1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Copyright 2007-2008 Pierre Ossman
4 */
5
6#include <linux/mmc/core.h>
7#include <linux/mmc/card.h>
8#include <linux/mmc/host.h>
9#include <linux/mmc/mmc.h>
10#include <linux/slab.h>
11
12#include <linux/scatterlist.h>
13#include <linux/list.h>
14
15#include <linux/debugfs.h>
16#include <linux/uaccess.h>
17#include <linux/seq_file.h>
18#include <linux/module.h>
19
20#include "core.h"
21#include "card.h"
22#include "host.h"
23#include "bus.h"
24#include "mmc_ops.h"
25
26#define RESULT_OK		0
27#define RESULT_FAIL		1
28#define RESULT_UNSUP_HOST	2
29#define RESULT_UNSUP_CARD	3
30
31#define BUFFER_ORDER		2
32#define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
33
34#define TEST_ALIGN_END		8
35
36/*
37 * Limit the test area size to the maximum MMC HC erase group size.  Note that
38 * the maximum SD allocation unit size is just 4MiB.
39 */
40#define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
41
42/**
43 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
44 * @page: first page in the allocation
45 * @order: order of the number of pages allocated
46 */
47struct mmc_test_pages {
48	struct page *page;
49	unsigned int order;
50};
51
52/**
53 * struct mmc_test_mem - allocated memory.
54 * @arr: array of allocations
55 * @cnt: number of allocations
56 */
57struct mmc_test_mem {
58	struct mmc_test_pages *arr;
59	unsigned int cnt;
60};
61
62/**
63 * struct mmc_test_area - information for performance tests.
64 * @max_sz: test area size (in bytes)
65 * @dev_addr: address on card at which to do performance tests
66 * @max_tfr: maximum transfer size allowed by driver (in bytes)
67 * @max_segs: maximum segments allowed by driver in scatterlist @sg
68 * @max_seg_sz: maximum segment size allowed by driver
69 * @blocks: number of (512 byte) blocks currently mapped by @sg
70 * @sg_len: length of currently mapped scatterlist @sg
71 * @mem: allocated memory
72 * @sg: scatterlist
73 * @sg_areq: scatterlist for non-blocking request
74 */
75struct mmc_test_area {
76	unsigned long max_sz;
77	unsigned int dev_addr;
78	unsigned int max_tfr;
79	unsigned int max_segs;
80	unsigned int max_seg_sz;
81	unsigned int blocks;
82	unsigned int sg_len;
83	struct mmc_test_mem *mem;
84	struct scatterlist *sg;
85	struct scatterlist *sg_areq;
86};
87
88/**
89 * struct mmc_test_transfer_result - transfer results for performance tests.
90 * @link: double-linked list
91 * @count: amount of group of sectors to check
92 * @sectors: amount of sectors to check in one group
93 * @ts: time values of transfer
94 * @rate: calculated transfer rate
95 * @iops: I/O operations per second (times 100)
96 */
97struct mmc_test_transfer_result {
98	struct list_head link;
99	unsigned int count;
100	unsigned int sectors;
101	struct timespec64 ts;
102	unsigned int rate;
103	unsigned int iops;
104};
105
106/**
107 * struct mmc_test_general_result - results for tests.
108 * @link: double-linked list
109 * @card: card under test
110 * @testcase: number of test case
111 * @result: result of test run
112 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
113 */
114struct mmc_test_general_result {
115	struct list_head link;
116	struct mmc_card *card;
117	int testcase;
118	int result;
119	struct list_head tr_lst;
120};
121
122/**
123 * struct mmc_test_dbgfs_file - debugfs related file.
124 * @link: double-linked list
125 * @card: card under test
126 * @file: file created under debugfs
127 */
128struct mmc_test_dbgfs_file {
129	struct list_head link;
130	struct mmc_card *card;
131	struct dentry *file;
132};
133
134/**
135 * struct mmc_test_card - test information.
136 * @card: card under test
137 * @scratch: transfer buffer
138 * @buffer: transfer buffer
139 * @highmem: buffer for highmem tests
140 * @area: information for performance tests
141 * @gr: pointer to results of current testcase
142 */
143struct mmc_test_card {
144	struct mmc_card	*card;
145
146	u8		scratch[BUFFER_SIZE];
147	u8		*buffer;
148#ifdef CONFIG_HIGHMEM
149	struct page	*highmem;
150#endif
151	struct mmc_test_area		area;
152	struct mmc_test_general_result	*gr;
153};
154
155enum mmc_test_prep_media {
156	MMC_TEST_PREP_NONE = 0,
157	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
158	MMC_TEST_PREP_ERASE = 1 << 1,
159};
160
161struct mmc_test_multiple_rw {
162	unsigned int *sg_len;
163	unsigned int *bs;
164	unsigned int len;
165	unsigned int size;
166	bool do_write;
167	bool do_nonblock_req;
168	enum mmc_test_prep_media prepare;
169};
170
171/*******************************************************************/
172/*  General helper functions                                       */
173/*******************************************************************/
174
175/*
176 * Configure correct block size in card
177 */
178static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
179{
180	return mmc_set_blocklen(test->card, size);
181}
182
183static bool mmc_test_card_cmd23(struct mmc_card *card)
184{
185	return mmc_card_mmc(card) ||
186	       (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
187}
188
189static void mmc_test_prepare_sbc(struct mmc_test_card *test,
190				 struct mmc_request *mrq, unsigned int blocks)
191{
192	struct mmc_card *card = test->card;
193
194	if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
195	    !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
196	    (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
197		mrq->sbc = NULL;
198		return;
199	}
200
201	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
202	mrq->sbc->arg = blocks;
203	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
204}
205
206/*
207 * Fill in the mmc_request structure given a set of transfer parameters.
208 */
209static void mmc_test_prepare_mrq(struct mmc_test_card *test,
210	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
211	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
212{
213	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
214		return;
215
216	if (blocks > 1) {
217		mrq->cmd->opcode = write ?
218			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
219	} else {
220		mrq->cmd->opcode = write ?
221			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
222	}
223
224	mrq->cmd->arg = dev_addr;
225	if (!mmc_card_blockaddr(test->card))
226		mrq->cmd->arg <<= 9;
227
228	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
229
230	if (blocks == 1)
231		mrq->stop = NULL;
232	else {
233		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
234		mrq->stop->arg = 0;
235		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
236	}
237
238	mrq->data->blksz = blksz;
239	mrq->data->blocks = blocks;
240	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
241	mrq->data->sg = sg;
242	mrq->data->sg_len = sg_len;
243
244	mmc_test_prepare_sbc(test, mrq, blocks);
245
246	mmc_set_data_timeout(mrq->data, test->card);
247}
248
249static int mmc_test_busy(struct mmc_command *cmd)
250{
251	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
252		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
253}
254
255/*
256 * Wait for the card to finish the busy state
257 */
258static int mmc_test_wait_busy(struct mmc_test_card *test)
259{
260	int ret, busy;
261	struct mmc_command cmd = {};
262
263	busy = 0;
264	do {
265		memset(&cmd, 0, sizeof(struct mmc_command));
266
267		cmd.opcode = MMC_SEND_STATUS;
268		cmd.arg = test->card->rca << 16;
269		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
270
271		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
272		if (ret)
273			break;
274
275		if (!busy && mmc_test_busy(&cmd)) {
276			busy = 1;
277			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
278				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
279					mmc_hostname(test->card->host));
280		}
281	} while (mmc_test_busy(&cmd));
282
283	return ret;
284}
285
286/*
287 * Transfer a single sector of kernel addressable data
288 */
289static int mmc_test_buffer_transfer(struct mmc_test_card *test,
290	u8 *buffer, unsigned addr, unsigned blksz, int write)
291{
292	struct mmc_request mrq = {};
293	struct mmc_command cmd = {};
294	struct mmc_command stop = {};
295	struct mmc_data data = {};
296
297	struct scatterlist sg;
298
299	mrq.cmd = &cmd;
300	mrq.data = &data;
301	mrq.stop = &stop;
302
303	sg_init_one(&sg, buffer, blksz);
304
305	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
306
307	mmc_wait_for_req(test->card->host, &mrq);
308
309	if (cmd.error)
310		return cmd.error;
311	if (data.error)
312		return data.error;
313
314	return mmc_test_wait_busy(test);
315}
316
317static void mmc_test_free_mem(struct mmc_test_mem *mem)
318{
319	if (!mem)
320		return;
321	while (mem->cnt--)
322		__free_pages(mem->arr[mem->cnt].page,
323			     mem->arr[mem->cnt].order);
324	kfree(mem->arr);
325	kfree(mem);
326}
327
328/*
329 * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
330 * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
331 * not exceed a maximum number of segments and try not to make segments much
332 * bigger than maximum segment size.
333 */
334static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
335					       unsigned long max_sz,
336					       unsigned int max_segs,
337					       unsigned int max_seg_sz)
338{
339	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
340	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
341	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
342	unsigned long page_cnt = 0;
343	unsigned long limit = nr_free_buffer_pages() >> 4;
344	struct mmc_test_mem *mem;
345
346	if (max_page_cnt > limit)
347		max_page_cnt = limit;
348	if (min_page_cnt > max_page_cnt)
349		min_page_cnt = max_page_cnt;
350
351	if (max_seg_page_cnt > max_page_cnt)
352		max_seg_page_cnt = max_page_cnt;
353
354	if (max_segs > max_page_cnt)
355		max_segs = max_page_cnt;
356
357	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
358	if (!mem)
359		return NULL;
360
361	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
362	if (!mem->arr)
363		goto out_free;
364
365	while (max_page_cnt) {
366		struct page *page;
367		unsigned int order;
368		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
369				__GFP_NORETRY;
370
371		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
372		while (1) {
373			page = alloc_pages(flags, order);
374			if (page || !order)
375				break;
376			order -= 1;
377		}
378		if (!page) {
379			if (page_cnt < min_page_cnt)
380				goto out_free;
381			break;
382		}
383		mem->arr[mem->cnt].page = page;
384		mem->arr[mem->cnt].order = order;
385		mem->cnt += 1;
386		if (max_page_cnt <= (1UL << order))
387			break;
388		max_page_cnt -= 1UL << order;
389		page_cnt += 1UL << order;
390		if (mem->cnt >= max_segs) {
391			if (page_cnt < min_page_cnt)
392				goto out_free;
393			break;
394		}
395	}
396
397	return mem;
398
399out_free:
400	mmc_test_free_mem(mem);
401	return NULL;
402}
403
404/*
405 * Map memory into a scatterlist.  Optionally allow the same memory to be
406 * mapped more than once.
407 */
408static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
409			   struct scatterlist *sglist, int repeat,
410			   unsigned int max_segs, unsigned int max_seg_sz,
411			   unsigned int *sg_len, int min_sg_len)
412{
413	struct scatterlist *sg = NULL;
414	unsigned int i;
415	unsigned long sz = size;
416
417	sg_init_table(sglist, max_segs);
418	if (min_sg_len > max_segs)
419		min_sg_len = max_segs;
420
421	*sg_len = 0;
422	do {
423		for (i = 0; i < mem->cnt; i++) {
424			unsigned long len = PAGE_SIZE << mem->arr[i].order;
425
426			if (min_sg_len && (size / min_sg_len < len))
427				len = ALIGN(size / min_sg_len, 512);
428			if (len > sz)
429				len = sz;
430			if (len > max_seg_sz)
431				len = max_seg_sz;
432			if (sg)
433				sg = sg_next(sg);
434			else
435				sg = sglist;
436			if (!sg)
437				return -EINVAL;
438			sg_set_page(sg, mem->arr[i].page, len, 0);
439			sz -= len;
440			*sg_len += 1;
441			if (!sz)
442				break;
443		}
444	} while (sz && repeat);
445
446	if (sz)
447		return -EINVAL;
448
449	if (sg)
450		sg_mark_end(sg);
451
452	return 0;
453}
454
455/*
456 * Map memory into a scatterlist so that no pages are contiguous.  Allow the
457 * same memory to be mapped more than once.
458 */
459static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
460				       unsigned long sz,
461				       struct scatterlist *sglist,
462				       unsigned int max_segs,
463				       unsigned int max_seg_sz,
464				       unsigned int *sg_len)
465{
466	struct scatterlist *sg = NULL;
467	unsigned int i = mem->cnt, cnt;
468	unsigned long len;
469	void *base, *addr, *last_addr = NULL;
470
471	sg_init_table(sglist, max_segs);
472
473	*sg_len = 0;
474	while (sz) {
475		base = page_address(mem->arr[--i].page);
476		cnt = 1 << mem->arr[i].order;
477		while (sz && cnt) {
478			addr = base + PAGE_SIZE * --cnt;
479			if (last_addr && last_addr + PAGE_SIZE == addr)
480				continue;
481			last_addr = addr;
482			len = PAGE_SIZE;
483			if (len > max_seg_sz)
484				len = max_seg_sz;
485			if (len > sz)
486				len = sz;
487			if (sg)
488				sg = sg_next(sg);
489			else
490				sg = sglist;
491			if (!sg)
492				return -EINVAL;
493			sg_set_page(sg, virt_to_page(addr), len, 0);
494			sz -= len;
495			*sg_len += 1;
496		}
497		if (i == 0)
498			i = mem->cnt;
499	}
500
501	if (sg)
502		sg_mark_end(sg);
503
504	return 0;
505}
506
507/*
508 * Calculate transfer rate in bytes per second.
509 */
510static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
511{
512	uint64_t ns;
513
514	ns = timespec64_to_ns(ts);
515	bytes *= 1000000000;
516
517	while (ns > UINT_MAX) {
518		bytes >>= 1;
519		ns >>= 1;
520	}
521
522	if (!ns)
523		return 0;
524
525	do_div(bytes, (uint32_t)ns);
526
527	return bytes;
528}
529
530/*
531 * Save transfer results for future usage
532 */
533static void mmc_test_save_transfer_result(struct mmc_test_card *test,
534	unsigned int count, unsigned int sectors, struct timespec64 ts,
535	unsigned int rate, unsigned int iops)
536{
537	struct mmc_test_transfer_result *tr;
538
539	if (!test->gr)
540		return;
541
542	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
543	if (!tr)
544		return;
545
546	tr->count = count;
547	tr->sectors = sectors;
548	tr->ts = ts;
549	tr->rate = rate;
550	tr->iops = iops;
551
552	list_add_tail(&tr->link, &test->gr->tr_lst);
553}
554
555/*
556 * Print the transfer rate.
557 */
558static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
559				struct timespec64 *ts1, struct timespec64 *ts2)
560{
561	unsigned int rate, iops, sectors = bytes >> 9;
562	struct timespec64 ts;
563
564	ts = timespec64_sub(*ts2, *ts1);
565
566	rate = mmc_test_rate(bytes, &ts);
567	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
568
569	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
570			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
571			 mmc_hostname(test->card->host), sectors, sectors >> 1,
572			 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
573			 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
574			 iops / 100, iops % 100);
575
576	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
577}
578
579/*
580 * Print the average transfer rate.
581 */
582static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
583				    unsigned int count, struct timespec64 *ts1,
584				    struct timespec64 *ts2)
585{
586	unsigned int rate, iops, sectors = bytes >> 9;
587	uint64_t tot = bytes * count;
588	struct timespec64 ts;
589
590	ts = timespec64_sub(*ts2, *ts1);
591
592	rate = mmc_test_rate(tot, &ts);
593	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
594
595	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
596			 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
597			 "%u.%02u IOPS, sg_len %d)\n",
598			 mmc_hostname(test->card->host), count, sectors, count,
599			 sectors >> 1, (sectors & 1 ? ".5" : ""),
600			 (u64)ts.tv_sec, (u32)ts.tv_nsec,
601			 rate / 1000, rate / 1024, iops / 100, iops % 100,
602			 test->area.sg_len);
603
604	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
605}
606
607/*
608 * Return the card size in sectors.
609 */
610static unsigned int mmc_test_capacity(struct mmc_card *card)
611{
612	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
613		return card->ext_csd.sectors;
614	else
615		return card->csd.capacity << (card->csd.read_blkbits - 9);
616}
617
618/*******************************************************************/
619/*  Test preparation and cleanup                                   */
620/*******************************************************************/
621
622/*
623 * Fill the first couple of sectors of the card with known data
624 * so that bad reads/writes can be detected
625 */
626static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
627{
628	int ret, i;
629
630	ret = mmc_test_set_blksize(test, 512);
631	if (ret)
632		return ret;
633
634	if (write)
635		memset(test->buffer, val, 512);
636	else {
637		for (i = 0; i < 512; i++)
638			test->buffer[i] = i;
639	}
640
641	for (i = 0; i < BUFFER_SIZE / 512; i++) {
642		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
643		if (ret)
644			return ret;
645	}
646
647	return 0;
648}
649
650static int mmc_test_prepare_write(struct mmc_test_card *test)
651{
652	return __mmc_test_prepare(test, 1, 0xDF);
653}
654
655static int mmc_test_prepare_read(struct mmc_test_card *test)
656{
657	return __mmc_test_prepare(test, 0, 0);
658}
659
660static int mmc_test_cleanup(struct mmc_test_card *test)
661{
662	return __mmc_test_prepare(test, 1, 0);
663}
664
665/*******************************************************************/
666/*  Test execution helpers                                         */
667/*******************************************************************/
668
669/*
670 * Modifies the mmc_request to perform the "short transfer" tests
671 */
672static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
673	struct mmc_request *mrq, int write)
674{
675	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
676		return;
677
678	if (mrq->data->blocks > 1) {
679		mrq->cmd->opcode = write ?
680			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
681		mrq->stop = NULL;
682	} else {
683		mrq->cmd->opcode = MMC_SEND_STATUS;
684		mrq->cmd->arg = test->card->rca << 16;
685	}
686}
687
688/*
689 * Checks that a normal transfer didn't have any errors
690 */
691static int mmc_test_check_result(struct mmc_test_card *test,
692				 struct mmc_request *mrq)
693{
694	int ret;
695
696	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
697		return -EINVAL;
698
699	ret = 0;
700
701	if (mrq->sbc && mrq->sbc->error)
702		ret = mrq->sbc->error;
703	if (!ret && mrq->cmd->error)
704		ret = mrq->cmd->error;
705	if (!ret && mrq->data->error)
706		ret = mrq->data->error;
707	if (!ret && mrq->stop && mrq->stop->error)
708		ret = mrq->stop->error;
709	if (!ret && mrq->data->bytes_xfered !=
710		mrq->data->blocks * mrq->data->blksz)
711		ret = RESULT_FAIL;
712
713	if (ret == -EINVAL)
714		ret = RESULT_UNSUP_HOST;
715
716	return ret;
717}
718
719/*
720 * Checks that a "short transfer" behaved as expected
721 */
722static int mmc_test_check_broken_result(struct mmc_test_card *test,
723	struct mmc_request *mrq)
724{
725	int ret;
726
727	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
728		return -EINVAL;
729
730	ret = 0;
731
732	if (!ret && mrq->cmd->error)
733		ret = mrq->cmd->error;
734	if (!ret && mrq->data->error == 0)
735		ret = RESULT_FAIL;
736	if (!ret && mrq->data->error != -ETIMEDOUT)
737		ret = mrq->data->error;
738	if (!ret && mrq->stop && mrq->stop->error)
739		ret = mrq->stop->error;
740	if (mrq->data->blocks > 1) {
741		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
742			ret = RESULT_FAIL;
743	} else {
744		if (!ret && mrq->data->bytes_xfered > 0)
745			ret = RESULT_FAIL;
746	}
747
748	if (ret == -EINVAL)
749		ret = RESULT_UNSUP_HOST;
750
751	return ret;
752}
753
754struct mmc_test_req {
755	struct mmc_request mrq;
756	struct mmc_command sbc;
757	struct mmc_command cmd;
758	struct mmc_command stop;
759	struct mmc_command status;
760	struct mmc_data data;
761};
762
763/*
764 * Tests nonblock transfer with certain parameters
765 */
766static void mmc_test_req_reset(struct mmc_test_req *rq)
767{
768	memset(rq, 0, sizeof(struct mmc_test_req));
769
770	rq->mrq.cmd = &rq->cmd;
771	rq->mrq.data = &rq->data;
772	rq->mrq.stop = &rq->stop;
773}
774
775static struct mmc_test_req *mmc_test_req_alloc(void)
776{
777	struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
778
779	if (rq)
780		mmc_test_req_reset(rq);
781
782	return rq;
783}
784
785static void mmc_test_wait_done(struct mmc_request *mrq)
786{
787	complete(&mrq->completion);
788}
789
790static int mmc_test_start_areq(struct mmc_test_card *test,
791			       struct mmc_request *mrq,
792			       struct mmc_request *prev_mrq)
793{
794	struct mmc_host *host = test->card->host;
795	int err = 0;
796
797	if (mrq) {
798		init_completion(&mrq->completion);
799		mrq->done = mmc_test_wait_done;
800		mmc_pre_req(host, mrq);
801	}
802
803	if (prev_mrq) {
804		wait_for_completion(&prev_mrq->completion);
805		err = mmc_test_wait_busy(test);
806		if (!err)
807			err = mmc_test_check_result(test, prev_mrq);
808	}
809
810	if (!err && mrq) {
811		err = mmc_start_request(host, mrq);
812		if (err)
813			mmc_retune_release(host);
814	}
815
816	if (prev_mrq)
817		mmc_post_req(host, prev_mrq, 0);
818
819	if (err && mrq)
820		mmc_post_req(host, mrq, err);
821
822	return err;
823}
824
825static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
826				      unsigned int dev_addr, int write,
827				      int count)
828{
829	struct mmc_test_req *rq1, *rq2;
830	struct mmc_request *mrq, *prev_mrq;
831	int i;
832	int ret = RESULT_OK;
833	struct mmc_test_area *t = &test->area;
834	struct scatterlist *sg = t->sg;
835	struct scatterlist *sg_areq = t->sg_areq;
836
837	rq1 = mmc_test_req_alloc();
838	rq2 = mmc_test_req_alloc();
839	if (!rq1 || !rq2) {
840		ret = RESULT_FAIL;
841		goto err;
842	}
843
844	mrq = &rq1->mrq;
845	prev_mrq = NULL;
846
847	for (i = 0; i < count; i++) {
848		mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
849		mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
850				     t->blocks, 512, write);
851		ret = mmc_test_start_areq(test, mrq, prev_mrq);
852		if (ret)
853			goto err;
854
855		if (!prev_mrq)
856			prev_mrq = &rq2->mrq;
857
858		swap(mrq, prev_mrq);
859		swap(sg, sg_areq);
860		dev_addr += t->blocks;
861	}
862
863	ret = mmc_test_start_areq(test, NULL, prev_mrq);
864err:
865	kfree(rq1);
866	kfree(rq2);
867	return ret;
868}
869
870/*
871 * Tests a basic transfer with certain parameters
872 */
873static int mmc_test_simple_transfer(struct mmc_test_card *test,
874	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
875	unsigned blocks, unsigned blksz, int write)
876{
877	struct mmc_request mrq = {};
878	struct mmc_command cmd = {};
879	struct mmc_command stop = {};
880	struct mmc_data data = {};
881
882	mrq.cmd = &cmd;
883	mrq.data = &data;
884	mrq.stop = &stop;
885
886	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
887		blocks, blksz, write);
888
889	mmc_wait_for_req(test->card->host, &mrq);
890
891	mmc_test_wait_busy(test);
892
893	return mmc_test_check_result(test, &mrq);
894}
895
896/*
897 * Tests a transfer where the card will fail completely or partly
898 */
899static int mmc_test_broken_transfer(struct mmc_test_card *test,
900	unsigned blocks, unsigned blksz, int write)
901{
902	struct mmc_request mrq = {};
903	struct mmc_command cmd = {};
904	struct mmc_command stop = {};
905	struct mmc_data data = {};
906
907	struct scatterlist sg;
908
909	mrq.cmd = &cmd;
910	mrq.data = &data;
911	mrq.stop = &stop;
912
913	sg_init_one(&sg, test->buffer, blocks * blksz);
914
915	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
916	mmc_test_prepare_broken_mrq(test, &mrq, write);
917
918	mmc_wait_for_req(test->card->host, &mrq);
919
920	mmc_test_wait_busy(test);
921
922	return mmc_test_check_broken_result(test, &mrq);
923}
924
925/*
926 * Does a complete transfer test where data is also validated
927 *
928 * Note: mmc_test_prepare() must have been done before this call
929 */
930static int mmc_test_transfer(struct mmc_test_card *test,
931	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
932	unsigned blocks, unsigned blksz, int write)
933{
934	int ret, i;
935
936	if (write) {
937		for (i = 0; i < blocks * blksz; i++)
938			test->scratch[i] = i;
939	} else {
940		memset(test->scratch, 0, BUFFER_SIZE);
941	}
942	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
943
944	ret = mmc_test_set_blksize(test, blksz);
945	if (ret)
946		return ret;
947
948	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
949		blocks, blksz, write);
950	if (ret)
951		return ret;
952
953	if (write) {
954		int sectors;
955
956		ret = mmc_test_set_blksize(test, 512);
957		if (ret)
958			return ret;
959
960		sectors = (blocks * blksz + 511) / 512;
961		if ((sectors * 512) == (blocks * blksz))
962			sectors++;
963
964		if ((sectors * 512) > BUFFER_SIZE)
965			return -EINVAL;
966
967		memset(test->buffer, 0, sectors * 512);
968
969		for (i = 0; i < sectors; i++) {
970			ret = mmc_test_buffer_transfer(test,
971				test->buffer + i * 512,
972				dev_addr + i, 512, 0);
973			if (ret)
974				return ret;
975		}
976
977		for (i = 0; i < blocks * blksz; i++) {
978			if (test->buffer[i] != (u8)i)
979				return RESULT_FAIL;
980		}
981
982		for (; i < sectors * 512; i++) {
983			if (test->buffer[i] != 0xDF)
984				return RESULT_FAIL;
985		}
986	} else {
987		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
988		for (i = 0; i < blocks * blksz; i++) {
989			if (test->scratch[i] != (u8)i)
990				return RESULT_FAIL;
991		}
992	}
993
994	return 0;
995}
996
997/*******************************************************************/
998/*  Tests                                                          */
999/*******************************************************************/
1000
1001struct mmc_test_case {
1002	const char *name;
1003
1004	int (*prepare)(struct mmc_test_card *);
1005	int (*run)(struct mmc_test_card *);
1006	int (*cleanup)(struct mmc_test_card *);
1007};
1008
1009static int mmc_test_basic_write(struct mmc_test_card *test)
1010{
1011	int ret;
1012	struct scatterlist sg;
1013
1014	ret = mmc_test_set_blksize(test, 512);
1015	if (ret)
1016		return ret;
1017
1018	sg_init_one(&sg, test->buffer, 512);
1019
1020	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1021}
1022
1023static int mmc_test_basic_read(struct mmc_test_card *test)
1024{
1025	int ret;
1026	struct scatterlist sg;
1027
1028	ret = mmc_test_set_blksize(test, 512);
1029	if (ret)
1030		return ret;
1031
1032	sg_init_one(&sg, test->buffer, 512);
1033
1034	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1035}
1036
1037static int mmc_test_verify_write(struct mmc_test_card *test)
1038{
1039	struct scatterlist sg;
1040
1041	sg_init_one(&sg, test->buffer, 512);
1042
1043	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1044}
1045
1046static int mmc_test_verify_read(struct mmc_test_card *test)
1047{
1048	struct scatterlist sg;
1049
1050	sg_init_one(&sg, test->buffer, 512);
1051
1052	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1053}
1054
1055static int mmc_test_multi_write(struct mmc_test_card *test)
1056{
1057	unsigned int size;
1058	struct scatterlist sg;
1059
1060	if (test->card->host->max_blk_count == 1)
1061		return RESULT_UNSUP_HOST;
1062
1063	size = PAGE_SIZE * 2;
1064	size = min(size, test->card->host->max_req_size);
1065	size = min(size, test->card->host->max_seg_size);
1066	size = min(size, test->card->host->max_blk_count * 512);
1067
1068	if (size < 1024)
1069		return RESULT_UNSUP_HOST;
1070
1071	sg_init_one(&sg, test->buffer, size);
1072
1073	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1074}
1075
1076static int mmc_test_multi_read(struct mmc_test_card *test)
1077{
1078	unsigned int size;
1079	struct scatterlist sg;
1080
1081	if (test->card->host->max_blk_count == 1)
1082		return RESULT_UNSUP_HOST;
1083
1084	size = PAGE_SIZE * 2;
1085	size = min(size, test->card->host->max_req_size);
1086	size = min(size, test->card->host->max_seg_size);
1087	size = min(size, test->card->host->max_blk_count * 512);
1088
1089	if (size < 1024)
1090		return RESULT_UNSUP_HOST;
1091
1092	sg_init_one(&sg, test->buffer, size);
1093
1094	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1095}
1096
1097static int mmc_test_pow2_write(struct mmc_test_card *test)
1098{
1099	int ret, i;
1100	struct scatterlist sg;
1101
1102	if (!test->card->csd.write_partial)
1103		return RESULT_UNSUP_CARD;
1104
1105	for (i = 1; i < 512; i <<= 1) {
1106		sg_init_one(&sg, test->buffer, i);
1107		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1108		if (ret)
1109			return ret;
1110	}
1111
1112	return 0;
1113}
1114
1115static int mmc_test_pow2_read(struct mmc_test_card *test)
1116{
1117	int ret, i;
1118	struct scatterlist sg;
1119
1120	if (!test->card->csd.read_partial)
1121		return RESULT_UNSUP_CARD;
1122
1123	for (i = 1; i < 512; i <<= 1) {
1124		sg_init_one(&sg, test->buffer, i);
1125		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1126		if (ret)
1127			return ret;
1128	}
1129
1130	return 0;
1131}
1132
1133static int mmc_test_weird_write(struct mmc_test_card *test)
1134{
1135	int ret, i;
1136	struct scatterlist sg;
1137
1138	if (!test->card->csd.write_partial)
1139		return RESULT_UNSUP_CARD;
1140
1141	for (i = 3; i < 512; i += 7) {
1142		sg_init_one(&sg, test->buffer, i);
1143		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1144		if (ret)
1145			return ret;
1146	}
1147
1148	return 0;
1149}
1150
1151static int mmc_test_weird_read(struct mmc_test_card *test)
1152{
1153	int ret, i;
1154	struct scatterlist sg;
1155
1156	if (!test->card->csd.read_partial)
1157		return RESULT_UNSUP_CARD;
1158
1159	for (i = 3; i < 512; i += 7) {
1160		sg_init_one(&sg, test->buffer, i);
1161		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1162		if (ret)
1163			return ret;
1164	}
1165
1166	return 0;
1167}
1168
1169static int mmc_test_align_write(struct mmc_test_card *test)
1170{
1171	int ret, i;
1172	struct scatterlist sg;
1173
1174	for (i = 1; i < TEST_ALIGN_END; i++) {
1175		sg_init_one(&sg, test->buffer + i, 512);
1176		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1177		if (ret)
1178			return ret;
1179	}
1180
1181	return 0;
1182}
1183
1184static int mmc_test_align_read(struct mmc_test_card *test)
1185{
1186	int ret, i;
1187	struct scatterlist sg;
1188
1189	for (i = 1; i < TEST_ALIGN_END; i++) {
1190		sg_init_one(&sg, test->buffer + i, 512);
1191		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1192		if (ret)
1193			return ret;
1194	}
1195
1196	return 0;
1197}
1198
1199static int mmc_test_align_multi_write(struct mmc_test_card *test)
1200{
1201	int ret, i;
1202	unsigned int size;
1203	struct scatterlist sg;
1204
1205	if (test->card->host->max_blk_count == 1)
1206		return RESULT_UNSUP_HOST;
1207
1208	size = PAGE_SIZE * 2;
1209	size = min(size, test->card->host->max_req_size);
1210	size = min(size, test->card->host->max_seg_size);
1211	size = min(size, test->card->host->max_blk_count * 512);
1212
1213	if (size < 1024)
1214		return RESULT_UNSUP_HOST;
1215
1216	for (i = 1; i < TEST_ALIGN_END; i++) {
1217		sg_init_one(&sg, test->buffer + i, size);
1218		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1219		if (ret)
1220			return ret;
1221	}
1222
1223	return 0;
1224}
1225
1226static int mmc_test_align_multi_read(struct mmc_test_card *test)
1227{
1228	int ret, i;
1229	unsigned int size;
1230	struct scatterlist sg;
1231
1232	if (test->card->host->max_blk_count == 1)
1233		return RESULT_UNSUP_HOST;
1234
1235	size = PAGE_SIZE * 2;
1236	size = min(size, test->card->host->max_req_size);
1237	size = min(size, test->card->host->max_seg_size);
1238	size = min(size, test->card->host->max_blk_count * 512);
1239
1240	if (size < 1024)
1241		return RESULT_UNSUP_HOST;
1242
1243	for (i = 1; i < TEST_ALIGN_END; i++) {
1244		sg_init_one(&sg, test->buffer + i, size);
1245		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1246		if (ret)
1247			return ret;
1248	}
1249
1250	return 0;
1251}
1252
1253static int mmc_test_xfersize_write(struct mmc_test_card *test)
1254{
1255	int ret;
1256
1257	ret = mmc_test_set_blksize(test, 512);
1258	if (ret)
1259		return ret;
1260
1261	return mmc_test_broken_transfer(test, 1, 512, 1);
1262}
1263
1264static int mmc_test_xfersize_read(struct mmc_test_card *test)
1265{
1266	int ret;
1267
1268	ret = mmc_test_set_blksize(test, 512);
1269	if (ret)
1270		return ret;
1271
1272	return mmc_test_broken_transfer(test, 1, 512, 0);
1273}
1274
1275static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1276{
1277	int ret;
1278
1279	if (test->card->host->max_blk_count == 1)
1280		return RESULT_UNSUP_HOST;
1281
1282	ret = mmc_test_set_blksize(test, 512);
1283	if (ret)
1284		return ret;
1285
1286	return mmc_test_broken_transfer(test, 2, 512, 1);
1287}
1288
1289static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1290{
1291	int ret;
1292
1293	if (test->card->host->max_blk_count == 1)
1294		return RESULT_UNSUP_HOST;
1295
1296	ret = mmc_test_set_blksize(test, 512);
1297	if (ret)
1298		return ret;
1299
1300	return mmc_test_broken_transfer(test, 2, 512, 0);
1301}
1302
1303#ifdef CONFIG_HIGHMEM
1304
1305static int mmc_test_write_high(struct mmc_test_card *test)
1306{
1307	struct scatterlist sg;
1308
1309	sg_init_table(&sg, 1);
1310	sg_set_page(&sg, test->highmem, 512, 0);
1311
1312	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1313}
1314
1315static int mmc_test_read_high(struct mmc_test_card *test)
1316{
1317	struct scatterlist sg;
1318
1319	sg_init_table(&sg, 1);
1320	sg_set_page(&sg, test->highmem, 512, 0);
1321
1322	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1323}
1324
1325static int mmc_test_multi_write_high(struct mmc_test_card *test)
1326{
1327	unsigned int size;
1328	struct scatterlist sg;
1329
1330	if (test->card->host->max_blk_count == 1)
1331		return RESULT_UNSUP_HOST;
1332
1333	size = PAGE_SIZE * 2;
1334	size = min(size, test->card->host->max_req_size);
1335	size = min(size, test->card->host->max_seg_size);
1336	size = min(size, test->card->host->max_blk_count * 512);
1337
1338	if (size < 1024)
1339		return RESULT_UNSUP_HOST;
1340
1341	sg_init_table(&sg, 1);
1342	sg_set_page(&sg, test->highmem, size, 0);
1343
1344	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1345}
1346
1347static int mmc_test_multi_read_high(struct mmc_test_card *test)
1348{
1349	unsigned int size;
1350	struct scatterlist sg;
1351
1352	if (test->card->host->max_blk_count == 1)
1353		return RESULT_UNSUP_HOST;
1354
1355	size = PAGE_SIZE * 2;
1356	size = min(size, test->card->host->max_req_size);
1357	size = min(size, test->card->host->max_seg_size);
1358	size = min(size, test->card->host->max_blk_count * 512);
1359
1360	if (size < 1024)
1361		return RESULT_UNSUP_HOST;
1362
1363	sg_init_table(&sg, 1);
1364	sg_set_page(&sg, test->highmem, size, 0);
1365
1366	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1367}
1368
1369#else
1370
1371static int mmc_test_no_highmem(struct mmc_test_card *test)
1372{
1373	pr_info("%s: Highmem not configured - test skipped\n",
1374	       mmc_hostname(test->card->host));
1375	return 0;
1376}
1377
1378#endif /* CONFIG_HIGHMEM */
1379
1380/*
1381 * Map sz bytes so that it can be transferred.
1382 */
1383static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1384			     int max_scatter, int min_sg_len, bool nonblock)
1385{
1386	struct mmc_test_area *t = &test->area;
1387	int err;
1388	unsigned int sg_len = 0;
1389
1390	t->blocks = sz >> 9;
1391
1392	if (max_scatter) {
1393		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1394						  t->max_segs, t->max_seg_sz,
1395				       &t->sg_len);
1396	} else {
1397		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1398				      t->max_seg_sz, &t->sg_len, min_sg_len);
1399	}
1400
1401	if (err || !nonblock)
1402		goto err;
1403
1404	if (max_scatter) {
1405		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1406						  t->max_segs, t->max_seg_sz,
1407						  &sg_len);
1408	} else {
1409		err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1410				      t->max_seg_sz, &sg_len, min_sg_len);
1411	}
1412	if (!err && sg_len != t->sg_len)
1413		err = -EINVAL;
1414
1415err:
1416	if (err)
1417		pr_info("%s: Failed to map sg list\n",
1418		       mmc_hostname(test->card->host));
1419	return err;
1420}
1421
1422/*
1423 * Transfer bytes mapped by mmc_test_area_map().
1424 */
1425static int mmc_test_area_transfer(struct mmc_test_card *test,
1426				  unsigned int dev_addr, int write)
1427{
1428	struct mmc_test_area *t = &test->area;
1429
1430	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1431					t->blocks, 512, write);
1432}
1433
1434/*
1435 * Map and transfer bytes for multiple transfers.
1436 */
1437static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1438				unsigned int dev_addr, int write,
1439				int max_scatter, int timed, int count,
1440				bool nonblock, int min_sg_len)
1441{
1442	struct timespec64 ts1, ts2;
1443	int ret = 0;
1444	int i;
1445
1446	/*
1447	 * In the case of a maximally scattered transfer, the maximum transfer
1448	 * size is further limited by using PAGE_SIZE segments.
1449	 */
1450	if (max_scatter) {
1451		struct mmc_test_area *t = &test->area;
1452		unsigned long max_tfr;
1453
1454		if (t->max_seg_sz >= PAGE_SIZE)
1455			max_tfr = t->max_segs * PAGE_SIZE;
1456		else
1457			max_tfr = t->max_segs * t->max_seg_sz;
1458		if (sz > max_tfr)
1459			sz = max_tfr;
1460	}
1461
1462	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1463	if (ret)
1464		return ret;
1465
1466	if (timed)
1467		ktime_get_ts64(&ts1);
1468	if (nonblock)
1469		ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1470	else
1471		for (i = 0; i < count && ret == 0; i++) {
1472			ret = mmc_test_area_transfer(test, dev_addr, write);
1473			dev_addr += sz >> 9;
1474		}
1475
1476	if (ret)
1477		return ret;
1478
1479	if (timed)
1480		ktime_get_ts64(&ts2);
1481
1482	if (timed)
1483		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1484
1485	return 0;
1486}
1487
1488static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1489			    unsigned int dev_addr, int write, int max_scatter,
1490			    int timed)
1491{
1492	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1493				    timed, 1, false, 0);
1494}
1495
1496/*
1497 * Write the test area entirely.
1498 */
1499static int mmc_test_area_fill(struct mmc_test_card *test)
1500{
1501	struct mmc_test_area *t = &test->area;
1502
1503	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1504}
1505
1506/*
1507 * Erase the test area entirely.
1508 */
1509static int mmc_test_area_erase(struct mmc_test_card *test)
1510{
1511	struct mmc_test_area *t = &test->area;
1512
1513	if (!mmc_can_erase(test->card))
1514		return 0;
1515
1516	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1517			 MMC_ERASE_ARG);
1518}
1519
1520/*
1521 * Cleanup struct mmc_test_area.
1522 */
1523static int mmc_test_area_cleanup(struct mmc_test_card *test)
1524{
1525	struct mmc_test_area *t = &test->area;
1526
1527	kfree(t->sg);
1528	kfree(t->sg_areq);
1529	mmc_test_free_mem(t->mem);
1530
1531	return 0;
1532}
1533
1534/*
1535 * Initialize an area for testing large transfers.  The test area is set to the
1536 * middle of the card because cards may have different characteristics at the
1537 * front (for FAT file system optimization).  Optionally, the area is erased
1538 * (if the card supports it) which may improve write performance.  Optionally,
1539 * the area is filled with data for subsequent read tests.
1540 */
1541static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1542{
1543	struct mmc_test_area *t = &test->area;
1544	unsigned long min_sz = 64 * 1024, sz;
1545	int ret;
1546
1547	ret = mmc_test_set_blksize(test, 512);
1548	if (ret)
1549		return ret;
1550
1551	/* Make the test area size about 4MiB */
1552	sz = (unsigned long)test->card->pref_erase << 9;
1553	t->max_sz = sz;
1554	while (t->max_sz < 4 * 1024 * 1024)
1555		t->max_sz += sz;
1556	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1557		t->max_sz -= sz;
1558
1559	t->max_segs = test->card->host->max_segs;
1560	t->max_seg_sz = test->card->host->max_seg_size;
1561	t->max_seg_sz -= t->max_seg_sz % 512;
1562
1563	t->max_tfr = t->max_sz;
1564	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1565		t->max_tfr = test->card->host->max_blk_count << 9;
1566	if (t->max_tfr > test->card->host->max_req_size)
1567		t->max_tfr = test->card->host->max_req_size;
1568	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1569		t->max_tfr = t->max_segs * t->max_seg_sz;
1570
1571	/*
1572	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1573	 * because the same memory can be mapped into the scatterlist more than
1574	 * once.  Also, take into account the limits imposed on scatterlist
1575	 * segments by the host driver.
1576	 */
1577	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1578				    t->max_seg_sz);
1579	if (!t->mem)
1580		return -ENOMEM;
1581
1582	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1583	if (!t->sg) {
1584		ret = -ENOMEM;
1585		goto out_free;
1586	}
1587
1588	t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1589				   GFP_KERNEL);
1590	if (!t->sg_areq) {
1591		ret = -ENOMEM;
1592		goto out_free;
1593	}
1594
1595	t->dev_addr = mmc_test_capacity(test->card) / 2;
1596	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1597
1598	if (erase) {
1599		ret = mmc_test_area_erase(test);
1600		if (ret)
1601			goto out_free;
1602	}
1603
1604	if (fill) {
1605		ret = mmc_test_area_fill(test);
1606		if (ret)
1607			goto out_free;
1608	}
1609
1610	return 0;
1611
1612out_free:
1613	mmc_test_area_cleanup(test);
1614	return ret;
1615}
1616
1617/*
1618 * Prepare for large transfers.  Do not erase the test area.
1619 */
1620static int mmc_test_area_prepare(struct mmc_test_card *test)
1621{
1622	return mmc_test_area_init(test, 0, 0);
1623}
1624
1625/*
1626 * Prepare for large transfers.  Do erase the test area.
1627 */
1628static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1629{
1630	return mmc_test_area_init(test, 1, 0);
1631}
1632
1633/*
1634 * Prepare for large transfers.  Erase and fill the test area.
1635 */
1636static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1637{
1638	return mmc_test_area_init(test, 1, 1);
1639}
1640
1641/*
1642 * Test best-case performance.  Best-case performance is expected from
1643 * a single large transfer.
1644 *
1645 * An additional option (max_scatter) allows the measurement of the same
1646 * transfer but with no contiguous pages in the scatter list.  This tests
1647 * the efficiency of DMA to handle scattered pages.
1648 */
1649static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1650				     int max_scatter)
1651{
1652	struct mmc_test_area *t = &test->area;
1653
1654	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1655				max_scatter, 1);
1656}
1657
1658/*
1659 * Best-case read performance.
1660 */
1661static int mmc_test_best_read_performance(struct mmc_test_card *test)
1662{
1663	return mmc_test_best_performance(test, 0, 0);
1664}
1665
1666/*
1667 * Best-case write performance.
1668 */
1669static int mmc_test_best_write_performance(struct mmc_test_card *test)
1670{
1671	return mmc_test_best_performance(test, 1, 0);
1672}
1673
1674/*
1675 * Best-case read performance into scattered pages.
1676 */
1677static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1678{
1679	return mmc_test_best_performance(test, 0, 1);
1680}
1681
1682/*
1683 * Best-case write performance from scattered pages.
1684 */
1685static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1686{
1687	return mmc_test_best_performance(test, 1, 1);
1688}
1689
1690/*
1691 * Single read performance by transfer size.
1692 */
1693static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1694{
1695	struct mmc_test_area *t = &test->area;
1696	unsigned long sz;
1697	unsigned int dev_addr;
1698	int ret;
1699
1700	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1701		dev_addr = t->dev_addr + (sz >> 9);
1702		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1703		if (ret)
1704			return ret;
1705	}
1706	sz = t->max_tfr;
1707	dev_addr = t->dev_addr;
1708	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1709}
1710
1711/*
1712 * Single write performance by transfer size.
1713 */
1714static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1715{
1716	struct mmc_test_area *t = &test->area;
1717	unsigned long sz;
1718	unsigned int dev_addr;
1719	int ret;
1720
1721	ret = mmc_test_area_erase(test);
1722	if (ret)
1723		return ret;
1724	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1725		dev_addr = t->dev_addr + (sz >> 9);
1726		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1727		if (ret)
1728			return ret;
1729	}
1730	ret = mmc_test_area_erase(test);
1731	if (ret)
1732		return ret;
1733	sz = t->max_tfr;
1734	dev_addr = t->dev_addr;
1735	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1736}
1737
1738/*
1739 * Single trim performance by transfer size.
1740 */
1741static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1742{
1743	struct mmc_test_area *t = &test->area;
1744	unsigned long sz;
1745	unsigned int dev_addr;
1746	struct timespec64 ts1, ts2;
1747	int ret;
1748
1749	if (!mmc_can_trim(test->card))
1750		return RESULT_UNSUP_CARD;
1751
1752	if (!mmc_can_erase(test->card))
1753		return RESULT_UNSUP_HOST;
1754
1755	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1756		dev_addr = t->dev_addr + (sz >> 9);
1757		ktime_get_ts64(&ts1);
1758		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1759		if (ret)
1760			return ret;
1761		ktime_get_ts64(&ts2);
1762		mmc_test_print_rate(test, sz, &ts1, &ts2);
1763	}
1764	dev_addr = t->dev_addr;
1765	ktime_get_ts64(&ts1);
1766	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1767	if (ret)
1768		return ret;
1769	ktime_get_ts64(&ts2);
1770	mmc_test_print_rate(test, sz, &ts1, &ts2);
1771	return 0;
1772}
1773
1774static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1775{
1776	struct mmc_test_area *t = &test->area;
1777	unsigned int dev_addr, i, cnt;
1778	struct timespec64 ts1, ts2;
1779	int ret;
1780
1781	cnt = t->max_sz / sz;
1782	dev_addr = t->dev_addr;
1783	ktime_get_ts64(&ts1);
1784	for (i = 0; i < cnt; i++) {
1785		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1786		if (ret)
1787			return ret;
1788		dev_addr += (sz >> 9);
1789	}
1790	ktime_get_ts64(&ts2);
1791	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1792	return 0;
1793}
1794
1795/*
1796 * Consecutive read performance by transfer size.
1797 */
1798static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1799{
1800	struct mmc_test_area *t = &test->area;
1801	unsigned long sz;
1802	int ret;
1803
1804	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1805		ret = mmc_test_seq_read_perf(test, sz);
1806		if (ret)
1807			return ret;
1808	}
1809	sz = t->max_tfr;
1810	return mmc_test_seq_read_perf(test, sz);
1811}
1812
1813static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1814{
1815	struct mmc_test_area *t = &test->area;
1816	unsigned int dev_addr, i, cnt;
1817	struct timespec64 ts1, ts2;
1818	int ret;
1819
1820	ret = mmc_test_area_erase(test);
1821	if (ret)
1822		return ret;
1823	cnt = t->max_sz / sz;
1824	dev_addr = t->dev_addr;
1825	ktime_get_ts64(&ts1);
1826	for (i = 0; i < cnt; i++) {
1827		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1828		if (ret)
1829			return ret;
1830		dev_addr += (sz >> 9);
1831	}
1832	ktime_get_ts64(&ts2);
1833	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1834	return 0;
1835}
1836
1837/*
1838 * Consecutive write performance by transfer size.
1839 */
1840static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1841{
1842	struct mmc_test_area *t = &test->area;
1843	unsigned long sz;
1844	int ret;
1845
1846	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1847		ret = mmc_test_seq_write_perf(test, sz);
1848		if (ret)
1849			return ret;
1850	}
1851	sz = t->max_tfr;
1852	return mmc_test_seq_write_perf(test, sz);
1853}
1854
1855/*
1856 * Consecutive trim performance by transfer size.
1857 */
1858static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1859{
1860	struct mmc_test_area *t = &test->area;
1861	unsigned long sz;
1862	unsigned int dev_addr, i, cnt;
1863	struct timespec64 ts1, ts2;
1864	int ret;
1865
1866	if (!mmc_can_trim(test->card))
1867		return RESULT_UNSUP_CARD;
1868
1869	if (!mmc_can_erase(test->card))
1870		return RESULT_UNSUP_HOST;
1871
1872	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1873		ret = mmc_test_area_erase(test);
1874		if (ret)
1875			return ret;
1876		ret = mmc_test_area_fill(test);
1877		if (ret)
1878			return ret;
1879		cnt = t->max_sz / sz;
1880		dev_addr = t->dev_addr;
1881		ktime_get_ts64(&ts1);
1882		for (i = 0; i < cnt; i++) {
1883			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1884					MMC_TRIM_ARG);
1885			if (ret)
1886				return ret;
1887			dev_addr += (sz >> 9);
1888		}
1889		ktime_get_ts64(&ts2);
1890		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1891	}
1892	return 0;
1893}
1894
1895static unsigned int rnd_next = 1;
1896
1897static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1898{
1899	uint64_t r;
1900
1901	rnd_next = rnd_next * 1103515245 + 12345;
1902	r = (rnd_next >> 16) & 0x7fff;
1903	return (r * rnd_cnt) >> 15;
1904}
1905
1906static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1907			     unsigned long sz, int secs, int force_retuning)
1908{
1909	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1910	unsigned int ssz;
1911	struct timespec64 ts1, ts2, ts;
1912	int ret;
1913
1914	ssz = sz >> 9;
1915
1916	rnd_addr = mmc_test_capacity(test->card) / 4;
1917	range1 = rnd_addr / test->card->pref_erase;
1918	range2 = range1 / ssz;
1919
1920	ktime_get_ts64(&ts1);
1921	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1922		ktime_get_ts64(&ts2);
1923		ts = timespec64_sub(ts2, ts1);
1924		if (ts.tv_sec >= secs)
1925			break;
1926		ea = mmc_test_rnd_num(range1);
1927		if (ea == last_ea)
1928			ea -= 1;
1929		last_ea = ea;
1930		dev_addr = rnd_addr + test->card->pref_erase * ea +
1931			   ssz * mmc_test_rnd_num(range2);
1932		if (force_retuning)
1933			mmc_retune_needed(test->card->host);
1934		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1935		if (ret)
1936			return ret;
1937	}
1938	if (print)
1939		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1940	return 0;
1941}
1942
1943static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1944{
1945	struct mmc_test_area *t = &test->area;
1946	unsigned int next;
1947	unsigned long sz;
1948	int ret;
1949
1950	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1951		/*
1952		 * When writing, try to get more consistent results by running
1953		 * the test twice with exactly the same I/O but outputting the
1954		 * results only for the 2nd run.
1955		 */
1956		if (write) {
1957			next = rnd_next;
1958			ret = mmc_test_rnd_perf(test, write, 0, sz, 10, 0);
1959			if (ret)
1960				return ret;
1961			rnd_next = next;
1962		}
1963		ret = mmc_test_rnd_perf(test, write, 1, sz, 10, 0);
1964		if (ret)
1965			return ret;
1966	}
1967	sz = t->max_tfr;
1968	if (write) {
1969		next = rnd_next;
1970		ret = mmc_test_rnd_perf(test, write, 0, sz, 10, 0);
1971		if (ret)
1972			return ret;
1973		rnd_next = next;
1974	}
1975	return mmc_test_rnd_perf(test, write, 1, sz, 10, 0);
1976}
1977
1978static int mmc_test_retuning(struct mmc_test_card *test)
1979{
1980	if (!mmc_can_retune(test->card->host)) {
1981		pr_info("%s: No retuning - test skipped\n",
1982			mmc_hostname(test->card->host));
1983		return RESULT_UNSUP_HOST;
1984	}
1985
1986	return mmc_test_rnd_perf(test, 0, 0, 8192, 30, 1);
1987}
1988
1989/*
1990 * Random read performance by transfer size.
1991 */
1992static int mmc_test_random_read_perf(struct mmc_test_card *test)
1993{
1994	return mmc_test_random_perf(test, 0);
1995}
1996
1997/*
1998 * Random write performance by transfer size.
1999 */
2000static int mmc_test_random_write_perf(struct mmc_test_card *test)
2001{
2002	return mmc_test_random_perf(test, 1);
2003}
2004
2005static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
2006			     unsigned int tot_sz, int max_scatter)
2007{
2008	struct mmc_test_area *t = &test->area;
2009	unsigned int dev_addr, i, cnt, sz, ssz;
2010	struct timespec64 ts1, ts2;
2011	int ret;
2012
2013	sz = t->max_tfr;
2014
2015	/*
2016	 * In the case of a maximally scattered transfer, the maximum transfer
2017	 * size is further limited by using PAGE_SIZE segments.
2018	 */
2019	if (max_scatter) {
2020		unsigned long max_tfr;
2021
2022		if (t->max_seg_sz >= PAGE_SIZE)
2023			max_tfr = t->max_segs * PAGE_SIZE;
2024		else
2025			max_tfr = t->max_segs * t->max_seg_sz;
2026		if (sz > max_tfr)
2027			sz = max_tfr;
2028	}
2029
2030	ssz = sz >> 9;
2031	dev_addr = mmc_test_capacity(test->card) / 4;
2032	if (tot_sz > dev_addr << 9)
2033		tot_sz = dev_addr << 9;
2034	cnt = tot_sz / sz;
2035	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2036
2037	ktime_get_ts64(&ts1);
2038	for (i = 0; i < cnt; i++) {
2039		ret = mmc_test_area_io(test, sz, dev_addr, write,
2040				       max_scatter, 0);
2041		if (ret)
2042			return ret;
2043		dev_addr += ssz;
2044	}
2045	ktime_get_ts64(&ts2);
2046
2047	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2048
2049	return 0;
2050}
2051
2052static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2053{
2054	int ret, i;
2055
2056	for (i = 0; i < 10; i++) {
2057		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2058		if (ret)
2059			return ret;
2060	}
2061	for (i = 0; i < 5; i++) {
2062		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2063		if (ret)
2064			return ret;
2065	}
2066	for (i = 0; i < 3; i++) {
2067		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2068		if (ret)
2069			return ret;
2070	}
2071
2072	return ret;
2073}
2074
2075/*
2076 * Large sequential read performance.
2077 */
2078static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2079{
2080	return mmc_test_large_seq_perf(test, 0);
2081}
2082
2083/*
2084 * Large sequential write performance.
2085 */
2086static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2087{
2088	return mmc_test_large_seq_perf(test, 1);
2089}
2090
2091static int mmc_test_rw_multiple(struct mmc_test_card *test,
2092				struct mmc_test_multiple_rw *tdata,
2093				unsigned int reqsize, unsigned int size,
2094				int min_sg_len)
2095{
2096	unsigned int dev_addr;
2097	struct mmc_test_area *t = &test->area;
2098	int ret = 0;
2099
2100	/* Set up test area */
2101	if (size > mmc_test_capacity(test->card) / 2 * 512)
2102		size = mmc_test_capacity(test->card) / 2 * 512;
2103	if (reqsize > t->max_tfr)
2104		reqsize = t->max_tfr;
2105	dev_addr = mmc_test_capacity(test->card) / 4;
2106	if ((dev_addr & 0xffff0000))
2107		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2108	else
2109		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2110	if (!dev_addr)
2111		goto err;
2112
2113	if (reqsize > size)
2114		return 0;
2115
2116	/* prepare test area */
2117	if (mmc_can_erase(test->card) &&
2118	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2119		ret = mmc_erase(test->card, dev_addr,
2120				size / 512, test->card->erase_arg);
2121		if (ret)
2122			ret = mmc_erase(test->card, dev_addr,
2123					size / 512, MMC_ERASE_ARG);
2124		if (ret)
2125			goto err;
2126	}
2127
2128	/* Run test */
2129	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2130				   tdata->do_write, 0, 1, size / reqsize,
2131				   tdata->do_nonblock_req, min_sg_len);
2132	if (ret)
2133		goto err;
2134
2135	return ret;
2136 err:
2137	pr_info("[%s] error\n", __func__);
2138	return ret;
2139}
2140
2141static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2142				     struct mmc_test_multiple_rw *rw)
2143{
2144	int ret = 0;
2145	int i;
2146	void *pre_req = test->card->host->ops->pre_req;
2147	void *post_req = test->card->host->ops->post_req;
2148
2149	if (rw->do_nonblock_req &&
2150	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2151		pr_info("error: only one of pre/post is defined\n");
2152		return -EINVAL;
2153	}
2154
2155	for (i = 0 ; i < rw->len && ret == 0; i++) {
2156		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2157		if (ret)
2158			break;
2159	}
2160	return ret;
2161}
2162
2163static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2164				       struct mmc_test_multiple_rw *rw)
2165{
2166	int ret = 0;
2167	int i;
2168
2169	for (i = 0 ; i < rw->len && ret == 0; i++) {
2170		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2171					   rw->sg_len[i]);
2172		if (ret)
2173			break;
2174	}
2175	return ret;
2176}
2177
2178/*
2179 * Multiple blocking write 4k to 4 MB chunks
2180 */
2181static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2182{
2183	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2184			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2185	struct mmc_test_multiple_rw test_data = {
2186		.bs = bs,
2187		.size = TEST_AREA_MAX_SIZE,
2188		.len = ARRAY_SIZE(bs),
2189		.do_write = true,
2190		.do_nonblock_req = false,
2191		.prepare = MMC_TEST_PREP_ERASE,
2192	};
2193
2194	return mmc_test_rw_multiple_size(test, &test_data);
2195};
2196
2197/*
2198 * Multiple non-blocking write 4k to 4 MB chunks
2199 */
2200static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2201{
2202	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2203			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2204	struct mmc_test_multiple_rw test_data = {
2205		.bs = bs,
2206		.size = TEST_AREA_MAX_SIZE,
2207		.len = ARRAY_SIZE(bs),
2208		.do_write = true,
2209		.do_nonblock_req = true,
2210		.prepare = MMC_TEST_PREP_ERASE,
2211	};
2212
2213	return mmc_test_rw_multiple_size(test, &test_data);
2214}
2215
2216/*
2217 * Multiple blocking read 4k to 4 MB chunks
2218 */
2219static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2220{
2221	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2222			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2223	struct mmc_test_multiple_rw test_data = {
2224		.bs = bs,
2225		.size = TEST_AREA_MAX_SIZE,
2226		.len = ARRAY_SIZE(bs),
2227		.do_write = false,
2228		.do_nonblock_req = false,
2229		.prepare = MMC_TEST_PREP_NONE,
2230	};
2231
2232	return mmc_test_rw_multiple_size(test, &test_data);
2233}
2234
2235/*
2236 * Multiple non-blocking read 4k to 4 MB chunks
2237 */
2238static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2239{
2240	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2241			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2242	struct mmc_test_multiple_rw test_data = {
2243		.bs = bs,
2244		.size = TEST_AREA_MAX_SIZE,
2245		.len = ARRAY_SIZE(bs),
2246		.do_write = false,
2247		.do_nonblock_req = true,
2248		.prepare = MMC_TEST_PREP_NONE,
2249	};
2250
2251	return mmc_test_rw_multiple_size(test, &test_data);
2252}
2253
2254/*
2255 * Multiple blocking write 1 to 512 sg elements
2256 */
2257static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2258{
2259	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2260				 1 << 7, 1 << 8, 1 << 9};
2261	struct mmc_test_multiple_rw test_data = {
2262		.sg_len = sg_len,
2263		.size = TEST_AREA_MAX_SIZE,
2264		.len = ARRAY_SIZE(sg_len),
2265		.do_write = true,
2266		.do_nonblock_req = false,
2267		.prepare = MMC_TEST_PREP_ERASE,
2268	};
2269
2270	return mmc_test_rw_multiple_sg_len(test, &test_data);
2271};
2272
2273/*
2274 * Multiple non-blocking write 1 to 512 sg elements
2275 */
2276static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2277{
2278	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2279				 1 << 7, 1 << 8, 1 << 9};
2280	struct mmc_test_multiple_rw test_data = {
2281		.sg_len = sg_len,
2282		.size = TEST_AREA_MAX_SIZE,
2283		.len = ARRAY_SIZE(sg_len),
2284		.do_write = true,
2285		.do_nonblock_req = true,
2286		.prepare = MMC_TEST_PREP_ERASE,
2287	};
2288
2289	return mmc_test_rw_multiple_sg_len(test, &test_data);
2290}
2291
2292/*
2293 * Multiple blocking read 1 to 512 sg elements
2294 */
2295static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2296{
2297	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2298				 1 << 7, 1 << 8, 1 << 9};
2299	struct mmc_test_multiple_rw test_data = {
2300		.sg_len = sg_len,
2301		.size = TEST_AREA_MAX_SIZE,
2302		.len = ARRAY_SIZE(sg_len),
2303		.do_write = false,
2304		.do_nonblock_req = false,
2305		.prepare = MMC_TEST_PREP_NONE,
2306	};
2307
2308	return mmc_test_rw_multiple_sg_len(test, &test_data);
2309}
2310
2311/*
2312 * Multiple non-blocking read 1 to 512 sg elements
2313 */
2314static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2315{
2316	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2317				 1 << 7, 1 << 8, 1 << 9};
2318	struct mmc_test_multiple_rw test_data = {
2319		.sg_len = sg_len,
2320		.size = TEST_AREA_MAX_SIZE,
2321		.len = ARRAY_SIZE(sg_len),
2322		.do_write = false,
2323		.do_nonblock_req = true,
2324		.prepare = MMC_TEST_PREP_NONE,
2325	};
2326
2327	return mmc_test_rw_multiple_sg_len(test, &test_data);
2328}
2329
2330/*
2331 * eMMC hardware reset.
2332 */
2333static int mmc_test_reset(struct mmc_test_card *test)
2334{
2335	struct mmc_card *card = test->card;
2336	int err;
2337
2338	err = mmc_hw_reset(card);
2339	if (!err) {
2340		/*
2341		 * Reset will re-enable the card's command queue, but tests
2342		 * expect it to be disabled.
2343		 */
2344		if (card->ext_csd.cmdq_en)
2345			mmc_cmdq_disable(card);
2346		return RESULT_OK;
2347	} else if (err == -EOPNOTSUPP) {
2348		return RESULT_UNSUP_HOST;
2349	}
2350
2351	return RESULT_FAIL;
2352}
2353
2354static int mmc_test_send_status(struct mmc_test_card *test,
2355				struct mmc_command *cmd)
2356{
2357	memset(cmd, 0, sizeof(*cmd));
2358
2359	cmd->opcode = MMC_SEND_STATUS;
2360	if (!mmc_host_is_spi(test->card->host))
2361		cmd->arg = test->card->rca << 16;
2362	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2363
2364	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2365}
2366
2367static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2368				     unsigned int dev_addr, int use_sbc,
2369				     int repeat_cmd, int write, int use_areq)
2370{
2371	struct mmc_test_req *rq = mmc_test_req_alloc();
2372	struct mmc_host *host = test->card->host;
2373	struct mmc_test_area *t = &test->area;
2374	struct mmc_request *mrq;
2375	unsigned long timeout;
2376	bool expired = false;
2377	int ret = 0, cmd_ret;
2378	u32 status = 0;
2379	int count = 0;
2380
2381	if (!rq)
2382		return -ENOMEM;
2383
2384	mrq = &rq->mrq;
2385	if (use_sbc)
2386		mrq->sbc = &rq->sbc;
2387	mrq->cap_cmd_during_tfr = true;
2388
2389	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2390			     512, write);
2391
2392	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2393		ret =  mmc_host_cmd23(host) ?
2394		       RESULT_UNSUP_CARD :
2395		       RESULT_UNSUP_HOST;
2396		goto out_free;
2397	}
2398
2399	/* Start ongoing data request */
2400	if (use_areq) {
2401		ret = mmc_test_start_areq(test, mrq, NULL);
2402		if (ret)
2403			goto out_free;
2404	} else {
2405		mmc_wait_for_req(host, mrq);
2406	}
2407
2408	timeout = jiffies + msecs_to_jiffies(3000);
2409	do {
2410		count += 1;
2411
2412		/* Send status command while data transfer in progress */
2413		cmd_ret = mmc_test_send_status(test, &rq->status);
2414		if (cmd_ret)
2415			break;
2416
2417		status = rq->status.resp[0];
2418		if (status & R1_ERROR) {
2419			cmd_ret = -EIO;
2420			break;
2421		}
2422
2423		if (mmc_is_req_done(host, mrq))
2424			break;
2425
2426		expired = time_after(jiffies, timeout);
2427		if (expired) {
2428			pr_info("%s: timeout waiting for Tran state status %#x\n",
2429				mmc_hostname(host), status);
2430			cmd_ret = -ETIMEDOUT;
2431			break;
2432		}
2433	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2434
2435	/* Wait for data request to complete */
2436	if (use_areq) {
2437		ret = mmc_test_start_areq(test, NULL, mrq);
2438	} else {
2439		mmc_wait_for_req_done(test->card->host, mrq);
2440	}
2441
2442	/*
2443	 * For cap_cmd_during_tfr request, upper layer must send stop if
2444	 * required.
2445	 */
2446	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2447		if (ret)
2448			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2449		else
2450			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2451	}
2452
2453	if (ret)
2454		goto out_free;
2455
2456	if (cmd_ret) {
2457		pr_info("%s: Send Status failed: status %#x, error %d\n",
2458			mmc_hostname(test->card->host), status, cmd_ret);
2459	}
2460
2461	ret = mmc_test_check_result(test, mrq);
2462	if (ret)
2463		goto out_free;
2464
2465	ret = mmc_test_wait_busy(test);
2466	if (ret)
2467		goto out_free;
2468
2469	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2470		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2471			mmc_hostname(test->card->host), count, t->blocks);
2472
2473	if (cmd_ret)
2474		ret = cmd_ret;
2475out_free:
2476	kfree(rq);
2477
2478	return ret;
2479}
2480
2481static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2482				      unsigned long sz, int use_sbc, int write,
2483				      int use_areq)
2484{
2485	struct mmc_test_area *t = &test->area;
2486	int ret;
2487
2488	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2489		return RESULT_UNSUP_HOST;
2490
2491	ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2492	if (ret)
2493		return ret;
2494
2495	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2496					use_areq);
2497	if (ret)
2498		return ret;
2499
2500	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2501					 use_areq);
2502}
2503
2504static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2505				    int write, int use_areq)
2506{
2507	struct mmc_test_area *t = &test->area;
2508	unsigned long sz;
2509	int ret;
2510
2511	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2512		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2513						 use_areq);
2514		if (ret)
2515			return ret;
2516	}
2517	return 0;
2518}
2519
2520/*
2521 * Commands during read - no Set Block Count (CMD23).
2522 */
2523static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2524{
2525	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2526}
2527
2528/*
2529 * Commands during write - no Set Block Count (CMD23).
2530 */
2531static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2532{
2533	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2534}
2535
2536/*
2537 * Commands during read - use Set Block Count (CMD23).
2538 */
2539static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2540{
2541	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2542}
2543
2544/*
2545 * Commands during write - use Set Block Count (CMD23).
2546 */
2547static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2548{
2549	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2550}
2551
2552/*
2553 * Commands during non-blocking read - use Set Block Count (CMD23).
2554 */
2555static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2556{
2557	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2558}
2559
2560/*
2561 * Commands during non-blocking write - use Set Block Count (CMD23).
2562 */
2563static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2564{
2565	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2566}
2567
2568static const struct mmc_test_case mmc_test_cases[] = {
2569	{
2570		.name = "Basic write (no data verification)",
2571		.run = mmc_test_basic_write,
2572	},
2573
2574	{
2575		.name = "Basic read (no data verification)",
2576		.run = mmc_test_basic_read,
2577	},
2578
2579	{
2580		.name = "Basic write (with data verification)",
2581		.prepare = mmc_test_prepare_write,
2582		.run = mmc_test_verify_write,
2583		.cleanup = mmc_test_cleanup,
2584	},
2585
2586	{
2587		.name = "Basic read (with data verification)",
2588		.prepare = mmc_test_prepare_read,
2589		.run = mmc_test_verify_read,
2590		.cleanup = mmc_test_cleanup,
2591	},
2592
2593	{
2594		.name = "Multi-block write",
2595		.prepare = mmc_test_prepare_write,
2596		.run = mmc_test_multi_write,
2597		.cleanup = mmc_test_cleanup,
2598	},
2599
2600	{
2601		.name = "Multi-block read",
2602		.prepare = mmc_test_prepare_read,
2603		.run = mmc_test_multi_read,
2604		.cleanup = mmc_test_cleanup,
2605	},
2606
2607	{
2608		.name = "Power of two block writes",
2609		.prepare = mmc_test_prepare_write,
2610		.run = mmc_test_pow2_write,
2611		.cleanup = mmc_test_cleanup,
2612	},
2613
2614	{
2615		.name = "Power of two block reads",
2616		.prepare = mmc_test_prepare_read,
2617		.run = mmc_test_pow2_read,
2618		.cleanup = mmc_test_cleanup,
2619	},
2620
2621	{
2622		.name = "Weird sized block writes",
2623		.prepare = mmc_test_prepare_write,
2624		.run = mmc_test_weird_write,
2625		.cleanup = mmc_test_cleanup,
2626	},
2627
2628	{
2629		.name = "Weird sized block reads",
2630		.prepare = mmc_test_prepare_read,
2631		.run = mmc_test_weird_read,
2632		.cleanup = mmc_test_cleanup,
2633	},
2634
2635	{
2636		.name = "Badly aligned write",
2637		.prepare = mmc_test_prepare_write,
2638		.run = mmc_test_align_write,
2639		.cleanup = mmc_test_cleanup,
2640	},
2641
2642	{
2643		.name = "Badly aligned read",
2644		.prepare = mmc_test_prepare_read,
2645		.run = mmc_test_align_read,
2646		.cleanup = mmc_test_cleanup,
2647	},
2648
2649	{
2650		.name = "Badly aligned multi-block write",
2651		.prepare = mmc_test_prepare_write,
2652		.run = mmc_test_align_multi_write,
2653		.cleanup = mmc_test_cleanup,
2654	},
2655
2656	{
2657		.name = "Badly aligned multi-block read",
2658		.prepare = mmc_test_prepare_read,
2659		.run = mmc_test_align_multi_read,
2660		.cleanup = mmc_test_cleanup,
2661	},
2662
2663	{
2664		.name = "Proper xfer_size at write (start failure)",
2665		.run = mmc_test_xfersize_write,
2666	},
2667
2668	{
2669		.name = "Proper xfer_size at read (start failure)",
2670		.run = mmc_test_xfersize_read,
2671	},
2672
2673	{
2674		.name = "Proper xfer_size at write (midway failure)",
2675		.run = mmc_test_multi_xfersize_write,
2676	},
2677
2678	{
2679		.name = "Proper xfer_size at read (midway failure)",
2680		.run = mmc_test_multi_xfersize_read,
2681	},
2682
2683#ifdef CONFIG_HIGHMEM
2684
2685	{
2686		.name = "Highmem write",
2687		.prepare = mmc_test_prepare_write,
2688		.run = mmc_test_write_high,
2689		.cleanup = mmc_test_cleanup,
2690	},
2691
2692	{
2693		.name = "Highmem read",
2694		.prepare = mmc_test_prepare_read,
2695		.run = mmc_test_read_high,
2696		.cleanup = mmc_test_cleanup,
2697	},
2698
2699	{
2700		.name = "Multi-block highmem write",
2701		.prepare = mmc_test_prepare_write,
2702		.run = mmc_test_multi_write_high,
2703		.cleanup = mmc_test_cleanup,
2704	},
2705
2706	{
2707		.name = "Multi-block highmem read",
2708		.prepare = mmc_test_prepare_read,
2709		.run = mmc_test_multi_read_high,
2710		.cleanup = mmc_test_cleanup,
2711	},
2712
2713#else
2714
2715	{
2716		.name = "Highmem write",
2717		.run = mmc_test_no_highmem,
2718	},
2719
2720	{
2721		.name = "Highmem read",
2722		.run = mmc_test_no_highmem,
2723	},
2724
2725	{
2726		.name = "Multi-block highmem write",
2727		.run = mmc_test_no_highmem,
2728	},
2729
2730	{
2731		.name = "Multi-block highmem read",
2732		.run = mmc_test_no_highmem,
2733	},
2734
2735#endif /* CONFIG_HIGHMEM */
2736
2737	{
2738		.name = "Best-case read performance",
2739		.prepare = mmc_test_area_prepare_fill,
2740		.run = mmc_test_best_read_performance,
2741		.cleanup = mmc_test_area_cleanup,
2742	},
2743
2744	{
2745		.name = "Best-case write performance",
2746		.prepare = mmc_test_area_prepare_erase,
2747		.run = mmc_test_best_write_performance,
2748		.cleanup = mmc_test_area_cleanup,
2749	},
2750
2751	{
2752		.name = "Best-case read performance into scattered pages",
2753		.prepare = mmc_test_area_prepare_fill,
2754		.run = mmc_test_best_read_perf_max_scatter,
2755		.cleanup = mmc_test_area_cleanup,
2756	},
2757
2758	{
2759		.name = "Best-case write performance from scattered pages",
2760		.prepare = mmc_test_area_prepare_erase,
2761		.run = mmc_test_best_write_perf_max_scatter,
2762		.cleanup = mmc_test_area_cleanup,
2763	},
2764
2765	{
2766		.name = "Single read performance by transfer size",
2767		.prepare = mmc_test_area_prepare_fill,
2768		.run = mmc_test_profile_read_perf,
2769		.cleanup = mmc_test_area_cleanup,
2770	},
2771
2772	{
2773		.name = "Single write performance by transfer size",
2774		.prepare = mmc_test_area_prepare,
2775		.run = mmc_test_profile_write_perf,
2776		.cleanup = mmc_test_area_cleanup,
2777	},
2778
2779	{
2780		.name = "Single trim performance by transfer size",
2781		.prepare = mmc_test_area_prepare_fill,
2782		.run = mmc_test_profile_trim_perf,
2783		.cleanup = mmc_test_area_cleanup,
2784	},
2785
2786	{
2787		.name = "Consecutive read performance by transfer size",
2788		.prepare = mmc_test_area_prepare_fill,
2789		.run = mmc_test_profile_seq_read_perf,
2790		.cleanup = mmc_test_area_cleanup,
2791	},
2792
2793	{
2794		.name = "Consecutive write performance by transfer size",
2795		.prepare = mmc_test_area_prepare,
2796		.run = mmc_test_profile_seq_write_perf,
2797		.cleanup = mmc_test_area_cleanup,
2798	},
2799
2800	{
2801		.name = "Consecutive trim performance by transfer size",
2802		.prepare = mmc_test_area_prepare,
2803		.run = mmc_test_profile_seq_trim_perf,
2804		.cleanup = mmc_test_area_cleanup,
2805	},
2806
2807	{
2808		.name = "Random read performance by transfer size",
2809		.prepare = mmc_test_area_prepare,
2810		.run = mmc_test_random_read_perf,
2811		.cleanup = mmc_test_area_cleanup,
2812	},
2813
2814	{
2815		.name = "Random write performance by transfer size",
2816		.prepare = mmc_test_area_prepare,
2817		.run = mmc_test_random_write_perf,
2818		.cleanup = mmc_test_area_cleanup,
2819	},
2820
2821	{
2822		.name = "Large sequential read into scattered pages",
2823		.prepare = mmc_test_area_prepare,
2824		.run = mmc_test_large_seq_read_perf,
2825		.cleanup = mmc_test_area_cleanup,
2826	},
2827
2828	{
2829		.name = "Large sequential write from scattered pages",
2830		.prepare = mmc_test_area_prepare,
2831		.run = mmc_test_large_seq_write_perf,
2832		.cleanup = mmc_test_area_cleanup,
2833	},
2834
2835	{
2836		.name = "Write performance with blocking req 4k to 4MB",
2837		.prepare = mmc_test_area_prepare,
2838		.run = mmc_test_profile_mult_write_blocking_perf,
2839		.cleanup = mmc_test_area_cleanup,
2840	},
2841
2842	{
2843		.name = "Write performance with non-blocking req 4k to 4MB",
2844		.prepare = mmc_test_area_prepare,
2845		.run = mmc_test_profile_mult_write_nonblock_perf,
2846		.cleanup = mmc_test_area_cleanup,
2847	},
2848
2849	{
2850		.name = "Read performance with blocking req 4k to 4MB",
2851		.prepare = mmc_test_area_prepare,
2852		.run = mmc_test_profile_mult_read_blocking_perf,
2853		.cleanup = mmc_test_area_cleanup,
2854	},
2855
2856	{
2857		.name = "Read performance with non-blocking req 4k to 4MB",
2858		.prepare = mmc_test_area_prepare,
2859		.run = mmc_test_profile_mult_read_nonblock_perf,
2860		.cleanup = mmc_test_area_cleanup,
2861	},
2862
2863	{
2864		.name = "Write performance blocking req 1 to 512 sg elems",
2865		.prepare = mmc_test_area_prepare,
2866		.run = mmc_test_profile_sglen_wr_blocking_perf,
2867		.cleanup = mmc_test_area_cleanup,
2868	},
2869
2870	{
2871		.name = "Write performance non-blocking req 1 to 512 sg elems",
2872		.prepare = mmc_test_area_prepare,
2873		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2874		.cleanup = mmc_test_area_cleanup,
2875	},
2876
2877	{
2878		.name = "Read performance blocking req 1 to 512 sg elems",
2879		.prepare = mmc_test_area_prepare,
2880		.run = mmc_test_profile_sglen_r_blocking_perf,
2881		.cleanup = mmc_test_area_cleanup,
2882	},
2883
2884	{
2885		.name = "Read performance non-blocking req 1 to 512 sg elems",
2886		.prepare = mmc_test_area_prepare,
2887		.run = mmc_test_profile_sglen_r_nonblock_perf,
2888		.cleanup = mmc_test_area_cleanup,
2889	},
2890
2891	{
2892		.name = "Reset test",
2893		.run = mmc_test_reset,
2894	},
2895
2896	{
2897		.name = "Commands during read - no Set Block Count (CMD23)",
2898		.prepare = mmc_test_area_prepare,
2899		.run = mmc_test_cmds_during_read,
2900		.cleanup = mmc_test_area_cleanup,
2901	},
2902
2903	{
2904		.name = "Commands during write - no Set Block Count (CMD23)",
2905		.prepare = mmc_test_area_prepare,
2906		.run = mmc_test_cmds_during_write,
2907		.cleanup = mmc_test_area_cleanup,
2908	},
2909
2910	{
2911		.name = "Commands during read - use Set Block Count (CMD23)",
2912		.prepare = mmc_test_area_prepare,
2913		.run = mmc_test_cmds_during_read_cmd23,
2914		.cleanup = mmc_test_area_cleanup,
2915	},
2916
2917	{
2918		.name = "Commands during write - use Set Block Count (CMD23)",
2919		.prepare = mmc_test_area_prepare,
2920		.run = mmc_test_cmds_during_write_cmd23,
2921		.cleanup = mmc_test_area_cleanup,
2922	},
2923
2924	{
2925		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2926		.prepare = mmc_test_area_prepare,
2927		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2928		.cleanup = mmc_test_area_cleanup,
2929	},
2930
2931	{
2932		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2933		.prepare = mmc_test_area_prepare,
2934		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2935		.cleanup = mmc_test_area_cleanup,
2936	},
2937
2938	{
2939		.name = "Re-tuning reliability",
2940		.prepare = mmc_test_area_prepare,
2941		.run = mmc_test_retuning,
2942		.cleanup = mmc_test_area_cleanup,
2943	},
2944
2945};
2946
2947static DEFINE_MUTEX(mmc_test_lock);
2948
2949static LIST_HEAD(mmc_test_result);
2950
2951static void mmc_test_run(struct mmc_test_card *test, int testcase)
2952{
2953	int i, ret;
2954
2955	pr_info("%s: Starting tests of card %s...\n",
2956		mmc_hostname(test->card->host), mmc_card_id(test->card));
2957
2958	mmc_claim_host(test->card->host);
2959
2960	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2961		struct mmc_test_general_result *gr;
2962
2963		if (testcase && ((i + 1) != testcase))
2964			continue;
2965
2966		pr_info("%s: Test case %d. %s...\n",
2967			mmc_hostname(test->card->host), i + 1,
2968			mmc_test_cases[i].name);
2969
2970		if (mmc_test_cases[i].prepare) {
2971			ret = mmc_test_cases[i].prepare(test);
2972			if (ret) {
2973				pr_info("%s: Result: Prepare stage failed! (%d)\n",
2974					mmc_hostname(test->card->host),
2975					ret);
2976				continue;
2977			}
2978		}
2979
2980		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2981		if (gr) {
2982			INIT_LIST_HEAD(&gr->tr_lst);
2983
2984			/* Assign data what we know already */
2985			gr->card = test->card;
2986			gr->testcase = i;
2987
2988			/* Append container to global one */
2989			list_add_tail(&gr->link, &mmc_test_result);
2990
2991			/*
2992			 * Save the pointer to created container in our private
2993			 * structure.
2994			 */
2995			test->gr = gr;
2996		}
2997
2998		ret = mmc_test_cases[i].run(test);
2999		switch (ret) {
3000		case RESULT_OK:
3001			pr_info("%s: Result: OK\n",
3002				mmc_hostname(test->card->host));
3003			break;
3004		case RESULT_FAIL:
3005			pr_info("%s: Result: FAILED\n",
3006				mmc_hostname(test->card->host));
3007			break;
3008		case RESULT_UNSUP_HOST:
3009			pr_info("%s: Result: UNSUPPORTED (by host)\n",
3010				mmc_hostname(test->card->host));
3011			break;
3012		case RESULT_UNSUP_CARD:
3013			pr_info("%s: Result: UNSUPPORTED (by card)\n",
3014				mmc_hostname(test->card->host));
3015			break;
3016		default:
3017			pr_info("%s: Result: ERROR (%d)\n",
3018				mmc_hostname(test->card->host), ret);
3019		}
3020
3021		/* Save the result */
3022		if (gr)
3023			gr->result = ret;
3024
3025		if (mmc_test_cases[i].cleanup) {
3026			ret = mmc_test_cases[i].cleanup(test);
3027			if (ret) {
3028				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3029					mmc_hostname(test->card->host),
3030					ret);
3031			}
3032		}
3033	}
3034
3035	mmc_release_host(test->card->host);
3036
3037	pr_info("%s: Tests completed.\n",
3038		mmc_hostname(test->card->host));
3039}
3040
3041static void mmc_test_free_result(struct mmc_card *card)
3042{
3043	struct mmc_test_general_result *gr, *grs;
3044
3045	mutex_lock(&mmc_test_lock);
3046
3047	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3048		struct mmc_test_transfer_result *tr, *trs;
3049
3050		if (card && gr->card != card)
3051			continue;
3052
3053		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3054			list_del(&tr->link);
3055			kfree(tr);
3056		}
3057
3058		list_del(&gr->link);
3059		kfree(gr);
3060	}
3061
3062	mutex_unlock(&mmc_test_lock);
3063}
3064
3065static LIST_HEAD(mmc_test_file_test);
3066
3067static int mtf_test_show(struct seq_file *sf, void *data)
3068{
3069	struct mmc_card *card = sf->private;
3070	struct mmc_test_general_result *gr;
3071
3072	mutex_lock(&mmc_test_lock);
3073
3074	list_for_each_entry(gr, &mmc_test_result, link) {
3075		struct mmc_test_transfer_result *tr;
3076
3077		if (gr->card != card)
3078			continue;
3079
3080		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3081
3082		list_for_each_entry(tr, &gr->tr_lst, link) {
3083			seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3084				tr->count, tr->sectors,
3085				(u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3086				tr->rate, tr->iops / 100, tr->iops % 100);
3087		}
3088	}
3089
3090	mutex_unlock(&mmc_test_lock);
3091
3092	return 0;
3093}
3094
3095static int mtf_test_open(struct inode *inode, struct file *file)
3096{
3097	return single_open(file, mtf_test_show, inode->i_private);
3098}
3099
3100static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3101	size_t count, loff_t *pos)
3102{
3103	struct seq_file *sf = file->private_data;
3104	struct mmc_card *card = sf->private;
3105	struct mmc_test_card *test;
3106	long testcase;
3107	int ret;
3108
3109	ret = kstrtol_from_user(buf, count, 10, &testcase);
3110	if (ret)
3111		return ret;
3112
3113	test = kzalloc(sizeof(*test), GFP_KERNEL);
3114	if (!test)
3115		return -ENOMEM;
3116
3117	/*
3118	 * Remove all test cases associated with given card. Thus we have only
3119	 * actual data of the last run.
3120	 */
3121	mmc_test_free_result(card);
3122
3123	test->card = card;
3124
3125	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3126#ifdef CONFIG_HIGHMEM
3127	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3128#endif
3129
3130#ifdef CONFIG_HIGHMEM
3131	if (test->buffer && test->highmem) {
3132#else
3133	if (test->buffer) {
3134#endif
3135		mutex_lock(&mmc_test_lock);
3136		mmc_test_run(test, testcase);
3137		mutex_unlock(&mmc_test_lock);
3138	}
3139
3140#ifdef CONFIG_HIGHMEM
3141	__free_pages(test->highmem, BUFFER_ORDER);
3142#endif
3143	kfree(test->buffer);
3144	kfree(test);
3145
3146	return count;
3147}
3148
3149static const struct file_operations mmc_test_fops_test = {
3150	.open		= mtf_test_open,
3151	.read		= seq_read,
3152	.write		= mtf_test_write,
3153	.llseek		= seq_lseek,
3154	.release	= single_release,
3155};
3156
3157static int mtf_testlist_show(struct seq_file *sf, void *data)
3158{
3159	int i;
3160
3161	mutex_lock(&mmc_test_lock);
3162
3163	seq_puts(sf, "0:\tRun all tests\n");
3164	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3165		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3166
3167	mutex_unlock(&mmc_test_lock);
3168
3169	return 0;
3170}
3171
3172DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3173
3174static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3175{
3176	struct mmc_test_dbgfs_file *df, *dfs;
3177
3178	mutex_lock(&mmc_test_lock);
3179
3180	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3181		if (card && df->card != card)
3182			continue;
3183		debugfs_remove(df->file);
3184		list_del(&df->link);
3185		kfree(df);
3186	}
3187
3188	mutex_unlock(&mmc_test_lock);
3189}
3190
3191static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3192	const char *name, umode_t mode, const struct file_operations *fops)
3193{
3194	struct dentry *file = NULL;
3195	struct mmc_test_dbgfs_file *df;
3196
3197	if (card->debugfs_root)
3198		file = debugfs_create_file(name, mode, card->debugfs_root,
3199					   card, fops);
3200
3201	df = kmalloc(sizeof(*df), GFP_KERNEL);
3202	if (!df) {
3203		debugfs_remove(file);
3204		return -ENOMEM;
3205	}
3206
3207	df->card = card;
3208	df->file = file;
3209
3210	list_add(&df->link, &mmc_test_file_test);
3211	return 0;
3212}
3213
3214static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3215{
3216	int ret;
3217
3218	mutex_lock(&mmc_test_lock);
3219
3220	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3221		&mmc_test_fops_test);
3222	if (ret)
3223		goto err;
3224
3225	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3226		&mtf_testlist_fops);
3227	if (ret)
3228		goto err;
3229
3230err:
3231	mutex_unlock(&mmc_test_lock);
3232
3233	return ret;
3234}
3235
3236static int mmc_test_probe(struct mmc_card *card)
3237{
3238	int ret;
3239
3240	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3241		return -ENODEV;
3242
3243	ret = mmc_test_register_dbgfs_file(card);
3244	if (ret)
3245		return ret;
3246
3247	if (card->ext_csd.cmdq_en) {
3248		mmc_claim_host(card->host);
3249		ret = mmc_cmdq_disable(card);
3250		mmc_release_host(card->host);
3251		if (ret)
3252			return ret;
3253	}
3254
3255	dev_info(&card->dev, "Card claimed for testing.\n");
3256
3257	return 0;
3258}
3259
3260static void mmc_test_remove(struct mmc_card *card)
3261{
3262	if (card->reenable_cmdq) {
3263		mmc_claim_host(card->host);
3264		mmc_cmdq_enable(card);
3265		mmc_release_host(card->host);
3266	}
3267	mmc_test_free_result(card);
3268	mmc_test_free_dbgfs_file(card);
3269}
3270
3271static struct mmc_driver mmc_driver = {
3272	.drv		= {
3273		.name	= "mmc_test",
3274	},
3275	.probe		= mmc_test_probe,
3276	.remove		= mmc_test_remove,
3277};
3278
3279static int __init mmc_test_init(void)
3280{
3281	return mmc_register_driver(&mmc_driver);
3282}
3283
3284static void __exit mmc_test_exit(void)
3285{
3286	/* Clear stalled data if card is still plugged */
3287	mmc_test_free_result(NULL);
3288	mmc_test_free_dbgfs_file(NULL);
3289
3290	mmc_unregister_driver(&mmc_driver);
3291}
3292
3293module_init(mmc_test_init);
3294module_exit(mmc_test_exit);
3295
3296MODULE_LICENSE("GPL");
3297MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3298MODULE_AUTHOR("Pierre Ossman");
3299