1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SN Platform GRU Driver
4 *
5 *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
6 *
7 * This file contains code that handles TLB misses within the GRU.
8 * These misses are reported either via interrupts or user polling of
9 * the user CB.
10 *
11 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
12 */
13
14#include <linux/kernel.h>
15#include <linux/errno.h>
16#include <linux/spinlock.h>
17#include <linux/mm.h>
18#include <linux/hugetlb.h>
19#include <linux/device.h>
20#include <linux/io.h>
21#include <linux/uaccess.h>
22#include <linux/security.h>
23#include <linux/sync_core.h>
24#include <linux/prefetch.h>
25#include "gru.h"
26#include "grutables.h"
27#include "grulib.h"
28#include "gru_instructions.h"
29#include <asm/uv/uv_hub.h>
30
31/* Return codes for vtop functions */
32#define VTOP_SUCCESS               0
33#define VTOP_INVALID               -1
34#define VTOP_RETRY                 -2
35
36
37/*
38 * Test if a physical address is a valid GRU GSEG address
39 */
40static inline int is_gru_paddr(unsigned long paddr)
41{
42	return paddr >= gru_start_paddr && paddr < gru_end_paddr;
43}
44
45/*
46 * Find the vma of a GRU segment. Caller must hold mmap_lock.
47 */
48struct vm_area_struct *gru_find_vma(unsigned long vaddr)
49{
50	struct vm_area_struct *vma;
51
52	vma = vma_lookup(current->mm, vaddr);
53	if (vma && vma->vm_ops == &gru_vm_ops)
54		return vma;
55	return NULL;
56}
57
58/*
59 * Find and lock the gts that contains the specified user vaddr.
60 *
61 * Returns:
62 * 	- *gts with the mmap_lock locked for read and the GTS locked.
63 *	- NULL if vaddr invalid OR is not a valid GSEG vaddr.
64 */
65
66static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
67{
68	struct mm_struct *mm = current->mm;
69	struct vm_area_struct *vma;
70	struct gru_thread_state *gts = NULL;
71
72	mmap_read_lock(mm);
73	vma = gru_find_vma(vaddr);
74	if (vma)
75		gts = gru_find_thread_state(vma, TSID(vaddr, vma));
76	if (gts)
77		mutex_lock(&gts->ts_ctxlock);
78	else
79		mmap_read_unlock(mm);
80	return gts;
81}
82
83static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
84{
85	struct mm_struct *mm = current->mm;
86	struct vm_area_struct *vma;
87	struct gru_thread_state *gts = ERR_PTR(-EINVAL);
88
89	mmap_write_lock(mm);
90	vma = gru_find_vma(vaddr);
91	if (!vma)
92		goto err;
93
94	gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
95	if (IS_ERR(gts))
96		goto err;
97	mutex_lock(&gts->ts_ctxlock);
98	mmap_write_downgrade(mm);
99	return gts;
100
101err:
102	mmap_write_unlock(mm);
103	return gts;
104}
105
106/*
107 * Unlock a GTS that was previously locked with gru_find_lock_gts().
108 */
109static void gru_unlock_gts(struct gru_thread_state *gts)
110{
111	mutex_unlock(&gts->ts_ctxlock);
112	mmap_read_unlock(current->mm);
113}
114
115/*
116 * Set a CB.istatus to active using a user virtual address. This must be done
117 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
118 * If the line is evicted, the status may be lost. The in-cache update
119 * is necessary to prevent the user from seeing a stale cb.istatus that will
120 * change as soon as the TFH restart is complete. Races may cause an
121 * occasional failure to clear the cb.istatus, but that is ok.
122 */
123static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
124{
125	if (cbk) {
126		cbk->istatus = CBS_ACTIVE;
127	}
128}
129
130/*
131 * Read & clear a TFM
132 *
133 * The GRU has an array of fault maps. A map is private to a cpu
134 * Only one cpu will be accessing a cpu's fault map.
135 *
136 * This function scans the cpu-private fault map & clears all bits that
137 * are set. The function returns a bitmap that indicates the bits that
138 * were cleared. Note that sense the maps may be updated asynchronously by
139 * the GRU, atomic operations must be used to clear bits.
140 */
141static void get_clear_fault_map(struct gru_state *gru,
142				struct gru_tlb_fault_map *imap,
143				struct gru_tlb_fault_map *dmap)
144{
145	unsigned long i, k;
146	struct gru_tlb_fault_map *tfm;
147
148	tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
149	prefetchw(tfm);		/* Helps on hardware, required for emulator */
150	for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
151		k = tfm->fault_bits[i];
152		if (k)
153			k = xchg(&tfm->fault_bits[i], 0UL);
154		imap->fault_bits[i] = k;
155		k = tfm->done_bits[i];
156		if (k)
157			k = xchg(&tfm->done_bits[i], 0UL);
158		dmap->fault_bits[i] = k;
159	}
160
161	/*
162	 * Not functionally required but helps performance. (Required
163	 * on emulator)
164	 */
165	gru_flush_cache(tfm);
166}
167
168/*
169 * Atomic (interrupt context) & non-atomic (user context) functions to
170 * convert a vaddr into a physical address. The size of the page
171 * is returned in pageshift.
172 * 	returns:
173 * 		  0 - successful
174 * 		< 0 - error code
175 * 		  1 - (atomic only) try again in non-atomic context
176 */
177static int non_atomic_pte_lookup(struct vm_area_struct *vma,
178				 unsigned long vaddr, int write,
179				 unsigned long *paddr, int *pageshift)
180{
181	struct page *page;
182
183#ifdef CONFIG_HUGETLB_PAGE
184	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
185#else
186	*pageshift = PAGE_SHIFT;
187#endif
188	if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page) <= 0)
189		return -EFAULT;
190	*paddr = page_to_phys(page);
191	put_page(page);
192	return 0;
193}
194
195/*
196 * atomic_pte_lookup
197 *
198 * Convert a user virtual address to a physical address
199 * Only supports Intel large pages (2MB only) on x86_64.
200 *	ZZZ - hugepage support is incomplete
201 *
202 * NOTE: mmap_lock is already held on entry to this function. This
203 * guarantees existence of the page tables.
204 */
205static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
206	int write, unsigned long *paddr, int *pageshift)
207{
208	pgd_t *pgdp;
209	p4d_t *p4dp;
210	pud_t *pudp;
211	pmd_t *pmdp;
212	pte_t pte;
213
214	pgdp = pgd_offset(vma->vm_mm, vaddr);
215	if (unlikely(pgd_none(*pgdp)))
216		goto err;
217
218	p4dp = p4d_offset(pgdp, vaddr);
219	if (unlikely(p4d_none(*p4dp)))
220		goto err;
221
222	pudp = pud_offset(p4dp, vaddr);
223	if (unlikely(pud_none(*pudp)))
224		goto err;
225
226	pmdp = pmd_offset(pudp, vaddr);
227	if (unlikely(pmd_none(*pmdp)))
228		goto err;
229#ifdef CONFIG_X86_64
230	if (unlikely(pmd_leaf(*pmdp)))
231		pte = ptep_get((pte_t *)pmdp);
232	else
233#endif
234		pte = *pte_offset_kernel(pmdp, vaddr);
235
236	if (unlikely(!pte_present(pte) ||
237		     (write && (!pte_write(pte) || !pte_dirty(pte)))))
238		return 1;
239
240	*paddr = pte_pfn(pte) << PAGE_SHIFT;
241#ifdef CONFIG_HUGETLB_PAGE
242	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
243#else
244	*pageshift = PAGE_SHIFT;
245#endif
246	return 0;
247
248err:
249	return 1;
250}
251
252static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
253		    int write, int atomic, unsigned long *gpa, int *pageshift)
254{
255	struct mm_struct *mm = gts->ts_mm;
256	struct vm_area_struct *vma;
257	unsigned long paddr;
258	int ret, ps;
259
260	vma = find_vma(mm, vaddr);
261	if (!vma)
262		goto inval;
263
264	/*
265	 * Atomic lookup is faster & usually works even if called in non-atomic
266	 * context.
267	 */
268	rmb();	/* Must/check ms_range_active before loading PTEs */
269	ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
270	if (ret) {
271		if (atomic)
272			goto upm;
273		if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
274			goto inval;
275	}
276	if (is_gru_paddr(paddr))
277		goto inval;
278	paddr = paddr & ~((1UL << ps) - 1);
279	*gpa = uv_soc_phys_ram_to_gpa(paddr);
280	*pageshift = ps;
281	return VTOP_SUCCESS;
282
283inval:
284	return VTOP_INVALID;
285upm:
286	return VTOP_RETRY;
287}
288
289
290/*
291 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
292 * CBE cacheline so that the line will be written back to home agent.
293 * Otherwise the line may be silently dropped. This has no impact
294 * except on performance.
295 */
296static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
297{
298	if (unlikely(cbe)) {
299		cbe->cbrexecstatus = 0;         /* make CL dirty */
300		gru_flush_cache(cbe);
301	}
302}
303
304/*
305 * Preload the TLB with entries that may be required. Currently, preloading
306 * is implemented only for BCOPY. Preload  <tlb_preload_count> pages OR to
307 * the end of the bcopy tranfer, whichever is smaller.
308 */
309static void gru_preload_tlb(struct gru_state *gru,
310			struct gru_thread_state *gts, int atomic,
311			unsigned long fault_vaddr, int asid, int write,
312			unsigned char tlb_preload_count,
313			struct gru_tlb_fault_handle *tfh,
314			struct gru_control_block_extended *cbe)
315{
316	unsigned long vaddr = 0, gpa;
317	int ret, pageshift;
318
319	if (cbe->opccpy != OP_BCOPY)
320		return;
321
322	if (fault_vaddr == cbe->cbe_baddr0)
323		vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
324	else if (fault_vaddr == cbe->cbe_baddr1)
325		vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
326
327	fault_vaddr &= PAGE_MASK;
328	vaddr &= PAGE_MASK;
329	vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
330
331	while (vaddr > fault_vaddr) {
332		ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
333		if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
334					  GRU_PAGESIZE(pageshift)))
335			return;
336		gru_dbg(grudev,
337			"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
338			atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
339			vaddr, asid, write, pageshift, gpa);
340		vaddr -= PAGE_SIZE;
341		STAT(tlb_preload_page);
342	}
343}
344
345/*
346 * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
347 *	Input:
348 *		cb    Address of user CBR. Null if not running in user context
349 * 	Return:
350 * 		  0 = dropin, exception, or switch to UPM successful
351 * 		  1 = range invalidate active
352 * 		< 0 = error code
353 *
354 */
355static int gru_try_dropin(struct gru_state *gru,
356			  struct gru_thread_state *gts,
357			  struct gru_tlb_fault_handle *tfh,
358			  struct gru_instruction_bits *cbk)
359{
360	struct gru_control_block_extended *cbe = NULL;
361	unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
362	int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
363	unsigned long gpa = 0, vaddr = 0;
364
365	/*
366	 * NOTE: The GRU contains magic hardware that eliminates races between
367	 * TLB invalidates and TLB dropins. If an invalidate occurs
368	 * in the window between reading the TFH and the subsequent TLB dropin,
369	 * the dropin is ignored. This eliminates the need for additional locks.
370	 */
371
372	/*
373	 * Prefetch the CBE if doing TLB preloading
374	 */
375	if (unlikely(tlb_preload_count)) {
376		cbe = gru_tfh_to_cbe(tfh);
377		prefetchw(cbe);
378	}
379
380	/*
381	 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
382	 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
383	 * is a transient state.
384	 */
385	if (tfh->status != TFHSTATUS_EXCEPTION) {
386		gru_flush_cache(tfh);
387		sync_core();
388		if (tfh->status != TFHSTATUS_EXCEPTION)
389			goto failnoexception;
390		STAT(tfh_stale_on_fault);
391	}
392	if (tfh->state == TFHSTATE_IDLE)
393		goto failidle;
394	if (tfh->state == TFHSTATE_MISS_FMM && cbk)
395		goto failfmm;
396
397	write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
398	vaddr = tfh->missvaddr;
399	asid = tfh->missasid;
400	indexway = tfh->indexway;
401	if (asid == 0)
402		goto failnoasid;
403
404	rmb();	/* TFH must be cache resident before reading ms_range_active */
405
406	/*
407	 * TFH is cache resident - at least briefly. Fail the dropin
408	 * if a range invalidate is active.
409	 */
410	if (atomic_read(&gts->ts_gms->ms_range_active))
411		goto failactive;
412
413	ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
414	if (ret == VTOP_INVALID)
415		goto failinval;
416	if (ret == VTOP_RETRY)
417		goto failupm;
418
419	if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
420		gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
421		if (atomic || !gru_update_cch(gts)) {
422			gts->ts_force_cch_reload = 1;
423			goto failupm;
424		}
425	}
426
427	if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
428		gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
429		gru_flush_cache_cbe(cbe);
430	}
431
432	gru_cb_set_istatus_active(cbk);
433	gts->ustats.tlbdropin++;
434	tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
435			  GRU_PAGESIZE(pageshift));
436	gru_dbg(grudev,
437		"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
438		" rw %d, ps %d, gpa 0x%lx\n",
439		atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
440		indexway, write, pageshift, gpa);
441	STAT(tlb_dropin);
442	return 0;
443
444failnoasid:
445	/* No asid (delayed unload). */
446	STAT(tlb_dropin_fail_no_asid);
447	gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
448	if (!cbk)
449		tfh_user_polling_mode(tfh);
450	else
451		gru_flush_cache(tfh);
452	gru_flush_cache_cbe(cbe);
453	return -EAGAIN;
454
455failupm:
456	/* Atomic failure switch CBR to UPM */
457	tfh_user_polling_mode(tfh);
458	gru_flush_cache_cbe(cbe);
459	STAT(tlb_dropin_fail_upm);
460	gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
461	return 1;
462
463failfmm:
464	/* FMM state on UPM call */
465	gru_flush_cache(tfh);
466	gru_flush_cache_cbe(cbe);
467	STAT(tlb_dropin_fail_fmm);
468	gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
469	return 0;
470
471failnoexception:
472	/* TFH status did not show exception pending */
473	gru_flush_cache(tfh);
474	gru_flush_cache_cbe(cbe);
475	if (cbk)
476		gru_flush_cache(cbk);
477	STAT(tlb_dropin_fail_no_exception);
478	gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
479		tfh, tfh->status, tfh->state);
480	return 0;
481
482failidle:
483	/* TFH state was idle  - no miss pending */
484	gru_flush_cache(tfh);
485	gru_flush_cache_cbe(cbe);
486	if (cbk)
487		gru_flush_cache(cbk);
488	STAT(tlb_dropin_fail_idle);
489	gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
490	return 0;
491
492failinval:
493	/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
494	tfh_exception(tfh);
495	gru_flush_cache_cbe(cbe);
496	STAT(tlb_dropin_fail_invalid);
497	gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
498	return -EFAULT;
499
500failactive:
501	/* Range invalidate active. Switch to UPM iff atomic */
502	if (!cbk)
503		tfh_user_polling_mode(tfh);
504	else
505		gru_flush_cache(tfh);
506	gru_flush_cache_cbe(cbe);
507	STAT(tlb_dropin_fail_range_active);
508	gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
509		tfh, vaddr);
510	return 1;
511}
512
513/*
514 * Process an external interrupt from the GRU. This interrupt is
515 * caused by a TLB miss.
516 * Note that this is the interrupt handler that is registered with linux
517 * interrupt handlers.
518 */
519static irqreturn_t gru_intr(int chiplet, int blade)
520{
521	struct gru_state *gru;
522	struct gru_tlb_fault_map imap, dmap;
523	struct gru_thread_state *gts;
524	struct gru_tlb_fault_handle *tfh = NULL;
525	struct completion *cmp;
526	int cbrnum, ctxnum;
527
528	STAT(intr);
529
530	gru = &gru_base[blade]->bs_grus[chiplet];
531	if (!gru) {
532		dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
533			raw_smp_processor_id(), chiplet);
534		return IRQ_NONE;
535	}
536	get_clear_fault_map(gru, &imap, &dmap);
537	gru_dbg(grudev,
538		"cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
539		smp_processor_id(), chiplet, gru->gs_gid,
540		imap.fault_bits[0], imap.fault_bits[1],
541		dmap.fault_bits[0], dmap.fault_bits[1]);
542
543	for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
544		STAT(intr_cbr);
545		cmp = gru->gs_blade->bs_async_wq;
546		if (cmp)
547			complete(cmp);
548		gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
549			gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
550	}
551
552	for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
553		STAT(intr_tfh);
554		tfh = get_tfh_by_index(gru, cbrnum);
555		prefetchw(tfh);	/* Helps on hdw, required for emulator */
556
557		/*
558		 * When hardware sets a bit in the faultmap, it implicitly
559		 * locks the GRU context so that it cannot be unloaded.
560		 * The gts cannot change until a TFH start/writestart command
561		 * is issued.
562		 */
563		ctxnum = tfh->ctxnum;
564		gts = gru->gs_gts[ctxnum];
565
566		/* Spurious interrupts can cause this. Ignore. */
567		if (!gts) {
568			STAT(intr_spurious);
569			continue;
570		}
571
572		/*
573		 * This is running in interrupt context. Trylock the mmap_lock.
574		 * If it fails, retry the fault in user context.
575		 */
576		gts->ustats.fmm_tlbmiss++;
577		if (!gts->ts_force_cch_reload &&
578					mmap_read_trylock(gts->ts_mm)) {
579			gru_try_dropin(gru, gts, tfh, NULL);
580			mmap_read_unlock(gts->ts_mm);
581		} else {
582			tfh_user_polling_mode(tfh);
583			STAT(intr_mm_lock_failed);
584		}
585	}
586	return IRQ_HANDLED;
587}
588
589irqreturn_t gru0_intr(int irq, void *dev_id)
590{
591	return gru_intr(0, uv_numa_blade_id());
592}
593
594irqreturn_t gru1_intr(int irq, void *dev_id)
595{
596	return gru_intr(1, uv_numa_blade_id());
597}
598
599irqreturn_t gru_intr_mblade(int irq, void *dev_id)
600{
601	int blade;
602
603	for_each_possible_blade(blade) {
604		if (uv_blade_nr_possible_cpus(blade))
605			continue;
606		gru_intr(0, blade);
607		gru_intr(1, blade);
608	}
609	return IRQ_HANDLED;
610}
611
612
613static int gru_user_dropin(struct gru_thread_state *gts,
614			   struct gru_tlb_fault_handle *tfh,
615			   void *cb)
616{
617	struct gru_mm_struct *gms = gts->ts_gms;
618	int ret;
619
620	gts->ustats.upm_tlbmiss++;
621	while (1) {
622		wait_event(gms->ms_wait_queue,
623			   atomic_read(&gms->ms_range_active) == 0);
624		prefetchw(tfh);	/* Helps on hdw, required for emulator */
625		ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
626		if (ret <= 0)
627			return ret;
628		STAT(call_os_wait_queue);
629	}
630}
631
632/*
633 * This interface is called as a result of a user detecting a "call OS" bit
634 * in a user CB. Normally means that a TLB fault has occurred.
635 * 	cb - user virtual address of the CB
636 */
637int gru_handle_user_call_os(unsigned long cb)
638{
639	struct gru_tlb_fault_handle *tfh;
640	struct gru_thread_state *gts;
641	void *cbk;
642	int ucbnum, cbrnum, ret = -EINVAL;
643
644	STAT(call_os);
645
646	/* sanity check the cb pointer */
647	ucbnum = get_cb_number((void *)cb);
648	if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
649		return -EINVAL;
650
651again:
652	gts = gru_find_lock_gts(cb);
653	if (!gts)
654		return -EINVAL;
655	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
656
657	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
658		goto exit;
659
660	if (gru_check_context_placement(gts)) {
661		gru_unlock_gts(gts);
662		gru_unload_context(gts, 1);
663		goto again;
664	}
665
666	/*
667	 * CCH may contain stale data if ts_force_cch_reload is set.
668	 */
669	if (gts->ts_gru && gts->ts_force_cch_reload) {
670		gts->ts_force_cch_reload = 0;
671		gru_update_cch(gts);
672	}
673
674	ret = -EAGAIN;
675	cbrnum = thread_cbr_number(gts, ucbnum);
676	if (gts->ts_gru) {
677		tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
678		cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
679				gts->ts_ctxnum, ucbnum);
680		ret = gru_user_dropin(gts, tfh, cbk);
681	}
682exit:
683	gru_unlock_gts(gts);
684	return ret;
685}
686
687/*
688 * Fetch the exception detail information for a CB that terminated with
689 * an exception.
690 */
691int gru_get_exception_detail(unsigned long arg)
692{
693	struct control_block_extended_exc_detail excdet;
694	struct gru_control_block_extended *cbe;
695	struct gru_thread_state *gts;
696	int ucbnum, cbrnum, ret;
697
698	STAT(user_exception);
699	if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
700		return -EFAULT;
701
702	gts = gru_find_lock_gts(excdet.cb);
703	if (!gts)
704		return -EINVAL;
705
706	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
707	ucbnum = get_cb_number((void *)excdet.cb);
708	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
709		ret = -EINVAL;
710	} else if (gts->ts_gru) {
711		cbrnum = thread_cbr_number(gts, ucbnum);
712		cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
713		gru_flush_cache(cbe);	/* CBE not coherent */
714		sync_core();		/* make sure we are have current data */
715		excdet.opc = cbe->opccpy;
716		excdet.exopc = cbe->exopccpy;
717		excdet.ecause = cbe->ecause;
718		excdet.exceptdet0 = cbe->idef1upd;
719		excdet.exceptdet1 = cbe->idef3upd;
720		excdet.cbrstate = cbe->cbrstate;
721		excdet.cbrexecstatus = cbe->cbrexecstatus;
722		gru_flush_cache_cbe(cbe);
723		ret = 0;
724	} else {
725		ret = -EAGAIN;
726	}
727	gru_unlock_gts(gts);
728
729	gru_dbg(grudev,
730		"cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
731		"exdet0 0x%lx, exdet1 0x%x\n",
732		excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
733		excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
734	if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
735		ret = -EFAULT;
736	return ret;
737}
738
739/*
740 * User request to unload a context. Content is saved for possible reload.
741 */
742static int gru_unload_all_contexts(void)
743{
744	struct gru_thread_state *gts;
745	struct gru_state *gru;
746	int gid, ctxnum;
747
748	if (!capable(CAP_SYS_ADMIN))
749		return -EPERM;
750	foreach_gid(gid) {
751		gru = GID_TO_GRU(gid);
752		spin_lock(&gru->gs_lock);
753		for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
754			gts = gru->gs_gts[ctxnum];
755			if (gts && mutex_trylock(&gts->ts_ctxlock)) {
756				spin_unlock(&gru->gs_lock);
757				gru_unload_context(gts, 1);
758				mutex_unlock(&gts->ts_ctxlock);
759				spin_lock(&gru->gs_lock);
760			}
761		}
762		spin_unlock(&gru->gs_lock);
763	}
764	return 0;
765}
766
767int gru_user_unload_context(unsigned long arg)
768{
769	struct gru_thread_state *gts;
770	struct gru_unload_context_req req;
771
772	STAT(user_unload_context);
773	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
774		return -EFAULT;
775
776	gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
777
778	if (!req.gseg)
779		return gru_unload_all_contexts();
780
781	gts = gru_find_lock_gts(req.gseg);
782	if (!gts)
783		return -EINVAL;
784
785	if (gts->ts_gru)
786		gru_unload_context(gts, 1);
787	gru_unlock_gts(gts);
788
789	return 0;
790}
791
792/*
793 * User request to flush a range of virtual addresses from the GRU TLB
794 * (Mainly for testing).
795 */
796int gru_user_flush_tlb(unsigned long arg)
797{
798	struct gru_thread_state *gts;
799	struct gru_flush_tlb_req req;
800	struct gru_mm_struct *gms;
801
802	STAT(user_flush_tlb);
803	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
804		return -EFAULT;
805
806	gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
807		req.vaddr, req.len);
808
809	gts = gru_find_lock_gts(req.gseg);
810	if (!gts)
811		return -EINVAL;
812
813	gms = gts->ts_gms;
814	gru_unlock_gts(gts);
815	gru_flush_tlb_range(gms, req.vaddr, req.len);
816
817	return 0;
818}
819
820/*
821 * Fetch GSEG statisticss
822 */
823long gru_get_gseg_statistics(unsigned long arg)
824{
825	struct gru_thread_state *gts;
826	struct gru_get_gseg_statistics_req req;
827
828	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
829		return -EFAULT;
830
831	/*
832	 * The library creates arrays of contexts for threaded programs.
833	 * If no gts exists in the array, the context has never been used & all
834	 * statistics are implicitly 0.
835	 */
836	gts = gru_find_lock_gts(req.gseg);
837	if (gts) {
838		memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
839		gru_unlock_gts(gts);
840	} else {
841		memset(&req.stats, 0, sizeof(gts->ustats));
842	}
843
844	if (copy_to_user((void __user *)arg, &req, sizeof(req)))
845		return -EFAULT;
846
847	return 0;
848}
849
850/*
851 * Register the current task as the user of the GSEG slice.
852 * Needed for TLB fault interrupt targeting.
853 */
854int gru_set_context_option(unsigned long arg)
855{
856	struct gru_thread_state *gts;
857	struct gru_set_context_option_req req;
858	int ret = 0;
859
860	STAT(set_context_option);
861	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
862		return -EFAULT;
863	gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
864
865	gts = gru_find_lock_gts(req.gseg);
866	if (!gts) {
867		gts = gru_alloc_locked_gts(req.gseg);
868		if (IS_ERR(gts))
869			return PTR_ERR(gts);
870	}
871
872	switch (req.op) {
873	case sco_blade_chiplet:
874		/* Select blade/chiplet for GRU context */
875		if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB ||
876		    req.val1 < -1 || req.val1 >= GRU_MAX_BLADES ||
877		    (req.val1 >= 0 && !gru_base[req.val1])) {
878			ret = -EINVAL;
879		} else {
880			gts->ts_user_blade_id = req.val1;
881			gts->ts_user_chiplet_id = req.val0;
882			if (gru_check_context_placement(gts)) {
883				gru_unlock_gts(gts);
884				gru_unload_context(gts, 1);
885				return ret;
886			}
887		}
888		break;
889	case sco_gseg_owner:
890 		/* Register the current task as the GSEG owner */
891		gts->ts_tgid_owner = current->tgid;
892		break;
893	case sco_cch_req_slice:
894 		/* Set the CCH slice option */
895		gts->ts_cch_req_slice = req.val1 & 3;
896		break;
897	default:
898		ret = -EINVAL;
899	}
900	gru_unlock_gts(gts);
901
902	return ret;
903}
904