	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1320	ncycles = max(totalcycles, ncycles);
1321	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1322					  ncycles);
1323	if (ret)
1324		return ret;
1325
1326	/*
1327	 * We don't want the CS line to be toggled between each byte/word
1328	 * transfer to the NAND. The only way to guarantee that is to have the
1329	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1330	 *
1331	 * NCS_WR_PULSE = NWE_CYCLE
1332	 */
1333	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1334					  ncycles);
1335	if (ret)
1336		return ret;
1337
1338	/*
1339	 * As for the write setup timing, the read hold timing depends on the
1340	 * operation done on the NAND:
1341	 *
1342	 * NRD_HOLD = max(tREH, tRHOH)
1343	 */
1344	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1345	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1346	totalcycles = ncycles;
1347
1348	/*
1349	 * TDF = tRHZ - NRD_HOLD
1350	 */
1351	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1352	ncycles -= totalcycles;
1353
1354	/*
1355	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1356	 * we might end up with a config that does not fit in the TDF field.
1357	 * Just take the max value in this case and hope that the NAND is more
1358	 * tolerant than advertised.
1359	 */
1360	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1361		ncycles = ATMEL_SMC_MODE_TDF_MAX;
1362	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1363		ncycles = ATMEL_SMC_MODE_TDF_MIN;
1364
1365	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1366			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1367
1368	/*
1369	 * Read pulse timing directly matches tRP:
1370	 *
1371	 * NRD_PULSE = tRP
1372	 */
1373	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1374	totalcycles += ncycles;
1375	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1376					  ncycles);
1377	if (ret)
1378		return ret;
1379
1380	/*
1381	 * The read cycle timing is directly matching tRC, but is also
1382	 * dependent on the setup and hold timings we calculated earlier,
1383	 * which gives:
1384	 *
1385	 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1386	 *
1387	 * NRD_SETUP is always 0.
1388	 */
1389	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1390	ncycles = max(totalcycles, ncycles);
1391	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1392					  ncycles);
1393	if (ret)
1394		return ret;
1395
1396	/*
1397	 * We don't want the CS line to be toggled between each byte/word
1398	 * transfer from the NAND. The only way to guarantee that is to have
1399	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1400	 *
1401	 * NCS_RD_PULSE = NRD_CYCLE
1402	 */
1403	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1404					  ncycles);
1405	if (ret)
1406		return ret;
1407
1408	/* Txxx timings are directly matching tXXX ones. */
1409	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1410	ret = atmel_smc_cs_conf_set_timing(smcconf,
1411					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1412					   ncycles);
1413	if (ret)
1414		return ret;
1415
1416	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1417	ret = atmel_smc_cs_conf_set_timing(smcconf,
1418					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1419					   ncycles);
1420	/*
1421	 * Version 4 of the ONFI spec mandates that tADL be at least 400
1422	 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1423	 * fit in the tADL field of the SMC reg. We need to relax the check and
1424	 * accept the -ERANGE return code.
1425	 *
1426	 * Note that previous versions of the ONFI spec had a lower tADL_min
1427	 * (100 or 200 ns). It's not clear why this timing constraint got
1428	 * increased but it seems most NANDs are fine with values lower than
1429	 * 400ns, so we should be safe.
1430	 */
1431	if (ret && ret != -ERANGE)
1432		return ret;
1433
1434	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1435	ret = atmel_smc_cs_conf_set_timing(smcconf,
1436					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1437					   ncycles);
1438	if (ret)
1439		return ret;
1440
1441	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1442	ret = atmel_smc_cs_conf_set_timing(smcconf,
1443					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1444					   ncycles);
1445	if (ret)
1446		return ret;
1447
1448	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1449	ret = atmel_smc_cs_conf_set_timing(smcconf,
1450					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1451					   ncycles);
1452	if (ret)
1453		return ret;
1454
1455	/* Attach the CS line to the NFC logic. */
1456	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1457
1458	/* Set the appropriate data bus width. */
1459	if (nand->base.options & NAND_BUSWIDTH_16)
1460		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1461
1462	/* Operate in NRD/NWE READ/WRITEMODE. */
1463	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1464			 ATMEL_SMC_MODE_WRITEMODE_NWE;
1465
1466	return 0;
1467}
1468
1469static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
1470					int csline,
1471					const struct nand_interface_config *conf)
1472{
1473	struct atmel_nand_controller *nc;
1474	struct atmel_smc_cs_conf smcconf;
1475	struct atmel_nand_cs *cs;
1476	int ret;
1477
1478	nc = to_nand_controller(nand->base.controller);
1479
1480	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1481	if (ret)
1482		return ret;
1483
1484	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1485		return 0;
1486
1487	cs = &nand->cs[csline];
1488	cs->smcconf = smcconf;
1489	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1490
1491	return 0;
1492}
1493
1494static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
1495					int csline,
1496					const struct nand_interface_config *conf)
1497{
1498	struct atmel_hsmc_nand_controller *nc;
1499	struct atmel_smc_cs_conf smcconf;
1500	struct atmel_nand_cs *cs;
1501	int ret;
1502
1503	nc = to_hsmc_nand_controller(nand->base.controller);
1504
1505	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1506	if (ret)
1507		return ret;
1508
1509	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1510		return 0;
1511
1512	cs = &nand->cs[csline];
1513	cs->smcconf = smcconf;
1514
1515	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1516		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1517
1518	atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1519				 &cs->smcconf);
1520
1521	return 0;
1522}
1523
1524static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
1525				      const struct nand_interface_config *conf)
1526{
1527	struct atmel_nand *nand = to_atmel_nand(chip);
1528	const struct nand_sdr_timings *sdr;
1529	struct atmel_nand_controller *nc;
1530
1531	sdr = nand_get_sdr_timings(conf);
1532	if (IS_ERR(sdr))
1533		return PTR_ERR(sdr);
1534
1535	nc = to_nand_controller(nand->base.controller);
1536
1537	if (csline >= nand->numcs ||
1538	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1539		return -EINVAL;
1540
1541	return nc->caps->ops->setup_interface(nand, csline, conf);
1542}
1543
1544static int atmel_nand_exec_op(struct nand_chip *chip,
1545			      const struct nand_operation *op,
1546			      bool check_only)
1547{
1548	struct atmel_nand *nand = to_atmel_nand(chip);
1549	struct atmel_nand_controller *nc;
1550
1551	nc = to_nand_controller(nand->base.controller);
1552
1553	return nc->caps->ops->exec_op(nand, op, check_only);
1554}
1555
1556static void atmel_nand_init(struct atmel_nand_controller *nc,
1557			    struct atmel_nand *nand)
1558{
1559	struct nand_chip *chip = &nand->base;
1560	struct mtd_info *mtd = nand_to_mtd(chip);
1561
1562	mtd->dev.parent = nc->dev;
1563	nand->base.controller = &nc->base;
1564
1565	if (!nc->mck || !nc->caps->ops->setup_interface)
1566		chip->options |= NAND_KEEP_TIMINGS;
1567
1568	/*
1569	 * Use a bounce buffer when the buffer passed by the MTD user is not
1570	 * suitable for DMA.
1571	 */
1572	if (nc->dmac)
1573		chip->options |= NAND_USES_DMA;
1574
1575	/* Default to HW ECC if pmecc is available. */
1576	if (nc->pmecc)
1577		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1578}
1579
1580static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1581				struct atmel_nand *nand)
1582{
1583	struct nand_chip *chip = &nand->base;
1584	struct atmel_smc_nand_controller *smc_nc;
1585	int i;
1586
1587	atmel_nand_init(nc, nand);
1588
1589	smc_nc = to_smc_nand_controller(chip->controller);
1590	if (!smc_nc->ebi_csa_regmap)
1591		return;
1592
1593	/* Attach the CS to the NAND Flash logic. */
1594	for (i = 0; i < nand->numcs; i++)
1595		regmap_update_bits(smc_nc->ebi_csa_regmap,
1596				   smc_nc->ebi_csa->offs,
1597				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1598
1599	if (smc_nc->ebi_csa->nfd0_on_d16)
1600		regmap_update_bits(smc_nc->ebi_csa_regmap,
1601				   smc_nc->ebi_csa->offs,
1602				   smc_nc->ebi_csa->nfd0_on_d16,
1603				   smc_nc->ebi_csa->nfd0_on_d16);
1604}
1605
1606static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1607{
1608	struct nand_chip *chip = &nand->base;
1609	struct mtd_info *mtd = nand_to_mtd(chip);
1610	int ret;
1611
1612	ret = mtd_device_unregister(mtd);
1613	if (ret)
1614		return ret;
1615
1616	nand_cleanup(chip);
1617	list_del(&nand->node);
1618
1619	return 0;
1620}
1621
1622static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1623					    struct device_node *np,
1624					    int reg_cells)
1625{
1626	struct atmel_nand *nand;
1627	struct gpio_desc *gpio;
1628	int numcs, ret, i;
1629
1630	numcs = of_property_count_elems_of_size(np, "reg",
1631						reg_cells * sizeof(u32));
1632	if (numcs < 1) {
1633		dev_err(nc->dev, "Missing or invalid reg property\n");
1634		return ERR_PTR(-EINVAL);
1635	}
1636
1637	nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1638	if (!nand)
1639		return ERR_PTR(-ENOMEM);
1640
1641	nand->numcs = numcs;
1642
1643	gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1644				     "det", GPIOD_IN, "nand-det");
1645	if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1646		dev_err(nc->dev,
1647			"Failed to get detect gpio (err = %ld)\n",
1648			PTR_ERR(gpio));
1649		return ERR_CAST(gpio);
1650	}
1651
1652	if (!IS_ERR(gpio))
1653		nand->cdgpio = gpio;
1654
1655	for (i = 0; i < numcs; i++) {
1656		struct resource res;
1657		u32 val;
1658
1659		ret = of_address_to_resource(np, 0, &res);
1660		if (ret) {
1661			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1662				ret);
1663			return ERR_PTR(ret);
1664		}
1665
1666		ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1667						 &val);
1668		if (ret) {
1669			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1670				ret);
1671			return ERR_PTR(ret);
1672		}
1673
1674		nand->cs[i].id = val;
1675
1676		nand->cs[i].io.dma = res.start;
1677		nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1678		if (IS_ERR(nand->cs[i].io.virt))
1679			return ERR_CAST(nand->cs[i].io.virt);
1680
1681		if (!of_property_read_u32(np, "atmel,rb", &val)) {
1682			if (val > ATMEL_NFC_MAX_RB_ID)
1683				return ERR_PTR(-EINVAL);
1684
1685			nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1686			nand->cs[i].rb.id = val;
1687		} else {
1688			gpio = devm_fwnode_gpiod_get_index(nc->dev,
1689							   of_fwnode_handle(np),
1690							   "rb", i, GPIOD_IN,
1691							   "nand-rb");
1692			if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1693				dev_err(nc->dev,
1694					"Failed to get R/B gpio (err = %ld)\n",
1695					PTR_ERR(gpio));
1696				return ERR_CAST(gpio);
1697			}
1698
1699			if (!IS_ERR(gpio)) {
1700				nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1701				nand->cs[i].rb.gpio = gpio;
1702			}
1703		}
1704
1705		gpio = devm_fwnode_gpiod_get_index(nc->dev,
1706						   of_fwnode_handle(np),
1707						   "cs", i, GPIOD_OUT_HIGH,
1708						   "nand-cs");
1709		if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1710			dev_err(nc->dev,
1711				"Failed to get CS gpio (err = %ld)\n",
1712				PTR_ERR(gpio));
1713			return ERR_CAST(gpio);
1714		}
1715
1716		if (!IS_ERR(gpio))
1717			nand->cs[i].csgpio = gpio;
1718	}
1719
1720	nand_set_flash_node(&nand->base, np);
1721
1722	return nand;
1723}
1724
1725static int
1726atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1727			       struct atmel_nand *nand)
1728{
1729	struct nand_chip *chip = &nand->base;
1730	struct mtd_info *mtd = nand_to_mtd(chip);
1731	int ret;
1732
1733	/* No card inserted, skip this NAND. */
1734	if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1735		dev_info(nc->dev, "No SmartMedia card inserted.\n");
1736		return 0;
1737	}
1738
1739	nc->caps->ops->nand_init(nc, nand);
1740
1741	ret = nand_scan(chip, nand->numcs);
1742	if (ret) {
1743		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1744		return ret;
1745	}
1746
1747	ret = mtd_device_register(mtd, NULL, 0);
1748	if (ret) {
1749		dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1750		nand_cleanup(chip);
1751		return ret;
1752	}
1753
1754	list_add_tail(&nand->node, &nc->chips);
1755
1756	return 0;
1757}
1758
1759static int
1760atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1761{
1762	struct atmel_nand *nand, *tmp;
1763	int ret;
1764
1765	list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1766		ret = atmel_nand_controller_remove_nand(nand);
1767		if (ret)
1768			return ret;
1769	}
1770
1771	return 0;
1772}
1773
1774static int
1775atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1776{
1777	struct device *dev = nc->dev;
1778	struct platform_device *pdev = to_platform_device(dev);
1779	struct atmel_nand *nand;
1780	struct gpio_desc *gpio;
1781	struct resource *res;
1782
1783	/*
1784	 * Legacy bindings only allow connecting a single NAND with a unique CS
1785	 * line to the controller.
1786	 */
1787	nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1788			    GFP_KERNEL);
1789	if (!nand)
1790		return -ENOMEM;
1791
1792	nand->numcs = 1;
1793
1794	nand->cs[0].io.virt = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1795	if (IS_ERR(nand->cs[0].io.virt))
1796		return PTR_ERR(nand->cs[0].io.virt);
1797
1798	nand->cs[0].io.dma = res->start;
1799
1800	/*
1801	 * The old driver was hardcoding the CS id to 3 for all sama5
1802	 * controllers. Since this id is only meaningful for the sama5
1803	 * controller we can safely assign this id to 3 no matter the
1804	 * controller.
1805	 * If one wants to connect a NAND to a different CS line, he will
1806	 * have to use the new bindings.
1807	 */
1808	nand->cs[0].id = 3;
1809
1810	/* R/B GPIO. */
1811	gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1812	if (IS_ERR(gpio)) {
1813		dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1814			PTR_ERR(gpio));
1815		return PTR_ERR(gpio);
1816	}
1817
1818	if (gpio) {
1819		nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1820		nand->cs[0].rb.gpio = gpio;
1821	}
1822
1823	/* CS GPIO. */
1824	gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1825	if (IS_ERR(gpio)) {
1826		dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1827			PTR_ERR(gpio));
1828		return PTR_ERR(gpio);
1829	}
1830
1831	nand->cs[0].csgpio = gpio;
1832
1833	/* Card detect GPIO. */
1834	gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1835	if (IS_ERR(gpio)) {
1836		dev_err(dev,
1837			"Failed to get detect gpio (err = %ld)\n",
1838			PTR_ERR(gpio));
1839		return PTR_ERR(gpio);
1840	}
1841
1842	nand->cdgpio = gpio;
1843
1844	nand_set_flash_node(&nand->base, nc->dev->of_node);
1845
1846	return atmel_nand_controller_add_nand(nc, nand);
1847}
1848
1849static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1850{
1851	struct device_node *np, *nand_np;
1852	struct device *dev = nc->dev;
1853	int ret, reg_cells;
1854	u32 val;
1855
1856	/* We do not retrieve the SMC syscon when parsing old DTs. */
1857	if (nc->caps->legacy_of_bindings)
1858		return atmel_nand_controller_legacy_add_nands(nc);
1859
1860	np = dev->of_node;
1861
1862	ret = of_property_read_u32(np, "#address-cells", &val);
1863	if (ret) {
1864		dev_err(dev, "missing #address-cells property\n");
1865		return ret;
1866	}
1867
1868	reg_cells = val;
1869
1870	ret = of_property_read_u32(np, "#size-cells", &val);
1871	if (ret) {
1872		dev_err(dev, "missing #size-cells property\n");
1873		return ret;
1874	}
1875
1876	reg_cells += val;
1877
1878	for_each_child_of_node(np, nand_np) {
1879		struct atmel_nand *nand;
1880
1881		nand = atmel_nand_create(nc, nand_np, reg_cells);
1882		if (IS_ERR(nand)) {
1883			ret = PTR_ERR(nand);
1884			goto err;
1885		}
1886
1887		ret = atmel_nand_controller_add_nand(nc, nand);
1888		if (ret)
1889			goto err;
1890	}
1891
1892	return 0;
1893
1894err:
1895	atmel_nand_controller_remove_nands(nc);
1896
1897	return ret;
1898}
1899
1900static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1901{
1902	if (nc->dmac)
1903		dma_release_channel(nc->dmac);
1904
1905	clk_put(nc->mck);
1906}
1907
1908static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1909	.offs = AT91SAM9260_MATRIX_EBICSA,
1910};
1911
1912static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1913	.offs = AT91SAM9261_MATRIX_EBICSA,
1914};
1915
1916static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1917	.offs = AT91SAM9263_MATRIX_EBI0CSA,
1918};
1919
1920static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1921	.offs = AT91SAM9RL_MATRIX_EBICSA,
1922};
1923
1924static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1925	.offs = AT91SAM9G45_MATRIX_EBICSA,
1926};
1927
1928static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1929	.offs = AT91SAM9N12_MATRIX_EBICSA,
1930};
1931
1932static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1933	.offs = AT91SAM9X5_MATRIX_EBICSA,
1934};
1935
1936static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1937	.offs = AT91_SFR_CCFG_EBICSA,
1938	.nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1939};
1940
1941static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = {
1942	{
1943		.compatible = "atmel,at91sam9260-matrix",
1944		.data = &at91sam9260_ebi_csa,
1945	},
1946	{
1947		.compatible = "atmel,at91sam9261-matrix",
1948		.data = &at91sam9261_ebi_csa,
1949	},
1950	{
1951		.compatible = "atmel,at91sam9263-matrix",
1952		.data = &at91sam9263_ebi_csa,
1953	},
1954	{
1955		.compatible = "atmel,at91sam9rl-matrix",
1956		.data = &at91sam9rl_ebi_csa,
1957	},
1958	{
1959		.compatible = "atmel,at91sam9g45-matrix",
1960		.data = &at91sam9g45_ebi_csa,
1961	},
1962	{
1963		.compatible = "atmel,at91sam9n12-matrix",
1964		.data = &at91sam9n12_ebi_csa,
1965	},
1966	{
1967		.compatible = "atmel,at91sam9x5-matrix",
1968		.data = &at91sam9x5_ebi_csa,
1969	},
1970	{
1971		.compatible = "microchip,sam9x60-sfr",
1972		.data = &sam9x60_ebi_csa,
1973	},
1974	{ /* sentinel */ },
1975};
1976
1977static int atmel_nand_attach_chip(struct nand_chip *chip)
1978{
1979	struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1980	struct atmel_nand *nand = to_atmel_nand(chip);
1981	struct mtd_info *mtd = nand_to_mtd(chip);
1982	int ret;
1983
1984	ret = nc->caps->ops->ecc_init(chip);
1985	if (ret)
1986		return ret;
1987
1988	if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1989		/*
1990		 * We keep the MTD name unchanged to avoid breaking platforms
1991		 * where the MTD cmdline parser is used and the bootloader
1992		 * has not been updated to use the new naming scheme.
1993		 */
1994		mtd->name = "atmel_nand";
1995	} else if (!mtd->name) {
1996		/*
1997		 * If the new bindings are used and the bootloader has not been
1998		 * updated to pass a new mtdparts parameter on the cmdline, you
1999		 * should define the following property in your nand node:
2000		 *
2001		 *	label = "atmel_nand";
2002		 *
2003		 * This way, mtd->name will be set by the core when
2004		 * nand_set_flash_node() is called.
2005		 */
2006		mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
2007					   "%s:nand.%d", dev_name(nc->dev),
2008					   nand->cs[0].id);
2009		if (!mtd->name) {
2010			dev_err(nc->dev, "Failed to allocate mtd->name\n");
2011			return -ENOMEM;
2012		}
2013	}
2014
2015	return 0;
2016}
2017
2018static const struct nand_controller_ops atmel_nand_controller_ops = {
2019	.attach_chip = atmel_nand_attach_chip,
2020	.setup_interface = atmel_nand_setup_interface,
2021	.exec_op = atmel_nand_exec_op,
2022};
2023
2024static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
2025				struct platform_device *pdev,
2026				const struct atmel_nand_controller_caps *caps)
2027{
2028	struct device *dev = &pdev->dev;
2029	struct device_node *np = dev->of_node;
2030	int ret;
2031
2032	nand_controller_init(&nc->base);
2033	nc->base.ops = &atmel_nand_controller_ops;
2034	INIT_LIST_HEAD(&nc->chips);
2035	nc->dev = dev;
2036	nc->caps = caps;
2037
2038	platform_set_drvdata(pdev, nc);
2039
2040	nc->pmecc = devm_atmel_pmecc_get(dev);
2041	if (IS_ERR(nc->pmecc))
2042		return dev_err_probe(dev, PTR_ERR(nc->pmecc),
2043				     "Could not get PMECC object\n");
2044
2045	if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
2046		dma_cap_mask_t mask;
2047
2048		dma_cap_zero(mask);
2049		dma_cap_set(DMA_MEMCPY, mask);
2050
2051		nc->dmac = dma_request_channel(mask, NULL, NULL);
2052		if (!nc->dmac)
2053			dev_err(nc->dev, "Failed to request DMA channel\n");
2054	}
2055
2056	/* We do not retrieve the SMC syscon when parsing old DTs. */
2057	if (nc->caps->legacy_of_bindings)
2058		return 0;
2059
2060	nc->mck = of_clk_get(dev->parent->of_node, 0);
2061	if (IS_ERR(nc->mck)) {
2062		dev_err(dev, "Failed to retrieve MCK clk\n");
2063		ret = PTR_ERR(nc->mck);
2064		goto out_release_dma;
2065	}
2066
2067	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2068	if (!np) {
2069		dev_err(dev, "Missing or invalid atmel,smc property\n");
2070		ret = -EINVAL;
2071		goto out_release_dma;
2072	}
2073
2074	nc->smc = syscon_node_to_regmap(np);
2075	of_node_put(np);
2076	if (IS_ERR(nc->smc)) {
2077		ret = PTR_ERR(nc->smc);
2078		dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2079		goto out_release_dma;
2080	}
2081
2082	return 0;
2083
2084out_release_dma:
2085	if (nc->dmac)
2086		dma_release_channel(nc->dmac);
2087
2088	return ret;
2089}
2090
2091static int
2092atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2093{
2094	struct device *dev = nc->base.dev;
2095	const struct of_device_id *match;
2096	struct device_node *np;
2097	int ret;
2098
2099	/* We do not retrieve the EBICSA regmap when parsing old DTs. */
2100	if (nc->base.caps->legacy_of_bindings)
2101		return 0;
2102
2103	np = of_parse_phandle(dev->parent->of_node,
2104			      nc->base.caps->ebi_csa_regmap_name, 0);
2105	if (!np)
2106		return 0;
2107
2108	match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2109	if (!match) {
2110		of_node_put(np);
2111		return 0;
2112	}
2113
2114	nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2115	of_node_put(np);
2116	if (IS_ERR(nc->ebi_csa_regmap)) {
2117		ret = PTR_ERR(nc->ebi_csa_regmap);
2118		dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2119		return ret;
2120	}
2121
2122	nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2123
2124	/*
2125	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2126	 * add 4 to ->ebi_csa->offs.
2127	 */
2128	if (of_device_is_compatible(dev->parent->of_node,
2129				    "atmel,at91sam9263-ebi1"))
2130		nc->ebi_csa->offs += 4;
2131
2132	return 0;
2133}
2134
2135static int
2136atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2137{
2138	struct regmap_config regmap_conf = {
2139		.reg_bits = 32,
2140		.val_bits = 32,
2141		.reg_stride = 4,
2142	};
2143
2144	struct device *dev = nc->base.dev;
2145	struct device_node *nand_np, *nfc_np;
2146	void __iomem *iomem;
2147	struct resource res;
2148	int ret;
2149
2150	nand_np = dev->of_node;
2151	nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2152	if (!nfc_np) {
2153		dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2154		return -ENODEV;
2155	}
2156
2157	nc->clk = of_clk_get(nfc_np, 0);
2158	if (IS_ERR(nc->clk)) {
2159		ret = PTR_ERR(nc->clk);
2160		dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2161			ret);
2162		goto out;
2163	}
2164
2165	ret = clk_prepare_enable(nc->clk);
2166	if (ret) {
2167		dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2168			ret);
2169		goto out;
2170	}
2171
2172	nc->irq = of_irq_get(nand_np, 0);
2173	if (nc->irq <= 0) {
2174		ret = nc->irq ?: -ENXIO;
2175		if (ret != -EPROBE_DEFER)
2176			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2177				ret);
2178		goto out;
2179	}
2180
2181	ret = of_address_to_resource(nfc_np, 0, &res);
2182	if (ret) {
2183		dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2184			ret);
2185		goto out;
2186	}
2187
2188	iomem = devm_ioremap_resource(dev, &res);
2189	if (IS_ERR(iomem)) {
2190		ret = PTR_ERR(iomem);
2191		goto out;
2192	}
2193
2194	regmap_conf.name = "nfc-io";
2195	regmap_conf.max_register = resource_size(&res) - 4;
2196	nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2197	if (IS_ERR(nc->io)) {
2198		ret = PTR_ERR(nc->io);
2199		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2200			ret);
2201		goto out;
2202	}
2203
2204	ret = of_address_to_resource(nfc_np, 1, &res);
2205	if (ret) {
2206		dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2207			ret);
2208		goto out;
2209	}
2210
2211	iomem = devm_ioremap_resource(dev, &res);
2212	if (IS_ERR(iomem)) {
2213		ret = PTR_ERR(iomem);
2214		goto out;
2215	}
2216
2217	regmap_conf.name = "smc";
2218	regmap_conf.max_register = resource_size(&res) - 4;
2219	nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2220	if (IS_ERR(nc->base.smc)) {
2221		ret = PTR_ERR(nc->base.smc);
2222		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2223			ret);
2224		goto out;
2225	}
2226
2227	ret = of_address_to_resource(nfc_np, 2, &res);
2228	if (ret) {
2229		dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2230			ret);
2231		goto out;
2232	}
2233
2234	nc->sram.virt = devm_ioremap_resource(dev, &res);
2235	if (IS_ERR(nc->sram.virt)) {
2236		ret = PTR_ERR(nc->sram.virt);
2237		goto out;
2238	}
2239
2240	nc->sram.dma = res.start;
2241
2242out:
2243	of_node_put(nfc_np);
2244
2245	return ret;
2246}
2247
2248static int
2249atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2250{
2251	struct device *dev = nc->base.dev;
2252	struct device_node *np;
2253	int ret;
2254
2255	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2256	if (!np) {
2257		dev_err(dev, "Missing or invalid atmel,smc property\n");
2258		return -EINVAL;
2259	}
2260
2261	nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2262
2263	nc->irq = of_irq_get(np, 0);
2264	of_node_put(np);
2265	if (nc->irq <= 0) {
2266		ret = nc->irq ?: -ENXIO;
2267		if (ret != -EPROBE_DEFER)
2268			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2269				ret);
2270		return ret;
2271	}
2272
2273	np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2274	if (!np) {
2275		dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2276		return -EINVAL;
2277	}
2278
2279	nc->io = syscon_node_to_regmap(np);
2280	of_node_put(np);
2281	if (IS_ERR(nc->io)) {
2282		ret = PTR_ERR(nc->io);
2283		dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2284		return ret;
2285	}
2286
2287	nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2288					 "atmel,nfc-sram", 0);
2289	if (!nc->sram.pool) {
2290		dev_err(nc->base.dev, "Missing SRAM\n");
2291		return -ENOMEM;
2292	}
2293
2294	nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2295							   ATMEL_NFC_SRAM_SIZE,
2296							   &nc->sram.dma);
2297	if (!nc->sram.virt) {
2298		dev_err(nc->base.dev,
2299			"Could not allocate memory from the NFC SRAM pool\n");
2300		return -ENOMEM;
2301	}
2302
2303	return 0;
2304}
2305
2306static int
2307atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2308{
2309	struct atmel_hsmc_nand_controller *hsmc_nc;
2310	int ret;
2311
2312	ret = atmel_nand_controller_remove_nands(nc);
2313	if (ret)
2314		return ret;
2315
2316	hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2317	regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2318		     ATMEL_HSMC_NFC_CTRL_DIS);
2319
2320	if (hsmc_nc->sram.pool)
2321		gen_pool_free(hsmc_nc->sram.pool,
2322			      (unsigned long)hsmc_nc->sram.virt,
2323			      ATMEL_NFC_SRAM_SIZE);
2324
2325	if (hsmc_nc->clk) {
2326		clk_disable_unprepare(hsmc_nc->clk);
2327		clk_put(hsmc_nc->clk);
2328	}
2329
2330	atmel_nand_controller_cleanup(nc);
2331
2332	return 0;
2333}
2334
2335static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2336				const struct atmel_nand_controller_caps *caps)
2337{
2338	struct device *dev = &pdev->dev;
2339	struct atmel_hsmc_nand_controller *nc;
2340	int ret;
2341
2342	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2343	if (!nc)
2344		return -ENOMEM;
2345
2346	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2347	if (ret)
2348		return ret;
2349
2350	if (caps->legacy_of_bindings)
2351		ret = atmel_hsmc_nand_controller_legacy_init(nc);
2352	else
2353		ret = atmel_hsmc_nand_controller_init(nc);
2354
2355	if (ret)
2356		return ret;
2357
2358	/* Make sure all irqs are masked before registering our IRQ handler. */
2359	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2360	ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2361			       IRQF_SHARED, "nfc", nc);
2362	if (ret) {
2363		dev_err(dev,
2364			"Could not get register NFC interrupt handler (err = %d)\n",
2365			ret);
2366		goto err;
2367	}
2368
2369	/* Initial NFC configuration. */
2370	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2371		     ATMEL_HSMC_NFC_CFG_DTO_MAX);
2372	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2373		     ATMEL_HSMC_NFC_CTRL_EN);
2374
2375	ret = atmel_nand_controller_add_nands(&nc->base);
2376	if (ret)
2377		goto err;
2378
2379	return 0;
2380
2381err:
2382	atmel_hsmc_nand_controller_remove(&nc->base);
2383
2384	return ret;
2385}
2386
2387static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2388	.probe = atmel_hsmc_nand_controller_probe,
2389	.remove = atmel_hsmc_nand_controller_remove,
2390	.ecc_init = atmel_hsmc_nand_ecc_init,
2391	.nand_init = atmel_nand_init,
2392	.setup_interface = atmel_hsmc_nand_setup_interface,
2393	.exec_op = atmel_hsmc_nand_exec_op,
2394};
2395
2396static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2397	.has_dma = true,
2398	.ale_offs = BIT(21),
2399	.cle_offs = BIT(22),
2400	.ops = &atmel_hsmc_nc_ops,
2401};
2402
2403/* Only used to parse old bindings. */
2404static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2405	.has_dma = true,
2406	.ale_offs = BIT(21),
2407	.cle_offs = BIT(22),
2408	.ops = &atmel_hsmc_nc_ops,
2409	.legacy_of_bindings = true,
2410};
2411
2412static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2413				const struct atmel_nand_controller_caps *caps)
2414{
2415	struct device *dev = &pdev->dev;
2416	struct atmel_smc_nand_controller *nc;
2417	int ret;
2418
2419	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2420	if (!nc)
2421		return -ENOMEM;
2422
2423	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2424	if (ret)
2425		return ret;
2426
2427	ret = atmel_smc_nand_controller_init(nc);
2428	if (ret)
2429		return ret;
2430
2431	return atmel_nand_controller_add_nands(&nc->base);
2432}
2433
2434static int
2435atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2436{
2437	int ret;
2438
2439	ret = atmel_nand_controller_remove_nands(nc);
2440	if (ret)
2441		return ret;
2442
2443	atmel_nand_controller_cleanup(nc);
2444
2445	return 0;
2446}
2447
2448/*
2449 * The SMC reg layout of at91rm9200 is completely different which prevents us
2450 * from re-using atmel_smc_nand_setup_interface() for the
2451 * ->setup_interface() hook.
2452 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2453 * ->setup_interface() unassigned.
2454 */
2455static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2456	.probe = atmel_smc_nand_controller_probe,
2457	.remove = atmel_smc_nand_controller_remove,
2458	.ecc_init = atmel_nand_ecc_init,
2459	.nand_init = atmel_smc_nand_init,
2460	.exec_op = atmel_smc_nand_exec_op,
2461};
2462
2463static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2464	.ale_offs = BIT(21),
2465	.cle_offs = BIT(22),
2466	.ebi_csa_regmap_name = "atmel,matrix",
2467	.ops = &at91rm9200_nc_ops,
2468};
2469
2470static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2471	.probe = atmel_smc_nand_controller_probe,
2472	.remove = atmel_smc_nand_controller_remove,
2473	.ecc_init = atmel_nand_ecc_init,
2474	.nand_init = atmel_smc_nand_init,
2475	.setup_interface = atmel_smc_nand_setup_interface,
2476	.exec_op = atmel_smc_nand_exec_op,
2477};
2478
2479static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2480	.ale_offs = BIT(21),
2481	.cle_offs = BIT(22),
2482	.ebi_csa_regmap_name = "atmel,matrix",
2483	.ops = &atmel_smc_nc_ops,
2484};
2485
2486static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2487	.ale_offs = BIT(22),
2488	.cle_offs = BIT(21),
2489	.ebi_csa_regmap_name = "atmel,matrix",
2490	.ops = &atmel_smc_nc_ops,
2491};
2492
2493static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2494	.has_dma = true,
2495	.ale_offs = BIT(21),
2496	.cle_offs = BIT(22),
2497	.ebi_csa_regmap_name = "atmel,matrix",
2498	.ops = &atmel_smc_nc_ops,
2499};
2500
2501static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2502	.has_dma = true,
2503	.ale_offs = BIT(21),
2504	.cle_offs = BIT(22),
2505	.ebi_csa_regmap_name = "microchip,sfr",
2506	.ops = &atmel_smc_nc_ops,
2507};
2508
2509/* Only used to parse old bindings. */
2510static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2511	.ale_offs = BIT(21),
2512	.cle_offs = BIT(22),
2513	.ops = &atmel_smc_nc_ops,
2514	.legacy_of_bindings = true,
2515};
2516
2517static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2518	.ale_offs = BIT(22),
2519	.cle_offs = BIT(21),
2520	.ops = &atmel_smc_nc_ops,
2521	.legacy_of_bindings = true,
2522};
2523
2524static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2525	.has_dma = true,
2526	.ale_offs = BIT(21),
2527	.cle_offs = BIT(22),
2528	.ops = &atmel_smc_nc_ops,
2529	.legacy_of_bindings = true,
2530};
2531
2532static const struct of_device_id atmel_nand_controller_of_ids[] = {
2533	{
2534		.compatible = "atmel,at91rm9200-nand-controller",
2535		.data = &atmel_rm9200_nc_caps,
2536	},
2537	{
2538		.compatible = "atmel,at91sam9260-nand-controller",
2539		.data = &atmel_sam9260_nc_caps,
2540	},
2541	{
2542		.compatible = "atmel,at91sam9261-nand-controller",
2543		.data = &atmel_sam9261_nc_caps,
2544	},
2545	{
2546		.compatible = "atmel,at91sam9g45-nand-controller",
2547		.data = &atmel_sam9g45_nc_caps,
2548	},
2549	{
2550		.compatible = "atmel,sama5d3-nand-controller",
2551		.data = &atmel_sama5_nc_caps,
2552	},
2553	{
2554		.compatible = "microchip,sam9x60-nand-controller",
2555		.data = &microchip_sam9x60_nc_caps,
2556	},
2557	/* Support for old/deprecated bindings: */
2558	{
2559		.compatible = "atmel,at91rm9200-nand",
2560		.data = &atmel_rm9200_nand_caps,
2561	},
2562	{
2563		.compatible = "atmel,sama5d4-nand",
2564		.data = &atmel_rm9200_nand_caps,
2565	},
2566	{
2567		.compatible = "atmel,sama5d2-nand",
2568		.data = &atmel_rm9200_nand_caps,
2569	},
2570	{ /* sentinel */ },
2571};
2572MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2573
2574static int atmel_nand_controller_probe(struct platform_device *pdev)
2575{
2576	const struct atmel_nand_controller_caps *caps;
2577
2578	if (pdev->id_entry)
2579		caps = (void *)pdev->id_entry->driver_data;
2580	else
2581		caps = of_device_get_match_data(&pdev->dev);
2582
2583	if (!caps) {
2584		dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2585		return -EINVAL;
2586	}
2587
2588	if (caps->legacy_of_bindings) {
2589		struct device_node *nfc_node;
2590		u32 ale_offs = 21;
2591
2592		/*
2593		 * If we are parsing legacy DT props and the DT contains a
2594		 * valid NFC node, forward the request to the sama5 logic.
2595		 */
2596		nfc_node = of_get_compatible_child(pdev->dev.of_node,
2597						   "atmel,sama5d3-nfc");
2598		if (nfc_node) {
2599			caps = &atmel_sama5_nand_caps;
2600			of_node_put(nfc_node);
2601		}
2602
2603		/*
2604		 * Even if the compatible says we are dealing with an
2605		 * at91rm9200 controller, the atmel,nand-has-dma specify that
2606		 * this controller supports DMA, which means we are in fact
2607		 * dealing with an at91sam9g45+ controller.
2608		 */
2609		if (!caps->has_dma &&
2610		    of_property_read_bool(pdev->dev.of_node,
2611					  "atmel,nand-has-dma"))
2612			caps = &atmel_sam9g45_nand_caps;
2613
2614		/*
2615		 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2616		 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2617		 * actually dealing with an at91sam9261 controller.
2618		 */
2619		of_property_read_u32(pdev->dev.of_node,
2620				     "atmel,nand-addr-offset", &ale_offs);
2621		if (ale_offs != 21)
2622			caps = &atmel_sam9261_nand_caps;
2623	}
2624
2625	return caps->ops->probe(pdev, caps);
2626}
2627
2628static void atmel_nand_controller_remove(struct platform_device *pdev)
2629{
2630	struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2631
2632	WARN_ON(nc->caps->ops->remove(nc));
2633}
2634
2635static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2636{
2637	struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2638	struct atmel_nand *nand;
2639
2640	if (nc->pmecc)
2641		atmel_pmecc_reset(nc->pmecc);
2642
2643	list_for_each_entry(nand, &nc->chips, node) {
2644		int i;
2645
2646		for (i = 0; i < nand->numcs; i++)
2647			nand_reset(&nand->base, i);
2648	}
2649
2650	return 0;
2651}
2652
2653static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2654			 atmel_nand_controller_resume);
2655
2656static struct platform_driver atmel_nand_controller_driver = {
2657	.driver = {
2658		.name = "atmel-nand-controller",
2659		.of_match_table = atmel_nand_controller_of_ids,
2660		.pm = &atmel_nand_controller_pm_ops,
2661	},
2662	.probe = atmel_nand_controller_probe,
2663	.remove_new = atmel_nand_controller_remove,
2664};
2665module_platform_driver(atmel_nand_controller_driver);
2666
2667MODULE_LICENSE("GPL");
2668MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2669MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2670MODULE_ALIAS("platform:atmel-nand-controller");
2671