1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4 *
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
7
8#include <linux/module.h>
9#include <linux/delay.h>
10#include <linux/mmc/mmc.h>
11#include <linux/pm_runtime.h>
12#include <linux/pm_opp.h>
13#include <linux/slab.h>
14#include <linux/iopoll.h>
15#include <linux/regulator/consumer.h>
16#include <linux/interconnect.h>
17#include <linux/of.h>
18#include <linux/pinctrl/consumer.h>
19#include <linux/reset.h>
20
21#include <soc/qcom/ice.h>
22
23#include "sdhci-cqhci.h"
24#include "sdhci-pltfm.h"
25#include "cqhci.h"
26
27#define CORE_MCI_VERSION		0x50
28#define CORE_VERSION_MAJOR_SHIFT	28
29#define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
30#define CORE_VERSION_MINOR_MASK		0xff
31
32#define CORE_MCI_GENERICS		0x70
33#define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
34
35#define HC_MODE_EN		0x1
36#define CORE_POWER		0x0
37#define CORE_SW_RST		BIT(7)
38#define FF_CLK_SW_RST_DIS	BIT(13)
39
40#define CORE_PWRCTL_BUS_OFF	BIT(0)
41#define CORE_PWRCTL_BUS_ON	BIT(1)
42#define CORE_PWRCTL_IO_LOW	BIT(2)
43#define CORE_PWRCTL_IO_HIGH	BIT(3)
44#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
45#define CORE_PWRCTL_BUS_FAIL    BIT(1)
46#define CORE_PWRCTL_IO_SUCCESS	BIT(2)
47#define CORE_PWRCTL_IO_FAIL     BIT(3)
48#define REQ_BUS_OFF		BIT(0)
49#define REQ_BUS_ON		BIT(1)
50#define REQ_IO_LOW		BIT(2)
51#define REQ_IO_HIGH		BIT(3)
52#define INT_MASK		0xf
53#define MAX_PHASES		16
54#define CORE_DLL_LOCK		BIT(7)
55#define CORE_DDR_DLL_LOCK	BIT(11)
56#define CORE_DLL_EN		BIT(16)
57#define CORE_CDR_EN		BIT(17)
58#define CORE_CK_OUT_EN		BIT(18)
59#define CORE_CDR_EXT_EN		BIT(19)
60#define CORE_DLL_PDN		BIT(29)
61#define CORE_DLL_RST		BIT(30)
62#define CORE_CMD_DAT_TRACK_SEL	BIT(0)
63
64#define CORE_DDR_CAL_EN		BIT(0)
65#define CORE_FLL_CYCLE_CNT	BIT(18)
66#define CORE_DLL_CLOCK_DISABLE	BIT(21)
67
68#define DLL_USR_CTL_POR_VAL	0x10800
69#define ENABLE_DLL_LOCK_STATUS	BIT(26)
70#define FINE_TUNE_MODE_EN	BIT(27)
71#define BIAS_OK_SIGNAL		BIT(29)
72
73#define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
74#define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
75
76#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
77#define CORE_CLK_PWRSAVE	BIT(1)
78#define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
79#define CORE_HC_MCLK_SEL_HS400	(3 << 8)
80#define CORE_HC_MCLK_SEL_MASK	(3 << 8)
81#define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
82#define CORE_IO_PAD_PWR_SWITCH	BIT(16)
83#define CORE_HC_SELECT_IN_EN	BIT(18)
84#define CORE_HC_SELECT_IN_HS400	(6 << 19)
85#define CORE_HC_SELECT_IN_MASK	(7 << 19)
86
87#define CORE_3_0V_SUPPORT	BIT(25)
88#define CORE_1_8V_SUPPORT	BIT(26)
89#define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
90
91#define CORE_CSR_CDC_CTLR_CFG0		0x130
92#define CORE_SW_TRIG_FULL_CALIB		BIT(16)
93#define CORE_HW_AUTOCAL_ENA		BIT(17)
94
95#define CORE_CSR_CDC_CTLR_CFG1		0x134
96#define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
97#define CORE_TIMER_ENA			BIT(16)
98
99#define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
100#define CORE_CSR_CDC_REFCOUNT_CFG	0x140
101#define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
102#define CORE_CDC_OFFSET_CFG		0x14C
103#define CORE_CSR_CDC_DELAY_CFG		0x150
104#define CORE_CDC_SLAVE_DDA_CFG		0x160
105#define CORE_CSR_CDC_STATUS0		0x164
106#define CORE_CALIBRATION_DONE		BIT(0)
107
108#define CORE_CDC_ERROR_CODE_MASK	0x7000000
109
110#define CORE_CSR_CDC_GEN_CFG		0x178
111#define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
112#define CORE_CDC_SWITCH_RC_EN		BIT(1)
113
114#define CORE_CDC_T4_DLY_SEL		BIT(0)
115#define CORE_CMDIN_RCLK_EN		BIT(1)
116#define CORE_START_CDC_TRAFFIC		BIT(6)
117
118#define CORE_PWRSAVE_DLL	BIT(3)
119
120#define DDR_CONFIG_POR_VAL	0x80040873
121
122
123#define INVALID_TUNING_PHASE	-1
124#define SDHCI_MSM_MIN_CLOCK	400000
125#define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
126
127#define CDR_SELEXT_SHIFT	20
128#define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
129#define CMUX_SHIFT_PHASE_SHIFT	24
130#define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
131
132#define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
133
134/* Timeout value to avoid infinite waiting for pwr_irq */
135#define MSM_PWR_IRQ_TIMEOUT_MS 5000
136
137/* Max load for eMMC Vdd-io supply */
138#define MMC_VQMMC_MAX_LOAD_UA	325000
139
140#define msm_host_readl(msm_host, host, offset) \
141	msm_host->var_ops->msm_readl_relaxed(host, offset)
142
143#define msm_host_writel(msm_host, val, host, offset) \
144	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
145
146/* CQHCI vendor specific registers */
147#define CQHCI_VENDOR_CFG1	0xA00
148#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
149
150struct sdhci_msm_offset {
151	u32 core_hc_mode;
152	u32 core_mci_data_cnt;
153	u32 core_mci_status;
154	u32 core_mci_fifo_cnt;
155	u32 core_mci_version;
156	u32 core_generics;
157	u32 core_testbus_config;
158	u32 core_testbus_sel2_bit;
159	u32 core_testbus_ena;
160	u32 core_testbus_sel2;
161	u32 core_pwrctl_status;
162	u32 core_pwrctl_mask;
163	u32 core_pwrctl_clear;
164	u32 core_pwrctl_ctl;
165	u32 core_sdcc_debug_reg;
166	u32 core_dll_config;
167	u32 core_dll_status;
168	u32 core_vendor_spec;
169	u32 core_vendor_spec_adma_err_addr0;
170	u32 core_vendor_spec_adma_err_addr1;
171	u32 core_vendor_spec_func2;
172	u32 core_vendor_spec_capabilities0;
173	u32 core_ddr_200_cfg;
174	u32 core_vendor_spec3;
175	u32 core_dll_config_2;
176	u32 core_dll_config_3;
177	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
178	u32 core_ddr_config;
179	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
180};
181
182static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
183	.core_mci_data_cnt = 0x35c,
184	.core_mci_status = 0x324,
185	.core_mci_fifo_cnt = 0x308,
186	.core_mci_version = 0x318,
187	.core_generics = 0x320,
188	.core_testbus_config = 0x32c,
189	.core_testbus_sel2_bit = 3,
190	.core_testbus_ena = (1 << 31),
191	.core_testbus_sel2 = (1 << 3),
192	.core_pwrctl_status = 0x240,
193	.core_pwrctl_mask = 0x244,
194	.core_pwrctl_clear = 0x248,
195	.core_pwrctl_ctl = 0x24c,
196	.core_sdcc_debug_reg = 0x358,
197	.core_dll_config = 0x200,
198	.core_dll_status = 0x208,
199	.core_vendor_spec = 0x20c,
200	.core_vendor_spec_adma_err_addr0 = 0x214,
201	.core_vendor_spec_adma_err_addr1 = 0x218,
202	.core_vendor_spec_func2 = 0x210,
203	.core_vendor_spec_capabilities0 = 0x21c,
204	.core_ddr_200_cfg = 0x224,
205	.core_vendor_spec3 = 0x250,
206	.core_dll_config_2 = 0x254,
207	.core_dll_config_3 = 0x258,
208	.core_ddr_config = 0x25c,
209	.core_dll_usr_ctl = 0x388,
210};
211
212static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
213	.core_hc_mode = 0x78,
214	.core_mci_data_cnt = 0x30,
215	.core_mci_status = 0x34,
216	.core_mci_fifo_cnt = 0x44,
217	.core_mci_version = 0x050,
218	.core_generics = 0x70,
219	.core_testbus_config = 0x0cc,
220	.core_testbus_sel2_bit = 4,
221	.core_testbus_ena = (1 << 3),
222	.core_testbus_sel2 = (1 << 4),
223	.core_pwrctl_status = 0xdc,
224	.core_pwrctl_mask = 0xe0,
225	.core_pwrctl_clear = 0xe4,
226	.core_pwrctl_ctl = 0xe8,
227	.core_sdcc_debug_reg = 0x124,
228	.core_dll_config = 0x100,
229	.core_dll_status = 0x108,
230	.core_vendor_spec = 0x10c,
231	.core_vendor_spec_adma_err_addr0 = 0x114,
232	.core_vendor_spec_adma_err_addr1 = 0x118,
233	.core_vendor_spec_func2 = 0x110,
234	.core_vendor_spec_capabilities0 = 0x11c,
235	.core_ddr_200_cfg = 0x184,
236	.core_vendor_spec3 = 0x1b0,
237	.core_dll_config_2 = 0x1b4,
238	.core_ddr_config_old = 0x1b8,
239	.core_ddr_config = 0x1bc,
240};
241
242struct sdhci_msm_variant_ops {
243	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
244	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
245			u32 offset);
246};
247
248/*
249 * From V5, register spaces have changed. Wrap this info in a structure
250 * and choose the data_structure based on version info mentioned in DT.
251 */
252struct sdhci_msm_variant_info {
253	bool mci_removed;
254	bool restore_dll_config;
255	const struct sdhci_msm_variant_ops *var_ops;
256	const struct sdhci_msm_offset *offset;
257};
258
259struct sdhci_msm_host {
260	struct platform_device *pdev;
261	void __iomem *core_mem;	/* MSM SDCC mapped address */
262	int pwr_irq;		/* power irq */
263	struct clk *bus_clk;	/* SDHC bus voter clock */
264	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
265	/* core, iface, cal and sleep clocks */
266	struct clk_bulk_data bulk_clks[4];
267#ifdef CONFIG_MMC_CRYPTO
268	struct qcom_ice *ice;
269#endif
270	unsigned long clk_rate;
271	struct mmc_host *mmc;
272	bool use_14lpp_dll_reset;
273	bool tuning_done;
274	bool calibration_done;
275	u8 saved_tuning_phase;
276	bool use_cdclp533;
277	u32 curr_pwr_state;
278	u32 curr_io_level;
279	wait_queue_head_t pwr_irq_wait;
280	bool pwr_irq_flag;
281	u32 caps_0;
282	bool mci_removed;
283	bool restore_dll_config;
284	const struct sdhci_msm_variant_ops *var_ops;
285	const struct sdhci_msm_offset *offset;
286	bool use_cdr;
287	u32 transfer_mode;
288	bool updated_ddr_cfg;
289	bool uses_tassadar_dll;
290	u32 dll_config;
291	u32 ddr_config;
292	bool vqmmc_enabled;
293};
294
295static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
296{
297	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
298	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
299
300	return msm_host->offset;
301}
302
303/*
304 * APIs to read/write to vendor specific registers which were there in the
305 * core_mem region before MCI was removed.
306 */
307static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
308		u32 offset)
309{
310	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
311	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
312
313	return readl_relaxed(msm_host->core_mem + offset);
314}
315
316static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
317		u32 offset)
318{
319	return readl_relaxed(host->ioaddr + offset);
320}
321
322static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
323		struct sdhci_host *host, u32 offset)
324{
325	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
326	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
327
328	writel_relaxed(val, msm_host->core_mem + offset);
329}
330
331static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
332		struct sdhci_host *host, u32 offset)
333{
334	writel_relaxed(val, host->ioaddr + offset);
335}
336
337static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
338{
339	struct mmc_ios ios = host->mmc->ios;
340	/*
341	 * The SDHC requires internal clock frequency to be double the
342	 * actual clock that will be set for DDR mode. The controller
343	 * uses the faster clock(100/400MHz) for some of its parts and
344	 * send the actual required clock (50/200MHz) to the card.
345	 */
346	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
347	    ios.timing == MMC_TIMING_MMC_DDR52 ||
348	    ios.timing == MMC_TIMING_MMC_HS400 ||
349	    host->flags & SDHCI_HS400_TUNING)
350		return 2;
351	return 1;
352}
353
354static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
355					    unsigned int clock)
356{
357	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
358	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
359	struct mmc_ios curr_ios = host->mmc->ios;
360	struct clk *core_clk = msm_host->bulk_clks[0].clk;
361	unsigned long achieved_rate;
362	unsigned int desired_rate;
363	unsigned int mult;
364	int rc;
365
366	mult = msm_get_clock_mult_for_bus_mode(host);
367	desired_rate = clock * mult;
368	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
369	if (rc) {
370		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
371		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
372		return;
373	}
374
375	/*
376	 * Qualcomm clock drivers by default round clock _up_ if they can't
377	 * make the requested rate.  This is not good for SD.  Yell if we
378	 * encounter it.
379	 */
380	achieved_rate = clk_get_rate(core_clk);
381	if (achieved_rate > desired_rate)
382		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
383			mmc_hostname(host->mmc), desired_rate, achieved_rate);
384	host->mmc->actual_clock = achieved_rate / mult;
385
386	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
387	msm_host->clk_rate = desired_rate;
388
389	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
390		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
391}
392
393/* Platform specific tuning */
394static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
395{
396	u32 wait_cnt = 50;
397	u8 ck_out_en;
398	struct mmc_host *mmc = host->mmc;
399	const struct sdhci_msm_offset *msm_offset =
400					sdhci_priv_msm_offset(host);
401
402	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
403	ck_out_en = !!(readl_relaxed(host->ioaddr +
404			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
405
406	while (ck_out_en != poll) {
407		if (--wait_cnt == 0) {
408			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
409			       mmc_hostname(mmc), poll);
410			return -ETIMEDOUT;
411		}
412		udelay(1);
413
414		ck_out_en = !!(readl_relaxed(host->ioaddr +
415			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
416	}
417
418	return 0;
419}
420
421static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
422{
423	int rc;
424	static const u8 grey_coded_phase_table[] = {
425		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
426		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
427	};
428	unsigned long flags;
429	u32 config;
430	struct mmc_host *mmc = host->mmc;
431	const struct sdhci_msm_offset *msm_offset =
432					sdhci_priv_msm_offset(host);
433
434	if (phase > 0xf)
435		return -EINVAL;
436
437	spin_lock_irqsave(&host->lock, flags);
438
439	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
440	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
441	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
442	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
443
444	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
445	rc = msm_dll_poll_ck_out_en(host, 0);
446	if (rc)
447		goto err_out;
448
449	/*
450	 * Write the selected DLL clock output phase (0 ... 15)
451	 * to CDR_SELEXT bit field of DLL_CONFIG register.
452	 */
453	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
454	config &= ~CDR_SELEXT_MASK;
455	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
456	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
457
458	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
459	config |= CORE_CK_OUT_EN;
460	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
461
462	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
463	rc = msm_dll_poll_ck_out_en(host, 1);
464	if (rc)
465		goto err_out;
466
467	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
468	config |= CORE_CDR_EN;
469	config &= ~CORE_CDR_EXT_EN;
470	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
471	goto out;
472
473err_out:
474	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
475	       mmc_hostname(mmc), phase);
476out:
477	spin_unlock_irqrestore(&host->lock, flags);
478	return rc;
479}
480
481/*
482 * Find out the greatest range of consecuitive selected
483 * DLL clock output phases that can be used as sampling
484 * setting for SD3.0 UHS-I card read operation (in SDR104
485 * timing mode) or for eMMC4.5 card read operation (in
486 * HS400/HS200 timing mode).
487 * Select the 3/4 of the range and configure the DLL with the
488 * selected DLL clock output phase.
489 */
490
491static int msm_find_most_appropriate_phase(struct sdhci_host *host,
492					   u8 *phase_table, u8 total_phases)
493{
494	int ret;
495	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
496	u8 phases_per_row[MAX_PHASES] = { 0 };
497	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
498	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
499	bool phase_0_found = false, phase_15_found = false;
500	struct mmc_host *mmc = host->mmc;
501
502	if (!total_phases || (total_phases > MAX_PHASES)) {
503		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
504		       mmc_hostname(mmc), total_phases);
505		return -EINVAL;
506	}
507
508	for (cnt = 0; cnt < total_phases; cnt++) {
509		ranges[row_index][col_index] = phase_table[cnt];
510		phases_per_row[row_index] += 1;
511		col_index++;
512
513		if ((cnt + 1) == total_phases) {
514			continue;
515		/* check if next phase in phase_table is consecutive or not */
516		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
517			row_index++;
518			col_index = 0;
519		}
520	}
521
522	if (row_index >= MAX_PHASES)
523		return -EINVAL;
524
525	/* Check if phase-0 is present in first valid window? */
526	if (!ranges[0][0]) {
527		phase_0_found = true;
528		phase_0_raw_index = 0;
529		/* Check if cycle exist between 2 valid windows */
530		for (cnt = 1; cnt <= row_index; cnt++) {
531			if (phases_per_row[cnt]) {
532				for (i = 0; i < phases_per_row[cnt]; i++) {
533					if (ranges[cnt][i] == 15) {
534						phase_15_found = true;
535						phase_15_raw_index = cnt;
536						break;
537					}
538				}
539			}
540		}
541	}
542
543	/* If 2 valid windows form cycle then merge them as single window */
544	if (phase_0_found && phase_15_found) {
545		/* number of phases in raw where phase 0 is present */
546		u8 phases_0 = phases_per_row[phase_0_raw_index];
547		/* number of phases in raw where phase 15 is present */
548		u8 phases_15 = phases_per_row[phase_15_raw_index];
549
550		if (phases_0 + phases_15 >= MAX_PHASES)
551			/*
552			 * If there are more than 1 phase windows then total
553			 * number of phases in both the windows should not be
554			 * more than or equal to MAX_PHASES.
555			 */
556			return -EINVAL;
557
558		/* Merge 2 cyclic windows */
559		i = phases_15;
560		for (cnt = 0; cnt < phases_0; cnt++) {
561			ranges[phase_15_raw_index][i] =
562			    ranges[phase_0_raw_index][cnt];
563			if (++i >= MAX_PHASES)
564				break;
565		}
566
567		phases_per_row[phase_0_raw_index] = 0;
568		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
569	}
570
571	for (cnt = 0; cnt <= row_index; cnt++) {
572		if (phases_per_row[cnt] > curr_max) {
573			curr_max = phases_per_row[cnt];
574			selected_row_index = cnt;
575		}
576	}
577
578	i = (curr_max * 3) / 4;
579	if (i)
580		i--;
581
582	ret = ranges[selected_row_index][i];
583
584	if (ret >= MAX_PHASES) {
585		ret = -EINVAL;
586		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
587		       mmc_hostname(mmc), ret);
588	}
589
590	return ret;
591}
592
593static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
594{
595	u32 mclk_freq = 0, config;
596	const struct sdhci_msm_offset *msm_offset =
597					sdhci_priv_msm_offset(host);
598
599	/* Program the MCLK value to MCLK_FREQ bit field */
600	if (host->clock <= 112000000)
601		mclk_freq = 0;
602	else if (host->clock <= 125000000)
603		mclk_freq = 1;
604	else if (host->clock <= 137000000)
605		mclk_freq = 2;
606	else if (host->clock <= 150000000)
607		mclk_freq = 3;
608	else if (host->clock <= 162000000)
609		mclk_freq = 4;
610	else if (host->clock <= 175000000)
611		mclk_freq = 5;
612	else if (host->clock <= 187000000)
613		mclk_freq = 6;
614	else if (host->clock <= 200000000)
615		mclk_freq = 7;
616
617	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
618	config &= ~CMUX_SHIFT_PHASE_MASK;
619	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
620	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
621}
622
623/* Initialize the DLL (Programmable Delay Line) */
624static int msm_init_cm_dll(struct sdhci_host *host)
625{
626	struct mmc_host *mmc = host->mmc;
627	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
628	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
629	int wait_cnt = 50;
630	unsigned long flags, xo_clk = 0;
631	u32 config;
632	const struct sdhci_msm_offset *msm_offset =
633					msm_host->offset;
634
635	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
636		xo_clk = clk_get_rate(msm_host->xo_clk);
637
638	spin_lock_irqsave(&host->lock, flags);
639
640	/*
641	 * Make sure that clock is always enabled when DLL
642	 * tuning is in progress. Keeping PWRSAVE ON may
643	 * turn off the clock.
644	 */
645	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
646	config &= ~CORE_CLK_PWRSAVE;
647	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
648
649	if (msm_host->dll_config)
650		writel_relaxed(msm_host->dll_config,
651				host->ioaddr + msm_offset->core_dll_config);
652
653	if (msm_host->use_14lpp_dll_reset) {
654		config = readl_relaxed(host->ioaddr +
655				msm_offset->core_dll_config);
656		config &= ~CORE_CK_OUT_EN;
657		writel_relaxed(config, host->ioaddr +
658				msm_offset->core_dll_config);
659
660		config = readl_relaxed(host->ioaddr +
661				msm_offset->core_dll_config_2);
662		config |= CORE_DLL_CLOCK_DISABLE;
663		writel_relaxed(config, host->ioaddr +
664				msm_offset->core_dll_config_2);
665	}
666
667	config = readl_relaxed(host->ioaddr +
668			msm_offset->core_dll_config);
669	config |= CORE_DLL_RST;
670	writel_relaxed(config, host->ioaddr +
671			msm_offset->core_dll_config);
672
673	config = readl_relaxed(host->ioaddr +
674			msm_offset->core_dll_config);
675	config |= CORE_DLL_PDN;
676	writel_relaxed(config, host->ioaddr +
677			msm_offset->core_dll_config);
678
679	if (!msm_host->dll_config)
680		msm_cm_dll_set_freq(host);
681
682	if (msm_host->use_14lpp_dll_reset &&
683	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
684		u32 mclk_freq = 0;
685
686		config = readl_relaxed(host->ioaddr +
687				msm_offset->core_dll_config_2);
688		config &= CORE_FLL_CYCLE_CNT;
689		if (config)
690			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
691					xo_clk);
692		else
693			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
694					xo_clk);
695
696		config = readl_relaxed(host->ioaddr +
697				msm_offset->core_dll_config_2);
698		config &= ~(0xFF << 10);
699		config |= mclk_freq << 10;
700
701		writel_relaxed(config, host->ioaddr +
702				msm_offset->core_dll_config_2);
703		/* wait for 5us before enabling DLL clock */
704		udelay(5);
705	}
706
707	config = readl_relaxed(host->ioaddr +
708			msm_offset->core_dll_config);
709	config &= ~CORE_DLL_RST;
710	writel_relaxed(config, host->ioaddr +
711			msm_offset->core_dll_config);
712
713	config = readl_relaxed(host->ioaddr +
714			msm_offset->core_dll_config);
715	config &= ~CORE_DLL_PDN;
716	writel_relaxed(config, host->ioaddr +
717			msm_offset->core_dll_config);
718
719	if (msm_host->use_14lpp_dll_reset) {
720		if (!msm_host->dll_config)
721			msm_cm_dll_set_freq(host);
722		config = readl_relaxed(host->ioaddr +
723				msm_offset->core_dll_config_2);
724		config &= ~CORE_DLL_CLOCK_DISABLE;
725		writel_relaxed(config, host->ioaddr +
726				msm_offset->core_dll_config_2);
727	}
728
729	/*
730	 * Configure DLL user control register to enable DLL status.
731	 * This setting is applicable to SDCC v5.1 onwards only.
732	 */
733	if (msm_host->uses_tassadar_dll) {
734		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
735			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
736		writel_relaxed(config, host->ioaddr +
737				msm_offset->core_dll_usr_ctl);
738
739		config = readl_relaxed(host->ioaddr +
740				msm_offset->core_dll_config_3);
741		config &= ~0xFF;
742		if (msm_host->clk_rate < 150000000)
743			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
744		else
745			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
746		writel_relaxed(config, host->ioaddr +
747			msm_offset->core_dll_config_3);
748	}
749
750	config = readl_relaxed(host->ioaddr +
751			msm_offset->core_dll_config);
752	config |= CORE_DLL_EN;
753	writel_relaxed(config, host->ioaddr +
754			msm_offset->core_dll_config);
755
756	config = readl_relaxed(host->ioaddr +
757			msm_offset->core_dll_config);
758	config |= CORE_CK_OUT_EN;
759	writel_relaxed(config, host->ioaddr +
760			msm_offset->core_dll_config);
761
762	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
763	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
764		 CORE_DLL_LOCK)) {
765		/* max. wait for 50us sec for LOCK bit to be set */
766		if (--wait_cnt == 0) {
767			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
768			       mmc_hostname(mmc));
769			spin_unlock_irqrestore(&host->lock, flags);
770			return -ETIMEDOUT;
771		}
772		udelay(1);
773	}
774
775	spin_unlock_irqrestore(&host->lock, flags);
776	return 0;
777}
778
779static void msm_hc_select_default(struct sdhci_host *host)
780{
781	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
782	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
783	u32 config;
784	const struct sdhci_msm_offset *msm_offset =
785					msm_host->offset;
786
787	if (!msm_host->use_cdclp533) {
788		config = readl_relaxed(host->ioaddr +
789				msm_offset->core_vendor_spec3);
790		config &= ~CORE_PWRSAVE_DLL;
791		writel_relaxed(config, host->ioaddr +
792				msm_offset->core_vendor_spec3);
793	}
794
795	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
796	config &= ~CORE_HC_MCLK_SEL_MASK;
797	config |= CORE_HC_MCLK_SEL_DFLT;
798	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
799
800	/*
801	 * Disable HC_SELECT_IN to be able to use the UHS mode select
802	 * configuration from Host Control2 register for all other
803	 * modes.
804	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
805	 * in VENDOR_SPEC_FUNC
806	 */
807	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
808	config &= ~CORE_HC_SELECT_IN_EN;
809	config &= ~CORE_HC_SELECT_IN_MASK;
810	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
811
812	/*
813	 * Make sure above writes impacting free running MCLK are completed
814	 * before changing the clk_rate at GCC.
815	 */
816	wmb();
817}
818
819static void msm_hc_select_hs400(struct sdhci_host *host)
820{
821	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
822	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
823	struct mmc_ios ios = host->mmc->ios;
824	u32 config, dll_lock;
825	int rc;
826	const struct sdhci_msm_offset *msm_offset =
827					msm_host->offset;
828
829	/* Select the divided clock (free running MCLK/2) */
830	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
831	config &= ~CORE_HC_MCLK_SEL_MASK;
832	config |= CORE_HC_MCLK_SEL_HS400;
833
834	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
835	/*
836	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
837	 * register
838	 */
839	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
840	    !msm_host->calibration_done) {
841		config = readl_relaxed(host->ioaddr +
842				msm_offset->core_vendor_spec);
843		config |= CORE_HC_SELECT_IN_HS400;
844		config |= CORE_HC_SELECT_IN_EN;
845		writel_relaxed(config, host->ioaddr +
846				msm_offset->core_vendor_spec);
847	}
848	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
849		/*
850		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
851		 * core_dll_status to be set. This should get set
852		 * within 15 us at 200 MHz.
853		 */
854		rc = readl_relaxed_poll_timeout(host->ioaddr +
855						msm_offset->core_dll_status,
856						dll_lock,
857						(dll_lock &
858						(CORE_DLL_LOCK |
859						CORE_DDR_DLL_LOCK)), 10,
860						1000);
861		if (rc == -ETIMEDOUT)
862			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
863			       mmc_hostname(host->mmc), dll_lock);
864	}
865	/*
866	 * Make sure above writes impacting free running MCLK are completed
867	 * before changing the clk_rate at GCC.
868	 */
869	wmb();
870}
871
872/*
873 * sdhci_msm_hc_select_mode :- In general all timing modes are
874 * controlled via UHS mode select in Host Control2 register.
875 * eMMC specific HS200/HS400 doesn't have their respective modes
876 * defined here, hence we use these values.
877 *
878 * HS200 - SDR104 (Since they both are equivalent in functionality)
879 * HS400 - This involves multiple configurations
880 *		Initially SDR104 - when tuning is required as HS200
881 *		Then when switching to DDR @ 400MHz (HS400) we use
882 *		the vendor specific HC_SELECT_IN to control the mode.
883 *
884 * In addition to controlling the modes we also need to select the
885 * correct input clock for DLL depending on the mode.
886 *
887 * HS400 - divided clock (free running MCLK/2)
888 * All other modes - default (free running MCLK)
889 */
890static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
891{
892	struct mmc_ios ios = host->mmc->ios;
893
894	if (ios.timing == MMC_TIMING_MMC_HS400 ||
895	    host->flags & SDHCI_HS400_TUNING)
896		msm_hc_select_hs400(host);
897	else
898		msm_hc_select_default(host);
899}
900
901static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
902{
903	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
904	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
905	u32 config, calib_done;
906	int ret;
907	const struct sdhci_msm_offset *msm_offset =
908					msm_host->offset;
909
910	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
911
912	/*
913	 * Retuning in HS400 (DDR mode) will fail, just reset the
914	 * tuning block and restore the saved tuning phase.
915	 */
916	ret = msm_init_cm_dll(host);
917	if (ret)
918		goto out;
919
920	/* Set the selected phase in delay line hw block */
921	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
922	if (ret)
923		goto out;
924
925	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
926	config |= CORE_CMD_DAT_TRACK_SEL;
927	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
928
929	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
930	config &= ~CORE_CDC_T4_DLY_SEL;
931	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
932
933	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
934	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
935	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
936
937	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
938	config |= CORE_CDC_SWITCH_RC_EN;
939	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
940
941	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
942	config &= ~CORE_START_CDC_TRAFFIC;
943	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
944
945	/* Perform CDC Register Initialization Sequence */
946
947	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
948	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
949	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
950	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
951	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
952	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
953	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
954	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
955	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
956
957	/* CDC HW Calibration */
958
959	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
960	config |= CORE_SW_TRIG_FULL_CALIB;
961	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
962
963	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
964	config &= ~CORE_SW_TRIG_FULL_CALIB;
965	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
966
967	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
968	config |= CORE_HW_AUTOCAL_ENA;
969	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
970
971	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
972	config |= CORE_TIMER_ENA;
973	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
974
975	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
976					 calib_done,
977					 (calib_done & CORE_CALIBRATION_DONE),
978					 1, 50);
979
980	if (ret == -ETIMEDOUT) {
981		pr_err("%s: %s: CDC calibration was not completed\n",
982		       mmc_hostname(host->mmc), __func__);
983		goto out;
984	}
985
986	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
987			& CORE_CDC_ERROR_CODE_MASK;
988	if (ret) {
989		pr_err("%s: %s: CDC error code %d\n",
990		       mmc_hostname(host->mmc), __func__, ret);
991		ret = -EINVAL;
992		goto out;
993	}
994
995	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
996	config |= CORE_START_CDC_TRAFFIC;
997	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
998out:
999	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1000		 __func__, ret);
1001	return ret;
1002}
1003
1004static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1005{
1006	struct mmc_host *mmc = host->mmc;
1007	u32 dll_status, config, ddr_cfg_offset;
1008	int ret;
1009	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1010	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1011	const struct sdhci_msm_offset *msm_offset =
1012					sdhci_priv_msm_offset(host);
1013
1014	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1015
1016	/*
1017	 * Currently the core_ddr_config register defaults to desired
1018	 * configuration on reset. Currently reprogramming the power on
1019	 * reset (POR) value in case it might have been modified by
1020	 * bootloaders. In the future, if this changes, then the desired
1021	 * values will need to be programmed appropriately.
1022	 */
1023	if (msm_host->updated_ddr_cfg)
1024		ddr_cfg_offset = msm_offset->core_ddr_config;
1025	else
1026		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1027	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1028
1029	if (mmc->ios.enhanced_strobe) {
1030		config = readl_relaxed(host->ioaddr +
1031				msm_offset->core_ddr_200_cfg);
1032		config |= CORE_CMDIN_RCLK_EN;
1033		writel_relaxed(config, host->ioaddr +
1034				msm_offset->core_ddr_200_cfg);
1035	}
1036
1037	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1038	config |= CORE_DDR_CAL_EN;
1039	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1040
1041	ret = readl_relaxed_poll_timeout(host->ioaddr +
1042					msm_offset->core_dll_status,
1043					dll_status,
1044					(dll_status & CORE_DDR_DLL_LOCK),
1045					10, 1000);
1046
1047	if (ret == -ETIMEDOUT) {
1048		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1049		       mmc_hostname(host->mmc), __func__);
1050		goto out;
1051	}
1052
1053	/*
1054	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1055	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1056	 * and MCLK must be switched on for at-least 1us before DATA
1057	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1058	 * guarantee above requirement. So PWRSAVE_DLL should not be
1059	 * turned on for host controllers using this DLL.
1060	 */
1061	if (!msm_host->use_14lpp_dll_reset) {
1062		config = readl_relaxed(host->ioaddr +
1063				msm_offset->core_vendor_spec3);
1064		config |= CORE_PWRSAVE_DLL;
1065		writel_relaxed(config, host->ioaddr +
1066				msm_offset->core_vendor_spec3);
1067	}
1068
1069	/*
1070	 * Drain writebuffer to ensure above DLL calibration
1071	 * and PWRSAVE DLL is enabled.
1072	 */
1073	wmb();
1074out:
1075	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1076		 __func__, ret);
1077	return ret;
1078}
1079
1080static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1081{
1082	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1083	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1084	struct mmc_host *mmc = host->mmc;
1085	int ret;
1086	u32 config;
1087	const struct sdhci_msm_offset *msm_offset =
1088					msm_host->offset;
1089
1090	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1091
1092	/*
1093	 * Retuning in HS400 (DDR mode) will fail, just reset the
1094	 * tuning block and restore the saved tuning phase.
1095	 */
1096	ret = msm_init_cm_dll(host);
1097	if (ret)
1098		goto out;
1099
1100	if (!mmc->ios.enhanced_strobe) {
1101		/* Set the selected phase in delay line hw block */
1102		ret = msm_config_cm_dll_phase(host,
1103					      msm_host->saved_tuning_phase);
1104		if (ret)
1105			goto out;
1106		config = readl_relaxed(host->ioaddr +
1107				msm_offset->core_dll_config);
1108		config |= CORE_CMD_DAT_TRACK_SEL;
1109		writel_relaxed(config, host->ioaddr +
1110				msm_offset->core_dll_config);
1111	}
1112
1113	if (msm_host->use_cdclp533)
1114		ret = sdhci_msm_cdclp533_calibration(host);
1115	else
1116		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1117out:
1118	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1119		 __func__, ret);
1120	return ret;
1121}
1122
1123static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1124{
1125	struct mmc_ios *ios = &host->mmc->ios;
1126
1127	/*
1128	 * Tuning is required for SDR104, HS200 and HS400 cards and
1129	 * if clock frequency is greater than 100MHz in these modes.
1130	 */
1131	if (host->clock <= CORE_FREQ_100MHZ ||
1132	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1133	    ios->timing == MMC_TIMING_MMC_HS200 ||
1134	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1135	    ios->enhanced_strobe)
1136		return false;
1137
1138	return true;
1139}
1140
1141static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1142{
1143	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1144	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1145	int ret;
1146
1147	/*
1148	 * SDR DLL comes into picture only for timing modes which needs
1149	 * tuning.
1150	 */
1151	if (!sdhci_msm_is_tuning_needed(host))
1152		return 0;
1153
1154	/* Reset the tuning block */
1155	ret = msm_init_cm_dll(host);
1156	if (ret)
1157		return ret;
1158
1159	/* Restore the tuning block */
1160	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1161
1162	return ret;
1163}
1164
1165static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1166{
1167	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1168	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1169					      msm_offset->core_dll_config);
1170
1171	config = oldconfig;
1172	if (enable) {
1173		config |= CORE_CDR_EN;
1174		config &= ~CORE_CDR_EXT_EN;
1175	} else {
1176		config &= ~CORE_CDR_EN;
1177		config |= CORE_CDR_EXT_EN;
1178	}
1179
1180	if (config != oldconfig) {
1181		writel_relaxed(config, host->ioaddr +
1182			       msm_offset->core_dll_config);
1183	}
1184}
1185
1186static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1187{
1188	struct sdhci_host *host = mmc_priv(mmc);
1189	int tuning_seq_cnt = 10;
1190	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1191	int rc;
1192	struct mmc_ios ios = host->mmc->ios;
1193	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1194	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1195
1196	if (!sdhci_msm_is_tuning_needed(host)) {
1197		msm_host->use_cdr = false;
1198		sdhci_msm_set_cdr(host, false);
1199		return 0;
1200	}
1201
1202	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1203	msm_host->use_cdr = true;
1204
1205	/*
1206	 * Clear tuning_done flag before tuning to ensure proper
1207	 * HS400 settings.
1208	 */
1209	msm_host->tuning_done = 0;
1210
1211	/*
1212	 * For HS400 tuning in HS200 timing requires:
1213	 * - select MCLK/2 in VENDOR_SPEC
1214	 * - program MCLK to 400MHz (or nearest supported) in GCC
1215	 */
1216	if (host->flags & SDHCI_HS400_TUNING) {
1217		sdhci_msm_hc_select_mode(host);
1218		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1219		host->flags &= ~SDHCI_HS400_TUNING;
1220	}
1221
1222retry:
1223	/* First of all reset the tuning block */
1224	rc = msm_init_cm_dll(host);
1225	if (rc)
1226		return rc;
1227
1228	phase = 0;
1229	do {
1230		/* Set the phase in delay line hw block */
1231		rc = msm_config_cm_dll_phase(host, phase);
1232		if (rc)
1233			return rc;
1234
1235		rc = mmc_send_tuning(mmc, opcode, NULL);
1236		if (!rc) {
1237			/* Tuning is successful at this tuning point */
1238			tuned_phases[tuned_phase_cnt++] = phase;
1239			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1240				 mmc_hostname(mmc), phase);
1241		}
1242	} while (++phase < ARRAY_SIZE(tuned_phases));
1243
1244	if (tuned_phase_cnt) {
1245		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1246			/*
1247			 * All phases valid is _almost_ as bad as no phases
1248			 * valid.  Probably all phases are not really reliable
1249			 * but we didn't detect where the unreliable place is.
1250			 * That means we'll essentially be guessing and hoping
1251			 * we get a good phase.  Better to try a few times.
1252			 */
1253			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1254				mmc_hostname(mmc));
1255			if (--tuning_seq_cnt) {
1256				tuned_phase_cnt = 0;
1257				goto retry;
1258			}
1259		}
1260
1261		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1262						     tuned_phase_cnt);
1263		if (rc < 0)
1264			return rc;
1265		else
1266			phase = rc;
1267
1268		/*
1269		 * Finally set the selected phase in delay
1270		 * line hw block.
1271		 */
1272		rc = msm_config_cm_dll_phase(host, phase);
1273		if (rc)
1274			return rc;
1275		msm_host->saved_tuning_phase = phase;
1276		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1277			 mmc_hostname(mmc), phase);
1278	} else {
1279		if (--tuning_seq_cnt)
1280			goto retry;
1281		/* Tuning failed */
1282		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1283		       mmc_hostname(mmc));
1284		rc = -EIO;
1285	}
1286
1287	if (!rc)
1288		msm_host->tuning_done = true;
1289	return rc;
1290}
1291
1292/*
1293 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1294 * This needs to be done for both tuning and enhanced_strobe mode.
1295 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1296 * fixed feedback clock is used.
1297 */
1298static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1299{
1300	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1301	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1302	int ret;
1303
1304	if (host->clock > CORE_FREQ_100MHZ &&
1305	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1306	    !msm_host->calibration_done) {
1307		ret = sdhci_msm_hs400_dll_calibration(host);
1308		if (!ret)
1309			msm_host->calibration_done = true;
1310		else
1311			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1312			       mmc_hostname(host->mmc), ret);
1313	}
1314}
1315
1316static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1317					unsigned int uhs)
1318{
1319	struct mmc_host *mmc = host->mmc;
1320	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1321	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1322	u16 ctrl_2;
1323	u32 config;
1324	const struct sdhci_msm_offset *msm_offset =
1325					msm_host->offset;
1326
1327	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1328	/* Select Bus Speed Mode for host */
1329	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1330	switch (uhs) {
1331	case MMC_TIMING_UHS_SDR12:
1332		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1333		break;
1334	case MMC_TIMING_UHS_SDR25:
1335		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1336		break;
1337	case MMC_TIMING_UHS_SDR50:
1338		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1339		break;
1340	case MMC_TIMING_MMC_HS400:
1341	case MMC_TIMING_MMC_HS200:
1342	case MMC_TIMING_UHS_SDR104:
1343		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1344		break;
1345	case MMC_TIMING_UHS_DDR50:
1346	case MMC_TIMING_MMC_DDR52:
1347		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1348		break;
1349	}
1350
1351	/*
1352	 * When clock frequency is less than 100MHz, the feedback clock must be
1353	 * provided and DLL must not be used so that tuning can be skipped. To
1354	 * provide feedback clock, the mode selection can be any value less
1355	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1356	 */
1357	if (host->clock <= CORE_FREQ_100MHZ) {
1358		if (uhs == MMC_TIMING_MMC_HS400 ||
1359		    uhs == MMC_TIMING_MMC_HS200 ||
1360		    uhs == MMC_TIMING_UHS_SDR104)
1361			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1362		/*
1363		 * DLL is not required for clock <= 100MHz
1364		 * Thus, make sure DLL it is disabled when not required
1365		 */
1366		config = readl_relaxed(host->ioaddr +
1367				msm_offset->core_dll_config);
1368		config |= CORE_DLL_RST;
1369		writel_relaxed(config, host->ioaddr +
1370				msm_offset->core_dll_config);
1371
1372		config = readl_relaxed(host->ioaddr +
1373				msm_offset->core_dll_config);
1374		config |= CORE_DLL_PDN;
1375		writel_relaxed(config, host->ioaddr +
1376				msm_offset->core_dll_config);
1377
1378		/*
1379		 * The DLL needs to be restored and CDCLP533 recalibrated
1380		 * when the clock frequency is set back to 400MHz.
1381		 */
1382		msm_host->calibration_done = false;
1383	}
1384
1385	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1386		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1387	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1388
1389	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1390		sdhci_msm_hs400(host, &mmc->ios);
1391}
1392
1393static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1394{
1395	struct platform_device *pdev = msm_host->pdev;
1396	int ret;
1397
1398	if (level)
1399		ret = pinctrl_pm_select_default_state(&pdev->dev);
1400	else
1401		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1402
1403	return ret;
1404}
1405
1406static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1407{
1408	if (IS_ERR(mmc->supply.vmmc))
1409		return 0;
1410
1411	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1412}
1413
1414static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1415			      struct mmc_host *mmc, bool level)
1416{
1417	int ret;
1418	struct mmc_ios ios;
1419
1420	if (msm_host->vqmmc_enabled == level)
1421		return 0;
1422
1423	if (level) {
1424		/* Set the IO voltage regulator to default voltage level */
1425		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1426			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1427		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1428			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1429
1430		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1431			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1432			if (ret < 0) {
1433				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1434					mmc_hostname(mmc), ret);
1435				goto out;
1436			}
1437		}
1438		ret = regulator_enable(mmc->supply.vqmmc);
1439	} else {
1440		ret = regulator_disable(mmc->supply.vqmmc);
1441	}
1442
1443	if (ret)
1444		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1445			mmc_hostname(mmc), level ? "en":"dis", ret);
1446	else
1447		msm_host->vqmmc_enabled = level;
1448out:
1449	return ret;
1450}
1451
1452static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1453			      struct mmc_host *mmc, bool hpm)
1454{
1455	int load, ret;
1456
1457	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1458	ret = regulator_set_load(mmc->supply.vqmmc, load);
1459	if (ret)
1460		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1461			mmc_hostname(mmc), ret);
1462	return ret;
1463}
1464
1465static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1466			      struct mmc_host *mmc, bool level)
1467{
1468	int ret;
1469	bool always_on;
1470
1471	if (IS_ERR(mmc->supply.vqmmc) ||
1472			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1473		return 0;
1474	/*
1475	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1476	 * and HPM modes by setting the corresponding load.
1477	 *
1478	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1479	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1480	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1481	 * Vqmmc should remain ON, So just set the load instead of turning it
1482	 * off/on.
1483	 */
1484	always_on = !mmc_card_is_removable(mmc) &&
1485			mmc->card && mmc_card_mmc(mmc->card);
1486
1487	if (always_on)
1488		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1489	else
1490		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1491
1492	return ret;
1493}
1494
1495static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1496{
1497	init_waitqueue_head(&msm_host->pwr_irq_wait);
1498}
1499
1500static inline void sdhci_msm_complete_pwr_irq_wait(
1501		struct sdhci_msm_host *msm_host)
1502{
1503	wake_up(&msm_host->pwr_irq_wait);
1504}
1505
1506/*
1507 * sdhci_msm_check_power_status API should be called when registers writes
1508 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1509 * To what state the register writes will change the IO lines should be passed
1510 * as the argument req_type. This API will check whether the IO line's state
1511 * is already the expected state and will wait for power irq only if
1512 * power irq is expected to be triggered based on the current IO line state
1513 * and expected IO line state.
1514 */
1515static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1516{
1517	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1518	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1519	bool done = false;
1520	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1521	const struct sdhci_msm_offset *msm_offset =
1522					msm_host->offset;
1523
1524	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1525			mmc_hostname(host->mmc), __func__, req_type,
1526			msm_host->curr_pwr_state, msm_host->curr_io_level);
1527
1528	/*
1529	 * The power interrupt will not be generated for signal voltage
1530	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1531	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1532	 * it as always set.
1533	 */
1534	if (!msm_host->mci_removed)
1535		val = msm_host_readl(msm_host, host,
1536				msm_offset->core_generics);
1537	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1538	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1539		return;
1540	}
1541
1542	/*
1543	 * The IRQ for request type IO High/LOW will be generated when -
1544	 * there is a state change in 1.8V enable bit (bit 3) of
1545	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1546	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1547	 * to set it to 3.3V before card detection happens, the
1548	 * IRQ doesn't get triggered as there is no state change in this bit.
1549	 * The driver already handles this case by changing the IO voltage
1550	 * level to high as part of controller power up sequence. Hence, check
1551	 * for host->pwr to handle a case where IO voltage high request is
1552	 * issued even before controller power up.
1553	 */
1554	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1555		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1556				mmc_hostname(host->mmc), req_type);
1557		return;
1558	}
1559	if ((req_type & msm_host->curr_pwr_state) ||
1560			(req_type & msm_host->curr_io_level))
1561		done = true;
1562	/*
1563	 * This is needed here to handle cases where register writes will
1564	 * not change the current bus state or io level of the controller.
1565	 * In this case, no power irq will be triggerred and we should
1566	 * not wait.
1567	 */
1568	if (!done) {
1569		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1570				msm_host->pwr_irq_flag,
1571				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1572			dev_warn(&msm_host->pdev->dev,
1573				 "%s: pwr_irq for req: (%d) timed out\n",
1574				 mmc_hostname(host->mmc), req_type);
1575	}
1576	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1577			__func__, req_type);
1578}
1579
1580static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1581{
1582	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1583	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1584	const struct sdhci_msm_offset *msm_offset =
1585					msm_host->offset;
1586
1587	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1588		mmc_hostname(host->mmc),
1589		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1590		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1591		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1592}
1593
1594static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1595{
1596	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1597	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1598	struct mmc_host *mmc = host->mmc;
1599	u32 irq_status, irq_ack = 0;
1600	int retry = 10, ret;
1601	u32 pwr_state = 0, io_level = 0;
1602	u32 config;
1603	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1604
1605	irq_status = msm_host_readl(msm_host, host,
1606			msm_offset->core_pwrctl_status);
1607	irq_status &= INT_MASK;
1608
1609	msm_host_writel(msm_host, irq_status, host,
1610			msm_offset->core_pwrctl_clear);
1611
1612	/*
1613	 * There is a rare HW scenario where the first clear pulse could be
1614	 * lost when actual reset and clear/read of status register is
1615	 * happening at a time. Hence, retry for at least 10 times to make
1616	 * sure status register is cleared. Otherwise, this will result in
1617	 * a spurious power IRQ resulting in system instability.
1618	 */
1619	while (irq_status & msm_host_readl(msm_host, host,
1620				msm_offset->core_pwrctl_status)) {
1621		if (retry == 0) {
1622			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1623					mmc_hostname(host->mmc), irq_status);
1624			sdhci_msm_dump_pwr_ctrl_regs(host);
1625			WARN_ON(1);
1626			break;
1627		}
1628		msm_host_writel(msm_host, irq_status, host,
1629			msm_offset->core_pwrctl_clear);
1630		retry--;
1631		udelay(10);
1632	}
1633
1634	/* Handle BUS ON/OFF*/
1635	if (irq_status & CORE_PWRCTL_BUS_ON) {
1636		pwr_state = REQ_BUS_ON;
1637		io_level = REQ_IO_HIGH;
1638	}
1639	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1640		pwr_state = REQ_BUS_OFF;
1641		io_level = REQ_IO_LOW;
1642	}
1643
1644	if (pwr_state) {
1645		ret = sdhci_msm_set_vmmc(mmc);
1646		if (!ret)
1647			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1648					pwr_state & REQ_BUS_ON);
1649		if (!ret)
1650			ret = sdhci_msm_set_pincfg(msm_host,
1651					pwr_state & REQ_BUS_ON);
1652		if (!ret)
1653			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1654		else
1655			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1656	}
1657
1658	/* Handle IO LOW/HIGH */
1659	if (irq_status & CORE_PWRCTL_IO_LOW)
1660		io_level = REQ_IO_LOW;
1661
1662	if (irq_status & CORE_PWRCTL_IO_HIGH)
1663		io_level = REQ_IO_HIGH;
1664
1665	if (io_level)
1666		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1667
1668	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1669		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1670		if (ret < 0) {
1671			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1672					mmc_hostname(mmc), ret,
1673					mmc->ios.signal_voltage, mmc->ios.vdd,
1674					irq_status);
1675			irq_ack |= CORE_PWRCTL_IO_FAIL;
1676		}
1677	}
1678
1679	/*
1680	 * The driver has to acknowledge the interrupt, switch voltages and
1681	 * report back if it succeded or not to this register. The voltage
1682	 * switches are handled by the sdhci core, so just report success.
1683	 */
1684	msm_host_writel(msm_host, irq_ack, host,
1685			msm_offset->core_pwrctl_ctl);
1686
1687	/*
1688	 * If we don't have info regarding the voltage levels supported by
1689	 * regulators, don't change the IO PAD PWR SWITCH.
1690	 */
1691	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1692		u32 new_config;
1693		/*
1694		 * We should unset IO PAD PWR switch only if the register write
1695		 * can set IO lines high and the regulator also switches to 3 V.
1696		 * Else, we should keep the IO PAD PWR switch set.
1697		 * This is applicable to certain targets where eMMC vccq supply
1698		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1699		 * IO PAD PWR switch must be kept set to reflect actual
1700		 * regulator voltage. This way, during initialization of
1701		 * controllers with only 1.8V, we will set the IO PAD bit
1702		 * without waiting for a REQ_IO_LOW.
1703		 */
1704		config = readl_relaxed(host->ioaddr +
1705				msm_offset->core_vendor_spec);
1706		new_config = config;
1707
1708		if ((io_level & REQ_IO_HIGH) &&
1709				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1710			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1711		else if ((io_level & REQ_IO_LOW) ||
1712				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1713			new_config |= CORE_IO_PAD_PWR_SWITCH;
1714
1715		if (config ^ new_config)
1716			writel_relaxed(new_config, host->ioaddr +
1717					msm_offset->core_vendor_spec);
1718	}
1719
1720	if (pwr_state)
1721		msm_host->curr_pwr_state = pwr_state;
1722	if (io_level)
1723		msm_host->curr_io_level = io_level;
1724
1725	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1726		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1727		irq_ack);
1728}
1729
1730static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1731{
1732	struct sdhci_host *host = (struct sdhci_host *)data;
1733	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1734	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1735
1736	sdhci_msm_handle_pwr_irq(host, irq);
1737	msm_host->pwr_irq_flag = 1;
1738	sdhci_msm_complete_pwr_irq_wait(msm_host);
1739
1740
1741	return IRQ_HANDLED;
1742}
1743
1744static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1745{
1746	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1747	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1748	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1749
1750	return clk_round_rate(core_clk, ULONG_MAX);
1751}
1752
1753static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1754{
1755	return SDHCI_MSM_MIN_CLOCK;
1756}
1757
1758/*
1759 * __sdhci_msm_set_clock - sdhci_msm clock control.
1760 *
1761 * Description:
1762 * MSM controller does not use internal divider and
1763 * instead directly control the GCC clock as per
1764 * HW recommendation.
1765 **/
1766static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1767{
1768	u16 clk;
1769
1770	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1771
1772	if (clock == 0)
1773		return;
1774
1775	/*
1776	 * MSM controller do not use clock divider.
1777	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1778	 * clock with no divider value programmed.
1779	 */
1780	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1781	sdhci_enable_clk(host, clk);
1782}
1783
1784/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1785static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1786{
1787	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1788	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1789
1790	if (!clock) {
1791		host->mmc->actual_clock = msm_host->clk_rate = 0;
1792		goto out;
1793	}
1794
1795	sdhci_msm_hc_select_mode(host);
1796
1797	msm_set_clock_rate_for_bus_mode(host, clock);
1798out:
1799	__sdhci_msm_set_clock(host, clock);
1800}
1801
1802/*****************************************************************************\
1803 *                                                                           *
1804 * Inline Crypto Engine (ICE) support                                        *
1805 *                                                                           *
1806\*****************************************************************************/
1807
1808#ifdef CONFIG_MMC_CRYPTO
1809
1810static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1811			      struct cqhci_host *cq_host)
1812{
1813	struct mmc_host *mmc = msm_host->mmc;
1814	struct device *dev = mmc_dev(mmc);
1815	struct qcom_ice *ice;
1816
1817	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1818		return 0;
1819
1820	ice = of_qcom_ice_get(dev);
1821	if (ice == ERR_PTR(-EOPNOTSUPP)) {
1822		dev_warn(dev, "Disabling inline encryption support\n");
1823		ice = NULL;
1824	}
1825
1826	if (IS_ERR_OR_NULL(ice))
1827		return PTR_ERR_OR_ZERO(ice);
1828
1829	msm_host->ice = ice;
1830	mmc->caps2 |= MMC_CAP2_CRYPTO;
1831
1832	return 0;
1833}
1834
1835static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1836{
1837	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1838		qcom_ice_enable(msm_host->ice);
1839}
1840
1841static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1842{
1843	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1844		return qcom_ice_resume(msm_host->ice);
1845
1846	return 0;
1847}
1848
1849static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1850{
1851	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1852		return qcom_ice_suspend(msm_host->ice);
1853
1854	return 0;
1855}
1856
1857/*
1858 * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1859 * vendor-specific SCM calls for this; it doesn't support the standard way.
1860 */
1861static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1862				 const union cqhci_crypto_cfg_entry *cfg,
1863				 int slot)
1864{
1865	struct sdhci_host *host = mmc_priv(cq_host->mmc);
1866	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1867	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1868	union cqhci_crypto_cap_entry cap;
1869
1870	/* Only AES-256-XTS has been tested so far. */
1871	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1872	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1873		cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256)
1874		return -EINVAL;
1875
1876	if (cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE)
1877		return qcom_ice_program_key(msm_host->ice,
1878					    QCOM_ICE_CRYPTO_ALG_AES_XTS,
1879					    QCOM_ICE_CRYPTO_KEY_SIZE_256,
1880					    cfg->crypto_key,
1881					    cfg->data_unit_size, slot);
1882	else
1883		return qcom_ice_evict_key(msm_host->ice, slot);
1884}
1885
1886#else /* CONFIG_MMC_CRYPTO */
1887
1888static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1889				     struct cqhci_host *cq_host)
1890{
1891	return 0;
1892}
1893
1894static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1895{
1896}
1897
1898static inline __maybe_unused int
1899sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1900{
1901	return 0;
1902}
1903
1904static inline __maybe_unused int
1905sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1906{
1907	return 0;
1908}
1909#endif /* !CONFIG_MMC_CRYPTO */
1910
1911/*****************************************************************************\
1912 *                                                                           *
1913 * MSM Command Queue Engine (CQE)                                            *
1914 *                                                                           *
1915\*****************************************************************************/
1916
1917static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1918{
1919	int cmd_error = 0;
1920	int data_error = 0;
1921
1922	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1923		return intmask;
1924
1925	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1926	return 0;
1927}
1928
1929static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
1930{
1931	struct sdhci_host *host = mmc_priv(mmc);
1932	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1933	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1934
1935	sdhci_cqe_enable(mmc);
1936	sdhci_msm_ice_enable(msm_host);
1937}
1938
1939static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1940{
1941	struct sdhci_host *host = mmc_priv(mmc);
1942	unsigned long flags;
1943	u32 ctrl;
1944
1945	/*
1946	 * When CQE is halted, the legacy SDHCI path operates only
1947	 * on 16-byte descriptors in 64bit mode.
1948	 */
1949	if (host->flags & SDHCI_USE_64_BIT_DMA)
1950		host->desc_sz = 16;
1951
1952	spin_lock_irqsave(&host->lock, flags);
1953
1954	/*
1955	 * During CQE command transfers, command complete bit gets latched.
1956	 * So s/w should clear command complete interrupt status when CQE is
1957	 * either halted or disabled. Otherwise unexpected SDCHI legacy
1958	 * interrupt gets triggered when CQE is halted/disabled.
1959	 */
1960	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1961	ctrl |= SDHCI_INT_RESPONSE;
1962	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
1963	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1964
1965	spin_unlock_irqrestore(&host->lock, flags);
1966
1967	sdhci_cqe_disable(mmc, recovery);
1968}
1969
1970static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
1971{
1972	u32 count, start = 15;
1973
1974	__sdhci_set_timeout(host, cmd);
1975	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
1976	/*
1977	 * Update software timeout value if its value is less than hardware data
1978	 * timeout value. Qcom SoC hardware data timeout value was calculated
1979	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
1980	 */
1981	if (cmd && cmd->data && host->clock > 400000 &&
1982	    host->clock <= 50000000 &&
1983	    ((1 << (count + start)) > (10 * host->clock)))
1984		host->data_timeout = 22LL * NSEC_PER_SEC;
1985}
1986
1987static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1988	.enable		= sdhci_msm_cqe_enable,
1989	.disable	= sdhci_msm_cqe_disable,
1990#ifdef CONFIG_MMC_CRYPTO
1991	.program_key	= sdhci_msm_program_key,
1992#endif
1993};
1994
1995static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1996				struct platform_device *pdev)
1997{
1998	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1999	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2000	struct cqhci_host *cq_host;
2001	bool dma64;
2002	u32 cqcfg;
2003	int ret;
2004
2005	/*
2006	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2007	 * So ensure ADMA table is allocated for 16byte descriptors.
2008	 */
2009	if (host->caps & SDHCI_CAN_64BIT)
2010		host->alloc_desc_sz = 16;
2011
2012	ret = sdhci_setup_host(host);
2013	if (ret)
2014		return ret;
2015
2016	cq_host = cqhci_pltfm_init(pdev);
2017	if (IS_ERR(cq_host)) {
2018		ret = PTR_ERR(cq_host);
2019		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2020		goto cleanup;
2021	}
2022
2023	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2024	cq_host->ops = &sdhci_msm_cqhci_ops;
2025
2026	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2027
2028	ret = sdhci_msm_ice_init(msm_host, cq_host);
2029	if (ret)
2030		goto cleanup;
2031
2032	ret = cqhci_init(cq_host, host->mmc, dma64);
2033	if (ret) {
2034		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2035				mmc_hostname(host->mmc), ret);
2036		goto cleanup;
2037	}
2038
2039	/* Disable cqe reset due to cqe enable signal */
2040	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2041	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2042	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2043
2044	/*
2045	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2046	 * So limit desc_sz to 12 so that the data commands that are sent
2047	 * during card initialization (before CQE gets enabled) would
2048	 * get executed without any issues.
2049	 */
2050	if (host->flags & SDHCI_USE_64_BIT_DMA)
2051		host->desc_sz = 12;
2052
2053	ret = __sdhci_add_host(host);
2054	if (ret)
2055		goto cleanup;
2056
2057	dev_info(&pdev->dev, "%s: CQE init: success\n",
2058			mmc_hostname(host->mmc));
2059	return ret;
2060
2061cleanup:
2062	sdhci_cleanup_host(host);
2063	return ret;
2064}
2065
2066/*
2067 * Platform specific register write functions. This is so that, if any
2068 * register write needs to be followed up by platform specific actions,
2069 * they can be added here. These functions can go to sleep when writes
2070 * to certain registers are done.
2071 * These functions are relying on sdhci_set_ios not using spinlock.
2072 */
2073static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2074{
2075	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2076	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2077	u32 req_type = 0;
2078
2079	switch (reg) {
2080	case SDHCI_HOST_CONTROL2:
2081		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2082			REQ_IO_HIGH;
2083		break;
2084	case SDHCI_SOFTWARE_RESET:
2085		if (host->pwr && (val & SDHCI_RESET_ALL))
2086			req_type = REQ_BUS_OFF;
2087		break;
2088	case SDHCI_POWER_CONTROL:
2089		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2090		break;
2091	case SDHCI_TRANSFER_MODE:
2092		msm_host->transfer_mode = val;
2093		break;
2094	case SDHCI_COMMAND:
2095		if (!msm_host->use_cdr)
2096			break;
2097		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2098		    !mmc_op_tuning(SDHCI_GET_CMD(val)))
2099			sdhci_msm_set_cdr(host, true);
2100		else
2101			sdhci_msm_set_cdr(host, false);
2102		break;
2103	}
2104
2105	if (req_type) {
2106		msm_host->pwr_irq_flag = 0;
2107		/*
2108		 * Since this register write may trigger a power irq, ensure
2109		 * all previous register writes are complete by this point.
2110		 */
2111		mb();
2112	}
2113	return req_type;
2114}
2115
2116/* This function may sleep*/
2117static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2118{
2119	u32 req_type = 0;
2120
2121	req_type = __sdhci_msm_check_write(host, val, reg);
2122	writew_relaxed(val, host->ioaddr + reg);
2123
2124	if (req_type)
2125		sdhci_msm_check_power_status(host, req_type);
2126}
2127
2128/* This function may sleep*/
2129static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2130{
2131	u32 req_type = 0;
2132
2133	req_type = __sdhci_msm_check_write(host, val, reg);
2134
2135	writeb_relaxed(val, host->ioaddr + reg);
2136
2137	if (req_type)
2138		sdhci_msm_check_power_status(host, req_type);
2139}
2140
2141static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2142{
2143	struct mmc_host *mmc = msm_host->mmc;
2144	struct regulator *supply = mmc->supply.vqmmc;
2145	u32 caps = 0, config;
2146	struct sdhci_host *host = mmc_priv(mmc);
2147	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2148
2149	if (!IS_ERR(mmc->supply.vqmmc)) {
2150		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2151			caps |= CORE_1_8V_SUPPORT;
2152		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2153			caps |= CORE_3_0V_SUPPORT;
2154
2155		if (!caps)
2156			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2157					mmc_hostname(mmc));
2158	}
2159
2160	if (caps) {
2161		/*
2162		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2163		 * bit can be used as required later on.
2164		 */
2165		u32 io_level = msm_host->curr_io_level;
2166
2167		config = readl_relaxed(host->ioaddr +
2168				msm_offset->core_vendor_spec);
2169		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2170
2171		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2172			config &= ~CORE_IO_PAD_PWR_SWITCH;
2173		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2174			config |= CORE_IO_PAD_PWR_SWITCH;
2175
2176		writel_relaxed(config,
2177				host->ioaddr + msm_offset->core_vendor_spec);
2178	}
2179	msm_host->caps_0 |= caps;
2180	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2181}
2182
2183static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2184{
2185	int ret;
2186
2187	ret = mmc_regulator_get_supply(msm_host->mmc);
2188	if (ret)
2189		return ret;
2190
2191	sdhci_msm_set_regulator_caps(msm_host);
2192
2193	return 0;
2194}
2195
2196static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2197				      struct mmc_ios *ios)
2198{
2199	struct sdhci_host *host = mmc_priv(mmc);
2200	u16 ctrl, status;
2201
2202	/*
2203	 * Signal Voltage Switching is only applicable for Host Controllers
2204	 * v3.00 and above.
2205	 */
2206	if (host->version < SDHCI_SPEC_300)
2207		return 0;
2208
2209	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2210
2211	switch (ios->signal_voltage) {
2212	case MMC_SIGNAL_VOLTAGE_330:
2213		if (!(host->flags & SDHCI_SIGNALING_330))
2214			return -EINVAL;
2215
2216		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2217		ctrl &= ~SDHCI_CTRL_VDD_180;
2218		break;
2219	case MMC_SIGNAL_VOLTAGE_180:
2220		if (!(host->flags & SDHCI_SIGNALING_180))
2221			return -EINVAL;
2222
2223		/* Enable 1.8V Signal Enable in the Host Control2 register */
2224		ctrl |= SDHCI_CTRL_VDD_180;
2225		break;
2226
2227	default:
2228		return -EINVAL;
2229	}
2230
2231	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2232
2233	/* Wait for 5ms */
2234	usleep_range(5000, 5500);
2235
2236	/* regulator output should be stable within 5 ms */
2237	status = ctrl & SDHCI_CTRL_VDD_180;
2238	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2239	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2240		return 0;
2241
2242	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2243		mmc_hostname(mmc));
2244
2245	return -EAGAIN;
2246}
2247
2248#define DRIVER_NAME "sdhci_msm"
2249#define SDHCI_MSM_DUMP(f, x...) \
2250	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2251
2252static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2253{
2254	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2255	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2256	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2257
2258	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2259
2260	SDHCI_MSM_DUMP(
2261			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2262		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2263		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2264		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2265	SDHCI_MSM_DUMP(
2266			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2267		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2268		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2269		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2270	SDHCI_MSM_DUMP(
2271			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2272		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2273		readl_relaxed(host->ioaddr +
2274			msm_offset->core_vendor_spec_func2),
2275		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2276}
2277
2278static const struct sdhci_msm_variant_ops mci_var_ops = {
2279	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2280	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2281};
2282
2283static const struct sdhci_msm_variant_ops v5_var_ops = {
2284	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2285	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2286};
2287
2288static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2289	.var_ops = &mci_var_ops,
2290	.offset = &sdhci_msm_mci_offset,
2291};
2292
2293static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2294	.mci_removed = true,
2295	.var_ops = &v5_var_ops,
2296	.offset = &sdhci_msm_v5_offset,
2297};
2298
2299static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2300	.mci_removed = true,
2301	.restore_dll_config = true,
2302	.var_ops = &v5_var_ops,
2303	.offset = &sdhci_msm_v5_offset,
2304};
2305
2306static const struct of_device_id sdhci_msm_dt_match[] = {
2307	/*
2308	 * Do not add new variants to the driver which are compatible with
2309	 * generic ones, unless they need customization.
2310	 */
2311	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2312	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2313	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2314	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2315	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2316	{},
2317};
2318
2319MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2320
2321static const struct sdhci_ops sdhci_msm_ops = {
2322	.reset = sdhci_and_cqhci_reset,
2323	.set_clock = sdhci_msm_set_clock,
2324	.get_min_clock = sdhci_msm_get_min_clock,
2325	.get_max_clock = sdhci_msm_get_max_clock,
2326	.set_bus_width = sdhci_set_bus_width,
2327	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2328	.write_w = sdhci_msm_writew,
2329	.write_b = sdhci_msm_writeb,
2330	.irq	= sdhci_msm_cqe_irq,
2331	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2332	.set_power = sdhci_set_power_noreg,
2333	.set_timeout = sdhci_msm_set_timeout,
2334};
2335
2336static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2337	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2338		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2339		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2340		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2341
2342	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2343	.ops = &sdhci_msm_ops,
2344};
2345
2346static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2347		struct sdhci_host *host)
2348{
2349	struct device_node *node = pdev->dev.of_node;
2350	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2351	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2352
2353	if (of_property_read_u32(node, "qcom,ddr-config",
2354				&msm_host->ddr_config))
2355		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2356
2357	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2358
2359	if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
2360		host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
2361}
2362
2363static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2364{
2365	struct reset_control *reset;
2366	int ret = 0;
2367
2368	reset = reset_control_get_optional_exclusive(dev, NULL);
2369	if (IS_ERR(reset))
2370		return dev_err_probe(dev, PTR_ERR(reset),
2371				"unable to acquire core_reset\n");
2372
2373	if (!reset)
2374		return ret;
2375
2376	ret = reset_control_assert(reset);
2377	if (ret) {
2378		reset_control_put(reset);
2379		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2380	}
2381
2382	/*
2383	 * The hardware requirement for delay between assert/deassert
2384	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2385	 * ~125us (4/32768). To be on the safe side add 200us delay.
2386	 */
2387	usleep_range(200, 210);
2388
2389	ret = reset_control_deassert(reset);
2390	if (ret) {
2391		reset_control_put(reset);
2392		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2393	}
2394
2395	usleep_range(200, 210);
2396	reset_control_put(reset);
2397
2398	return ret;
2399}
2400
2401static int sdhci_msm_probe(struct platform_device *pdev)
2402{
2403	struct sdhci_host *host;
2404	struct sdhci_pltfm_host *pltfm_host;
2405	struct sdhci_msm_host *msm_host;
2406	struct clk *clk;
2407	int ret;
2408	u16 host_version, core_minor;
2409	u32 core_version, config;
2410	u8 core_major;
2411	const struct sdhci_msm_offset *msm_offset;
2412	const struct sdhci_msm_variant_info *var_info;
2413	struct device_node *node = pdev->dev.of_node;
2414
2415	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2416	if (IS_ERR(host))
2417		return PTR_ERR(host);
2418
2419	host->sdma_boundary = 0;
2420	pltfm_host = sdhci_priv(host);
2421	msm_host = sdhci_pltfm_priv(pltfm_host);
2422	msm_host->mmc = host->mmc;
2423	msm_host->pdev = pdev;
2424
2425	ret = mmc_of_parse(host->mmc);
2426	if (ret)
2427		goto pltfm_free;
2428
2429	/*
2430	 * Based on the compatible string, load the required msm host info from
2431	 * the data associated with the version info.
2432	 */
2433	var_info = of_device_get_match_data(&pdev->dev);
2434
2435	msm_host->mci_removed = var_info->mci_removed;
2436	msm_host->restore_dll_config = var_info->restore_dll_config;
2437	msm_host->var_ops = var_info->var_ops;
2438	msm_host->offset = var_info->offset;
2439
2440	msm_offset = msm_host->offset;
2441
2442	sdhci_get_of_property(pdev);
2443	sdhci_msm_get_of_property(pdev, host);
2444
2445	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2446
2447	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2448	if (ret)
2449		goto pltfm_free;
2450
2451	/* Setup SDCC bus voter clock. */
2452	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2453	if (!IS_ERR(msm_host->bus_clk)) {
2454		/* Vote for max. clk rate for max. performance */
2455		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2456		if (ret)
2457			goto pltfm_free;
2458		ret = clk_prepare_enable(msm_host->bus_clk);
2459		if (ret)
2460			goto pltfm_free;
2461	}
2462
2463	/* Setup main peripheral bus clock */
2464	clk = devm_clk_get(&pdev->dev, "iface");
2465	if (IS_ERR(clk)) {
2466		ret = PTR_ERR(clk);
2467		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2468		goto bus_clk_disable;
2469	}
2470	msm_host->bulk_clks[1].clk = clk;
2471
2472	/* Setup SDC MMC clock */
2473	clk = devm_clk_get(&pdev->dev, "core");
2474	if (IS_ERR(clk)) {
2475		ret = PTR_ERR(clk);
2476		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2477		goto bus_clk_disable;
2478	}
2479	msm_host->bulk_clks[0].clk = clk;
2480
2481	 /* Check for optional interconnect paths */
2482	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2483	if (ret)
2484		goto bus_clk_disable;
2485
2486	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2487	if (ret)
2488		goto bus_clk_disable;
2489
2490	/* OPP table is optional */
2491	ret = devm_pm_opp_of_add_table(&pdev->dev);
2492	if (ret && ret != -ENODEV) {
2493		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2494		goto bus_clk_disable;
2495	}
2496
2497	/* Vote for maximum clock rate for maximum performance */
2498	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2499	if (ret)
2500		dev_warn(&pdev->dev, "core clock boost failed\n");
2501
2502	clk = devm_clk_get(&pdev->dev, "cal");
2503	if (IS_ERR(clk))
2504		clk = NULL;
2505	msm_host->bulk_clks[2].clk = clk;
2506
2507	clk = devm_clk_get(&pdev->dev, "sleep");
2508	if (IS_ERR(clk))
2509		clk = NULL;
2510	msm_host->bulk_clks[3].clk = clk;
2511
2512	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2513				      msm_host->bulk_clks);
2514	if (ret)
2515		goto bus_clk_disable;
2516
2517	/*
2518	 * xo clock is needed for FLL feature of cm_dll.
2519	 * In case if xo clock is not mentioned in DT, warn and proceed.
2520	 */
2521	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2522	if (IS_ERR(msm_host->xo_clk)) {
2523		ret = PTR_ERR(msm_host->xo_clk);
2524		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2525	}
2526
2527	if (!msm_host->mci_removed) {
2528		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2529		if (IS_ERR(msm_host->core_mem)) {
2530			ret = PTR_ERR(msm_host->core_mem);
2531			goto clk_disable;
2532		}
2533	}
2534
2535	/* Reset the vendor spec register to power on reset state */
2536	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2537			host->ioaddr + msm_offset->core_vendor_spec);
2538
2539	if (!msm_host->mci_removed) {
2540		/* Set HC_MODE_EN bit in HC_MODE register */
2541		msm_host_writel(msm_host, HC_MODE_EN, host,
2542				msm_offset->core_hc_mode);
2543		config = msm_host_readl(msm_host, host,
2544				msm_offset->core_hc_mode);
2545		config |= FF_CLK_SW_RST_DIS;
2546		msm_host_writel(msm_host, config, host,
2547				msm_offset->core_hc_mode);
2548	}
2549
2550	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2551	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2552		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2553			       SDHCI_VENDOR_VER_SHIFT));
2554
2555	core_version = msm_host_readl(msm_host, host,
2556			msm_offset->core_mci_version);
2557	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2558		      CORE_VERSION_MAJOR_SHIFT;
2559	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2560	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2561		core_version, core_major, core_minor);
2562
2563	if (core_major == 1 && core_minor >= 0x42)
2564		msm_host->use_14lpp_dll_reset = true;
2565
2566	/*
2567	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2568	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2569	 */
2570	if (core_major == 1 && core_minor < 0x34)
2571		msm_host->use_cdclp533 = true;
2572
2573	/*
2574	 * Support for some capabilities is not advertised by newer
2575	 * controller versions and must be explicitly enabled.
2576	 */
2577	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2578		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2579		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2580		writel_relaxed(config, host->ioaddr +
2581				msm_offset->core_vendor_spec_capabilities0);
2582	}
2583
2584	if (core_major == 1 && core_minor >= 0x49)
2585		msm_host->updated_ddr_cfg = true;
2586
2587	if (core_major == 1 && core_minor >= 0x71)
2588		msm_host->uses_tassadar_dll = true;
2589
2590	ret = sdhci_msm_register_vreg(msm_host);
2591	if (ret)
2592		goto clk_disable;
2593
2594	/*
2595	 * Power on reset state may trigger power irq if previous status of
2596	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2597	 * interrupt in GIC, any pending power irq interrupt should be
2598	 * acknowledged. Otherwise power irq interrupt handler would be
2599	 * fired prematurely.
2600	 */
2601	sdhci_msm_handle_pwr_irq(host, 0);
2602
2603	/*
2604	 * Ensure that above writes are propogated before interrupt enablement
2605	 * in GIC.
2606	 */
2607	mb();
2608
2609	/* Setup IRQ for handling power/voltage tasks with PMIC */
2610	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2611	if (msm_host->pwr_irq < 0) {
2612		ret = msm_host->pwr_irq;
2613		goto clk_disable;
2614	}
2615
2616	sdhci_msm_init_pwr_irq_wait(msm_host);
2617	/* Enable pwr irq interrupts */
2618	msm_host_writel(msm_host, INT_MASK, host,
2619		msm_offset->core_pwrctl_mask);
2620
2621	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2622					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2623					dev_name(&pdev->dev), host);
2624	if (ret) {
2625		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2626		goto clk_disable;
2627	}
2628
2629	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2630
2631	/* Set the timeout value to max possible */
2632	host->max_timeout_count = 0xF;
2633
2634	pm_runtime_get_noresume(&pdev->dev);
2635	pm_runtime_set_active(&pdev->dev);
2636	pm_runtime_enable(&pdev->dev);
2637	pm_runtime_set_autosuspend_delay(&pdev->dev,
2638					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2639	pm_runtime_use_autosuspend(&pdev->dev);
2640
2641	host->mmc_host_ops.start_signal_voltage_switch =
2642		sdhci_msm_start_signal_voltage_switch;
2643	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2644	if (of_property_read_bool(node, "supports-cqe"))
2645		ret = sdhci_msm_cqe_add_host(host, pdev);
2646	else
2647		ret = sdhci_add_host(host);
2648	if (ret)
2649		goto pm_runtime_disable;
2650
2651	pm_runtime_mark_last_busy(&pdev->dev);
2652	pm_runtime_put_autosuspend(&pdev->dev);
2653
2654	return 0;
2655
2656pm_runtime_disable:
2657	pm_runtime_disable(&pdev->dev);
2658	pm_runtime_set_suspended(&pdev->dev);
2659	pm_runtime_put_noidle(&pdev->dev);
2660clk_disable:
2661	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2662				   msm_host->bulk_clks);
2663bus_clk_disable:
2664	if (!IS_ERR(msm_host->bus_clk))
2665		clk_disable_unprepare(msm_host->bus_clk);
2666pltfm_free:
2667	sdhci_pltfm_free(pdev);
2668	return ret;
2669}
2670
2671static void sdhci_msm_remove(struct platform_device *pdev)
2672{
2673	struct sdhci_host *host = platform_get_drvdata(pdev);
2674	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2675	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2676	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2677		    0xffffffff);
2678
2679	sdhci_remove_host(host, dead);
2680
2681	pm_runtime_get_sync(&pdev->dev);
2682	pm_runtime_disable(&pdev->dev);
2683	pm_runtime_put_noidle(&pdev->dev);
2684
2685	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2686				   msm_host->bulk_clks);
2687	if (!IS_ERR(msm_host->bus_clk))
2688		clk_disable_unprepare(msm_host->bus_clk);
2689	sdhci_pltfm_free(pdev);
2690}
2691
2692static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2693{
2694	struct sdhci_host *host = dev_get_drvdata(dev);
2695	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2696	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2697	unsigned long flags;
2698
2699	spin_lock_irqsave(&host->lock, flags);
2700	host->runtime_suspended = true;
2701	spin_unlock_irqrestore(&host->lock, flags);
2702
2703	/* Drop the performance vote */
2704	dev_pm_opp_set_rate(dev, 0);
2705	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2706				   msm_host->bulk_clks);
2707
2708	return sdhci_msm_ice_suspend(msm_host);
2709}
2710
2711static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2712{
2713	struct sdhci_host *host = dev_get_drvdata(dev);
2714	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2715	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2716	unsigned long flags;
2717	int ret;
2718
2719	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2720				       msm_host->bulk_clks);
2721	if (ret)
2722		return ret;
2723	/*
2724	 * Whenever core-clock is gated dynamically, it's needed to
2725	 * restore the SDR DLL settings when the clock is ungated.
2726	 */
2727	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2728		ret = sdhci_msm_restore_sdr_dll_config(host);
2729		if (ret)
2730			return ret;
2731	}
2732
2733	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2734
2735	ret = sdhci_msm_ice_resume(msm_host);
2736	if (ret)
2737		return ret;
2738
2739	spin_lock_irqsave(&host->lock, flags);
2740	host->runtime_suspended = false;
2741	spin_unlock_irqrestore(&host->lock, flags);
2742
2743	return ret;
2744}
2745
2746static const struct dev_pm_ops sdhci_msm_pm_ops = {
2747	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2748				pm_runtime_force_resume)
2749	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2750			   sdhci_msm_runtime_resume,
2751			   NULL)
2752};
2753
2754static struct platform_driver sdhci_msm_driver = {
2755	.probe = sdhci_msm_probe,
2756	.remove_new = sdhci_msm_remove,
2757	.driver = {
2758		   .name = "sdhci_msm",
2759		   .of_match_table = sdhci_msm_dt_match,
2760		   .pm = &sdhci_msm_pm_ops,
2761		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2762	},
2763};
2764
2765module_platform_driver(sdhci_msm_driver);
2766
2767MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2768MODULE_LICENSE("GPL v2");
2769