1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright �� 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright �� 2006      Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/random.h>
27#include <linux/slab.h>
28#include <linux/reboot.h>
29#include <linux/leds.h>
30#include <linux/debugfs.h>
31#include <linux/nvmem-provider.h>
32#include <linux/root_dev.h>
33#include <linux/error-injection.h>
34
35#include <linux/mtd/mtd.h>
36#include <linux/mtd/partitions.h>
37
38#include "mtdcore.h"
39
40struct backing_dev_info *mtd_bdi;
41
42#ifdef CONFIG_PM_SLEEP
43
44static int mtd_cls_suspend(struct device *dev)
45{
46	struct mtd_info *mtd = dev_get_drvdata(dev);
47
48	return mtd ? mtd_suspend(mtd) : 0;
49}
50
51static int mtd_cls_resume(struct device *dev)
52{
53	struct mtd_info *mtd = dev_get_drvdata(dev);
54
55	if (mtd)
56		mtd_resume(mtd);
57	return 0;
58}
59
60static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
61#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
62#else
63#define MTD_CLS_PM_OPS NULL
64#endif
65
66static struct class mtd_class = {
67	.name = "mtd",
68	.pm = MTD_CLS_PM_OPS,
69};
70
71static DEFINE_IDR(mtd_idr);
72
73/* These are exported solely for the purpose of mtd_blkdevs.c. You
74   should not use them for _anything_ else */
75DEFINE_MUTEX(mtd_table_mutex);
76EXPORT_SYMBOL_GPL(mtd_table_mutex);
77
78struct mtd_info *__mtd_next_device(int i)
79{
80	return idr_get_next(&mtd_idr, &i);
81}
82EXPORT_SYMBOL_GPL(__mtd_next_device);
83
84static LIST_HEAD(mtd_notifiers);
85
86
87#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
88
89/* REVISIT once MTD uses the driver model better, whoever allocates
90 * the mtd_info will probably want to use the release() hook...
91 */
92static void mtd_release(struct device *dev)
93{
94	struct mtd_info *mtd = dev_get_drvdata(dev);
95	dev_t index = MTD_DEVT(mtd->index);
96
97	idr_remove(&mtd_idr, mtd->index);
98	of_node_put(mtd_get_of_node(mtd));
99
100	if (mtd_is_partition(mtd))
101		release_mtd_partition(mtd);
102
103	/* remove /dev/mtdXro node */
104	device_destroy(&mtd_class, index + 1);
105}
106
107static void mtd_device_release(struct kref *kref)
108{
109	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
110	bool is_partition = mtd_is_partition(mtd);
111
112	debugfs_remove_recursive(mtd->dbg.dfs_dir);
113
114	/* Try to remove the NVMEM provider */
115	nvmem_unregister(mtd->nvmem);
116
117	device_unregister(&mtd->dev);
118
119	/*
120	 *  Clear dev so mtd can be safely re-registered later if desired.
121	 *  Should not be done for partition,
122	 *  as it was already destroyed in device_unregister().
123	 */
124	if (!is_partition)
125		memset(&mtd->dev, 0, sizeof(mtd->dev));
126
127	module_put(THIS_MODULE);
128}
129
130#define MTD_DEVICE_ATTR_RO(name) \
131static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
132
133#define MTD_DEVICE_ATTR_RW(name) \
134static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
135
136static ssize_t mtd_type_show(struct device *dev,
137		struct device_attribute *attr, char *buf)
138{
139	struct mtd_info *mtd = dev_get_drvdata(dev);
140	char *type;
141
142	switch (mtd->type) {
143	case MTD_ABSENT:
144		type = "absent";
145		break;
146	case MTD_RAM:
147		type = "ram";
148		break;
149	case MTD_ROM:
150		type = "rom";
151		break;
152	case MTD_NORFLASH:
153		type = "nor";
154		break;
155	case MTD_NANDFLASH:
156		type = "nand";
157		break;
158	case MTD_DATAFLASH:
159		type = "dataflash";
160		break;
161	case MTD_UBIVOLUME:
162		type = "ubi";
163		break;
164	case MTD_MLCNANDFLASH:
165		type = "mlc-nand";
166		break;
167	default:
168		type = "unknown";
169	}
170
171	return sysfs_emit(buf, "%s\n", type);
172}
173MTD_DEVICE_ATTR_RO(type);
174
175static ssize_t mtd_flags_show(struct device *dev,
176		struct device_attribute *attr, char *buf)
177{
178	struct mtd_info *mtd = dev_get_drvdata(dev);
179
180	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
181}
182MTD_DEVICE_ATTR_RO(flags);
183
184static ssize_t mtd_size_show(struct device *dev,
185		struct device_attribute *attr, char *buf)
186{
187	struct mtd_info *mtd = dev_get_drvdata(dev);
188
189	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
190}
191MTD_DEVICE_ATTR_RO(size);
192
193static ssize_t mtd_erasesize_show(struct device *dev,
194		struct device_attribute *attr, char *buf)
195{
196	struct mtd_info *mtd = dev_get_drvdata(dev);
197
198	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
199}
200MTD_DEVICE_ATTR_RO(erasesize);
201
202static ssize_t mtd_writesize_show(struct device *dev,
203		struct device_attribute *attr, char *buf)
204{
205	struct mtd_info *mtd = dev_get_drvdata(dev);
206
207	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
208}
209MTD_DEVICE_ATTR_RO(writesize);
210
211static ssize_t mtd_subpagesize_show(struct device *dev,
212		struct device_attribute *attr, char *buf)
213{
214	struct mtd_info *mtd = dev_get_drvdata(dev);
215	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
217	return sysfs_emit(buf, "%u\n", subpagesize);
218}
219MTD_DEVICE_ATTR_RO(subpagesize);
220
221static ssize_t mtd_oobsize_show(struct device *dev,
222		struct device_attribute *attr, char *buf)
223{
224	struct mtd_info *mtd = dev_get_drvdata(dev);
225
226	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
227}
228MTD_DEVICE_ATTR_RO(oobsize);
229
230static ssize_t mtd_oobavail_show(struct device *dev,
231				 struct device_attribute *attr, char *buf)
232{
233	struct mtd_info *mtd = dev_get_drvdata(dev);
234
235	return sysfs_emit(buf, "%u\n", mtd->oobavail);
236}
237MTD_DEVICE_ATTR_RO(oobavail);
238
239static ssize_t mtd_numeraseregions_show(struct device *dev,
240		struct device_attribute *attr, char *buf)
241{
242	struct mtd_info *mtd = dev_get_drvdata(dev);
243
244	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
245}
246MTD_DEVICE_ATTR_RO(numeraseregions);
247
248static ssize_t mtd_name_show(struct device *dev,
249		struct device_attribute *attr, char *buf)
250{
251	struct mtd_info *mtd = dev_get_drvdata(dev);
252
253	return sysfs_emit(buf, "%s\n", mtd->name);
254}
255MTD_DEVICE_ATTR_RO(name);
256
257static ssize_t mtd_ecc_strength_show(struct device *dev,
258				     struct device_attribute *attr, char *buf)
259{
260	struct mtd_info *mtd = dev_get_drvdata(dev);
261
262	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
263}
264MTD_DEVICE_ATTR_RO(ecc_strength);
265
266static ssize_t mtd_bitflip_threshold_show(struct device *dev,
267					  struct device_attribute *attr,
268					  char *buf)
269{
270	struct mtd_info *mtd = dev_get_drvdata(dev);
271
272	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
273}
274
275static ssize_t mtd_bitflip_threshold_store(struct device *dev,
276					   struct device_attribute *attr,
277					   const char *buf, size_t count)
278{
279	struct mtd_info *mtd = dev_get_drvdata(dev);
280	unsigned int bitflip_threshold;
281	int retval;
282
283	retval = kstrtouint(buf, 0, &bitflip_threshold);
284	if (retval)
285		return retval;
286
287	mtd->bitflip_threshold = bitflip_threshold;
288	return count;
289}
290MTD_DEVICE_ATTR_RW(bitflip_threshold);
291
292static ssize_t mtd_ecc_step_size_show(struct device *dev,
293		struct device_attribute *attr, char *buf)
294{
295	struct mtd_info *mtd = dev_get_drvdata(dev);
296
297	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
298
299}
300MTD_DEVICE_ATTR_RO(ecc_step_size);
301
302static ssize_t mtd_corrected_bits_show(struct device *dev,
303		struct device_attribute *attr, char *buf)
304{
305	struct mtd_info *mtd = dev_get_drvdata(dev);
306	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
308	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
309}
310MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
311
312static ssize_t mtd_ecc_failures_show(struct device *dev,
313		struct device_attribute *attr, char *buf)
314{
315	struct mtd_info *mtd = dev_get_drvdata(dev);
316	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317
318	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
319}
320MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
321
322static ssize_t mtd_bad_blocks_show(struct device *dev,
323		struct device_attribute *attr, char *buf)
324{
325	struct mtd_info *mtd = dev_get_drvdata(dev);
326	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327
328	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
329}
330MTD_DEVICE_ATTR_RO(bad_blocks);
331
332static ssize_t mtd_bbt_blocks_show(struct device *dev,
333		struct device_attribute *attr, char *buf)
334{
335	struct mtd_info *mtd = dev_get_drvdata(dev);
336	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
337
338	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
339}
340MTD_DEVICE_ATTR_RO(bbt_blocks);
341
342static struct attribute *mtd_attrs[] = {
343	&dev_attr_type.attr,
344	&dev_attr_flags.attr,
345	&dev_attr_size.attr,
346	&dev_attr_erasesize.attr,
347	&dev_attr_writesize.attr,
348	&dev_attr_subpagesize.attr,
349	&dev_attr_oobsize.attr,
350	&dev_attr_oobavail.attr,
351	&dev_attr_numeraseregions.attr,
352	&dev_attr_name.attr,
353	&dev_attr_ecc_strength.attr,
354	&dev_attr_ecc_step_size.attr,
355	&dev_attr_corrected_bits.attr,
356	&dev_attr_ecc_failures.attr,
357	&dev_attr_bad_blocks.attr,
358	&dev_attr_bbt_blocks.attr,
359	&dev_attr_bitflip_threshold.attr,
360	NULL,
361};
362ATTRIBUTE_GROUPS(mtd);
363
364static const struct device_type mtd_devtype = {
365	.name		= "mtd",
366	.groups		= mtd_groups,
367	.release	= mtd_release,
368};
369
370static bool mtd_expert_analysis_mode;
371
372#ifdef CONFIG_DEBUG_FS
373bool mtd_check_expert_analysis_mode(void)
374{
375	const char *mtd_expert_analysis_warning =
376		"Bad block checks have been entirely disabled.\n"
377		"This is only reserved for post-mortem forensics and debug purposes.\n"
378		"Never enable this mode if you do not know what you are doing!\n";
379
380	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
381}
382EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
383#endif
384
385static struct dentry *dfs_dir_mtd;
386
387static void mtd_debugfs_populate(struct mtd_info *mtd)
388{
389	struct device *dev = &mtd->dev;
390
391	if (IS_ERR_OR_NULL(dfs_dir_mtd))
392		return;
393
394	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
395}
396
397#ifndef CONFIG_MMU
398unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
399{
400	switch (mtd->type) {
401	case MTD_RAM:
402		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
403			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
404	case MTD_ROM:
405		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
406			NOMMU_MAP_READ;
407	default:
408		return NOMMU_MAP_COPY;
409	}
410}
411EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
412#endif
413
414static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
415			       void *cmd)
416{
417	struct mtd_info *mtd;
418
419	mtd = container_of(n, struct mtd_info, reboot_notifier);
420	mtd->_reboot(mtd);
421
422	return NOTIFY_DONE;
423}
424
425/**
426 * mtd_wunit_to_pairing_info - get pairing information of a wunit
427 * @mtd: pointer to new MTD device info structure
428 * @wunit: write unit we are interested in
429 * @info: returned pairing information
430 *
431 * Retrieve pairing information associated to the wunit.
432 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
433 * paired together, and where programming a page may influence the page it is
434 * paired with.
435 * The notion of page is replaced by the term wunit (write-unit) to stay
436 * consistent with the ->writesize field.
437 *
438 * The @wunit argument can be extracted from an absolute offset using
439 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
440 * to @wunit.
441 *
442 * From the pairing info the MTD user can find all the wunits paired with
443 * @wunit using the following loop:
444 *
445 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
446 *	info.pair = i;
447 *	mtd_pairing_info_to_wunit(mtd, &info);
448 *	...
449 * }
450 */
451int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
452			      struct mtd_pairing_info *info)
453{
454	struct mtd_info *master = mtd_get_master(mtd);
455	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
456
457	if (wunit < 0 || wunit >= npairs)
458		return -EINVAL;
459
460	if (master->pairing && master->pairing->get_info)
461		return master->pairing->get_info(master, wunit, info);
462
463	info->group = 0;
464	info->pair = wunit;
465
466	return 0;
467}
468EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
469
470/**
471 * mtd_pairing_info_to_wunit - get wunit from pairing information
472 * @mtd: pointer to new MTD device info structure
473 * @info: pairing information struct
474 *
475 * Returns a positive number representing the wunit associated to the info
476 * struct, or a negative error code.
477 *
478 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
479 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
480 * doc).
481 *
482 * It can also be used to only program the first page of each pair (i.e.
483 * page attached to group 0), which allows one to use an MLC NAND in
484 * software-emulated SLC mode:
485 *
486 * info.group = 0;
487 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
488 * for (info.pair = 0; info.pair < npairs; info.pair++) {
489 *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
490 *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
491 *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
492 * }
493 */
494int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
495			      const struct mtd_pairing_info *info)
496{
497	struct mtd_info *master = mtd_get_master(mtd);
498	int ngroups = mtd_pairing_groups(master);
499	int npairs = mtd_wunit_per_eb(master) / ngroups;
500
501	if (!info || info->pair < 0 || info->pair >= npairs ||
502	    info->group < 0 || info->group >= ngroups)
503		return -EINVAL;
504
505	if (master->pairing && master->pairing->get_wunit)
506		return mtd->pairing->get_wunit(master, info);
507
508	return info->pair;
509}
510EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
511
512/**
513 * mtd_pairing_groups - get the number of pairing groups
514 * @mtd: pointer to new MTD device info structure
515 *
516 * Returns the number of pairing groups.
517 *
518 * This number is usually equal to the number of bits exposed by a single
519 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
520 * to iterate over all pages of a given pair.
521 */
522int mtd_pairing_groups(struct mtd_info *mtd)
523{
524	struct mtd_info *master = mtd_get_master(mtd);
525
526	if (!master->pairing || !master->pairing->ngroups)
527		return 1;
528
529	return master->pairing->ngroups;
530}
531EXPORT_SYMBOL_GPL(mtd_pairing_groups);
532
533static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
534			      void *val, size_t bytes)
535{
536	struct mtd_info *mtd = priv;
537	size_t retlen;
538	int err;
539
540	err = mtd_read(mtd, offset, bytes, &retlen, val);
541	if (err && err != -EUCLEAN)
542		return err;
543
544	return retlen == bytes ? 0 : -EIO;
545}
546
547static int mtd_nvmem_add(struct mtd_info *mtd)
548{
549	struct device_node *node = mtd_get_of_node(mtd);
550	struct nvmem_config config = {};
551
552	config.id = NVMEM_DEVID_NONE;
553	config.dev = &mtd->dev;
554	config.name = dev_name(&mtd->dev);
555	config.owner = THIS_MODULE;
556	config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
557	config.reg_read = mtd_nvmem_reg_read;
558	config.size = mtd->size;
559	config.word_size = 1;
560	config.stride = 1;
561	config.read_only = true;
562	config.root_only = true;
563	config.ignore_wp = true;
564	config.priv = mtd;
565
566	mtd->nvmem = nvmem_register(&config);
567	if (IS_ERR(mtd->nvmem)) {
568		/* Just ignore if there is no NVMEM support in the kernel */
569		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
570			mtd->nvmem = NULL;
571		else
572			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
573					     "Failed to register NVMEM device\n");
574	}
575
576	return 0;
577}
578
579static void mtd_check_of_node(struct mtd_info *mtd)
580{
581	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
582	const char *pname, *prefix = "partition-";
583	int plen, mtd_name_len, offset, prefix_len;
584
585	/* Check if MTD already has a device node */
586	if (mtd_get_of_node(mtd))
587		return;
588
589	if (!mtd_is_partition(mtd))
590		return;
591
592	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
593	if (!parent_dn)
594		return;
595
596	if (mtd_is_partition(mtd->parent))
597		partitions = of_node_get(parent_dn);
598	else
599		partitions = of_get_child_by_name(parent_dn, "partitions");
600	if (!partitions)
601		goto exit_parent;
602
603	prefix_len = strlen(prefix);
604	mtd_name_len = strlen(mtd->name);
605
606	/* Search if a partition is defined with the same name */
607	for_each_child_of_node(partitions, mtd_dn) {
608		/* Skip partition with no/wrong prefix */
609		if (!of_node_name_prefix(mtd_dn, prefix))
610			continue;
611
612		/* Label have priority. Check that first */
613		if (!of_property_read_string(mtd_dn, "label", &pname)) {
614			offset = 0;
615		} else {
616			pname = mtd_dn->name;
617			offset = prefix_len;
618		}
619
620		plen = strlen(pname) - offset;
621		if (plen == mtd_name_len &&
622		    !strncmp(mtd->name, pname + offset, plen)) {
623			mtd_set_of_node(mtd, mtd_dn);
624			of_node_put(mtd_dn);
625			break;
626		}
627	}
628
629	of_node_put(partitions);
630exit_parent:
631	of_node_put(parent_dn);
632}
633
634/**
635 *	add_mtd_device - register an MTD device
636 *	@mtd: pointer to new MTD device info structure
637 *
638 *	Add a device to the list of MTD devices present in the system, and
639 *	notify each currently active MTD 'user' of its arrival. Returns
640 *	zero on success or non-zero on failure.
641 */
642
643int add_mtd_device(struct mtd_info *mtd)
644{
645	struct device_node *np = mtd_get_of_node(mtd);
646	struct mtd_info *master = mtd_get_master(mtd);
647	struct mtd_notifier *not;
648	int i, error, ofidx;
649
650	/*
651	 * May occur, for instance, on buggy drivers which call
652	 * mtd_device_parse_register() multiple times on the same master MTD,
653	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
654	 */
655	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
656		return -EEXIST;
657
658	BUG_ON(mtd->writesize == 0);
659
660	/*
661	 * MTD drivers should implement ->_{write,read}() or
662	 * ->_{write,read}_oob(), but not both.
663	 */
664	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
665		    (mtd->_read && mtd->_read_oob)))
666		return -EINVAL;
667
668	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
669		    !(mtd->flags & MTD_NO_ERASE)))
670		return -EINVAL;
671
672	/*
673	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
674	 * master is an MLC NAND and has a proper pairing scheme defined.
675	 * We also reject masters that implement ->_writev() for now, because
676	 * NAND controller drivers don't implement this hook, and adding the
677	 * SLC -> MLC address/length conversion to this path is useless if we
678	 * don't have a user.
679	 */
680	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
681	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
682	     !master->pairing || master->_writev))
683		return -EINVAL;
684
685	mutex_lock(&mtd_table_mutex);
686
687	ofidx = -1;
688	if (np)
689		ofidx = of_alias_get_id(np, "mtd");
690	if (ofidx >= 0)
691		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
692	else
693		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
694	if (i < 0) {
695		error = i;
696		goto fail_locked;
697	}
698
699	mtd->index = i;
700	kref_init(&mtd->refcnt);
701
702	/* default value if not set by driver */
703	if (mtd->bitflip_threshold == 0)
704		mtd->bitflip_threshold = mtd->ecc_strength;
705
706	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
707		int ngroups = mtd_pairing_groups(master);
708
709		mtd->erasesize /= ngroups;
710		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
711			    mtd->erasesize;
712	}
713
714	if (is_power_of_2(mtd->erasesize))
715		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
716	else
717		mtd->erasesize_shift = 0;
718
719	if (is_power_of_2(mtd->writesize))
720		mtd->writesize_shift = ffs(mtd->writesize) - 1;
721	else
722		mtd->writesize_shift = 0;
723
724	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
725	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
726
727	/* Some chips always power up locked. Unlock them now */
728	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
729		error = mtd_unlock(mtd, 0, mtd->size);
730		if (error && error != -EOPNOTSUPP)
731			printk(KERN_WARNING
732			       "%s: unlock failed, writes may not work\n",
733			       mtd->name);
734		/* Ignore unlock failures? */
735		error = 0;
736	}
737
738	/* Caller should have set dev.parent to match the
739	 * physical device, if appropriate.
740	 */
741	mtd->dev.type = &mtd_devtype;
742	mtd->dev.class = &mtd_class;
743	mtd->dev.devt = MTD_DEVT(i);
744	dev_set_name(&mtd->dev, "mtd%d", i);
745	dev_set_drvdata(&mtd->dev, mtd);
746	mtd_check_of_node(mtd);
747	of_node_get(mtd_get_of_node(mtd));
748	error = device_register(&mtd->dev);
749	if (error) {
750		put_device(&mtd->dev);
751		goto fail_added;
752	}
753
754	/* Add the nvmem provider */
755	error = mtd_nvmem_add(mtd);
756	if (error)
757		goto fail_nvmem_add;
758
759	mtd_debugfs_populate(mtd);
760
761	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
762		      "mtd%dro", i);
763
764	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
765	/* No need to get a refcount on the module containing
766	   the notifier, since we hold the mtd_table_mutex */
767	list_for_each_entry(not, &mtd_notifiers, list)
768		not->add(mtd);
769
770	mutex_unlock(&mtd_table_mutex);
771
772	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
773		if (IS_BUILTIN(CONFIG_MTD)) {
774			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
775			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
776		} else {
777			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
778				mtd->index, mtd->name);
779		}
780	}
781
782	/* We _know_ we aren't being removed, because
783	   our caller is still holding us here. So none
784	   of this try_ nonsense, and no bitching about it
785	   either. :) */
786	__module_get(THIS_MODULE);
787	return 0;
788
789fail_nvmem_add:
790	device_unregister(&mtd->dev);
791fail_added:
792	of_node_put(mtd_get_of_node(mtd));
793	idr_remove(&mtd_idr, i);
794fail_locked:
795	mutex_unlock(&mtd_table_mutex);
796	return error;
797}
798
799/**
800 *	del_mtd_device - unregister an MTD device
801 *	@mtd: pointer to MTD device info structure
802 *
803 *	Remove a device from the list of MTD devices present in the system,
804 *	and notify each currently active MTD 'user' of its departure.
805 *	Returns zero on success or 1 on failure, which currently will happen
806 *	if the requested device does not appear to be present in the list.
807 */
808
809int del_mtd_device(struct mtd_info *mtd)
810{
811	int ret;
812	struct mtd_notifier *not;
813
814	mutex_lock(&mtd_table_mutex);
815
816	if (idr_find(&mtd_idr, mtd->index) != mtd) {
817		ret = -ENODEV;
818		goto out_error;
819	}
820
821	/* No need to get a refcount on the module containing
822		the notifier, since we hold the mtd_table_mutex */
823	list_for_each_entry(not, &mtd_notifiers, list)
824		not->remove(mtd);
825
826	kref_put(&mtd->refcnt, mtd_device_release);
827	ret = 0;
828
829out_error:
830	mutex_unlock(&mtd_table_mutex);
831	return ret;
832}
833
834/*
835 * Set a few defaults based on the parent devices, if not provided by the
836 * driver
837 */
838static void mtd_set_dev_defaults(struct mtd_info *mtd)
839{
840	if (mtd->dev.parent) {
841		if (!mtd->owner && mtd->dev.parent->driver)
842			mtd->owner = mtd->dev.parent->driver->owner;
843		if (!mtd->name)
844			mtd->name = dev_name(mtd->dev.parent);
845	} else {
846		pr_debug("mtd device won't show a device symlink in sysfs\n");
847	}
848
849	INIT_LIST_HEAD(&mtd->partitions);
850	mutex_init(&mtd->master.partitions_lock);
851	mutex_init(&mtd->master.chrdev_lock);
852}
853
854static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
855{
856	struct otp_info *info;
857	ssize_t size = 0;
858	unsigned int i;
859	size_t retlen;
860	int ret;
861
862	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
863	if (!info)
864		return -ENOMEM;
865
866	if (is_user)
867		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
868	else
869		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
870	if (ret)
871		goto err;
872
873	for (i = 0; i < retlen / sizeof(*info); i++)
874		size += info[i].length;
875
876	kfree(info);
877	return size;
878
879err:
880	kfree(info);
881
882	/* ENODATA means there is no OTP region. */
883	return ret == -ENODATA ? 0 : ret;
884}
885
886static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
887						   const char *compatible,
888						   int size,
889						   nvmem_reg_read_t reg_read)
890{
891	struct nvmem_device *nvmem = NULL;
892	struct nvmem_config config = {};
893	struct device_node *np;
894
895	/* DT binding is optional */
896	np = of_get_compatible_child(mtd->dev.of_node, compatible);
897
898	/* OTP nvmem will be registered on the physical device */
899	config.dev = mtd->dev.parent;
900	config.name = compatible;
901	config.id = NVMEM_DEVID_AUTO;
902	config.owner = THIS_MODULE;
903	config.add_legacy_fixed_of_cells = true;
904	config.type = NVMEM_TYPE_OTP;
905	config.root_only = true;
906	config.ignore_wp = true;
907	config.reg_read = reg_read;
908	config.size = size;
909	config.of_node = np;
910	config.priv = mtd;
911
912	nvmem = nvmem_register(&config);
913	/* Just ignore if there is no NVMEM support in the kernel */
914	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
915		nvmem = NULL;
916
917	of_node_put(np);
918
919	return nvmem;
920}
921
922static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
923				       void *val, size_t bytes)
924{
925	struct mtd_info *mtd = priv;
926	size_t retlen;
927	int ret;
928
929	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
930	if (ret)
931		return ret;
932
933	return retlen == bytes ? 0 : -EIO;
934}
935
936static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
937				       void *val, size_t bytes)
938{
939	struct mtd_info *mtd = priv;
940	size_t retlen;
941	int ret;
942
943	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
944	if (ret)
945		return ret;
946
947	return retlen == bytes ? 0 : -EIO;
948}
949
950static int mtd_otp_nvmem_add(struct mtd_info *mtd)
951{
952	struct device *dev = mtd->dev.parent;
953	struct nvmem_device *nvmem;
954	ssize_t size;
955	int err;
956
957	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
958		size = mtd_otp_size(mtd, true);
959		if (size < 0)
960			return size;
961
962		if (size > 0) {
963			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
964						       mtd_nvmem_user_otp_reg_read);
965			if (IS_ERR(nvmem)) {
966				err = PTR_ERR(nvmem);
967				goto err;
968			}
969			mtd->otp_user_nvmem = nvmem;
970		}
971	}
972
973	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
974		size = mtd_otp_size(mtd, false);
975		if (size < 0) {
976			err = size;
977			goto err;
978		}
979
980		if (size > 0) {
981			/*
982			 * The factory OTP contains thing such as a unique serial
983			 * number and is small, so let's read it out and put it
984			 * into the entropy pool.
985			 */
986			void *otp;
987
988			otp = kmalloc(size, GFP_KERNEL);
989			if (!otp) {
990				err = -ENOMEM;
991				goto err;
992			}
993			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
994			if (err < 0) {
995				kfree(otp);
996				goto err;
997			}
998			add_device_randomness(otp, err);
999			kfree(otp);
1000
1001			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1002						       mtd_nvmem_fact_otp_reg_read);
1003			if (IS_ERR(nvmem)) {
1004				err = PTR_ERR(nvmem);
1005				goto err;
1006			}
1007			mtd->otp_factory_nvmem = nvmem;
1008		}
1009	}
1010
1011	return 0;
1012
1013err:
1014	nvmem_unregister(mtd->otp_user_nvmem);
1015	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1016}
1017
1018/**
1019 * mtd_device_parse_register - parse partitions and register an MTD device.
1020 *
1021 * @mtd: the MTD device to register
1022 * @types: the list of MTD partition probes to try, see
1023 *         'parse_mtd_partitions()' for more information
1024 * @parser_data: MTD partition parser-specific data
1025 * @parts: fallback partition information to register, if parsing fails;
1026 *         only valid if %nr_parts > %0
1027 * @nr_parts: the number of partitions in parts, if zero then the full
1028 *            MTD device is registered if no partition info is found
1029 *
1030 * This function aggregates MTD partitions parsing (done by
1031 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1032 * basically follows the most common pattern found in many MTD drivers:
1033 *
1034 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1035 *   registered first.
1036 * * Then It tries to probe partitions on MTD device @mtd using parsers
1037 *   specified in @types (if @types is %NULL, then the default list of parsers
1038 *   is used, see 'parse_mtd_partitions()' for more information). If none are
1039 *   found this functions tries to fallback to information specified in
1040 *   @parts/@nr_parts.
1041 * * If no partitions were found this function just registers the MTD device
1042 *   @mtd and exits.
1043 *
1044 * Returns zero in case of success and a negative error code in case of failure.
1045 */
1046int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1047			      struct mtd_part_parser_data *parser_data,
1048			      const struct mtd_partition *parts,
1049			      int nr_parts)
1050{
1051	int ret;
1052
1053	mtd_set_dev_defaults(mtd);
1054
1055	ret = mtd_otp_nvmem_add(mtd);
1056	if (ret)
1057		goto out;
1058
1059	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1060		ret = add_mtd_device(mtd);
1061		if (ret)
1062			goto out;
1063	}
1064
1065	/* Prefer parsed partitions over driver-provided fallback */
1066	ret = parse_mtd_partitions(mtd, types, parser_data);
1067	if (ret == -EPROBE_DEFER)
1068		goto out;
1069
1070	if (ret > 0)
1071		ret = 0;
1072	else if (nr_parts)
1073		ret = add_mtd_partitions(mtd, parts, nr_parts);
1074	else if (!device_is_registered(&mtd->dev))
1075		ret = add_mtd_device(mtd);
1076	else
1077		ret = 0;
1078
1079	if (ret)
1080		goto out;
1081
1082	/*
1083	 * FIXME: some drivers unfortunately call this function more than once.
1084	 * So we have to check if we've already assigned the reboot notifier.
1085	 *
1086	 * Generally, we can make multiple calls work for most cases, but it
1087	 * does cause problems with parse_mtd_partitions() above (e.g.,
1088	 * cmdlineparts will register partitions more than once).
1089	 */
1090	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1091		  "MTD already registered\n");
1092	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1093		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1094		register_reboot_notifier(&mtd->reboot_notifier);
1095	}
1096
1097out:
1098	if (ret) {
1099		nvmem_unregister(mtd->otp_user_nvmem);
1100		nvmem_unregister(mtd->otp_factory_nvmem);
1101	}
1102
1103	if (ret && device_is_registered(&mtd->dev))
1104		del_mtd_device(mtd);
1105
1106	return ret;
1107}
1108EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1109
1110/**
1111 * mtd_device_unregister - unregister an existing MTD device.
1112 *
1113 * @master: the MTD device to unregister.  This will unregister both the master
1114 *          and any partitions if registered.
1115 */
1116int mtd_device_unregister(struct mtd_info *master)
1117{
1118	int err;
1119
1120	if (master->_reboot) {
1121		unregister_reboot_notifier(&master->reboot_notifier);
1122		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1123	}
1124
1125	nvmem_unregister(master->otp_user_nvmem);
1126	nvmem_unregister(master->otp_factory_nvmem);
1127
1128	err = del_mtd_partitions(master);
1129	if (err)
1130		return err;
1131
1132	if (!device_is_registered(&master->dev))
1133		return 0;
1134
1135	return del_mtd_device(master);
1136}
1137EXPORT_SYMBOL_GPL(mtd_device_unregister);
1138
1139/**
1140 *	register_mtd_user - register a 'user' of MTD devices.
1141 *	@new: pointer to notifier info structure
1142 *
1143 *	Registers a pair of callbacks function to be called upon addition
1144 *	or removal of MTD devices. Causes the 'add' callback to be immediately
1145 *	invoked for each MTD device currently present in the system.
1146 */
1147void register_mtd_user (struct mtd_notifier *new)
1148{
1149	struct mtd_info *mtd;
1150
1151	mutex_lock(&mtd_table_mutex);
1152
1153	list_add(&new->list, &mtd_notifiers);
1154
1155	__module_get(THIS_MODULE);
1156
1157	mtd_for_each_device(mtd)
1158		new->add(mtd);
1159
1160	mutex_unlock(&mtd_table_mutex);
1161}
1162EXPORT_SYMBOL_GPL(register_mtd_user);
1163
1164/**
1165 *	unregister_mtd_user - unregister a 'user' of MTD devices.
1166 *	@old: pointer to notifier info structure
1167 *
1168 *	Removes a callback function pair from the list of 'users' to be
1169 *	notified upon addition or removal of MTD devices. Causes the
1170 *	'remove' callback to be immediately invoked for each MTD device
1171 *	currently present in the system.
1172 */
1173int unregister_mtd_user (struct mtd_notifier *old)
1174{
1175	struct mtd_info *mtd;
1176
1177	mutex_lock(&mtd_table_mutex);
1178
1179	module_put(THIS_MODULE);
1180
1181	mtd_for_each_device(mtd)
1182		old->remove(mtd);
1183
1184	list_del(&old->list);
1185	mutex_unlock(&mtd_table_mutex);
1186	return 0;
1187}
1188EXPORT_SYMBOL_GPL(unregister_mtd_user);
1189
1190/**
1191 *	get_mtd_device - obtain a validated handle for an MTD device
1192 *	@mtd: last known address of the required MTD device
1193 *	@num: internal device number of the required MTD device
1194 *
1195 *	Given a number and NULL address, return the num'th entry in the device
1196 *	table, if any.	Given an address and num == -1, search the device table
1197 *	for a device with that address and return if it's still present. Given
1198 *	both, return the num'th driver only if its address matches. Return
1199 *	error code if not.
1200 */
1201struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1202{
1203	struct mtd_info *ret = NULL, *other;
1204	int err = -ENODEV;
1205
1206	mutex_lock(&mtd_table_mutex);
1207
1208	if (num == -1) {
1209		mtd_for_each_device(other) {
1210			if (other == mtd) {
1211				ret = mtd;
1212				break;
1213			}
1214		}
1215	} else if (num >= 0) {
1216		ret = idr_find(&mtd_idr, num);
1217		if (mtd && mtd != ret)
1218			ret = NULL;
1219	}
1220
1221	if (!ret) {
1222		ret = ERR_PTR(err);
1223		goto out;
1224	}
1225
1226	err = __get_mtd_device(ret);
1227	if (err)
1228		ret = ERR_PTR(err);
1229out:
1230	mutex_unlock(&mtd_table_mutex);
1231	return ret;
1232}
1233EXPORT_SYMBOL_GPL(get_mtd_device);
1234
1235
1236int __get_mtd_device(struct mtd_info *mtd)
1237{
1238	struct mtd_info *master = mtd_get_master(mtd);
1239	int err;
1240
1241	if (master->_get_device) {
1242		err = master->_get_device(mtd);
1243		if (err)
1244			return err;
1245	}
1246
1247	if (!try_module_get(master->owner)) {
1248		if (master->_put_device)
1249			master->_put_device(master);
1250		return -ENODEV;
1251	}
1252
1253	while (mtd) {
1254		if (mtd != master)
1255			kref_get(&mtd->refcnt);
1256		mtd = mtd->parent;
1257	}
1258
1259	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1260		kref_get(&master->refcnt);
1261
1262	return 0;
1263}
1264EXPORT_SYMBOL_GPL(__get_mtd_device);
1265
1266/**
1267 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1268 *
1269 * @np: device tree node
1270 */
1271struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1272{
1273	struct mtd_info *mtd = NULL;
1274	struct mtd_info *tmp;
1275	int err;
1276
1277	mutex_lock(&mtd_table_mutex);
1278
1279	err = -EPROBE_DEFER;
1280	mtd_for_each_device(tmp) {
1281		if (mtd_get_of_node(tmp) == np) {
1282			mtd = tmp;
1283			err = __get_mtd_device(mtd);
1284			break;
1285		}
1286	}
1287
1288	mutex_unlock(&mtd_table_mutex);
1289
1290	return err ? ERR_PTR(err) : mtd;
1291}
1292EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1293
1294/**
1295 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1296 *	device name
1297 *	@name: MTD device name to open
1298 *
1299 * 	This function returns MTD device description structure in case of
1300 * 	success and an error code in case of failure.
1301 */
1302struct mtd_info *get_mtd_device_nm(const char *name)
1303{
1304	int err = -ENODEV;
1305	struct mtd_info *mtd = NULL, *other;
1306
1307	mutex_lock(&mtd_table_mutex);
1308
1309	mtd_for_each_device(other) {
1310		if (!strcmp(name, other->name)) {
1311			mtd = other;
1312			break;
1313		}
1314	}
1315
1316	if (!mtd)
1317		goto out_unlock;
1318
1319	err = __get_mtd_device(mtd);
1320	if (err)
1321		goto out_unlock;
1322
1323	mutex_unlock(&mtd_table_mutex);
1324	return mtd;
1325
1326out_unlock:
1327	mutex_unlock(&mtd_table_mutex);
1328	return ERR_PTR(err);
1329}
1330EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1331
1332void put_mtd_device(struct mtd_info *mtd)
1333{
1334	mutex_lock(&mtd_table_mutex);
1335	__put_mtd_device(mtd);
1336	mutex_unlock(&mtd_table_mutex);
1337
1338}
1339EXPORT_SYMBOL_GPL(put_mtd_device);
1340
1341void __put_mtd_device(struct mtd_info *mtd)
1342{
1343	struct mtd_info *master = mtd_get_master(mtd);
1344
1345	while (mtd) {
1346		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1347		struct mtd_info *parent = mtd->parent;
1348
1349		if (mtd != master)
1350			kref_put(&mtd->refcnt, mtd_device_release);
1351		mtd = parent;
1352	}
1353
1354	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1355		kref_put(&master->refcnt, mtd_device_release);
1356
1357	module_put(master->owner);
1358
1359	/* must be the last as master can be freed in the _put_device */
1360	if (master->_put_device)
1361		master->_put_device(master);
1362}
1363EXPORT_SYMBOL_GPL(__put_mtd_device);
1364
1365/*
1366 * Erase is an synchronous operation. Device drivers are epected to return a
1367 * negative error code if the operation failed and update instr->fail_addr
1368 * to point the portion that was not properly erased.
1369 */
1370int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1371{
1372	struct mtd_info *master = mtd_get_master(mtd);
1373	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1374	struct erase_info adjinstr;
1375	int ret;
1376
1377	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1378	adjinstr = *instr;
1379
1380	if (!mtd->erasesize || !master->_erase)
1381		return -ENOTSUPP;
1382
1383	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1384		return -EINVAL;
1385	if (!(mtd->flags & MTD_WRITEABLE))
1386		return -EROFS;
1387
1388	if (!instr->len)
1389		return 0;
1390
1391	ledtrig_mtd_activity();
1392
1393	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1394		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1395				master->erasesize;
1396		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1397				master->erasesize) -
1398			       adjinstr.addr;
1399	}
1400
1401	adjinstr.addr += mst_ofs;
1402
1403	ret = master->_erase(master, &adjinstr);
1404
1405	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1406		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1407		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1408			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1409							 master);
1410			instr->fail_addr *= mtd->erasesize;
1411		}
1412	}
1413
1414	return ret;
1415}
1416EXPORT_SYMBOL_GPL(mtd_erase);
1417ALLOW_ERROR_INJECTION(mtd_erase, ERRNO);
1418
1419/*
1420 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1421 */
1422int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1423	      void **virt, resource_size_t *phys)
1424{
1425	struct mtd_info *master = mtd_get_master(mtd);
1426
1427	*retlen = 0;
1428	*virt = NULL;
1429	if (phys)
1430		*phys = 0;
1431	if (!master->_point)
1432		return -EOPNOTSUPP;
1433	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1434		return -EINVAL;
1435	if (!len)
1436		return 0;
1437
1438	from = mtd_get_master_ofs(mtd, from);
1439	return master->_point(master, from, len, retlen, virt, phys);
1440}
1441EXPORT_SYMBOL_GPL(mtd_point);
1442
1443/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1444int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1445{
1446	struct mtd_info *master = mtd_get_master(mtd);
1447
1448	if (!master->_unpoint)
1449		return -EOPNOTSUPP;
1450	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1451		return -EINVAL;
1452	if (!len)
1453		return 0;
1454	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1455}
1456EXPORT_SYMBOL_GPL(mtd_unpoint);
1457
1458/*
1459 * Allow NOMMU mmap() to directly map the device (if not NULL)
1460 * - return the address to which the offset maps
1461 * - return -ENOSYS to indicate refusal to do the mapping
1462 */
1463unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1464				    unsigned long offset, unsigned long flags)
1465{
1466	size_t retlen;
1467	void *virt;
1468	int ret;
1469
1470	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1471	if (ret)
1472		return ret;
1473	if (retlen != len) {
1474		mtd_unpoint(mtd, offset, retlen);
1475		return -ENOSYS;
1476	}
1477	return (unsigned long)virt;
1478}
1479EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1480
1481static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1482				 const struct mtd_ecc_stats *old_stats)
1483{
1484	struct mtd_ecc_stats diff;
1485
1486	if (master == mtd)
1487		return;
1488
1489	diff = master->ecc_stats;
1490	diff.failed -= old_stats->failed;
1491	diff.corrected -= old_stats->corrected;
1492
1493	while (mtd->parent) {
1494		mtd->ecc_stats.failed += diff.failed;
1495		mtd->ecc_stats.corrected += diff.corrected;
1496		mtd = mtd->parent;
1497	}
1498}
1499
1500int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1501	     u_char *buf)
1502{
1503	struct mtd_oob_ops ops = {
1504		.len = len,
1505		.datbuf = buf,
1506	};
1507	int ret;
1508
1509	ret = mtd_read_oob(mtd, from, &ops);
1510	*retlen = ops.retlen;
1511
1512	WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
1513
1514	return ret;
1515}
1516EXPORT_SYMBOL_GPL(mtd_read);
1517ALLOW_ERROR_INJECTION(mtd_read, ERRNO);
1518
1519int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1520	      const u_char *buf)
1521{
1522	struct mtd_oob_ops ops = {
1523		.len = len,
1524		.datbuf = (u8 *)buf,
1525	};
1526	int ret;
1527
1528	ret = mtd_write_oob(mtd, to, &ops);
1529	*retlen = ops.retlen;
1530
1531	return ret;
1532}
1533EXPORT_SYMBOL_GPL(mtd_write);
1534ALLOW_ERROR_INJECTION(mtd_write, ERRNO);
1535
1536/*
1537 * In blackbox flight recorder like scenarios we want to make successful writes
1538 * in interrupt context. panic_write() is only intended to be called when its
1539 * known the kernel is about to panic and we need the write to succeed. Since
1540 * the kernel is not going to be running for much longer, this function can
1541 * break locks and delay to ensure the write succeeds (but not sleep).
1542 */
1543int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1544		    const u_char *buf)
1545{
1546	struct mtd_info *master = mtd_get_master(mtd);
1547
1548	*retlen = 0;
1549	if (!master->_panic_write)
1550		return -EOPNOTSUPP;
1551	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1552		return -EINVAL;
1553	if (!(mtd->flags & MTD_WRITEABLE))
1554		return -EROFS;
1555	if (!len)
1556		return 0;
1557	if (!master->oops_panic_write)
1558		master->oops_panic_write = true;
1559
1560	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1561				    retlen, buf);
1562}
1563EXPORT_SYMBOL_GPL(mtd_panic_write);
1564
1565static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1566			     struct mtd_oob_ops *ops)
1567{
1568	/*
1569	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1570	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1571	 *  this case.
1572	 */
1573	if (!ops->datbuf)
1574		ops->len = 0;
1575
1576	if (!ops->oobbuf)
1577		ops->ooblen = 0;
1578
1579	if (offs < 0 || offs + ops->len > mtd->size)
1580		return -EINVAL;
1581
1582	if (ops->ooblen) {
1583		size_t maxooblen;
1584
1585		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1586			return -EINVAL;
1587
1588		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1589				      mtd_div_by_ws(offs, mtd)) *
1590			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1591		if (ops->ooblen > maxooblen)
1592			return -EINVAL;
1593	}
1594
1595	return 0;
1596}
1597
1598static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1599			    struct mtd_oob_ops *ops)
1600{
1601	struct mtd_info *master = mtd_get_master(mtd);
1602	int ret;
1603
1604	from = mtd_get_master_ofs(mtd, from);
1605	if (master->_read_oob)
1606		ret = master->_read_oob(master, from, ops);
1607	else
1608		ret = master->_read(master, from, ops->len, &ops->retlen,
1609				    ops->datbuf);
1610
1611	return ret;
1612}
1613
1614static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1615			     struct mtd_oob_ops *ops)
1616{
1617	struct mtd_info *master = mtd_get_master(mtd);
1618	int ret;
1619
1620	to = mtd_get_master_ofs(mtd, to);
1621	if (master->_write_oob)
1622		ret = master->_write_oob(master, to, ops);
1623	else
1624		ret = master->_write(master, to, ops->len, &ops->retlen,
1625				     ops->datbuf);
1626
1627	return ret;
1628}
1629
1630static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1631			       struct mtd_oob_ops *ops)
1632{
1633	struct mtd_info *master = mtd_get_master(mtd);
1634	int ngroups = mtd_pairing_groups(master);
1635	int npairs = mtd_wunit_per_eb(master) / ngroups;
1636	struct mtd_oob_ops adjops = *ops;
1637	unsigned int wunit, oobavail;
1638	struct mtd_pairing_info info;
1639	int max_bitflips = 0;
1640	u32 ebofs, pageofs;
1641	loff_t base, pos;
1642
1643	ebofs = mtd_mod_by_eb(start, mtd);
1644	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1645	info.group = 0;
1646	info.pair = mtd_div_by_ws(ebofs, mtd);
1647	pageofs = mtd_mod_by_ws(ebofs, mtd);
1648	oobavail = mtd_oobavail(mtd, ops);
1649
1650	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1651		int ret;
1652
1653		if (info.pair >= npairs) {
1654			info.pair = 0;
1655			base += master->erasesize;
1656		}
1657
1658		wunit = mtd_pairing_info_to_wunit(master, &info);
1659		pos = mtd_wunit_to_offset(mtd, base, wunit);
1660
1661		adjops.len = ops->len - ops->retlen;
1662		if (adjops.len > mtd->writesize - pageofs)
1663			adjops.len = mtd->writesize - pageofs;
1664
1665		adjops.ooblen = ops->ooblen - ops->oobretlen;
1666		if (adjops.ooblen > oobavail - adjops.ooboffs)
1667			adjops.ooblen = oobavail - adjops.ooboffs;
1668
1669		if (read) {
1670			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1671			if (ret > 0)
1672				max_bitflips = max(max_bitflips, ret);
1673		} else {
1674			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1675		}
1676
1677		if (ret < 0)
1678			return ret;
1679
1680		max_bitflips = max(max_bitflips, ret);
1681		ops->retlen += adjops.retlen;
1682		ops->oobretlen += adjops.oobretlen;
1683		adjops.datbuf += adjops.retlen;
1684		adjops.oobbuf += adjops.oobretlen;
1685		adjops.ooboffs = 0;
1686		pageofs = 0;
1687		info.pair++;
1688	}
1689
1690	return max_bitflips;
1691}
1692
1693int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1694{
1695	struct mtd_info *master = mtd_get_master(mtd);
1696	struct mtd_ecc_stats old_stats = master->ecc_stats;
1697	int ret_code;
1698
1699	ops->retlen = ops->oobretlen = 0;
1700
1701	ret_code = mtd_check_oob_ops(mtd, from, ops);
1702	if (ret_code)
1703		return ret_code;
1704
1705	ledtrig_mtd_activity();
1706
1707	/* Check the validity of a potential fallback on mtd->_read */
1708	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1709		return -EOPNOTSUPP;
1710
1711	if (ops->stats)
1712		memset(ops->stats, 0, sizeof(*ops->stats));
1713
1714	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1715		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1716	else
1717		ret_code = mtd_read_oob_std(mtd, from, ops);
1718
1719	mtd_update_ecc_stats(mtd, master, &old_stats);
1720
1721	/*
1722	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1723	 * similar to mtd->_read(), returning a non-negative integer
1724	 * representing max bitflips. In other cases, mtd->_read_oob() may
1725	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1726	 */
1727	if (unlikely(ret_code < 0))
1728		return ret_code;
1729	if (mtd->ecc_strength == 0)
1730		return 0;	/* device lacks ecc */
1731	if (ops->stats)
1732		ops->stats->max_bitflips = ret_code;
1733	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1734}
1735EXPORT_SYMBOL_GPL(mtd_read_oob);
1736
1737int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1738				struct mtd_oob_ops *ops)
1739{
1740	struct mtd_info *master = mtd_get_master(mtd);
1741	int ret;
1742
1743	ops->retlen = ops->oobretlen = 0;
1744
1745	if (!(mtd->flags & MTD_WRITEABLE))
1746		return -EROFS;
1747
1748	ret = mtd_check_oob_ops(mtd, to, ops);
1749	if (ret)
1750		return ret;
1751
1752	ledtrig_mtd_activity();
1753
1754	/* Check the validity of a potential fallback on mtd->_write */
1755	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1756		return -EOPNOTSUPP;
1757
1758	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1759		return mtd_io_emulated_slc(mtd, to, false, ops);
1760
1761	return mtd_write_oob_std(mtd, to, ops);
1762}
1763EXPORT_SYMBOL_GPL(mtd_write_oob);
1764
1765/**
1766 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1767 * @mtd: MTD device structure
1768 * @section: ECC section. Depending on the layout you may have all the ECC
1769 *	     bytes stored in a single contiguous section, or one section
1770 *	     per ECC chunk (and sometime several sections for a single ECC
1771 *	     ECC chunk)
1772 * @oobecc: OOB region struct filled with the appropriate ECC position
1773 *	    information
1774 *
1775 * This function returns ECC section information in the OOB area. If you want
1776 * to get all the ECC bytes information, then you should call
1777 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1778 *
1779 * Returns zero on success, a negative error code otherwise.
1780 */
1781int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1782		      struct mtd_oob_region *oobecc)
1783{
1784	struct mtd_info *master = mtd_get_master(mtd);
1785
1786	memset(oobecc, 0, sizeof(*oobecc));
1787
1788	if (!master || section < 0)
1789		return -EINVAL;
1790
1791	if (!master->ooblayout || !master->ooblayout->ecc)
1792		return -ENOTSUPP;
1793
1794	return master->ooblayout->ecc(master, section, oobecc);
1795}
1796EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1797
1798/**
1799 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1800 *			section
1801 * @mtd: MTD device structure
1802 * @section: Free section you are interested in. Depending on the layout
1803 *	     you may have all the free bytes stored in a single contiguous
1804 *	     section, or one section per ECC chunk plus an extra section
1805 *	     for the remaining bytes (or other funky layout).
1806 * @oobfree: OOB region struct filled with the appropriate free position
1807 *	     information
1808 *
1809 * This function returns free bytes position in the OOB area. If you want
1810 * to get all the free bytes information, then you should call
1811 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1812 *
1813 * Returns zero on success, a negative error code otherwise.
1814 */
1815int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1816		       struct mtd_oob_region *oobfree)
1817{
1818	struct mtd_info *master = mtd_get_master(mtd);
1819
1820	memset(oobfree, 0, sizeof(*oobfree));
1821
1822	if (!master || section < 0)
1823		return -EINVAL;
1824
1825	if (!master->ooblayout || !master->ooblayout->free)
1826		return -ENOTSUPP;
1827
1828	return master->ooblayout->free(master, section, oobfree);
1829}
1830EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1831
1832/**
1833 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1834 * @mtd: mtd info structure
1835 * @byte: the byte we are searching for
1836 * @sectionp: pointer where the section id will be stored
1837 * @oobregion: used to retrieve the ECC position
1838 * @iter: iterator function. Should be either mtd_ooblayout_free or
1839 *	  mtd_ooblayout_ecc depending on the region type you're searching for
1840 *
1841 * This function returns the section id and oobregion information of a
1842 * specific byte. For example, say you want to know where the 4th ECC byte is
1843 * stored, you'll use:
1844 *
1845 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1846 *
1847 * Returns zero on success, a negative error code otherwise.
1848 */
1849static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1850				int *sectionp, struct mtd_oob_region *oobregion,
1851				int (*iter)(struct mtd_info *,
1852					    int section,
1853					    struct mtd_oob_region *oobregion))
1854{
1855	int pos = 0, ret, section = 0;
1856
1857	memset(oobregion, 0, sizeof(*oobregion));
1858
1859	while (1) {
1860		ret = iter(mtd, section, oobregion);
1861		if (ret)
1862			return ret;
1863
1864		if (pos + oobregion->length > byte)
1865			break;
1866
1867		pos += oobregion->length;
1868		section++;
1869	}
1870
1871	/*
1872	 * Adjust region info to make it start at the beginning at the
1873	 * 'start' ECC byte.
1874	 */
1875	oobregion->offset += byte - pos;
1876	oobregion->length -= byte - pos;
1877	*sectionp = section;
1878
1879	return 0;
1880}
1881
1882/**
1883 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1884 *				  ECC byte
1885 * @mtd: mtd info structure
1886 * @eccbyte: the byte we are searching for
1887 * @section: pointer where the section id will be stored
1888 * @oobregion: OOB region information
1889 *
1890 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1891 * byte.
1892 *
1893 * Returns zero on success, a negative error code otherwise.
1894 */
1895int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1896				 int *section,
1897				 struct mtd_oob_region *oobregion)
1898{
1899	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1900					 mtd_ooblayout_ecc);
1901}
1902EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1903
1904/**
1905 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1906 * @mtd: mtd info structure
1907 * @buf: destination buffer to store OOB bytes
1908 * @oobbuf: OOB buffer
1909 * @start: first byte to retrieve
1910 * @nbytes: number of bytes to retrieve
1911 * @iter: section iterator
1912 *
1913 * Extract bytes attached to a specific category (ECC or free)
1914 * from the OOB buffer and copy them into buf.
1915 *
1916 * Returns zero on success, a negative error code otherwise.
1917 */
1918static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1919				const u8 *oobbuf, int start, int nbytes,
1920				int (*iter)(struct mtd_info *,
1921					    int section,
1922					    struct mtd_oob_region *oobregion))
1923{
1924	struct mtd_oob_region oobregion;
1925	int section, ret;
1926
1927	ret = mtd_ooblayout_find_region(mtd, start, &section,
1928					&oobregion, iter);
1929
1930	while (!ret) {
1931		int cnt;
1932
1933		cnt = min_t(int, nbytes, oobregion.length);
1934		memcpy(buf, oobbuf + oobregion.offset, cnt);
1935		buf += cnt;
1936		nbytes -= cnt;
1937
1938		if (!nbytes)
1939			break;
1940
1941		ret = iter(mtd, ++section, &oobregion);
1942	}
1943
1944	return ret;
1945}
1946
1947/**
1948 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1949 * @mtd: mtd info structure
1950 * @buf: source buffer to get OOB bytes from
1951 * @oobbuf: OOB buffer
1952 * @start: first OOB byte to set
1953 * @nbytes: number of OOB bytes to set
1954 * @iter: section iterator
1955 *
1956 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1957 * is selected by passing the appropriate iterator.
1958 *
1959 * Returns zero on success, a negative error code otherwise.
1960 */
1961static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1962				u8 *oobbuf, int start, int nbytes,
1963				int (*iter)(struct mtd_info *,
1964					    int section,
1965					    struct mtd_oob_region *oobregion))
1966{
1967	struct mtd_oob_region oobregion;
1968	int section, ret;
1969
1970	ret = mtd_ooblayout_find_region(mtd, start, &section,
1971					&oobregion, iter);
1972
1973	while (!ret) {
1974		int cnt;
1975
1976		cnt = min_t(int, nbytes, oobregion.length);
1977		memcpy(oobbuf + oobregion.offset, buf, cnt);
1978		buf += cnt;
1979		nbytes -= cnt;
1980
1981		if (!nbytes)
1982			break;
1983
1984		ret = iter(mtd, ++section, &oobregion);
1985	}
1986
1987	return ret;
1988}
1989
1990/**
1991 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1992 * @mtd: mtd info structure
1993 * @iter: category iterator
1994 *
1995 * Count the number of bytes in a given category.
1996 *
1997 * Returns a positive value on success, a negative error code otherwise.
1998 */
1999static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
2000				int (*iter)(struct mtd_info *,
2001					    int section,
2002					    struct mtd_oob_region *oobregion))
2003{
2004	struct mtd_oob_region oobregion;
2005	int section = 0, ret, nbytes = 0;
2006
2007	while (1) {
2008		ret = iter(mtd, section++, &oobregion);
2009		if (ret) {
2010			if (ret == -ERANGE)
2011				ret = nbytes;
2012			break;
2013		}
2014
2015		nbytes += oobregion.length;
2016	}
2017
2018	return ret;
2019}
2020
2021/**
2022 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2023 * @mtd: mtd info structure
2024 * @eccbuf: destination buffer to store ECC bytes
2025 * @oobbuf: OOB buffer
2026 * @start: first ECC byte to retrieve
2027 * @nbytes: number of ECC bytes to retrieve
2028 *
2029 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2030 *
2031 * Returns zero on success, a negative error code otherwise.
2032 */
2033int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2034			       const u8 *oobbuf, int start, int nbytes)
2035{
2036	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2037				       mtd_ooblayout_ecc);
2038}
2039EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2040
2041/**
2042 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2043 * @mtd: mtd info structure
2044 * @eccbuf: source buffer to get ECC bytes from
2045 * @oobbuf: OOB buffer
2046 * @start: first ECC byte to set
2047 * @nbytes: number of ECC bytes to set
2048 *
2049 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2050 *
2051 * Returns zero on success, a negative error code otherwise.
2052 */
2053int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2054			       u8 *oobbuf, int start, int nbytes)
2055{
2056	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2057				       mtd_ooblayout_ecc);
2058}
2059EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2060
2061/**
2062 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2063 * @mtd: mtd info structure
2064 * @databuf: destination buffer to store ECC bytes
2065 * @oobbuf: OOB buffer
2066 * @start: first ECC byte to retrieve
2067 * @nbytes: number of ECC bytes to retrieve
2068 *
2069 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2070 *
2071 * Returns zero on success, a negative error code otherwise.
2072 */
2073int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2074				const u8 *oobbuf, int start, int nbytes)
2075{
2076	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2077				       mtd_ooblayout_free);
2078}
2079EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2080
2081/**
2082 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2083 * @mtd: mtd info structure
2084 * @databuf: source buffer to get data bytes from
2085 * @oobbuf: OOB buffer
2086 * @start: first ECC byte to set
2087 * @nbytes: number of ECC bytes to set
2088 *
2089 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2090 *
2091 * Returns zero on success, a negative error code otherwise.
2092 */
2093int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2094				u8 *oobbuf, int start, int nbytes)
2095{
2096	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2097				       mtd_ooblayout_free);
2098}
2099EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2100
2101/**
2102 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2103 * @mtd: mtd info structure
2104 *
2105 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2106 *
2107 * Returns zero on success, a negative error code otherwise.
2108 */
2109int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2110{
2111	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2112}
2113EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2114
2115/**
2116 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2117 * @mtd: mtd info structure
2118 *
2119 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2120 *
2121 * Returns zero on success, a negative error code otherwise.
2122 */
2123int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2124{
2125	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2126}
2127EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2128
2129/*
2130 * Method to access the protection register area, present in some flash
2131 * devices. The user data is one time programmable but the factory data is read
2132 * only.
2133 */
2134int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2135			   struct otp_info *buf)
2136{
2137	struct mtd_info *master = mtd_get_master(mtd);
2138
2139	if (!master->_get_fact_prot_info)
2140		return -EOPNOTSUPP;
2141	if (!len)
2142		return 0;
2143	return master->_get_fact_prot_info(master, len, retlen, buf);
2144}
2145EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2146
2147int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2148			   size_t *retlen, u_char *buf)
2149{
2150	struct mtd_info *master = mtd_get_master(mtd);
2151
2152	*retlen = 0;
2153	if (!master->_read_fact_prot_reg)
2154		return -EOPNOTSUPP;
2155	if (!len)
2156		return 0;
2157	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2158}
2159EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2160
2161int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2162			   struct otp_info *buf)
2163{
2164	struct mtd_info *master = mtd_get_master(mtd);
2165
2166	if (!master->_get_user_prot_info)
2167		return -EOPNOTSUPP;
2168	if (!len)
2169		return 0;
2170	return master->_get_user_prot_info(master, len, retlen, buf);
2171}
2172EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2173
2174int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2175			   size_t *retlen, u_char *buf)
2176{
2177	struct mtd_info *master = mtd_get_master(mtd);
2178
2179	*retlen = 0;
2180	if (!master->_read_user_prot_reg)
2181		return -EOPNOTSUPP;
2182	if (!len)
2183		return 0;
2184	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2185}
2186EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2187
2188int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2189			    size_t *retlen, const u_char *buf)
2190{
2191	struct mtd_info *master = mtd_get_master(mtd);
2192	int ret;
2193
2194	*retlen = 0;
2195	if (!master->_write_user_prot_reg)
2196		return -EOPNOTSUPP;
2197	if (!len)
2198		return 0;
2199	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2200	if (ret)
2201		return ret;
2202
2203	/*
2204	 * If no data could be written at all, we are out of memory and
2205	 * must return -ENOSPC.
2206	 */
2207	return (*retlen) ? 0 : -ENOSPC;
2208}
2209EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2210
2211int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2212{
2213	struct mtd_info *master = mtd_get_master(mtd);
2214
2215	if (!master->_lock_user_prot_reg)
2216		return -EOPNOTSUPP;
2217	if (!len)
2218		return 0;
2219	return master->_lock_user_prot_reg(master, from, len);
2220}
2221EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2222
2223int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2224{
2225	struct mtd_info *master = mtd_get_master(mtd);
2226
2227	if (!master->_erase_user_prot_reg)
2228		return -EOPNOTSUPP;
2229	if (!len)
2230		return 0;
2231	return master->_erase_user_prot_reg(master, from, len);
2232}
2233EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2234
2235/* Chip-supported device locking */
2236int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2237{
2238	struct mtd_info *master = mtd_get_master(mtd);
2239
2240	if (!master->_lock)
2241		return -EOPNOTSUPP;
2242	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2243		return -EINVAL;
2244	if (!len)
2245		return 0;
2246
2247	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2248		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2249		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2250	}
2251
2252	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2253}
2254EXPORT_SYMBOL_GPL(mtd_lock);
2255
2256int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2257{
2258	struct mtd_info *master = mtd_get_master(mtd);
2259
2260	if (!master->_unlock)
2261		return -EOPNOTSUPP;
2262	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2263		return -EINVAL;
2264	if (!len)
2265		return 0;
2266
2267	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2268		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2269		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2270	}
2271
2272	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2273}
2274EXPORT_SYMBOL_GPL(mtd_unlock);
2275
2276int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2277{
2278	struct mtd_info *master = mtd_get_master(mtd);
2279
2280	if (!master->_is_locked)
2281		return -EOPNOTSUPP;
2282	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2283		return -EINVAL;
2284	if (!len)
2285		return 0;
2286
2287	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2288		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2289		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2290	}
2291
2292	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2293}
2294EXPORT_SYMBOL_GPL(mtd_is_locked);
2295
2296int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2297{
2298	struct mtd_info *master = mtd_get_master(mtd);
2299
2300	if (ofs < 0 || ofs >= mtd->size)
2301		return -EINVAL;
2302	if (!master->_block_isreserved)
2303		return 0;
2304
2305	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2306		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2307
2308	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2309}
2310EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2311
2312int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2313{
2314	struct mtd_info *master = mtd_get_master(mtd);
2315
2316	if (ofs < 0 || ofs >= mtd->size)
2317		return -EINVAL;
2318	if (!master->_block_isbad)
2319		return 0;
2320
2321	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2322		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2323
2324	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2325}
2326EXPORT_SYMBOL_GPL(mtd_block_isbad);
2327
2328int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2329{
2330	struct mtd_info *master = mtd_get_master(mtd);
2331	int ret;
2332
2333	if (!master->_block_markbad)
2334		return -EOPNOTSUPP;
2335	if (ofs < 0 || ofs >= mtd->size)
2336		return -EINVAL;
2337	if (!(mtd->flags & MTD_WRITEABLE))
2338		return -EROFS;
2339
2340	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2341		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2342
2343	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2344	if (ret)
2345		return ret;
2346
2347	while (mtd->parent) {
2348		mtd->ecc_stats.badblocks++;
2349		mtd = mtd->parent;
2350	}
2351
2352	return 0;
2353}
2354EXPORT_SYMBOL_GPL(mtd_block_markbad);
2355ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO);
2356
2357/*
2358 * default_mtd_writev - the default writev method
2359 * @mtd: mtd device description object pointer
2360 * @vecs: the vectors to write
2361 * @count: count of vectors in @vecs
2362 * @to: the MTD device offset to write to
2363 * @retlen: on exit contains the count of bytes written to the MTD device.
2364 *
2365 * This function returns zero in case of success and a negative error code in
2366 * case of failure.
2367 */
2368static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2369			      unsigned long count, loff_t to, size_t *retlen)
2370{
2371	unsigned long i;
2372	size_t totlen = 0, thislen;
2373	int ret = 0;
2374
2375	for (i = 0; i < count; i++) {
2376		if (!vecs[i].iov_len)
2377			continue;
2378		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2379				vecs[i].iov_base);
2380		totlen += thislen;
2381		if (ret || thislen != vecs[i].iov_len)
2382			break;
2383		to += vecs[i].iov_len;
2384	}
2385	*retlen = totlen;
2386	return ret;
2387}
2388
2389/*
2390 * mtd_writev - the vector-based MTD write method
2391 * @mtd: mtd device description object pointer
2392 * @vecs: the vectors to write
2393 * @count: count of vectors in @vecs
2394 * @to: the MTD device offset to write to
2395 * @retlen: on exit contains the count of bytes written to the MTD device.
2396 *
2397 * This function returns zero in case of success and a negative error code in
2398 * case of failure.
2399 */
2400int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2401	       unsigned long count, loff_t to, size_t *retlen)
2402{
2403	struct mtd_info *master = mtd_get_master(mtd);
2404
2405	*retlen = 0;
2406	if (!(mtd->flags & MTD_WRITEABLE))
2407		return -EROFS;
2408
2409	if (!master->_writev)
2410		return default_mtd_writev(mtd, vecs, count, to, retlen);
2411
2412	return master->_writev(master, vecs, count,
2413			       mtd_get_master_ofs(mtd, to), retlen);
2414}
2415EXPORT_SYMBOL_GPL(mtd_writev);
2416
2417/**
2418 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2419 * @mtd: mtd device description object pointer
2420 * @size: a pointer to the ideal or maximum size of the allocation, points
2421 *        to the actual allocation size on success.
2422 *
2423 * This routine attempts to allocate a contiguous kernel buffer up to
2424 * the specified size, backing off the size of the request exponentially
2425 * until the request succeeds or until the allocation size falls below
2426 * the system page size. This attempts to make sure it does not adversely
2427 * impact system performance, so when allocating more than one page, we
2428 * ask the memory allocator to avoid re-trying, swapping, writing back
2429 * or performing I/O.
2430 *
2431 * Note, this function also makes sure that the allocated buffer is aligned to
2432 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2433 *
2434 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2435 * to handle smaller (i.e. degraded) buffer allocations under low- or
2436 * fragmented-memory situations where such reduced allocations, from a
2437 * requested ideal, are allowed.
2438 *
2439 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2440 */
2441void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2442{
2443	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2444	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2445	void *kbuf;
2446
2447	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2448
2449	while (*size > min_alloc) {
2450		kbuf = kmalloc(*size, flags);
2451		if (kbuf)
2452			return kbuf;
2453
2454		*size >>= 1;
2455		*size = ALIGN(*size, mtd->writesize);
2456	}
2457
2458	/*
2459	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2460	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2461	 */
2462	return kmalloc(*size, GFP_KERNEL);
2463}
2464EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2465
2466#ifdef CONFIG_PROC_FS
2467
2468/*====================================================================*/
2469/* Support for /proc/mtd */
2470
2471static int mtd_proc_show(struct seq_file *m, void *v)
2472{
2473	struct mtd_info *mtd;
2474
2475	seq_puts(m, "dev:    size   erasesize  name\n");
2476	mutex_lock(&mtd_table_mutex);
2477	mtd_for_each_device(mtd) {
2478		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2479			   mtd->index, (unsigned long long)mtd->size,
2480			   mtd->erasesize, mtd->name);
2481	}
2482	mutex_unlock(&mtd_table_mutex);
2483	return 0;
2484}
2485#endif /* CONFIG_PROC_FS */
2486
2487/*====================================================================*/
2488/* Init code */
2489
2490static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2491{
2492	struct backing_dev_info *bdi;
2493	int ret;
2494
2495	bdi = bdi_alloc(NUMA_NO_NODE);
2496	if (!bdi)
2497		return ERR_PTR(-ENOMEM);
2498	bdi->ra_pages = 0;
2499	bdi->io_pages = 0;
2500
2501	/*
2502	 * We put '-0' suffix to the name to get the same name format as we
2503	 * used to get. Since this is called only once, we get a unique name.
2504	 */
2505	ret = bdi_register(bdi, "%.28s-0", name);
2506	if (ret)
2507		bdi_put(bdi);
2508
2509	return ret ? ERR_PTR(ret) : bdi;
2510}
2511
2512static struct proc_dir_entry *proc_mtd;
2513
2514static int __init init_mtd(void)
2515{
2516	int ret;
2517
2518	ret = class_register(&mtd_class);
2519	if (ret)
2520		goto err_reg;
2521
2522	mtd_bdi = mtd_bdi_init("mtd");
2523	if (IS_ERR(mtd_bdi)) {
2524		ret = PTR_ERR(mtd_bdi);
2525		goto err_bdi;
2526	}
2527
2528	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2529
2530	ret = init_mtdchar();
2531	if (ret)
2532		goto out_procfs;
2533
2534	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2535	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2536			    &mtd_expert_analysis_mode);
2537
2538	return 0;
2539
2540out_procfs:
2541	if (proc_mtd)
2542		remove_proc_entry("mtd", NULL);
2543	bdi_unregister(mtd_bdi);
2544	bdi_put(mtd_bdi);
2545err_bdi:
2546	class_unregister(&mtd_class);
2547err_reg:
2548	pr_err("Error registering mtd class or bdi: %d\n", ret);
2549	return ret;
2550}
2551
2552static void __exit cleanup_mtd(void)
2553{
2554	debugfs_remove_recursive(dfs_dir_mtd);
2555	cleanup_mtdchar();
2556	if (proc_mtd)
2557		remove_proc_entry("mtd", NULL);
2558	class_unregister(&mtd_class);
2559	bdi_unregister(mtd_bdi);
2560	bdi_put(mtd_bdi);
2561	idr_destroy(&mtd_idr);
2562}
2563
2564module_init(init_mtd);
2565module_exit(cleanup_mtd);
2566
2567MODULE_LICENSE("GPL");
2568MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2569MODULE_DESCRIPTION("Core MTD registration and access routines");
2570