1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * DB8500 PRCM Unit driver
4 *
5 * Copyright (C) STMicroelectronics 2009
6 * Copyright (C) ST-Ericsson SA 2010
7 *
8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11 *
12 * U8500 PRCM Unit interface driver
13 */
14#include <linux/init.h>
15#include <linux/export.h>
16#include <linux/kernel.h>
17#include <linux/delay.h>
18#include <linux/errno.h>
19#include <linux/err.h>
20#include <linux/spinlock.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/mutex.h>
24#include <linux/completion.h>
25#include <linux/irq.h>
26#include <linux/jiffies.h>
27#include <linux/bitops.h>
28#include <linux/fs.h>
29#include <linux/of.h>
30#include <linux/of_address.h>
31#include <linux/of_irq.h>
32#include <linux/platform_device.h>
33#include <linux/uaccess.h>
34#include <linux/mfd/core.h>
35#include <linux/mfd/dbx500-prcmu.h>
36#include <linux/mfd/abx500/ab8500.h>
37#include <linux/regulator/db8500-prcmu.h>
38#include <linux/regulator/machine.h>
39#include "db8500-prcmu-regs.h"
40
41/* Index of different voltages to be used when accessing AVSData */
42#define PRCM_AVS_BASE		0x2FC
43#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
44#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
45#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
46#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
47#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
48#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
49#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
50#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
51#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
52#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
53#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
54#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
55#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
56
57#define PRCM_AVS_VOLTAGE		0
58#define PRCM_AVS_VOLTAGE_MASK		0x3f
59#define PRCM_AVS_ISSLOWSTARTUP		6
60#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
61#define PRCM_AVS_ISMODEENABLE		7
62#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
63
64#define PRCM_BOOT_STATUS	0xFFF
65#define PRCM_ROMCODE_A2P	0xFFE
66#define PRCM_ROMCODE_P2A	0xFFD
67#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
68
69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
72#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
73#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
74#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
75#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
76#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
77#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
78#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
79
80/* Req Mailboxes */
81#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
84#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
85#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
86#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
87
88/* Ack Mailboxes */
89#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96/* Mailbox 0 headers */
97#define MB0H_POWER_STATE_TRANS		0
98#define MB0H_CONFIG_WAKEUPS_EXE		1
99#define MB0H_READ_WAKEUP_ACK		3
100#define MB0H_CONFIG_WAKEUPS_SLEEP	4
101
102#define MB0H_WAKEUP_EXE 2
103#define MB0H_WAKEUP_SLEEP 5
104
105/* Mailbox 0 REQs */
106#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
107#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
108#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
109#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
110#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
111#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
112
113/* Mailbox 0 ACKs */
114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
115#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
116#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
117#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
118#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
119#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
121
122/* Mailbox 1 headers */
123#define MB1H_ARM_APE_OPP 0x0
124#define MB1H_RESET_MODEM 0x2
125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127#define MB1H_RELEASE_USB_WAKEUP 0x5
128#define MB1H_PLL_ON_OFF 0x6
129
130/* Mailbox 1 Requests */
131#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
132#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
133#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
134#define PLL_SOC0_OFF	0x1
135#define PLL_SOC0_ON	0x2
136#define PLL_SOC1_OFF	0x4
137#define PLL_SOC1_ON	0x8
138
139/* Mailbox 1 ACKs */
140#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
141#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
143#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
144
145/* Mailbox 2 headers */
146#define MB2H_DPS	0x0
147#define MB2H_AUTO_PWR	0x1
148
149/* Mailbox 2 REQs */
150#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
151#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
152#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
153#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
154#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
155#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
156#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
157#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
158#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
159#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
160
161/* Mailbox 2 ACKs */
162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163#define HWACC_PWR_ST_OK 0xFE
164
165/* Mailbox 3 headers */
166#define MB3H_ANC	0x0
167#define MB3H_SIDETONE	0x1
168#define MB3H_SYSCLK	0xE
169
170/* Mailbox 3 Requests */
171#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
172#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
173#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
174#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
177#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
178
179/* Mailbox 4 headers */
180#define MB4H_DDR_INIT	0x0
181#define MB4H_MEM_ST	0x1
182#define MB4H_HOTDOG	0x12
183#define MB4H_HOTMON	0x13
184#define MB4H_HOT_PERIOD	0x14
185#define MB4H_A9WDOG_CONF 0x16
186#define MB4H_A9WDOG_EN   0x17
187#define MB4H_A9WDOG_DIS  0x18
188#define MB4H_A9WDOG_LOAD 0x19
189#define MB4H_A9WDOG_KICK 0x20
190
191/* Mailbox 4 Requests */
192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
194#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
196#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
198#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
199#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
200#define HOTMON_CONFIG_LOW			BIT(0)
201#define HOTMON_CONFIG_HIGH			BIT(1)
202#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
203#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
204#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
205#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
206#define A9WDOG_AUTO_OFF_EN			BIT(7)
207#define A9WDOG_AUTO_OFF_DIS			0
208#define A9WDOG_ID_MASK				0xf
209
210/* Mailbox 5 Requests */
211#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
212#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
213#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
214#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217#define PRCMU_I2C_STOP_EN		BIT(3)
218
219/* Mailbox 5 ACKs */
220#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
221#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
222#define I2C_WR_OK 0x1
223#define I2C_RD_OK 0x2
224
225#define NUM_MB 8
226#define MBOX_BIT BIT
227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229/*
230 * Wakeups/IRQs
231 */
232
233#define WAKEUP_BIT_RTC BIT(0)
234#define WAKEUP_BIT_RTT0 BIT(1)
235#define WAKEUP_BIT_RTT1 BIT(2)
236#define WAKEUP_BIT_HSI0 BIT(3)
237#define WAKEUP_BIT_HSI1 BIT(4)
238#define WAKEUP_BIT_CA_WAKE BIT(5)
239#define WAKEUP_BIT_USB BIT(6)
240#define WAKEUP_BIT_ABB BIT(7)
241#define WAKEUP_BIT_ABB_FIFO BIT(8)
242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
243#define WAKEUP_BIT_CA_SLEEP BIT(10)
244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246#define WAKEUP_BIT_ANC_OK BIT(13)
247#define WAKEUP_BIT_SW_ERROR BIT(14)
248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249#define WAKEUP_BIT_ARM BIT(17)
250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253#define WAKEUP_BIT_GPIO0 BIT(23)
254#define WAKEUP_BIT_GPIO1 BIT(24)
255#define WAKEUP_BIT_GPIO2 BIT(25)
256#define WAKEUP_BIT_GPIO3 BIT(26)
257#define WAKEUP_BIT_GPIO4 BIT(27)
258#define WAKEUP_BIT_GPIO5 BIT(28)
259#define WAKEUP_BIT_GPIO6 BIT(29)
260#define WAKEUP_BIT_GPIO7 BIT(30)
261#define WAKEUP_BIT_GPIO8 BIT(31)
262
263static struct {
264	bool valid;
265	struct prcmu_fw_version version;
266} fw_info;
267
268static struct irq_domain *db8500_irq_domain;
269
270/*
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
273 *
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
277 */
278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281#define IRQ_PRCMU_RTC 0
282#define IRQ_PRCMU_RTT0 1
283#define IRQ_PRCMU_RTT1 2
284#define IRQ_PRCMU_HSI0 3
285#define IRQ_PRCMU_HSI1 4
286#define IRQ_PRCMU_CA_WAKE 5
287#define IRQ_PRCMU_USB 6
288#define IRQ_PRCMU_ABB 7
289#define IRQ_PRCMU_ABB_FIFO 8
290#define IRQ_PRCMU_ARM 9
291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292#define IRQ_PRCMU_GPIO0 11
293#define IRQ_PRCMU_GPIO1 12
294#define IRQ_PRCMU_GPIO2 13
295#define IRQ_PRCMU_GPIO3 14
296#define IRQ_PRCMU_GPIO4 15
297#define IRQ_PRCMU_GPIO5 16
298#define IRQ_PRCMU_GPIO6 17
299#define IRQ_PRCMU_GPIO7 18
300#define IRQ_PRCMU_GPIO8 19
301#define IRQ_PRCMU_CA_SLEEP 20
302#define IRQ_PRCMU_HOTMON_LOW 21
303#define IRQ_PRCMU_HOTMON_HIGH 22
304#define NUM_PRCMU_WAKEUPS 23
305
306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307	IRQ_ENTRY(RTC),
308	IRQ_ENTRY(RTT0),
309	IRQ_ENTRY(RTT1),
310	IRQ_ENTRY(HSI0),
311	IRQ_ENTRY(HSI1),
312	IRQ_ENTRY(CA_WAKE),
313	IRQ_ENTRY(USB),
314	IRQ_ENTRY(ABB),
315	IRQ_ENTRY(ABB_FIFO),
316	IRQ_ENTRY(CA_SLEEP),
317	IRQ_ENTRY(ARM),
318	IRQ_ENTRY(HOTMON_LOW),
319	IRQ_ENTRY(HOTMON_HIGH),
320	IRQ_ENTRY(MODEM_SW_RESET_REQ),
321	IRQ_ENTRY(GPIO0),
322	IRQ_ENTRY(GPIO1),
323	IRQ_ENTRY(GPIO2),
324	IRQ_ENTRY(GPIO3),
325	IRQ_ENTRY(GPIO4),
326	IRQ_ENTRY(GPIO5),
327	IRQ_ENTRY(GPIO6),
328	IRQ_ENTRY(GPIO7),
329	IRQ_ENTRY(GPIO8)
330};
331
332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335	WAKEUP_ENTRY(RTC),
336	WAKEUP_ENTRY(RTT0),
337	WAKEUP_ENTRY(RTT1),
338	WAKEUP_ENTRY(HSI0),
339	WAKEUP_ENTRY(HSI1),
340	WAKEUP_ENTRY(USB),
341	WAKEUP_ENTRY(ABB),
342	WAKEUP_ENTRY(ABB_FIFO),
343	WAKEUP_ENTRY(ARM)
344};
345
346/*
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock:		The transaction lock.
349 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
350 *			the request data.
351 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
352 * @req:		Request data that need to persist between requests.
353 */
354static struct {
355	spinlock_t lock;
356	spinlock_t dbb_irqs_lock;
357	struct work_struct mask_work;
358	struct mutex ac_wake_lock;
359	struct completion ac_wake_work;
360	struct {
361		u32 dbb_irqs;
362		u32 dbb_wakeups;
363		u32 abb_events;
364	} req;
365} mb0_transfer;
366
367/*
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock:	The transaction lock.
370 * @work:	The transaction completion structure.
371 * @ape_opp:	The current APE OPP.
372 * @ack:	Reply ("acknowledge") data.
373 */
374static struct {
375	struct mutex lock;
376	struct completion work;
377	u8 ape_opp;
378	struct {
379		u8 header;
380		u8 arm_opp;
381		u8 ape_opp;
382		u8 ape_voltage_status;
383	} ack;
384} mb1_transfer;
385
386/*
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock:            The transaction lock.
389 * @work:            The transaction completion structure.
390 * @auto_pm_lock:    The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req:             Request data that need to persist between requests.
393 * @ack:             Reply ("acknowledge") data.
394 */
395static struct {
396	struct mutex lock;
397	struct completion work;
398	spinlock_t auto_pm_lock;
399	bool auto_pm_enabled;
400	struct {
401		u8 status;
402	} ack;
403} mb2_transfer;
404
405/*
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock:		The request lock.
408 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
409 * @sysclk_work:	Work structure used for sysclk requests.
410 */
411static struct {
412	spinlock_t lock;
413	struct mutex sysclk_lock;
414	struct completion sysclk_work;
415} mb3_transfer;
416
417/*
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock:	The transaction lock.
420 * @work:	The transaction completion structure.
421 */
422static struct {
423	struct mutex lock;
424	struct completion work;
425} mb4_transfer;
426
427/*
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock:	The transaction lock.
430 * @work:	The transaction completion structure.
431 * @ack:	Reply ("acknowledge") data.
432 */
433static struct {
434	struct mutex lock;
435	struct completion work;
436	struct {
437		u8 status;
438		u8 value;
439	} ack;
440} mb5_transfer;
441
442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444/* Spinlocks */
445static DEFINE_SPINLOCK(prcmu_lock);
446static DEFINE_SPINLOCK(clkout_lock);
447
448/* Global var to runtime determine TCDM base for v2 or v1 */
449static __iomem void *tcdm_base;
450static __iomem void *prcmu_base;
451
452struct clk_mgt {
453	u32 offset;
454	u32 pllsw;
455	int branch;
456	bool clk38div;
457};
458
459enum {
460	PLL_RAW,
461	PLL_FIX,
462	PLL_DIV
463};
464
465static DEFINE_SPINLOCK(clk_mgt_lock);
466
467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499};
500
501struct dsiclk {
502	u32 divsel_mask;
503	u32 divsel_shift;
504	u32 divsel;
505};
506
507static struct dsiclk dsiclk[2] = {
508	{
509		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512	},
513	{
514		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517	}
518};
519
520struct dsiescclk {
521	u32 en;
522	u32 div_mask;
523	u32 div_shift;
524};
525
526static struct dsiescclk dsiescclk[3] = {
527	{
528		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531	},
532	{
533		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536	},
537	{
538		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541	}
542};
543
544u32 db8500_prcmu_read(unsigned int reg)
545{
546	return readl(prcmu_base + reg);
547}
548
549void db8500_prcmu_write(unsigned int reg, u32 value)
550{
551	unsigned long flags;
552
553	spin_lock_irqsave(&prcmu_lock, flags);
554	writel(value, (prcmu_base + reg));
555	spin_unlock_irqrestore(&prcmu_lock, flags);
556}
557
558void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
559{
560	u32 val;
561	unsigned long flags;
562
563	spin_lock_irqsave(&prcmu_lock, flags);
564	val = readl(prcmu_base + reg);
565	val = ((val & ~mask) | (value & mask));
566	writel(val, (prcmu_base + reg));
567	spin_unlock_irqrestore(&prcmu_lock, flags);
568}
569
570struct prcmu_fw_version *prcmu_get_fw_version(void)
571{
572	return fw_info.valid ? &fw_info.version : NULL;
573}
574
575static bool prcmu_is_ulppll_disabled(void)
576{
577	struct prcmu_fw_version *ver;
578
579	ver = prcmu_get_fw_version();
580	return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
581}
582
583bool prcmu_has_arm_maxopp(void)
584{
585	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
586		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
587}
588
589/**
590 * prcmu_set_rc_a2p - This function is used to run few power state sequences
591 * @val: Value to be set, i.e. transition requested
592 * Returns: 0 on success, -EINVAL on invalid argument
593 *
594 * This function is used to run the following power state sequences -
595 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
596 */
597int prcmu_set_rc_a2p(enum romcode_write val)
598{
599	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
600		return -EINVAL;
601	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
602	return 0;
603}
604
605/**
606 * prcmu_get_rc_p2a - This function is used to get power state sequences
607 * Returns: the power transition that has last happened
608 *
609 * This function can return the following transitions-
610 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
611 */
612enum romcode_read prcmu_get_rc_p2a(void)
613{
614	return readb(tcdm_base + PRCM_ROMCODE_P2A);
615}
616
617/**
618 * prcmu_get_xp70_current_state - Return the current XP70 power mode
619 * Returns: Returns the current AP(ARM) power mode: init,
620 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
621 */
622enum ap_pwrst prcmu_get_xp70_current_state(void)
623{
624	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
625}
626
627/**
628 * prcmu_config_clkout - Configure one of the programmable clock outputs.
629 * @clkout:	The CLKOUT number (0 or 1).
630 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
631 * @div:	The divider to be applied.
632 *
633 * Configures one of the programmable clock outputs (CLKOUTs).
634 * @div should be in the range [1,63] to request a configuration, or 0 to
635 * inform that the configuration is no longer requested.
636 */
637int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
638{
639	static int requests[2];
640	int r = 0;
641	unsigned long flags;
642	u32 val;
643	u32 bits;
644	u32 mask;
645	u32 div_mask;
646
647	BUG_ON(clkout > 1);
648	BUG_ON(div > 63);
649	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
650
651	if (!div && !requests[clkout])
652		return -EINVAL;
653
654	if (clkout == 0) {
655		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
656		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
657		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
658			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
659	} else {
660		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
661		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
662			PRCM_CLKOCR_CLK1TYPE);
663		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
664			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
665	}
666	bits &= mask;
667
668	spin_lock_irqsave(&clkout_lock, flags);
669
670	val = readl(PRCM_CLKOCR);
671	if (val & div_mask) {
672		if (div) {
673			if ((val & mask) != bits) {
674				r = -EBUSY;
675				goto unlock_and_return;
676			}
677		} else {
678			if ((val & mask & ~div_mask) != bits) {
679				r = -EINVAL;
680				goto unlock_and_return;
681			}
682		}
683	}
684	writel((bits | (val & ~mask)), PRCM_CLKOCR);
685	requests[clkout] += (div ? 1 : -1);
686
687unlock_and_return:
688	spin_unlock_irqrestore(&clkout_lock, flags);
689
690	return r;
691}
692
693int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
694{
695	unsigned long flags;
696
697	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
698
699	spin_lock_irqsave(&mb0_transfer.lock, flags);
700
701	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
702		cpu_relax();
703
704	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
705	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
706	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
707	writeb((keep_ulp_clk ? 1 : 0),
708		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
709	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
710	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
711
712	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
713
714	return 0;
715}
716
717u8 db8500_prcmu_get_power_state_result(void)
718{
719	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
720}
721
722/* This function should only be called while mb0_transfer.lock is held. */
723static void config_wakeups(void)
724{
725	const u8 header[2] = {
726		MB0H_CONFIG_WAKEUPS_EXE,
727		MB0H_CONFIG_WAKEUPS_SLEEP
728	};
729	static u32 last_dbb_events;
730	static u32 last_abb_events;
731	u32 dbb_events;
732	u32 abb_events;
733	unsigned int i;
734
735	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
736	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
737
738	abb_events = mb0_transfer.req.abb_events;
739
740	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
741		return;
742
743	for (i = 0; i < 2; i++) {
744		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
745			cpu_relax();
746		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
747		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
748		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
749		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
750	}
751	last_dbb_events = dbb_events;
752	last_abb_events = abb_events;
753}
754
755void db8500_prcmu_enable_wakeups(u32 wakeups)
756{
757	unsigned long flags;
758	u32 bits;
759	int i;
760
761	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
762
763	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
764		if (wakeups & BIT(i))
765			bits |= prcmu_wakeup_bit[i];
766	}
767
768	spin_lock_irqsave(&mb0_transfer.lock, flags);
769
770	mb0_transfer.req.dbb_wakeups = bits;
771	config_wakeups();
772
773	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
774}
775
776void db8500_prcmu_config_abb_event_readout(u32 abb_events)
777{
778	unsigned long flags;
779
780	spin_lock_irqsave(&mb0_transfer.lock, flags);
781
782	mb0_transfer.req.abb_events = abb_events;
783	config_wakeups();
784
785	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
786}
787
788void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
789{
790	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
791		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
792	else
793		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
794}
795
796/**
797 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
798 * @opp: The new ARM operating point to which transition is to be made
799 * Returns: 0 on success, non-zero on failure
800 *
801 * This function sets the operating point of the ARM.
802 */
803int db8500_prcmu_set_arm_opp(u8 opp)
804{
805	int r;
806
807	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
808		return -EINVAL;
809
810	r = 0;
811
812	mutex_lock(&mb1_transfer.lock);
813
814	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
815		cpu_relax();
816
817	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
818	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
819	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
820
821	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
822	wait_for_completion(&mb1_transfer.work);
823
824	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
825		(mb1_transfer.ack.arm_opp != opp))
826		r = -EIO;
827
828	mutex_unlock(&mb1_transfer.lock);
829
830	return r;
831}
832
833/**
834 * db8500_prcmu_get_arm_opp - get the current ARM OPP
835 *
836 * Returns: the current ARM OPP
837 */
838int db8500_prcmu_get_arm_opp(void)
839{
840	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
841}
842
843/**
844 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
845 *
846 * Returns: the current DDR OPP
847 */
848int db8500_prcmu_get_ddr_opp(void)
849{
850	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
851}
852
853/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
854static void request_even_slower_clocks(bool enable)
855{
856	u32 clock_reg[] = {
857		PRCM_ACLK_MGT,
858		PRCM_DMACLK_MGT
859	};
860	unsigned long flags;
861	unsigned int i;
862
863	spin_lock_irqsave(&clk_mgt_lock, flags);
864
865	/* Grab the HW semaphore. */
866	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
867		cpu_relax();
868
869	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
870		u32 val;
871		u32 div;
872
873		val = readl(prcmu_base + clock_reg[i]);
874		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
875		if (enable) {
876			if ((div <= 1) || (div > 15)) {
877				pr_err("prcmu: Bad clock divider %d in %s\n",
878					div, __func__);
879				goto unlock_and_return;
880			}
881			div <<= 1;
882		} else {
883			if (div <= 2)
884				goto unlock_and_return;
885			div >>= 1;
886		}
887		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
888			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
889		writel(val, prcmu_base + clock_reg[i]);
890	}
891
892unlock_and_return:
893	/* Release the HW semaphore. */
894	writel(0, PRCM_SEM);
895
896	spin_unlock_irqrestore(&clk_mgt_lock, flags);
897}
898
899/**
900 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
901 * @opp: The new APE operating point to which transition is to be made
902 * Returns: 0 on success, non-zero on failure
903 *
904 * This function sets the operating point of the APE.
905 */
906int db8500_prcmu_set_ape_opp(u8 opp)
907{
908	int r = 0;
909
910	if (opp == mb1_transfer.ape_opp)
911		return 0;
912
913	mutex_lock(&mb1_transfer.lock);
914
915	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
916		request_even_slower_clocks(false);
917
918	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
919		goto skip_message;
920
921	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
922		cpu_relax();
923
924	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
925	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
926	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
927		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
928
929	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
930	wait_for_completion(&mb1_transfer.work);
931
932	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
933		(mb1_transfer.ack.ape_opp != opp))
934		r = -EIO;
935
936skip_message:
937	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
938		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
939		request_even_slower_clocks(true);
940	if (!r)
941		mb1_transfer.ape_opp = opp;
942
943	mutex_unlock(&mb1_transfer.lock);
944
945	return r;
946}
947
948/**
949 * db8500_prcmu_get_ape_opp - get the current APE OPP
950 *
951 * Returns: the current APE OPP
952 */
953int db8500_prcmu_get_ape_opp(void)
954{
955	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
956}
957
958/**
959 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
960 * @enable: true to request the higher voltage, false to drop a request.
961 *
962 * Calls to this function to enable and disable requests must be balanced.
963 */
964int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
965{
966	int r = 0;
967	u8 header;
968	static unsigned int requests;
969
970	mutex_lock(&mb1_transfer.lock);
971
972	if (enable) {
973		if (0 != requests++)
974			goto unlock_and_return;
975		header = MB1H_REQUEST_APE_OPP_100_VOLT;
976	} else {
977		if (requests == 0) {
978			r = -EIO;
979			goto unlock_and_return;
980		} else if (1 != requests--) {
981			goto unlock_and_return;
982		}
983		header = MB1H_RELEASE_APE_OPP_100_VOLT;
984	}
985
986	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
987		cpu_relax();
988
989	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
990
991	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
992	wait_for_completion(&mb1_transfer.work);
993
994	if ((mb1_transfer.ack.header != header) ||
995		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
996		r = -EIO;
997
998unlock_and_return:
999	mutex_unlock(&mb1_transfer.lock);
1000
1001	return r;
1002}
1003
1004/**
1005 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006 *
1007 * This function releases the power state requirements of a USB wakeup.
1008 */
1009int prcmu_release_usb_wakeup_state(void)
1010{
1011	int r = 0;
1012
1013	mutex_lock(&mb1_transfer.lock);
1014
1015	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016		cpu_relax();
1017
1018	writeb(MB1H_RELEASE_USB_WAKEUP,
1019		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020
1021	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022	wait_for_completion(&mb1_transfer.work);
1023
1024	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026		r = -EIO;
1027
1028	mutex_unlock(&mb1_transfer.lock);
1029
1030	return r;
1031}
1032
1033static int request_pll(u8 clock, bool enable)
1034{
1035	int r = 0;
1036
1037	if (clock == PRCMU_PLLSOC0)
1038		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039	else if (clock == PRCMU_PLLSOC1)
1040		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041	else
1042		return -EINVAL;
1043
1044	mutex_lock(&mb1_transfer.lock);
1045
1046	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047		cpu_relax();
1048
1049	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051
1052	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053	wait_for_completion(&mb1_transfer.work);
1054
1055	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056		r = -EIO;
1057
1058	mutex_unlock(&mb1_transfer.lock);
1059
1060	return r;
1061}
1062
1063/**
1064 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065 * @epod_id: The EPOD to set
1066 * @epod_state: The new EPOD state
1067 *
1068 * This function sets the state of a EPOD (power domain). It may not be called
1069 * from interrupt context.
1070 */
1071int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072{
1073	int r = 0;
1074	bool ram_retention = false;
1075	int i;
1076
1077	/* check argument */
1078	BUG_ON(epod_id >= NUM_EPOD_ID);
1079
1080	/* set flag if retention is possible */
1081	switch (epod_id) {
1082	case EPOD_ID_SVAMMDSP:
1083	case EPOD_ID_SIAMMDSP:
1084	case EPOD_ID_ESRAM12:
1085	case EPOD_ID_ESRAM34:
1086		ram_retention = true;
1087		break;
1088	}
1089
1090	/* check argument */
1091	BUG_ON(epod_state > EPOD_STATE_ON);
1092	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093
1094	/* get lock */
1095	mutex_lock(&mb2_transfer.lock);
1096
1097	/* wait for mailbox */
1098	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099		cpu_relax();
1100
1101	/* fill in mailbox */
1102	for (i = 0; i < NUM_EPOD_ID; i++)
1103		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105
1106	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107
1108	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109
1110	/*
1111	 * The current firmware version does not handle errors correctly,
1112	 * and we cannot recover if there is an error.
1113	 * This is expected to change when the firmware is updated.
1114	 */
1115	if (!wait_for_completion_timeout(&mb2_transfer.work,
1116			msecs_to_jiffies(20000))) {
1117		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118			__func__);
1119		r = -EIO;
1120		goto unlock_and_return;
1121	}
1122
1123	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124		r = -EIO;
1125
1126unlock_and_return:
1127	mutex_unlock(&mb2_transfer.lock);
1128	return r;
1129}
1130
1131/**
1132 * prcmu_configure_auto_pm - Configure autonomous power management.
1133 * @sleep: Configuration for ApSleep.
1134 * @idle:  Configuration for ApIdle.
1135 */
1136void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137	struct prcmu_auto_pm_config *idle)
1138{
1139	u32 sleep_cfg;
1140	u32 idle_cfg;
1141	unsigned long flags;
1142
1143	BUG_ON((sleep == NULL) || (idle == NULL));
1144
1145	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151
1152	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158
1159	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160
1161	/*
1162	 * The autonomous power management configuration is done through
1163	 * fields in mailbox 2, but these fields are only used as shared
1164	 * variables - i.e. there is no need to send a message.
1165	 */
1166	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168
1169	mb2_transfer.auto_pm_enabled =
1170		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174
1175	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176}
1177EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178
1179bool prcmu_is_auto_pm_enabled(void)
1180{
1181	return mb2_transfer.auto_pm_enabled;
1182}
1183
1184static int request_sysclk(bool enable)
1185{
1186	int r;
1187	unsigned long flags;
1188
1189	r = 0;
1190
1191	mutex_lock(&mb3_transfer.sysclk_lock);
1192
1193	spin_lock_irqsave(&mb3_transfer.lock, flags);
1194
1195	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196		cpu_relax();
1197
1198	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199
1200	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202
1203	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204
1205	/*
1206	 * The firmware only sends an ACK if we want to enable the
1207	 * SysClk, and it succeeds.
1208	 */
1209	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210			msecs_to_jiffies(20000))) {
1211		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212			__func__);
1213		r = -EIO;
1214	}
1215
1216	mutex_unlock(&mb3_transfer.sysclk_lock);
1217
1218	return r;
1219}
1220
1221static int request_timclk(bool enable)
1222{
1223	u32 val;
1224
1225	/*
1226	 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227	 * PLL is disabled so we cannot use doze mode, this will
1228	 * stop the clock on this firmware.
1229	 */
1230	if (prcmu_is_ulppll_disabled())
1231		val = 0;
1232	else
1233		val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234
1235	if (!enable)
1236		val |= PRCM_TCR_STOP_TIMERS |
1237			PRCM_TCR_DOZE_MODE |
1238			PRCM_TCR_TENSEL_MASK;
1239
1240	writel(val, PRCM_TCR);
1241
1242	return 0;
1243}
1244
1245static int request_clock(u8 clock, bool enable)
1246{
1247	u32 val;
1248	unsigned long flags;
1249
1250	spin_lock_irqsave(&clk_mgt_lock, flags);
1251
1252	/* Grab the HW semaphore. */
1253	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254		cpu_relax();
1255
1256	val = readl(prcmu_base + clk_mgt[clock].offset);
1257	if (enable) {
1258		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259	} else {
1260		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262	}
1263	writel(val, prcmu_base + clk_mgt[clock].offset);
1264
1265	/* Release the HW semaphore. */
1266	writel(0, PRCM_SEM);
1267
1268	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269
1270	return 0;
1271}
1272
1273static int request_sga_clock(u8 clock, bool enable)
1274{
1275	u32 val;
1276	int ret;
1277
1278	if (enable) {
1279		val = readl(PRCM_CGATING_BYPASS);
1280		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281	}
1282
1283	ret = request_clock(clock, enable);
1284
1285	if (!ret && !enable) {
1286		val = readl(PRCM_CGATING_BYPASS);
1287		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288	}
1289
1290	return ret;
1291}
1292
1293static inline bool plldsi_locked(void)
1294{
1295	return (readl(PRCM_PLLDSI_LOCKP) &
1296		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300}
1301
1302static int request_plldsi(bool enable)
1303{
1304	int r = 0;
1305	u32 val;
1306
1307	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310
1311	val = readl(PRCM_PLLDSI_ENABLE);
1312	if (enable)
1313		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314	else
1315		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316	writel(val, PRCM_PLLDSI_ENABLE);
1317
1318	if (enable) {
1319		unsigned int i;
1320		bool locked = plldsi_locked();
1321
1322		for (i = 10; !locked && (i > 0); --i) {
1323			udelay(100);
1324			locked = plldsi_locked();
1325		}
1326		if (locked) {
1327			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328				PRCM_APE_RESETN_SET);
1329		} else {
1330			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332				PRCM_MMIP_LS_CLAMP_SET);
1333			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334			writel(val, PRCM_PLLDSI_ENABLE);
1335			r = -EAGAIN;
1336		}
1337	} else {
1338		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339	}
1340	return r;
1341}
1342
1343static int request_dsiclk(u8 n, bool enable)
1344{
1345	u32 val;
1346
1347	val = readl(PRCM_DSI_PLLOUT_SEL);
1348	val &= ~dsiclk[n].divsel_mask;
1349	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350		dsiclk[n].divsel_shift);
1351	writel(val, PRCM_DSI_PLLOUT_SEL);
1352	return 0;
1353}
1354
1355static int request_dsiescclk(u8 n, bool enable)
1356{
1357	u32 val;
1358
1359	val = readl(PRCM_DSITVCLK_DIV);
1360	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361	writel(val, PRCM_DSITVCLK_DIV);
1362	return 0;
1363}
1364
1365/**
1366 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367 * @clock:      The clock for which the request is made.
1368 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1369 *
1370 * This function should only be used by the clock implementation.
1371 * Do not use it from any other place!
1372 */
1373int db8500_prcmu_request_clock(u8 clock, bool enable)
1374{
1375	if (clock == PRCMU_SGACLK)
1376		return request_sga_clock(clock, enable);
1377	else if (clock < PRCMU_NUM_REG_CLOCKS)
1378		return request_clock(clock, enable);
1379	else if (clock == PRCMU_TIMCLK)
1380		return request_timclk(enable);
1381	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385	else if (clock == PRCMU_PLLDSI)
1386		return request_plldsi(enable);
1387	else if (clock == PRCMU_SYSCLK)
1388		return request_sysclk(enable);
1389	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390		return request_pll(clock, enable);
1391	else
1392		return -EINVAL;
1393}
1394
1395static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396	int branch)
1397{
1398	u64 rate;
1399	u32 val;
1400	u32 d;
1401	u32 div = 1;
1402
1403	val = readl(reg);
1404
1405	rate = src_rate;
1406	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407
1408	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409	if (d > 1)
1410		div *= d;
1411
1412	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413	if (d > 1)
1414		div *= d;
1415
1416	if (val & PRCM_PLL_FREQ_SELDIV2)
1417		div *= 2;
1418
1419	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420		(val & PRCM_PLL_FREQ_DIV2EN) &&
1421		((reg == PRCM_PLLSOC0_FREQ) ||
1422		 (reg == PRCM_PLLARM_FREQ) ||
1423		 (reg == PRCM_PLLDDR_FREQ))))
1424		div *= 2;
1425
1426	(void)do_div(rate, div);
1427
1428	return (unsigned long)rate;
1429}
1430
1431#define ROOT_CLOCK_RATE 38400000
1432
1433static unsigned long clock_rate(u8 clock)
1434{
1435	u32 val;
1436	u32 pllsw;
1437	unsigned long rate = ROOT_CLOCK_RATE;
1438
1439	val = readl(prcmu_base + clk_mgt[clock].offset);
1440
1441	if (val & PRCM_CLK_MGT_CLK38) {
1442		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443			rate /= 2;
1444		return rate;
1445	}
1446
1447	val |= clk_mgt[clock].pllsw;
1448	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449
1450	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456	else
1457		return 0;
1458
1459	if ((clock == PRCMU_SGACLK) &&
1460		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461		u64 r = (rate * 10);
1462
1463		(void)do_div(r, 25);
1464		return (unsigned long)r;
1465	}
1466	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467	if (val)
1468		return rate / val;
1469	else
1470		return 0;
1471}
1472
1473static unsigned long armss_rate(void)
1474{
1475	u32 r;
1476	unsigned long rate;
1477
1478	r = readl(PRCM_ARM_CHGCLKREQ);
1479
1480	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481		/* External ARMCLKFIX clock */
1482
1483		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484
1485		/* Check PRCM_ARM_CHGCLKREQ divider */
1486		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487			rate /= 2;
1488
1489		/* Check PRCM_ARMCLKFIX_MGT divider */
1490		r = readl(PRCM_ARMCLKFIX_MGT);
1491		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492		rate /= r;
1493
1494	} else {/* ARM PLL */
1495		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496	}
1497
1498	return rate;
1499}
1500
1501static unsigned long dsiclk_rate(u8 n)
1502{
1503	u32 divsel;
1504	u32 div = 1;
1505
1506	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508
1509	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510		divsel = dsiclk[n].divsel;
1511	else
1512		dsiclk[n].divsel = divsel;
1513
1514	switch (divsel) {
1515	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516		div *= 2;
1517		fallthrough;
1518	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519		div *= 2;
1520		fallthrough;
1521	case PRCM_DSI_PLLOUT_SEL_PHI:
1522		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523			PLL_RAW) / div;
1524	default:
1525		return 0;
1526	}
1527}
1528
1529static unsigned long dsiescclk_rate(u8 n)
1530{
1531	u32 div;
1532
1533	div = readl(PRCM_DSITVCLK_DIV);
1534	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536}
1537
1538unsigned long prcmu_clock_rate(u8 clock)
1539{
1540	if (clock < PRCMU_NUM_REG_CLOCKS)
1541		return clock_rate(clock);
1542	else if (clock == PRCMU_TIMCLK)
1543		return prcmu_is_ulppll_disabled() ?
1544			32768 : ROOT_CLOCK_RATE / 16;
1545	else if (clock == PRCMU_SYSCLK)
1546		return ROOT_CLOCK_RATE;
1547	else if (clock == PRCMU_PLLSOC0)
1548		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549	else if (clock == PRCMU_PLLSOC1)
1550		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551	else if (clock == PRCMU_ARMSS)
1552		return armss_rate();
1553	else if (clock == PRCMU_PLLDDR)
1554		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555	else if (clock == PRCMU_PLLDSI)
1556		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557			PLL_RAW);
1558	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562	else
1563		return 0;
1564}
1565
1566static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567{
1568	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569		return ROOT_CLOCK_RATE;
1570	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577	else
1578		return 0;
1579}
1580
1581static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582{
1583	u32 div;
1584
1585	div = (src_rate / rate);
1586	if (div == 0)
1587		return 1;
1588	if (rate < (src_rate / div))
1589		div++;
1590	return div;
1591}
1592
1593static long round_clock_rate(u8 clock, unsigned long rate)
1594{
1595	u32 val;
1596	u32 div;
1597	unsigned long src_rate;
1598	long rounded_rate;
1599
1600	val = readl(prcmu_base + clk_mgt[clock].offset);
1601	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602		clk_mgt[clock].branch);
1603	div = clock_divider(src_rate, rate);
1604	if (val & PRCM_CLK_MGT_CLK38) {
1605		if (clk_mgt[clock].clk38div) {
1606			if (div > 2)
1607				div = 2;
1608		} else {
1609			div = 1;
1610		}
1611	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612		u64 r = (src_rate * 10);
1613
1614		(void)do_div(r, 25);
1615		if (r <= rate)
1616			return (unsigned long)r;
1617	}
1618	rounded_rate = (src_rate / min(div, (u32)31));
1619
1620	return rounded_rate;
1621}
1622
1623static const unsigned long db8500_armss_freqs[] = {
1624	199680000,
1625	399360000,
1626	798720000,
1627	998400000
1628};
1629
1630/* The DB8520 has slightly higher ARMSS max frequency */
1631static const unsigned long db8520_armss_freqs[] = {
1632	199680000,
1633	399360000,
1634	798720000,
1635	1152000000
1636};
1637
1638static long round_armss_rate(unsigned long rate)
1639{
1640	unsigned long freq = 0;
1641	const unsigned long *freqs;
1642	int nfreqs;
1643	int i;
1644
1645	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646		freqs = db8520_armss_freqs;
1647		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648	} else {
1649		freqs = db8500_armss_freqs;
1650		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651	}
1652
1653	/* Find the corresponding arm opp from the cpufreq table. */
1654	for (i = 0; i < nfreqs; i++) {
1655		freq = freqs[i];
1656		if (rate <= freq)
1657			break;
1658	}
1659
1660	/* Return the last valid value, even if a match was not found. */
1661	return freq;
1662}
1663
1664#define MIN_PLL_VCO_RATE 600000000ULL
1665#define MAX_PLL_VCO_RATE 1680640000ULL
1666
1667static long round_plldsi_rate(unsigned long rate)
1668{
1669	long rounded_rate = 0;
1670	unsigned long src_rate;
1671	unsigned long rem;
1672	u32 r;
1673
1674	src_rate = clock_rate(PRCMU_HDMICLK);
1675	rem = rate;
1676
1677	for (r = 7; (rem > 0) && (r > 0); r--) {
1678		u64 d;
1679
1680		d = (r * rate);
1681		(void)do_div(d, src_rate);
1682		if (d < 6)
1683			d = 6;
1684		else if (d > 255)
1685			d = 255;
1686		d *= src_rate;
1687		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689			continue;
1690		(void)do_div(d, r);
1691		if (rate < d) {
1692			if (rounded_rate == 0)
1693				rounded_rate = (long)d;
1694			break;
1695		}
1696		if ((rate - d) < rem) {
1697			rem = (rate - d);
1698			rounded_rate = (long)d;
1699		}
1700	}
1701	return rounded_rate;
1702}
1703
1704static long round_dsiclk_rate(unsigned long rate)
1705{
1706	u32 div;
1707	unsigned long src_rate;
1708	long rounded_rate;
1709
1710	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711		PLL_RAW);
1712	div = clock_divider(src_rate, rate);
1713	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714
1715	return rounded_rate;
1716}
1717
1718static long round_dsiescclk_rate(unsigned long rate)
1719{
1720	u32 div;
1721	unsigned long src_rate;
1722	long rounded_rate;
1723
1724	src_rate = clock_rate(PRCMU_TVCLK);
1725	div = clock_divider(src_rate, rate);
1726	rounded_rate = (src_rate / min(div, (u32)255));
1727
1728	return rounded_rate;
1729}
1730
1731long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732{
1733	if (clock < PRCMU_NUM_REG_CLOCKS)
1734		return round_clock_rate(clock, rate);
1735	else if (clock == PRCMU_ARMSS)
1736		return round_armss_rate(rate);
1737	else if (clock == PRCMU_PLLDSI)
1738		return round_plldsi_rate(rate);
1739	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740		return round_dsiclk_rate(rate);
1741	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742		return round_dsiescclk_rate(rate);
1743	else
1744		return (long)prcmu_clock_rate(clock);
1745}
1746
1747static void set_clock_rate(u8 clock, unsigned long rate)
1748{
1749	u32 val;
1750	u32 div;
1751	unsigned long src_rate;
1752	unsigned long flags;
1753
1754	spin_lock_irqsave(&clk_mgt_lock, flags);
1755
1756	/* Grab the HW semaphore. */
1757	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758		cpu_relax();
1759
1760	val = readl(prcmu_base + clk_mgt[clock].offset);
1761	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762		clk_mgt[clock].branch);
1763	div = clock_divider(src_rate, rate);
1764	if (val & PRCM_CLK_MGT_CLK38) {
1765		if (clk_mgt[clock].clk38div) {
1766			if (div > 1)
1767				val |= PRCM_CLK_MGT_CLK38DIV;
1768			else
1769				val &= ~PRCM_CLK_MGT_CLK38DIV;
1770		}
1771	} else if (clock == PRCMU_SGACLK) {
1772		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774		if (div == 3) {
1775			u64 r = (src_rate * 10);
1776
1777			(void)do_div(r, 25);
1778			if (r <= rate) {
1779				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780				div = 0;
1781			}
1782		}
1783		val |= min(div, (u32)31);
1784	} else {
1785		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786		val |= min(div, (u32)31);
1787	}
1788	writel(val, prcmu_base + clk_mgt[clock].offset);
1789
1790	/* Release the HW semaphore. */
1791	writel(0, PRCM_SEM);
1792
1793	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794}
1795
1796static int set_armss_rate(unsigned long rate)
1797{
1798	unsigned long freq;
1799	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800	const unsigned long *freqs;
1801	int nfreqs;
1802	int i;
1803
1804	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805		freqs = db8520_armss_freqs;
1806		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807	} else {
1808		freqs = db8500_armss_freqs;
1809		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810	}
1811
1812	/* Find the corresponding arm opp from the cpufreq table. */
1813	for (i = 0; i < nfreqs; i++) {
1814		freq = freqs[i];
1815		if (rate == freq)
1816			break;
1817	}
1818
1819	if (rate != freq)
1820		return -EINVAL;
1821
1822	/* Set the new arm opp. */
1823	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824	return db8500_prcmu_set_arm_opp(opps[i]);
1825}
1826
1827static int set_plldsi_rate(unsigned long rate)
1828{
1829	unsigned long src_rate;
1830	unsigned long rem;
1831	u32 pll_freq = 0;
1832	u32 r;
1833
1834	src_rate = clock_rate(PRCMU_HDMICLK);
1835	rem = rate;
1836
1837	for (r = 7; (rem > 0) && (r > 0); r--) {
1838		u64 d;
1839		u64 hwrate;
1840
1841		d = (r * rate);
1842		(void)do_div(d, src_rate);
1843		if (d < 6)
1844			d = 6;
1845		else if (d > 255)
1846			d = 255;
1847		hwrate = (d * src_rate);
1848		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850			continue;
1851		(void)do_div(hwrate, r);
1852		if (rate < hwrate) {
1853			if (pll_freq == 0)
1854				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855					(r << PRCM_PLL_FREQ_R_SHIFT));
1856			break;
1857		}
1858		if ((rate - hwrate) < rem) {
1859			rem = (rate - hwrate);
1860			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861				(r << PRCM_PLL_FREQ_R_SHIFT));
1862		}
1863	}
1864	if (pll_freq == 0)
1865		return -EINVAL;
1866
1867	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868	writel(pll_freq, PRCM_PLLDSI_FREQ);
1869
1870	return 0;
1871}
1872
1873static void set_dsiclk_rate(u8 n, unsigned long rate)
1874{
1875	u32 val;
1876	u32 div;
1877
1878	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880
1881	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1884
1885	val = readl(PRCM_DSI_PLLOUT_SEL);
1886	val &= ~dsiclk[n].divsel_mask;
1887	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888	writel(val, PRCM_DSI_PLLOUT_SEL);
1889}
1890
1891static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892{
1893	u32 val;
1894	u32 div;
1895
1896	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897	val = readl(PRCM_DSITVCLK_DIV);
1898	val &= ~dsiescclk[n].div_mask;
1899	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900	writel(val, PRCM_DSITVCLK_DIV);
1901}
1902
1903int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904{
1905	if (clock < PRCMU_NUM_REG_CLOCKS)
1906		set_clock_rate(clock, rate);
1907	else if (clock == PRCMU_ARMSS)
1908		return set_armss_rate(rate);
1909	else if (clock == PRCMU_PLLDSI)
1910		return set_plldsi_rate(rate);
1911	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915	return 0;
1916}
1917
1918int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919{
1920	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922		return -EINVAL;
1923
1924	mutex_lock(&mb4_transfer.lock);
1925
1926	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927		cpu_relax();
1928
1929	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932	writeb(DDR_PWR_STATE_ON,
1933	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935
1936	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937	wait_for_completion(&mb4_transfer.work);
1938
1939	mutex_unlock(&mb4_transfer.lock);
1940
1941	return 0;
1942}
1943
1944int db8500_prcmu_config_hotdog(u8 threshold)
1945{
1946	mutex_lock(&mb4_transfer.lock);
1947
1948	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949		cpu_relax();
1950
1951	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953
1954	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955	wait_for_completion(&mb4_transfer.work);
1956
1957	mutex_unlock(&mb4_transfer.lock);
1958
1959	return 0;
1960}
1961
1962int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963{
1964	mutex_lock(&mb4_transfer.lock);
1965
1966	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967		cpu_relax();
1968
1969	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974
1975	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976	wait_for_completion(&mb4_transfer.work);
1977
1978	mutex_unlock(&mb4_transfer.lock);
1979
1980	return 0;
1981}
1982EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983
1984static int config_hot_period(u16 val)
1985{
1986	mutex_lock(&mb4_transfer.lock);
1987
1988	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989		cpu_relax();
1990
1991	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993
1994	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995	wait_for_completion(&mb4_transfer.work);
1996
1997	mutex_unlock(&mb4_transfer.lock);
1998
1999	return 0;
2000}
2001
2002int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003{
2004	if (cycles32k == 0xFFFF)
2005		return -EINVAL;
2006
2007	return config_hot_period(cycles32k);
2008}
2009EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010
2011int db8500_prcmu_stop_temp_sense(void)
2012{
2013	return config_hot_period(0xFFFF);
2014}
2015EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016
2017static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2018{
2019
2020	mutex_lock(&mb4_transfer.lock);
2021
2022	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023		cpu_relax();
2024
2025	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029
2030	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031
2032	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033	wait_for_completion(&mb4_transfer.work);
2034
2035	mutex_unlock(&mb4_transfer.lock);
2036
2037	return 0;
2038
2039}
2040
2041int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042{
2043	BUG_ON(num == 0 || num > 0xf);
2044	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046			    A9WDOG_AUTO_OFF_DIS);
2047}
2048EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049
2050int db8500_prcmu_enable_a9wdog(u8 id)
2051{
2052	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053}
2054EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055
2056int db8500_prcmu_disable_a9wdog(u8 id)
2057{
2058	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059}
2060EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061
2062int db8500_prcmu_kick_a9wdog(u8 id)
2063{
2064	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065}
2066EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067
2068/*
2069 * timeout is 28 bit, in ms.
2070 */
2071int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072{
2073	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074			    (id & A9WDOG_ID_MASK) |
2075			    /*
2076			     * Put the lowest 28 bits of timeout at
2077			     * offset 4. Four first bits are used for id.
2078			     */
2079			    (u8)((timeout << 4) & 0xf0),
2080			    (u8)((timeout >> 4) & 0xff),
2081			    (u8)((timeout >> 12) & 0xff),
2082			    (u8)((timeout >> 20) & 0xff));
2083}
2084EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085
2086/**
2087 * prcmu_abb_read() - Read register value(s) from the ABB.
2088 * @slave:	The I2C slave address.
2089 * @reg:	The (start) register address.
2090 * @value:	The read out value(s).
2091 * @size:	The number of registers to read.
2092 *
2093 * Reads register value(s) from the ABB.
2094 * @size has to be 1 for the current firmware version.
2095 */
2096int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097{
2098	int r;
2099
2100	if (size != 1)
2101		return -EINVAL;
2102
2103	mutex_lock(&mb5_transfer.lock);
2104
2105	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106		cpu_relax();
2107
2108	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113
2114	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115
2116	if (!wait_for_completion_timeout(&mb5_transfer.work,
2117				msecs_to_jiffies(20000))) {
2118		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119			__func__);
2120		r = -EIO;
2121	} else {
2122		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123	}
2124
2125	if (!r)
2126		*value = mb5_transfer.ack.value;
2127
2128	mutex_unlock(&mb5_transfer.lock);
2129
2130	return r;
2131}
2132
2133/**
2134 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135 * @slave:	The I2C slave address.
2136 * @reg:	The (start) register address.
2137 * @value:	The value(s) to write.
2138 * @mask:	The mask(s) to use.
2139 * @size:	The number of registers to write.
2140 *
2141 * Writes masked register value(s) to the ABB.
2142 * For each @value, only the bits set to 1 in the corresponding @mask
2143 * will be written. The other bits are not changed.
2144 * @size has to be 1 for the current firmware version.
2145 */
2146int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147{
2148	int r;
2149
2150	if (size != 1)
2151		return -EINVAL;
2152
2153	mutex_lock(&mb5_transfer.lock);
2154
2155	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156		cpu_relax();
2157
2158	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163
2164	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165
2166	if (!wait_for_completion_timeout(&mb5_transfer.work,
2167				msecs_to_jiffies(20000))) {
2168		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169			__func__);
2170		r = -EIO;
2171	} else {
2172		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173	}
2174
2175	mutex_unlock(&mb5_transfer.lock);
2176
2177	return r;
2178}
2179
2180/**
2181 * prcmu_abb_write() - Write register value(s) to the ABB.
2182 * @slave:	The I2C slave address.
2183 * @reg:	The (start) register address.
2184 * @value:	The value(s) to write.
2185 * @size:	The number of registers to write.
2186 *
2187 * Writes register value(s) to the ABB.
2188 * @size has to be 1 for the current firmware version.
2189 */
2190int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191{
2192	u8 mask = ~0;
2193
2194	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195}
2196
2197/**
2198 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2199 */
2200int prcmu_ac_wake_req(void)
2201{
2202	u32 val;
2203	int ret = 0;
2204
2205	mutex_lock(&mb0_transfer.ac_wake_lock);
2206
2207	val = readl(PRCM_HOSTACCESS_REQ);
2208	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209		goto unlock_and_return;
2210
2211	atomic_set(&ac_wake_req_state, 1);
2212
2213	/*
2214	 * Force Modem Wake-up before hostaccess_req ping-pong.
2215	 * It prevents Modem to enter in Sleep while acking the hostaccess
2216	 * request. The 31us delay has been calculated by HWI.
2217	 */
2218	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219	writel(val, PRCM_HOSTACCESS_REQ);
2220
2221	udelay(31);
2222
2223	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224	writel(val, PRCM_HOSTACCESS_REQ);
2225
2226	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227			msecs_to_jiffies(5000))) {
2228		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229			__func__);
2230		ret = -EFAULT;
2231	}
2232
2233unlock_and_return:
2234	mutex_unlock(&mb0_transfer.ac_wake_lock);
2235	return ret;
2236}
2237
2238/**
2239 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2240 */
2241void prcmu_ac_sleep_req(void)
2242{
2243	u32 val;
2244
2245	mutex_lock(&mb0_transfer.ac_wake_lock);
2246
2247	val = readl(PRCM_HOSTACCESS_REQ);
2248	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249		goto unlock_and_return;
2250
2251	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252		PRCM_HOSTACCESS_REQ);
2253
2254	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255			msecs_to_jiffies(5000))) {
2256		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257			__func__);
2258	}
2259
2260	atomic_set(&ac_wake_req_state, 0);
2261
2262unlock_and_return:
2263	mutex_unlock(&mb0_transfer.ac_wake_lock);
2264}
2265
2266bool db8500_prcmu_is_ac_wake_requested(void)
2267{
2268	return (atomic_read(&ac_wake_req_state) != 0);
2269}
2270
2271/**
2272 * db8500_prcmu_system_reset - System reset
2273 *
2274 * Saves the reset reason code and then sets the APE_SOFTRST register which
2275 * fires interrupt to fw
2276 *
2277 * @reset_code: The reason for system reset
2278 */
2279void db8500_prcmu_system_reset(u16 reset_code)
2280{
2281	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282	writel(1, PRCM_APE_SOFTRST);
2283}
2284
2285/**
2286 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2287 *
2288 * Retrieves the reset reason code stored by prcmu_system_reset() before
2289 * last restart.
2290 */
2291u16 db8500_prcmu_get_reset_code(void)
2292{
2293	return readw(tcdm_base + PRCM_SW_RST_REASON);
2294}
2295
2296/**
2297 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2298 */
2299void db8500_prcmu_modem_reset(void)
2300{
2301	mutex_lock(&mb1_transfer.lock);
2302
2303	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304		cpu_relax();
2305
2306	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308	wait_for_completion(&mb1_transfer.work);
2309
2310	/*
2311	 * No need to check return from PRCMU as modem should go in reset state
2312	 * This state is already managed by upper layer
2313	 */
2314
2315	mutex_unlock(&mb1_transfer.lock);
2316}
2317
2318static void ack_dbb_wakeup(void)
2319{
2320	unsigned long flags;
2321
2322	spin_lock_irqsave(&mb0_transfer.lock, flags);
2323
2324	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325		cpu_relax();
2326
2327	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329
2330	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331}
2332
2333static inline void print_unknown_header_warning(u8 n, u8 header)
2334{
2335	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336		header, n);
2337}
2338
2339static bool read_mailbox_0(void)
2340{
2341	bool r;
2342	u32 ev;
2343	unsigned int n;
2344	u8 header;
2345
2346	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347	switch (header) {
2348	case MB0H_WAKEUP_EXE:
2349	case MB0H_WAKEUP_SLEEP:
2350		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352		else
2353			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354
2355		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356			complete(&mb0_transfer.ac_wake_work);
2357		if (ev & WAKEUP_BIT_SYSCLK_OK)
2358			complete(&mb3_transfer.sysclk_work);
2359
2360		ev &= mb0_transfer.req.dbb_irqs;
2361
2362		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363			if (ev & prcmu_irq_bit[n])
2364				generic_handle_domain_irq(db8500_irq_domain, n);
2365		}
2366		r = true;
2367		break;
2368	default:
2369		print_unknown_header_warning(0, header);
2370		r = false;
2371		break;
2372	}
2373	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374	return r;
2375}
2376
2377static bool read_mailbox_1(void)
2378{
2379	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383		PRCM_ACK_MB1_CURRENT_APE_OPP);
2384	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387	complete(&mb1_transfer.work);
2388	return false;
2389}
2390
2391static bool read_mailbox_2(void)
2392{
2393	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395	complete(&mb2_transfer.work);
2396	return false;
2397}
2398
2399static bool read_mailbox_3(void)
2400{
2401	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402	return false;
2403}
2404
2405static bool read_mailbox_4(void)
2406{
2407	u8 header;
2408	bool do_complete = true;
2409
2410	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411	switch (header) {
2412	case MB4H_MEM_ST:
2413	case MB4H_HOTDOG:
2414	case MB4H_HOTMON:
2415	case MB4H_HOT_PERIOD:
2416	case MB4H_A9WDOG_CONF:
2417	case MB4H_A9WDOG_EN:
2418	case MB4H_A9WDOG_DIS:
2419	case MB4H_A9WDOG_LOAD:
2420	case MB4H_A9WDOG_KICK:
2421		break;
2422	default:
2423		print_unknown_header_warning(4, header);
2424		do_complete = false;
2425		break;
2426	}
2427
2428	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429
2430	if (do_complete)
2431		complete(&mb4_transfer.work);
2432
2433	return false;
2434}
2435
2436static bool read_mailbox_5(void)
2437{
2438	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441	complete(&mb5_transfer.work);
2442	return false;
2443}
2444
2445static bool read_mailbox_6(void)
2446{
2447	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448	return false;
2449}
2450
2451static bool read_mailbox_7(void)
2452{
2453	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454	return false;
2455}
2456
2457static bool (* const read_mailbox[NUM_MB])(void) = {
2458	read_mailbox_0,
2459	read_mailbox_1,
2460	read_mailbox_2,
2461	read_mailbox_3,
2462	read_mailbox_4,
2463	read_mailbox_5,
2464	read_mailbox_6,
2465	read_mailbox_7
2466};
2467
2468static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469{
2470	u32 bits;
2471	u8 n;
2472	irqreturn_t r;
2473
2474	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475	if (unlikely(!bits))
2476		return IRQ_NONE;
2477
2478	r = IRQ_HANDLED;
2479	for (n = 0; bits; n++) {
2480		if (bits & MBOX_BIT(n)) {
2481			bits -= MBOX_BIT(n);
2482			if (read_mailbox[n]())
2483				r = IRQ_WAKE_THREAD;
2484		}
2485	}
2486	return r;
2487}
2488
2489static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490{
2491	ack_dbb_wakeup();
2492	return IRQ_HANDLED;
2493}
2494
2495static void prcmu_mask_work(struct work_struct *work)
2496{
2497	unsigned long flags;
2498
2499	spin_lock_irqsave(&mb0_transfer.lock, flags);
2500
2501	config_wakeups();
2502
2503	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504}
2505
2506static void prcmu_irq_mask(struct irq_data *d)
2507{
2508	unsigned long flags;
2509
2510	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511
2512	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513
2514	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515
2516	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517		schedule_work(&mb0_transfer.mask_work);
2518}
2519
2520static void prcmu_irq_unmask(struct irq_data *d)
2521{
2522	unsigned long flags;
2523
2524	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525
2526	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527
2528	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529
2530	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531		schedule_work(&mb0_transfer.mask_work);
2532}
2533
2534static void noop(struct irq_data *d)
2535{
2536}
2537
2538static struct irq_chip prcmu_irq_chip = {
2539	.name		= "prcmu",
2540	.irq_disable	= prcmu_irq_mask,
2541	.irq_ack	= noop,
2542	.irq_mask	= prcmu_irq_mask,
2543	.irq_unmask	= prcmu_irq_unmask,
2544};
2545
2546static char *fw_project_name(u32 project)
2547{
2548	switch (project) {
2549	case PRCMU_FW_PROJECT_U8500:
2550		return "U8500";
2551	case PRCMU_FW_PROJECT_U8400:
2552		return "U8400";
2553	case PRCMU_FW_PROJECT_U9500:
2554		return "U9500";
2555	case PRCMU_FW_PROJECT_U8500_MBB:
2556		return "U8500 MBB";
2557	case PRCMU_FW_PROJECT_U8500_C1:
2558		return "U8500 C1";
2559	case PRCMU_FW_PROJECT_U8500_C2:
2560		return "U8500 C2";
2561	case PRCMU_FW_PROJECT_U8500_C3:
2562		return "U8500 C3";
2563	case PRCMU_FW_PROJECT_U8500_C4:
2564		return "U8500 C4";
2565	case PRCMU_FW_PROJECT_U9500_MBL:
2566		return "U9500 MBL";
2567	case PRCMU_FW_PROJECT_U8500_SSG1:
2568		return "U8500 Samsung 1";
2569	case PRCMU_FW_PROJECT_U8500_MBL2:
2570		return "U8500 MBL2";
2571	case PRCMU_FW_PROJECT_U8520:
2572		return "U8520 MBL";
2573	case PRCMU_FW_PROJECT_U8420:
2574		return "U8420";
2575	case PRCMU_FW_PROJECT_U8500_SSG2:
2576		return "U8500 Samsung 2";
2577	case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578		return "U8420-sysclk";
2579	case PRCMU_FW_PROJECT_U9540:
2580		return "U9540";
2581	case PRCMU_FW_PROJECT_A9420:
2582		return "A9420";
2583	case PRCMU_FW_PROJECT_L8540:
2584		return "L8540";
2585	case PRCMU_FW_PROJECT_L8580:
2586		return "L8580";
2587	default:
2588		return "Unknown";
2589	}
2590}
2591
2592static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593				irq_hw_number_t hwirq)
2594{
2595	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596				handle_simple_irq);
2597
2598	return 0;
2599}
2600
2601static const struct irq_domain_ops db8500_irq_ops = {
2602	.map    = db8500_irq_map,
2603	.xlate  = irq_domain_xlate_twocell,
2604};
2605
2606static int db8500_irq_init(struct device_node *np)
2607{
2608	int i;
2609
2610	db8500_irq_domain = irq_domain_add_simple(
2611		np, NUM_PRCMU_WAKEUPS, 0,
2612		&db8500_irq_ops, NULL);
2613
2614	if (!db8500_irq_domain) {
2615		pr_err("Failed to create irqdomain\n");
2616		return -ENOSYS;
2617	}
2618
2619	/* All wakeups will be used, so create mappings for all */
2620	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621		irq_create_mapping(db8500_irq_domain, i);
2622
2623	return 0;
2624}
2625
2626static void dbx500_fw_version_init(struct device_node *np)
2627{
2628	void __iomem *tcpm_base;
2629	u32 version;
2630
2631	tcpm_base = of_iomap(np, 1);
2632	if (!tcpm_base) {
2633		pr_err("no prcmu tcpm mem region provided\n");
2634		return;
2635	}
2636
2637	version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638	fw_info.version.project = (version & 0xFF);
2639	fw_info.version.api_version = (version >> 8) & 0xFF;
2640	fw_info.version.func_version = (version >> 16) & 0xFF;
2641	fw_info.version.errata = (version >> 24) & 0xFF;
2642	strscpy(fw_info.version.project_name,
2643		fw_project_name(fw_info.version.project),
2644		sizeof(fw_info.version.project_name));
2645	fw_info.valid = true;
2646	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647		fw_info.version.project_name,
2648		fw_info.version.project,
2649		fw_info.version.api_version,
2650		fw_info.version.func_version,
2651		fw_info.version.errata);
2652	iounmap(tcpm_base);
2653}
2654
2655void __init db8500_prcmu_early_init(void)
2656{
2657	/*
2658	 * This is a temporary remap to bring up the clocks. It is
2659	 * subsequently replaces with a real remap. After the merge of
2660	 * the mailbox subsystem all of this early code goes away, and the
2661	 * clock driver can probe independently. An early initcall will
2662	 * still be needed, but it can be diverted into drivers/clk/ux500.
2663	 */
2664	struct device_node *np;
2665
2666	np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667	prcmu_base = of_iomap(np, 0);
2668	if (!prcmu_base) {
2669		of_node_put(np);
2670		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671		return;
2672	}
2673	dbx500_fw_version_init(np);
2674	of_node_put(np);
2675
2676	spin_lock_init(&mb0_transfer.lock);
2677	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678	mutex_init(&mb0_transfer.ac_wake_lock);
2679	init_completion(&mb0_transfer.ac_wake_work);
2680	mutex_init(&mb1_transfer.lock);
2681	init_completion(&mb1_transfer.work);
2682	mb1_transfer.ape_opp = APE_NO_CHANGE;
2683	mutex_init(&mb2_transfer.lock);
2684	init_completion(&mb2_transfer.work);
2685	spin_lock_init(&mb2_transfer.auto_pm_lock);
2686	spin_lock_init(&mb3_transfer.lock);
2687	mutex_init(&mb3_transfer.sysclk_lock);
2688	init_completion(&mb3_transfer.sysclk_work);
2689	mutex_init(&mb4_transfer.lock);
2690	init_completion(&mb4_transfer.work);
2691	mutex_init(&mb5_transfer.lock);
2692	init_completion(&mb5_transfer.work);
2693
2694	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695}
2696
2697static void init_prcm_registers(void)
2698{
2699	u32 val;
2700
2701	val = readl(PRCM_A9PL_FORCE_CLKEN);
2702	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2705}
2706
2707/*
2708 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709 */
2710static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711	REGULATOR_SUPPLY("v-ape", NULL),
2712	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717	/* "v-mmc" changed to "vcore" in the mainline kernel */
2718	REGULATOR_SUPPLY("vcore", "sdi0"),
2719	REGULATOR_SUPPLY("vcore", "sdi1"),
2720	REGULATOR_SUPPLY("vcore", "sdi2"),
2721	REGULATOR_SUPPLY("vcore", "sdi3"),
2722	REGULATOR_SUPPLY("vcore", "sdi4"),
2723	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725	/* "v-uart" changed to "vcore" in the mainline kernel */
2726	REGULATOR_SUPPLY("vcore", "uart0"),
2727	REGULATOR_SUPPLY("vcore", "uart1"),
2728	REGULATOR_SUPPLY("vcore", "uart2"),
2729	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732};
2733
2734static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2735	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736	/* AV8100 regulator */
2737	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738};
2739
2740static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742	REGULATOR_SUPPLY("vsupply", "mcde"),
2743};
2744
2745/* SVA MMDSP regulator switch */
2746static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748};
2749
2750/* SVA pipe regulator switch */
2751static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753};
2754
2755/* SIA MMDSP regulator switch */
2756static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758};
2759
2760/* SIA pipe regulator switch */
2761static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763};
2764
2765static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766	REGULATOR_SUPPLY("v-mali", NULL),
2767};
2768
2769/* ESRAM1 and 2 regulator switch */
2770static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771	REGULATOR_SUPPLY("esram12", "cm_control"),
2772};
2773
2774/* ESRAM3 and 4 regulator switch */
2775static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776	REGULATOR_SUPPLY("v-esram34", "mcde"),
2777	REGULATOR_SUPPLY("esram34", "cm_control"),
2778	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779};
2780
2781static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782	[DB8500_REGULATOR_VAPE] = {
2783		.constraints = {
2784			.name = "db8500-vape",
2785			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786			.always_on = true,
2787		},
2788		.consumer_supplies = db8500_vape_consumers,
2789		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790	},
2791	[DB8500_REGULATOR_VARM] = {
2792		.constraints = {
2793			.name = "db8500-varm",
2794			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795		},
2796	},
2797	[DB8500_REGULATOR_VMODEM] = {
2798		.constraints = {
2799			.name = "db8500-vmodem",
2800			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801		},
2802	},
2803	[DB8500_REGULATOR_VPLL] = {
2804		.constraints = {
2805			.name = "db8500-vpll",
2806			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807		},
2808	},
2809	[DB8500_REGULATOR_VSMPS1] = {
2810		.constraints = {
2811			.name = "db8500-vsmps1",
2812			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813		},
2814	},
2815	[DB8500_REGULATOR_VSMPS2] = {
2816		.constraints = {
2817			.name = "db8500-vsmps2",
2818			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819		},
2820		.consumer_supplies = db8500_vsmps2_consumers,
2821		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822	},
2823	[DB8500_REGULATOR_VSMPS3] = {
2824		.constraints = {
2825			.name = "db8500-vsmps3",
2826			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827		},
2828	},
2829	[DB8500_REGULATOR_VRF1] = {
2830		.constraints = {
2831			.name = "db8500-vrf1",
2832			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833		},
2834	},
2835	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836		/* dependency to u8500-vape is handled outside regulator framework */
2837		.constraints = {
2838			.name = "db8500-sva-mmdsp",
2839			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840		},
2841		.consumer_supplies = db8500_svammdsp_consumers,
2842		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843	},
2844	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845		.constraints = {
2846			/* "ret" means "retention" */
2847			.name = "db8500-sva-mmdsp-ret",
2848			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849		},
2850	},
2851	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852		/* dependency to u8500-vape is handled outside regulator framework */
2853		.constraints = {
2854			.name = "db8500-sva-pipe",
2855			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856		},
2857		.consumer_supplies = db8500_svapipe_consumers,
2858		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859	},
2860	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861		/* dependency to u8500-vape is handled outside regulator framework */
2862		.constraints = {
2863			.name = "db8500-sia-mmdsp",
2864			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865		},
2866		.consumer_supplies = db8500_siammdsp_consumers,
2867		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868	},
2869	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870		.constraints = {
2871			.name = "db8500-sia-mmdsp-ret",
2872			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873		},
2874	},
2875	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876		/* dependency to u8500-vape is handled outside regulator framework */
2877		.constraints = {
2878			.name = "db8500-sia-pipe",
2879			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880		},
2881		.consumer_supplies = db8500_siapipe_consumers,
2882		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883	},
2884	[DB8500_REGULATOR_SWITCH_SGA] = {
2885		.supply_regulator = "db8500-vape",
2886		.constraints = {
2887			.name = "db8500-sga",
2888			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889		},
2890		.consumer_supplies = db8500_sga_consumers,
2891		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892
2893	},
2894	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895		.supply_regulator = "db8500-vape",
2896		.constraints = {
2897			.name = "db8500-b2r2-mcde",
2898			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899		},
2900		.consumer_supplies = db8500_b2r2_mcde_consumers,
2901		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902	},
2903	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904		/*
2905		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906		 * no need to hold Vape
2907		 */
2908		.constraints = {
2909			.name = "db8500-esram12",
2910			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911		},
2912		.consumer_supplies = db8500_esram12_consumers,
2913		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914	},
2915	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916		.constraints = {
2917			.name = "db8500-esram12-ret",
2918			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919		},
2920	},
2921	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922		/*
2923		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924		 * no need to hold Vape
2925		 */
2926		.constraints = {
2927			.name = "db8500-esram34",
2928			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929		},
2930		.consumer_supplies = db8500_esram34_consumers,
2931		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932	},
2933	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934		.constraints = {
2935			.name = "db8500-esram34-ret",
2936			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937		},
2938	},
2939};
2940
2941static const struct mfd_cell common_prcmu_devs[] = {
2942	MFD_CELL_NAME("db8500_wdt"),
2943	MFD_CELL_NAME("db8500-cpuidle"),
2944};
2945
2946static const struct mfd_cell db8500_prcmu_devs[] = {
2947	MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948		    &db8500_regulators, sizeof(db8500_regulators), 0,
2949		    "stericsson,db8500-prcmu-regulator"),
2950	MFD_CELL_OF("db8500-thermal",
2951		    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2952};
2953
2954static int db8500_prcmu_register_ab8500(struct device *parent)
2955{
2956	struct device_node *np;
2957	struct resource ab850x_resource;
2958	const struct mfd_cell ab8500_cell = {
2959		.name = "ab8500-core",
2960		.of_compatible = "stericsson,ab8500",
2961		.id = AB8500_VERSION_AB8500,
2962		.resources = &ab850x_resource,
2963		.num_resources = 1,
2964	};
2965	const struct mfd_cell ab8505_cell = {
2966		.name = "ab8505-core",
2967		.of_compatible = "stericsson,ab8505",
2968		.id = AB8500_VERSION_AB8505,
2969		.resources = &ab850x_resource,
2970		.num_resources = 1,
2971	};
2972	const struct mfd_cell *ab850x_cell;
2973
2974	if (!parent->of_node)
2975		return -ENODEV;
2976
2977	/* Look up the device node, sneak the IRQ out of it */
2978	for_each_child_of_node(parent->of_node, np) {
2979		if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980			ab850x_cell = &ab8500_cell;
2981			break;
2982		}
2983		if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984			ab850x_cell = &ab8505_cell;
2985			break;
2986		}
2987	}
2988	if (!np) {
2989		dev_info(parent, "could not find AB850X node in the device tree\n");
2990		return -ENODEV;
2991	}
2992	of_irq_to_resource_table(np, &ab850x_resource, 1);
2993
2994	return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995}
2996
2997static int db8500_prcmu_probe(struct platform_device *pdev)
2998{
2999	struct device_node *np = pdev->dev.of_node;
3000	int irq = 0, err = 0;
3001	struct resource *res;
3002
3003	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004	if (!res) {
3005		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006		return -EINVAL;
3007	}
3008	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009	if (!prcmu_base) {
3010		dev_err(&pdev->dev,
3011			"failed to ioremap prcmu register memory\n");
3012		return -ENOMEM;
3013	}
3014	init_prcm_registers();
3015	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016	if (!res) {
3017		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018		return -EINVAL;
3019	}
3020	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021			resource_size(res));
3022	if (!tcdm_base) {
3023		dev_err(&pdev->dev,
3024			"failed to ioremap prcmu-tcdm register memory\n");
3025		return -ENOMEM;
3026	}
3027
3028	/* Clean up the mailbox interrupts after pre-kernel code. */
3029	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030
3031	irq = platform_get_irq(pdev, 0);
3032	if (irq <= 0)
3033		return irq;
3034
3035	err = request_threaded_irq(irq, prcmu_irq_handler,
3036	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037	if (err < 0) {
3038		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039		return err;
3040	}
3041
3042	db8500_irq_init(np);
3043
3044	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3045
3046	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048	if (err) {
3049		pr_err("prcmu: Failed to add subdevices\n");
3050		return err;
3051	}
3052
3053	/* TODO: Remove restriction when clk definitions are available. */
3054	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057				      db8500_irq_domain);
3058		if (err) {
3059			mfd_remove_devices(&pdev->dev);
3060			pr_err("prcmu: Failed to add subdevices\n");
3061			return err;
3062		}
3063	}
3064
3065	err = db8500_prcmu_register_ab8500(&pdev->dev);
3066	if (err) {
3067		mfd_remove_devices(&pdev->dev);
3068		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069		return err;
3070	}
3071
3072	pr_info("DB8500 PRCMU initialized\n");
3073	return err;
3074}
3075static const struct of_device_id db8500_prcmu_match[] = {
3076	{ .compatible = "stericsson,db8500-prcmu"},
3077	{ },
3078};
3079
3080static struct platform_driver db8500_prcmu_driver = {
3081	.driver = {
3082		.name = "db8500-prcmu",
3083		.of_match_table = db8500_prcmu_match,
3084	},
3085	.probe = db8500_prcmu_probe,
3086};
3087
3088static int __init db8500_prcmu_init(void)
3089{
3090	return platform_driver_register(&db8500_prcmu_driver);
3091}
3092core_initcall(db8500_prcmu_init);
3093