1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * MTD device concatenation layer
4 *
5 * Copyright �� 2002 Robert Kaiser <rkaiser@sysgo.de>
6 * Copyright �� 2002-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * NAND support by Christian Gan <cgan@iders.ca>
9 */
10
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/sched.h>
15#include <linux/types.h>
16#include <linux/backing-dev.h>
17
18#include <linux/mtd/mtd.h>
19#include <linux/mtd/concat.h>
20
21#include <asm/div64.h>
22
23/*
24 * Our storage structure:
25 * Subdev points to an array of pointers to struct mtd_info objects
26 * which is allocated along with this structure
27 *
28 */
29struct mtd_concat {
30	struct mtd_info mtd;
31	int num_subdev;
32	struct mtd_info **subdev;
33};
34
35/*
36 * how to calculate the size required for the above structure,
37 * including the pointer array subdev points to:
38 */
39#define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
40	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
41
42/*
43 * Given a pointer to the MTD object in the mtd_concat structure,
44 * we can retrieve the pointer to that structure with this macro.
45 */
46#define CONCAT(x)  ((struct mtd_concat *)(x))
47
48/*
49 * MTD methods which look up the relevant subdevice, translate the
50 * effective address and pass through to the subdevice.
51 */
52
53static int
54concat_read(struct mtd_info *mtd, loff_t from, size_t len,
55	    size_t * retlen, u_char * buf)
56{
57	struct mtd_concat *concat = CONCAT(mtd);
58	int ret = 0, err;
59	int i;
60
61	for (i = 0; i < concat->num_subdev; i++) {
62		struct mtd_info *subdev = concat->subdev[i];
63		size_t size, retsize;
64
65		if (from >= subdev->size) {
66			/* Not destined for this subdev */
67			size = 0;
68			from -= subdev->size;
69			continue;
70		}
71		if (from + len > subdev->size)
72			/* First part goes into this subdev */
73			size = subdev->size - from;
74		else
75			/* Entire transaction goes into this subdev */
76			size = len;
77
78		err = mtd_read(subdev, from, size, &retsize, buf);
79
80		/* Save information about bitflips! */
81		if (unlikely(err)) {
82			if (mtd_is_eccerr(err)) {
83				mtd->ecc_stats.failed++;
84				ret = err;
85			} else if (mtd_is_bitflip(err)) {
86				mtd->ecc_stats.corrected++;
87				/* Do not overwrite -EBADMSG !! */
88				if (!ret)
89					ret = err;
90			} else
91				return err;
92		}
93
94		*retlen += retsize;
95		len -= size;
96		if (len == 0)
97			return ret;
98
99		buf += size;
100		from = 0;
101	}
102	return -EINVAL;
103}
104
105static int
106concat_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
107	     size_t * retlen, const u_char * buf)
108{
109	struct mtd_concat *concat = CONCAT(mtd);
110	int err = -EINVAL;
111	int i;
112	for (i = 0; i < concat->num_subdev; i++) {
113		struct mtd_info *subdev = concat->subdev[i];
114		size_t size, retsize;
115
116		if (to >= subdev->size) {
117			to -= subdev->size;
118			continue;
119		}
120		if (to + len > subdev->size)
121			size = subdev->size - to;
122		else
123			size = len;
124
125		err = mtd_panic_write(subdev, to, size, &retsize, buf);
126		if (err == -EOPNOTSUPP) {
127			printk(KERN_ERR "mtdconcat: Cannot write from panic without panic_write\n");
128			return err;
129		}
130		if (err)
131			break;
132
133		*retlen += retsize;
134		len -= size;
135		if (len == 0)
136			break;
137
138		err = -EINVAL;
139		buf += size;
140		to = 0;
141	}
142	return err;
143}
144
145
146static int
147concat_write(struct mtd_info *mtd, loff_t to, size_t len,
148	     size_t * retlen, const u_char * buf)
149{
150	struct mtd_concat *concat = CONCAT(mtd);
151	int err = -EINVAL;
152	int i;
153
154	for (i = 0; i < concat->num_subdev; i++) {
155		struct mtd_info *subdev = concat->subdev[i];
156		size_t size, retsize;
157
158		if (to >= subdev->size) {
159			size = 0;
160			to -= subdev->size;
161			continue;
162		}
163		if (to + len > subdev->size)
164			size = subdev->size - to;
165		else
166			size = len;
167
168		err = mtd_write(subdev, to, size, &retsize, buf);
169		if (err)
170			break;
171
172		*retlen += retsize;
173		len -= size;
174		if (len == 0)
175			break;
176
177		err = -EINVAL;
178		buf += size;
179		to = 0;
180	}
181	return err;
182}
183
184static int
185concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
186		unsigned long count, loff_t to, size_t * retlen)
187{
188	struct mtd_concat *concat = CONCAT(mtd);
189	struct kvec *vecs_copy;
190	unsigned long entry_low, entry_high;
191	size_t total_len = 0;
192	int i;
193	int err = -EINVAL;
194
195	/* Calculate total length of data */
196	for (i = 0; i < count; i++)
197		total_len += vecs[i].iov_len;
198
199	/* Check alignment */
200	if (mtd->writesize > 1) {
201		uint64_t __to = to;
202		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
203			return -EINVAL;
204	}
205
206	/* make a copy of vecs */
207	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
208	if (!vecs_copy)
209		return -ENOMEM;
210
211	entry_low = 0;
212	for (i = 0; i < concat->num_subdev; i++) {
213		struct mtd_info *subdev = concat->subdev[i];
214		size_t size, wsize, retsize, old_iov_len;
215
216		if (to >= subdev->size) {
217			to -= subdev->size;
218			continue;
219		}
220
221		size = min_t(uint64_t, total_len, subdev->size - to);
222		wsize = size; /* store for future use */
223
224		entry_high = entry_low;
225		while (entry_high < count) {
226			if (size <= vecs_copy[entry_high].iov_len)
227				break;
228			size -= vecs_copy[entry_high++].iov_len;
229		}
230
231		old_iov_len = vecs_copy[entry_high].iov_len;
232		vecs_copy[entry_high].iov_len = size;
233
234		err = mtd_writev(subdev, &vecs_copy[entry_low],
235				 entry_high - entry_low + 1, to, &retsize);
236
237		vecs_copy[entry_high].iov_len = old_iov_len - size;
238		vecs_copy[entry_high].iov_base += size;
239
240		entry_low = entry_high;
241
242		if (err)
243			break;
244
245		*retlen += retsize;
246		total_len -= wsize;
247
248		if (total_len == 0)
249			break;
250
251		err = -EINVAL;
252		to = 0;
253	}
254
255	kfree(vecs_copy);
256	return err;
257}
258
259static int
260concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
261{
262	struct mtd_concat *concat = CONCAT(mtd);
263	struct mtd_oob_ops devops = *ops;
264	int i, err, ret = 0;
265
266	ops->retlen = ops->oobretlen = 0;
267
268	for (i = 0; i < concat->num_subdev; i++) {
269		struct mtd_info *subdev = concat->subdev[i];
270
271		if (from >= subdev->size) {
272			from -= subdev->size;
273			continue;
274		}
275
276		/* partial read ? */
277		if (from + devops.len > subdev->size)
278			devops.len = subdev->size - from;
279
280		err = mtd_read_oob(subdev, from, &devops);
281		ops->retlen += devops.retlen;
282		ops->oobretlen += devops.oobretlen;
283
284		/* Save information about bitflips! */
285		if (unlikely(err)) {
286			if (mtd_is_eccerr(err)) {
287				mtd->ecc_stats.failed++;
288				ret = err;
289			} else if (mtd_is_bitflip(err)) {
290				mtd->ecc_stats.corrected++;
291				/* Do not overwrite -EBADMSG !! */
292				if (!ret)
293					ret = err;
294			} else
295				return err;
296		}
297
298		if (devops.datbuf) {
299			devops.len = ops->len - ops->retlen;
300			if (!devops.len)
301				return ret;
302			devops.datbuf += devops.retlen;
303		}
304		if (devops.oobbuf) {
305			devops.ooblen = ops->ooblen - ops->oobretlen;
306			if (!devops.ooblen)
307				return ret;
308			devops.oobbuf += ops->oobretlen;
309		}
310
311		from = 0;
312	}
313	return -EINVAL;
314}
315
316static int
317concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
318{
319	struct mtd_concat *concat = CONCAT(mtd);
320	struct mtd_oob_ops devops = *ops;
321	int i, err;
322
323	if (!(mtd->flags & MTD_WRITEABLE))
324		return -EROFS;
325
326	ops->retlen = ops->oobretlen = 0;
327
328	for (i = 0; i < concat->num_subdev; i++) {
329		struct mtd_info *subdev = concat->subdev[i];
330
331		if (to >= subdev->size) {
332			to -= subdev->size;
333			continue;
334		}
335
336		/* partial write ? */
337		if (to + devops.len > subdev->size)
338			devops.len = subdev->size - to;
339
340		err = mtd_write_oob(subdev, to, &devops);
341		ops->retlen += devops.retlen;
342		ops->oobretlen += devops.oobretlen;
343		if (err)
344			return err;
345
346		if (devops.datbuf) {
347			devops.len = ops->len - ops->retlen;
348			if (!devops.len)
349				return 0;
350			devops.datbuf += devops.retlen;
351		}
352		if (devops.oobbuf) {
353			devops.ooblen = ops->ooblen - ops->oobretlen;
354			if (!devops.ooblen)
355				return 0;
356			devops.oobbuf += devops.oobretlen;
357		}
358		to = 0;
359	}
360	return -EINVAL;
361}
362
363static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
364{
365	struct mtd_concat *concat = CONCAT(mtd);
366	struct mtd_info *subdev;
367	int i, err;
368	uint64_t length, offset = 0;
369	struct erase_info *erase;
370
371	/*
372	 * Check for proper erase block alignment of the to-be-erased area.
373	 * It is easier to do this based on the super device's erase
374	 * region info rather than looking at each particular sub-device
375	 * in turn.
376	 */
377	if (!concat->mtd.numeraseregions) {
378		/* the easy case: device has uniform erase block size */
379		if (instr->addr & (concat->mtd.erasesize - 1))
380			return -EINVAL;
381		if (instr->len & (concat->mtd.erasesize - 1))
382			return -EINVAL;
383	} else {
384		/* device has variable erase size */
385		struct mtd_erase_region_info *erase_regions =
386		    concat->mtd.eraseregions;
387
388		/*
389		 * Find the erase region where the to-be-erased area begins:
390		 */
391		for (i = 0; i < concat->mtd.numeraseregions &&
392		     instr->addr >= erase_regions[i].offset; i++) ;
393		--i;
394
395		/*
396		 * Now erase_regions[i] is the region in which the
397		 * to-be-erased area begins. Verify that the starting
398		 * offset is aligned to this region's erase size:
399		 */
400		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
401			return -EINVAL;
402
403		/*
404		 * now find the erase region where the to-be-erased area ends:
405		 */
406		for (; i < concat->mtd.numeraseregions &&
407		     (instr->addr + instr->len) >= erase_regions[i].offset;
408		     ++i) ;
409		--i;
410		/*
411		 * check if the ending offset is aligned to this region's erase size
412		 */
413		if (i < 0 || ((instr->addr + instr->len) &
414					(erase_regions[i].erasesize - 1)))
415			return -EINVAL;
416	}
417
418	/* make a local copy of instr to avoid modifying the caller's struct */
419	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
420
421	if (!erase)
422		return -ENOMEM;
423
424	*erase = *instr;
425	length = instr->len;
426
427	/*
428	 * find the subdevice where the to-be-erased area begins, adjust
429	 * starting offset to be relative to the subdevice start
430	 */
431	for (i = 0; i < concat->num_subdev; i++) {
432		subdev = concat->subdev[i];
433		if (subdev->size <= erase->addr) {
434			erase->addr -= subdev->size;
435			offset += subdev->size;
436		} else {
437			break;
438		}
439	}
440
441	/* must never happen since size limit has been verified above */
442	BUG_ON(i >= concat->num_subdev);
443
444	/* now do the erase: */
445	err = 0;
446	for (; length > 0; i++) {
447		/* loop for all subdevices affected by this request */
448		subdev = concat->subdev[i];	/* get current subdevice */
449
450		/* limit length to subdevice's size: */
451		if (erase->addr + length > subdev->size)
452			erase->len = subdev->size - erase->addr;
453		else
454			erase->len = length;
455
456		length -= erase->len;
457		if ((err = mtd_erase(subdev, erase))) {
458			/* sanity check: should never happen since
459			 * block alignment has been checked above */
460			BUG_ON(err == -EINVAL);
461			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
462				instr->fail_addr = erase->fail_addr + offset;
463			break;
464		}
465		/*
466		 * erase->addr specifies the offset of the area to be
467		 * erased *within the current subdevice*. It can be
468		 * non-zero only the first time through this loop, i.e.
469		 * for the first subdevice where blocks need to be erased.
470		 * All the following erases must begin at the start of the
471		 * current subdevice, i.e. at offset zero.
472		 */
473		erase->addr = 0;
474		offset += subdev->size;
475	}
476	kfree(erase);
477
478	return err;
479}
480
481static int concat_xxlock(struct mtd_info *mtd, loff_t ofs, uint64_t len,
482			 bool is_lock)
483{
484	struct mtd_concat *concat = CONCAT(mtd);
485	int i, err = -EINVAL;
486
487	for (i = 0; i < concat->num_subdev; i++) {
488		struct mtd_info *subdev = concat->subdev[i];
489		uint64_t size;
490
491		if (ofs >= subdev->size) {
492			size = 0;
493			ofs -= subdev->size;
494			continue;
495		}
496		if (ofs + len > subdev->size)
497			size = subdev->size - ofs;
498		else
499			size = len;
500
501		if (is_lock)
502			err = mtd_lock(subdev, ofs, size);
503		else
504			err = mtd_unlock(subdev, ofs, size);
505		if (err)
506			break;
507
508		len -= size;
509		if (len == 0)
510			break;
511
512		err = -EINVAL;
513		ofs = 0;
514	}
515
516	return err;
517}
518
519static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
520{
521	return concat_xxlock(mtd, ofs, len, true);
522}
523
524static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
525{
526	return concat_xxlock(mtd, ofs, len, false);
527}
528
529static int concat_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
530{
531	struct mtd_concat *concat = CONCAT(mtd);
532	int i, err = -EINVAL;
533
534	for (i = 0; i < concat->num_subdev; i++) {
535		struct mtd_info *subdev = concat->subdev[i];
536
537		if (ofs >= subdev->size) {
538			ofs -= subdev->size;
539			continue;
540		}
541
542		if (ofs + len > subdev->size)
543			break;
544
545		return mtd_is_locked(subdev, ofs, len);
546	}
547
548	return err;
549}
550
551static void concat_sync(struct mtd_info *mtd)
552{
553	struct mtd_concat *concat = CONCAT(mtd);
554	int i;
555
556	for (i = 0; i < concat->num_subdev; i++) {
557		struct mtd_info *subdev = concat->subdev[i];
558		mtd_sync(subdev);
559	}
560}
561
562static int concat_suspend(struct mtd_info *mtd)
563{
564	struct mtd_concat *concat = CONCAT(mtd);
565	int i, rc = 0;
566
567	for (i = 0; i < concat->num_subdev; i++) {
568		struct mtd_info *subdev = concat->subdev[i];
569		if ((rc = mtd_suspend(subdev)) < 0)
570			return rc;
571	}
572	return rc;
573}
574
575static void concat_resume(struct mtd_info *mtd)
576{
577	struct mtd_concat *concat = CONCAT(mtd);
578	int i;
579
580	for (i = 0; i < concat->num_subdev; i++) {
581		struct mtd_info *subdev = concat->subdev[i];
582		mtd_resume(subdev);
583	}
584}
585
586static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
587{
588	struct mtd_concat *concat = CONCAT(mtd);
589	int i, res = 0;
590
591	if (!mtd_can_have_bb(concat->subdev[0]))
592		return res;
593
594	for (i = 0; i < concat->num_subdev; i++) {
595		struct mtd_info *subdev = concat->subdev[i];
596
597		if (ofs >= subdev->size) {
598			ofs -= subdev->size;
599			continue;
600		}
601
602		res = mtd_block_isbad(subdev, ofs);
603		break;
604	}
605
606	return res;
607}
608
609static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
610{
611	struct mtd_concat *concat = CONCAT(mtd);
612	int i, err = -EINVAL;
613
614	for (i = 0; i < concat->num_subdev; i++) {
615		struct mtd_info *subdev = concat->subdev[i];
616
617		if (ofs >= subdev->size) {
618			ofs -= subdev->size;
619			continue;
620		}
621
622		err = mtd_block_markbad(subdev, ofs);
623		if (!err)
624			mtd->ecc_stats.badblocks++;
625		break;
626	}
627
628	return err;
629}
630
631/*
632 * This function constructs a virtual MTD device by concatenating
633 * num_devs MTD devices. A pointer to the new device object is
634 * stored to *new_dev upon success. This function does _not_
635 * register any devices: this is the caller's responsibility.
636 */
637struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
638				   int num_devs,	/* number of subdevices      */
639				   const char *name)
640{				/* name for the new device   */
641	int i;
642	size_t size;
643	struct mtd_concat *concat;
644	struct mtd_info *subdev_master = NULL;
645	uint32_t max_erasesize, curr_erasesize;
646	int num_erase_region;
647	int max_writebufsize = 0;
648
649	printk(KERN_NOTICE "Concatenating MTD devices:\n");
650	for (i = 0; i < num_devs; i++)
651		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
652	printk(KERN_NOTICE "into device \"%s\"\n", name);
653
654	/* allocate the device structure */
655	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
656	concat = kzalloc(size, GFP_KERNEL);
657	if (!concat) {
658		printk
659		    ("memory allocation error while creating concatenated device \"%s\"\n",
660		     name);
661		return NULL;
662	}
663	concat->subdev = (struct mtd_info **) (concat + 1);
664
665	/*
666	 * Set up the new "super" device's MTD object structure, check for
667	 * incompatibilities between the subdevices.
668	 */
669	concat->mtd.type = subdev[0]->type;
670	concat->mtd.flags = subdev[0]->flags;
671	concat->mtd.size = subdev[0]->size;
672	concat->mtd.erasesize = subdev[0]->erasesize;
673	concat->mtd.writesize = subdev[0]->writesize;
674
675	for (i = 0; i < num_devs; i++)
676		if (max_writebufsize < subdev[i]->writebufsize)
677			max_writebufsize = subdev[i]->writebufsize;
678	concat->mtd.writebufsize = max_writebufsize;
679
680	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
681	concat->mtd.oobsize = subdev[0]->oobsize;
682	concat->mtd.oobavail = subdev[0]->oobavail;
683
684	subdev_master = mtd_get_master(subdev[0]);
685	if (subdev_master->_writev)
686		concat->mtd._writev = concat_writev;
687	if (subdev_master->_read_oob)
688		concat->mtd._read_oob = concat_read_oob;
689	if (subdev_master->_write_oob)
690		concat->mtd._write_oob = concat_write_oob;
691	if (subdev_master->_block_isbad)
692		concat->mtd._block_isbad = concat_block_isbad;
693	if (subdev_master->_block_markbad)
694		concat->mtd._block_markbad = concat_block_markbad;
695	if (subdev_master->_panic_write)
696		concat->mtd._panic_write = concat_panic_write;
697	if (subdev_master->_read)
698		concat->mtd._read = concat_read;
699	if (subdev_master->_write)
700		concat->mtd._write = concat_write;
701
702	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
703
704	concat->subdev[0] = subdev[0];
705
706	for (i = 1; i < num_devs; i++) {
707		if (concat->mtd.type != subdev[i]->type) {
708			kfree(concat);
709			printk("Incompatible device type on \"%s\"\n",
710			       subdev[i]->name);
711			return NULL;
712		}
713		if (concat->mtd.flags != subdev[i]->flags) {
714			/*
715			 * Expect all flags except MTD_WRITEABLE to be
716			 * equal on all subdevices.
717			 */
718			if ((concat->mtd.flags ^ subdev[i]->
719			     flags) & ~MTD_WRITEABLE) {
720				kfree(concat);
721				printk("Incompatible device flags on \"%s\"\n",
722				       subdev[i]->name);
723				return NULL;
724			} else
725				/* if writeable attribute differs,
726				   make super device writeable */
727				concat->mtd.flags |=
728				    subdev[i]->flags & MTD_WRITEABLE;
729		}
730
731		subdev_master = mtd_get_master(subdev[i]);
732		concat->mtd.size += subdev[i]->size;
733		concat->mtd.ecc_stats.badblocks +=
734			subdev[i]->ecc_stats.badblocks;
735		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
736		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
737		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
738		    !concat->mtd._read_oob  != !subdev_master->_read_oob ||
739		    !concat->mtd._write_oob != !subdev_master->_write_oob) {
740			/*
741			 * Check against subdev[i] for data members, because
742			 * subdev's attributes may be different from master
743			 * mtd device. Check against subdev's master mtd
744			 * device for callbacks, because the existence of
745			 * subdev's callbacks is decided by master mtd device.
746			 */
747			kfree(concat);
748			printk("Incompatible OOB or ECC data on \"%s\"\n",
749			       subdev[i]->name);
750			return NULL;
751		}
752		concat->subdev[i] = subdev[i];
753
754	}
755
756	mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
757
758	concat->num_subdev = num_devs;
759	concat->mtd.name = name;
760
761	concat->mtd._erase = concat_erase;
762	concat->mtd._sync = concat_sync;
763	concat->mtd._lock = concat_lock;
764	concat->mtd._unlock = concat_unlock;
765	concat->mtd._is_locked = concat_is_locked;
766	concat->mtd._suspend = concat_suspend;
767	concat->mtd._resume = concat_resume;
768
769	/*
770	 * Combine the erase block size info of the subdevices:
771	 *
772	 * first, walk the map of the new device and see how
773	 * many changes in erase size we have
774	 */
775	max_erasesize = curr_erasesize = subdev[0]->erasesize;
776	num_erase_region = 1;
777	for (i = 0; i < num_devs; i++) {
778		if (subdev[i]->numeraseregions == 0) {
779			/* current subdevice has uniform erase size */
780			if (subdev[i]->erasesize != curr_erasesize) {
781				/* if it differs from the last subdevice's erase size, count it */
782				++num_erase_region;
783				curr_erasesize = subdev[i]->erasesize;
784				if (curr_erasesize > max_erasesize)
785					max_erasesize = curr_erasesize;
786			}
787		} else {
788			/* current subdevice has variable erase size */
789			int j;
790			for (j = 0; j < subdev[i]->numeraseregions; j++) {
791
792				/* walk the list of erase regions, count any changes */
793				if (subdev[i]->eraseregions[j].erasesize !=
794				    curr_erasesize) {
795					++num_erase_region;
796					curr_erasesize =
797					    subdev[i]->eraseregions[j].
798					    erasesize;
799					if (curr_erasesize > max_erasesize)
800						max_erasesize = curr_erasesize;
801				}
802			}
803		}
804	}
805
806	if (num_erase_region == 1) {
807		/*
808		 * All subdevices have the same uniform erase size.
809		 * This is easy:
810		 */
811		concat->mtd.erasesize = curr_erasesize;
812		concat->mtd.numeraseregions = 0;
813	} else {
814		uint64_t tmp64;
815
816		/*
817		 * erase block size varies across the subdevices: allocate
818		 * space to store the data describing the variable erase regions
819		 */
820		struct mtd_erase_region_info *erase_region_p;
821		uint64_t begin, position;
822
823		concat->mtd.erasesize = max_erasesize;
824		concat->mtd.numeraseregions = num_erase_region;
825		concat->mtd.eraseregions = erase_region_p =
826		    kmalloc_array(num_erase_region,
827				  sizeof(struct mtd_erase_region_info),
828				  GFP_KERNEL);
829		if (!erase_region_p) {
830			kfree(concat);
831			printk
832			    ("memory allocation error while creating erase region list"
833			     " for device \"%s\"\n", name);
834			return NULL;
835		}
836
837		/*
838		 * walk the map of the new device once more and fill in
839		 * erase region info:
840		 */
841		curr_erasesize = subdev[0]->erasesize;
842		begin = position = 0;
843		for (i = 0; i < num_devs; i++) {
844			if (subdev[i]->numeraseregions == 0) {
845				/* current subdevice has uniform erase size */
846				if (subdev[i]->erasesize != curr_erasesize) {
847					/*
848					 *  fill in an mtd_erase_region_info structure for the area
849					 *  we have walked so far:
850					 */
851					erase_region_p->offset = begin;
852					erase_region_p->erasesize =
853					    curr_erasesize;
854					tmp64 = position - begin;
855					do_div(tmp64, curr_erasesize);
856					erase_region_p->numblocks = tmp64;
857					begin = position;
858
859					curr_erasesize = subdev[i]->erasesize;
860					++erase_region_p;
861				}
862				position += subdev[i]->size;
863			} else {
864				/* current subdevice has variable erase size */
865				int j;
866				for (j = 0; j < subdev[i]->numeraseregions; j++) {
867					/* walk the list of erase regions, count any changes */
868					if (subdev[i]->eraseregions[j].
869					    erasesize != curr_erasesize) {
870						erase_region_p->offset = begin;
871						erase_region_p->erasesize =
872						    curr_erasesize;
873						tmp64 = position - begin;
874						do_div(tmp64, curr_erasesize);
875						erase_region_p->numblocks = tmp64;
876						begin = position;
877
878						curr_erasesize =
879						    subdev[i]->eraseregions[j].
880						    erasesize;
881						++erase_region_p;
882					}
883					position +=
884					    subdev[i]->eraseregions[j].
885					    numblocks * (uint64_t)curr_erasesize;
886				}
887			}
888		}
889		/* Now write the final entry */
890		erase_region_p->offset = begin;
891		erase_region_p->erasesize = curr_erasesize;
892		tmp64 = position - begin;
893		do_div(tmp64, curr_erasesize);
894		erase_region_p->numblocks = tmp64;
895	}
896
897	return &concat->mtd;
898}
899
900/* Cleans the context obtained from mtd_concat_create() */
901void mtd_concat_destroy(struct mtd_info *mtd)
902{
903	struct mtd_concat *concat = CONCAT(mtd);
904	if (concat->mtd.numeraseregions)
905		kfree(concat->mtd.eraseregions);
906	kfree(concat);
907}
908
909EXPORT_SYMBOL(mtd_concat_create);
910EXPORT_SYMBOL(mtd_concat_destroy);
911
912MODULE_LICENSE("GPL");
913MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
914MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
915