1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2015-2020, NVIDIA CORPORATION.  All rights reserved.
4 */
5
6#include <linux/bitfield.h>
7#include <linux/clk.h>
8#include <linux/clk/tegra.h>
9#include <linux/debugfs.h>
10#include <linux/delay.h>
11#include <linux/kernel.h>
12#include <linux/mod_devicetable.h>
13#include <linux/module.h>
14#include <linux/of_reserved_mem.h>
15#include <linux/platform_device.h>
16#include <linux/slab.h>
17#include <linux/thermal.h>
18#include <soc/tegra/fuse.h>
19#include <soc/tegra/mc.h>
20
21#include "tegra210-emc.h"
22#include "tegra210-mc.h"
23
24/* CLK_RST_CONTROLLER_CLK_SOURCE_EMC */
25#define EMC_CLK_EMC_2X_CLK_SRC_SHIFT			29
26#define EMC_CLK_EMC_2X_CLK_SRC_MASK			\
27	(0x7 << EMC_CLK_EMC_2X_CLK_SRC_SHIFT)
28#define EMC_CLK_SOURCE_PLLM_LJ				0x4
29#define EMC_CLK_SOURCE_PLLMB_LJ				0x5
30#define EMC_CLK_FORCE_CC_TRIGGER			BIT(27)
31#define EMC_CLK_MC_EMC_SAME_FREQ			BIT(16)
32#define EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT		0
33#define EMC_CLK_EMC_2X_CLK_DIVISOR_MASK			\
34	(0xff << EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT)
35
36/* CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL */
37#define DLL_CLK_EMC_DLL_CLK_SRC_SHIFT			29
38#define DLL_CLK_EMC_DLL_CLK_SRC_MASK			\
39	(0x7 << DLL_CLK_EMC_DLL_CLK_SRC_SHIFT)
40#define DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT		10
41#define DLL_CLK_EMC_DLL_DDLL_CLK_SEL_MASK		\
42	(0x3 << DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT)
43#define PLLM_VCOA					0
44#define PLLM_VCOB					1
45#define EMC_DLL_SWITCH_OUT				2
46#define DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT		0
47#define DLL_CLK_EMC_DLL_CLK_DIVISOR_MASK		\
48	(0xff << DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT)
49
50/* MC_EMEM_ARB_MISC0 */
51#define MC_EMEM_ARB_MISC0_EMC_SAME_FREQ			BIT(27)
52
53/* EMC_DATA_BRLSHFT_X */
54#define EMC0_EMC_DATA_BRLSHFT_0_INDEX	2
55#define EMC1_EMC_DATA_BRLSHFT_0_INDEX	3
56#define EMC0_EMC_DATA_BRLSHFT_1_INDEX	4
57#define EMC1_EMC_DATA_BRLSHFT_1_INDEX	5
58
59#define TRIM_REG(chan, rank, reg, byte)					\
60	(((EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ##	\
61	   _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _MASK &	\
62	   next->trim_regs[EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ##		\
63				 rank ## _ ## reg ## _INDEX]) >>	\
64	  EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ##	\
65	  _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _SHIFT)	\
66	 +								\
67	 (((EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ##	\
68	    byte ## _DATA_BRLSHFT_MASK &				\
69	    next->trim_perch_regs[EMC ## chan ##			\
70			      _EMC_DATA_BRLSHFT_ ## rank ## _INDEX]) >>	\
71	   EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ##	\
72	   byte ## _DATA_BRLSHFT_SHIFT) * 64))
73
74#define CALC_TEMP(rank, reg, byte1, byte2, n)				\
75	(((new[n] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ##	\
76	   reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _SHIFT) & \
77	  EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ##	\
78	  _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _MASK)	\
79	 |								\
80	 ((new[n + 1] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ##\
81	   reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _SHIFT) & \
82	  EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ##	\
83	  _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _MASK))
84
85#define REFRESH_SPEEDUP(value, speedup) \
86		(((value) & 0xffff0000) | ((value) & 0xffff) * (speedup))
87
88#define LPDDR2_MR4_SRR GENMASK(2, 0)
89
90static const struct tegra210_emc_sequence *tegra210_emc_sequences[] = {
91	&tegra210_emc_r21021,
92};
93
94static const struct tegra210_emc_table_register_offsets
95tegra210_emc_table_register_offsets = {
96	.burst = {
97		EMC_RC,
98		EMC_RFC,
99		EMC_RFCPB,
100		EMC_REFCTRL2,
101		EMC_RFC_SLR,
102		EMC_RAS,
103		EMC_RP,
104		EMC_R2W,
105		EMC_W2R,
106		EMC_R2P,
107		EMC_W2P,
108		EMC_R2R,
109		EMC_TPPD,
110		EMC_CCDMW,
111		EMC_RD_RCD,
112		EMC_WR_RCD,
113		EMC_RRD,
114		EMC_REXT,
115		EMC_WEXT,
116		EMC_WDV_CHK,
117		EMC_WDV,
118		EMC_WSV,
119		EMC_WEV,
120		EMC_WDV_MASK,
121		EMC_WS_DURATION,
122		EMC_WE_DURATION,
123		EMC_QUSE,
124		EMC_QUSE_WIDTH,
125		EMC_IBDLY,
126		EMC_OBDLY,
127		EMC_EINPUT,
128		EMC_MRW6,
129		EMC_EINPUT_DURATION,
130		EMC_PUTERM_EXTRA,
131		EMC_PUTERM_WIDTH,
132		EMC_QRST,
133		EMC_QSAFE,
134		EMC_RDV,
135		EMC_RDV_MASK,
136		EMC_RDV_EARLY,
137		EMC_RDV_EARLY_MASK,
138		EMC_REFRESH,
139		EMC_BURST_REFRESH_NUM,
140		EMC_PRE_REFRESH_REQ_CNT,
141		EMC_PDEX2WR,
142		EMC_PDEX2RD,
143		EMC_PCHG2PDEN,
144		EMC_ACT2PDEN,
145		EMC_AR2PDEN,
146		EMC_RW2PDEN,
147		EMC_CKE2PDEN,
148		EMC_PDEX2CKE,
149		EMC_PDEX2MRR,
150		EMC_TXSR,
151		EMC_TXSRDLL,
152		EMC_TCKE,
153		EMC_TCKESR,
154		EMC_TPD,
155		EMC_TFAW,
156		EMC_TRPAB,
157		EMC_TCLKSTABLE,
158		EMC_TCLKSTOP,
159		EMC_MRW7,
160		EMC_TREFBW,
161		EMC_ODT_WRITE,
162		EMC_FBIO_CFG5,
163		EMC_FBIO_CFG7,
164		EMC_CFG_DIG_DLL,
165		EMC_CFG_DIG_DLL_PERIOD,
166		EMC_PMACRO_IB_RXRT,
167		EMC_CFG_PIPE_1,
168		EMC_CFG_PIPE_2,
169		EMC_PMACRO_QUSE_DDLL_RANK0_4,
170		EMC_PMACRO_QUSE_DDLL_RANK0_5,
171		EMC_PMACRO_QUSE_DDLL_RANK1_4,
172		EMC_PMACRO_QUSE_DDLL_RANK1_5,
173		EMC_MRW8,
174		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_4,
175		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_5,
176		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_0,
177		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_1,
178		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_2,
179		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_3,
180		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_4,
181		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_5,
182		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_0,
183		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_1,
184		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_2,
185		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_3,
186		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_4,
187		EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_5,
188		EMC_PMACRO_DDLL_LONG_CMD_0,
189		EMC_PMACRO_DDLL_LONG_CMD_1,
190		EMC_PMACRO_DDLL_LONG_CMD_2,
191		EMC_PMACRO_DDLL_LONG_CMD_3,
192		EMC_PMACRO_DDLL_LONG_CMD_4,
193		EMC_PMACRO_DDLL_SHORT_CMD_0,
194		EMC_PMACRO_DDLL_SHORT_CMD_1,
195		EMC_PMACRO_DDLL_SHORT_CMD_2,
196		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_3,
197		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_3,
198		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_3,
199		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_3,
200		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_3,
201		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_3,
202		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_3,
203		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_3,
204		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_3,
205		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_3,
206		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_3,
207		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_3,
208		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_3,
209		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_3,
210		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_3,
211		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_3,
212		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_3,
213		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_3,
214		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_3,
215		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_3,
216		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_0,
217		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_1,
218		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_2,
219		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_3,
220		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_0,
221		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_1,
222		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_2,
223		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_3,
224		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_0,
225		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_1,
226		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_2,
227		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_3,
228		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_0,
229		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_1,
230		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_2,
231		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_3,
232		EMC_TXDSRVTTGEN,
233		EMC_FDPD_CTRL_DQ,
234		EMC_FDPD_CTRL_CMD,
235		EMC_FBIO_SPARE,
236		EMC_ZCAL_INTERVAL,
237		EMC_ZCAL_WAIT_CNT,
238		EMC_MRS_WAIT_CNT,
239		EMC_MRS_WAIT_CNT2,
240		EMC_AUTO_CAL_CHANNEL,
241		EMC_DLL_CFG_0,
242		EMC_DLL_CFG_1,
243		EMC_PMACRO_AUTOCAL_CFG_COMMON,
244		EMC_PMACRO_ZCTRL,
245		EMC_CFG,
246		EMC_CFG_PIPE,
247		EMC_DYN_SELF_REF_CONTROL,
248		EMC_QPOP,
249		EMC_DQS_BRLSHFT_0,
250		EMC_DQS_BRLSHFT_1,
251		EMC_CMD_BRLSHFT_2,
252		EMC_CMD_BRLSHFT_3,
253		EMC_PMACRO_PAD_CFG_CTRL,
254		EMC_PMACRO_DATA_PAD_RX_CTRL,
255		EMC_PMACRO_CMD_PAD_RX_CTRL,
256		EMC_PMACRO_DATA_RX_TERM_MODE,
257		EMC_PMACRO_CMD_RX_TERM_MODE,
258		EMC_PMACRO_CMD_PAD_TX_CTRL,
259		EMC_PMACRO_DATA_PAD_TX_CTRL,
260		EMC_PMACRO_COMMON_PAD_TX_CTRL,
261		EMC_PMACRO_VTTGEN_CTRL_0,
262		EMC_PMACRO_VTTGEN_CTRL_1,
263		EMC_PMACRO_VTTGEN_CTRL_2,
264		EMC_PMACRO_BRICK_CTRL_RFU1,
265		EMC_PMACRO_CMD_BRICK_CTRL_FDPD,
266		EMC_PMACRO_BRICK_CTRL_RFU2,
267		EMC_PMACRO_DATA_BRICK_CTRL_FDPD,
268		EMC_PMACRO_BG_BIAS_CTRL_0,
269		EMC_CFG_3,
270		EMC_PMACRO_TX_PWRD_0,
271		EMC_PMACRO_TX_PWRD_1,
272		EMC_PMACRO_TX_PWRD_2,
273		EMC_PMACRO_TX_PWRD_3,
274		EMC_PMACRO_TX_PWRD_4,
275		EMC_PMACRO_TX_PWRD_5,
276		EMC_CONFIG_SAMPLE_DELAY,
277		EMC_PMACRO_TX_SEL_CLK_SRC_0,
278		EMC_PMACRO_TX_SEL_CLK_SRC_1,
279		EMC_PMACRO_TX_SEL_CLK_SRC_2,
280		EMC_PMACRO_TX_SEL_CLK_SRC_3,
281		EMC_PMACRO_TX_SEL_CLK_SRC_4,
282		EMC_PMACRO_TX_SEL_CLK_SRC_5,
283		EMC_PMACRO_DDLL_BYPASS,
284		EMC_PMACRO_DDLL_PWRD_0,
285		EMC_PMACRO_DDLL_PWRD_1,
286		EMC_PMACRO_DDLL_PWRD_2,
287		EMC_PMACRO_CMD_CTRL_0,
288		EMC_PMACRO_CMD_CTRL_1,
289		EMC_PMACRO_CMD_CTRL_2,
290		EMC_TR_TIMING_0,
291		EMC_TR_DVFS,
292		EMC_TR_CTRL_1,
293		EMC_TR_RDV,
294		EMC_TR_QPOP,
295		EMC_TR_RDV_MASK,
296		EMC_MRW14,
297		EMC_TR_QSAFE,
298		EMC_TR_QRST,
299		EMC_TRAINING_CTRL,
300		EMC_TRAINING_SETTLE,
301		EMC_TRAINING_VREF_SETTLE,
302		EMC_TRAINING_CA_FINE_CTRL,
303		EMC_TRAINING_CA_CTRL_MISC,
304		EMC_TRAINING_CA_CTRL_MISC1,
305		EMC_TRAINING_CA_VREF_CTRL,
306		EMC_TRAINING_QUSE_CORS_CTRL,
307		EMC_TRAINING_QUSE_FINE_CTRL,
308		EMC_TRAINING_QUSE_CTRL_MISC,
309		EMC_TRAINING_QUSE_VREF_CTRL,
310		EMC_TRAINING_READ_FINE_CTRL,
311		EMC_TRAINING_READ_CTRL_MISC,
312		EMC_TRAINING_READ_VREF_CTRL,
313		EMC_TRAINING_WRITE_FINE_CTRL,
314		EMC_TRAINING_WRITE_CTRL_MISC,
315		EMC_TRAINING_WRITE_VREF_CTRL,
316		EMC_TRAINING_MPC,
317		EMC_MRW15,
318	},
319	.trim = {
320		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_0,
321		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_1,
322		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_2,
323		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_3,
324		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_0,
325		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_1,
326		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_2,
327		EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_3,
328		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_0,
329		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_1,
330		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_2,
331		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_0,
332		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_1,
333		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_2,
334		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_0,
335		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_1,
336		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_2,
337		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_0,
338		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_1,
339		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_2,
340		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_0,
341		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_1,
342		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_2,
343		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_0,
344		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_1,
345		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_2,
346		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_0,
347		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_1,
348		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_2,
349		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_0,
350		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_1,
351		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_2,
352		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_0,
353		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_1,
354		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_2,
355		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_0,
356		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_1,
357		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_2,
358		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_0,
359		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_1,
360		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_2,
361		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_0,
362		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_1,
363		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_2,
364		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_0,
365		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_1,
366		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_2,
367		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_0,
368		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_1,
369		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_2,
370		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_0,
371		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_1,
372		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_2,
373		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_0,
374		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_1,
375		EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_2,
376		EMC_PMACRO_IB_VREF_DQS_0,
377		EMC_PMACRO_IB_VREF_DQS_1,
378		EMC_PMACRO_IB_VREF_DQ_0,
379		EMC_PMACRO_IB_VREF_DQ_1,
380		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0,
381		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1,
382		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2,
383		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3,
384		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_4,
385		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_5,
386		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0,
387		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1,
388		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2,
389		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3,
390		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0,
391		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1,
392		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2,
393		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0,
394		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1,
395		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2,
396		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0,
397		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1,
398		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2,
399		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0,
400		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1,
401		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2,
402		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0,
403		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1,
404		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2,
405		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0,
406		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1,
407		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2,
408		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0,
409		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1,
410		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2,
411		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0,
412		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1,
413		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2,
414		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_0,
415		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_1,
416		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_2,
417		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_0,
418		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_1,
419		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_2,
420		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_0,
421		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_1,
422		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_2,
423		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_0,
424		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_1,
425		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_2,
426		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0,
427		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1,
428		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2,
429		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0,
430		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1,
431		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2,
432		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0,
433		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1,
434		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2,
435		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0,
436		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1,
437		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2,
438		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0,
439		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1,
440		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2,
441		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0,
442		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1,
443		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2,
444		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0,
445		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1,
446		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2,
447		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0,
448		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1,
449		EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2,
450		EMC_PMACRO_QUSE_DDLL_RANK0_0,
451		EMC_PMACRO_QUSE_DDLL_RANK0_1,
452		EMC_PMACRO_QUSE_DDLL_RANK0_2,
453		EMC_PMACRO_QUSE_DDLL_RANK0_3,
454		EMC_PMACRO_QUSE_DDLL_RANK1_0,
455		EMC_PMACRO_QUSE_DDLL_RANK1_1,
456		EMC_PMACRO_QUSE_DDLL_RANK1_2,
457		EMC_PMACRO_QUSE_DDLL_RANK1_3
458	},
459	.burst_mc = {
460		MC_EMEM_ARB_CFG,
461		MC_EMEM_ARB_OUTSTANDING_REQ,
462		MC_EMEM_ARB_REFPB_HP_CTRL,
463		MC_EMEM_ARB_REFPB_BANK_CTRL,
464		MC_EMEM_ARB_TIMING_RCD,
465		MC_EMEM_ARB_TIMING_RP,
466		MC_EMEM_ARB_TIMING_RC,
467		MC_EMEM_ARB_TIMING_RAS,
468		MC_EMEM_ARB_TIMING_FAW,
469		MC_EMEM_ARB_TIMING_RRD,
470		MC_EMEM_ARB_TIMING_RAP2PRE,
471		MC_EMEM_ARB_TIMING_WAP2PRE,
472		MC_EMEM_ARB_TIMING_R2R,
473		MC_EMEM_ARB_TIMING_W2W,
474		MC_EMEM_ARB_TIMING_R2W,
475		MC_EMEM_ARB_TIMING_CCDMW,
476		MC_EMEM_ARB_TIMING_W2R,
477		MC_EMEM_ARB_TIMING_RFCPB,
478		MC_EMEM_ARB_DA_TURNS,
479		MC_EMEM_ARB_DA_COVERS,
480		MC_EMEM_ARB_MISC0,
481		MC_EMEM_ARB_MISC1,
482		MC_EMEM_ARB_MISC2,
483		MC_EMEM_ARB_RING1_THROTTLE,
484		MC_EMEM_ARB_DHYST_CTRL,
485		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_0,
486		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_1,
487		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_2,
488		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_3,
489		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_4,
490		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_5,
491		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_6,
492		MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_7,
493	},
494	.la_scale = {
495		MC_MLL_MPCORER_PTSA_RATE,
496		MC_FTOP_PTSA_RATE,
497		MC_PTSA_GRANT_DECREMENT,
498		MC_LATENCY_ALLOWANCE_XUSB_0,
499		MC_LATENCY_ALLOWANCE_XUSB_1,
500		MC_LATENCY_ALLOWANCE_TSEC_0,
501		MC_LATENCY_ALLOWANCE_SDMMCA_0,
502		MC_LATENCY_ALLOWANCE_SDMMCAA_0,
503		MC_LATENCY_ALLOWANCE_SDMMC_0,
504		MC_LATENCY_ALLOWANCE_SDMMCAB_0,
505		MC_LATENCY_ALLOWANCE_PPCS_0,
506		MC_LATENCY_ALLOWANCE_PPCS_1,
507		MC_LATENCY_ALLOWANCE_MPCORE_0,
508		MC_LATENCY_ALLOWANCE_HC_0,
509		MC_LATENCY_ALLOWANCE_HC_1,
510		MC_LATENCY_ALLOWANCE_AVPC_0,
511		MC_LATENCY_ALLOWANCE_GPU_0,
512		MC_LATENCY_ALLOWANCE_GPU2_0,
513		MC_LATENCY_ALLOWANCE_NVENC_0,
514		MC_LATENCY_ALLOWANCE_NVDEC_0,
515		MC_LATENCY_ALLOWANCE_VIC_0,
516		MC_LATENCY_ALLOWANCE_VI2_0,
517		MC_LATENCY_ALLOWANCE_ISP2_0,
518		MC_LATENCY_ALLOWANCE_ISP2_1,
519	},
520	.burst_per_channel = {
521		{ .bank = 0, .offset = EMC_MRW10, },
522		{ .bank = 1, .offset = EMC_MRW10, },
523		{ .bank = 0, .offset = EMC_MRW11, },
524		{ .bank = 1, .offset = EMC_MRW11, },
525		{ .bank = 0, .offset = EMC_MRW12, },
526		{ .bank = 1, .offset = EMC_MRW12, },
527		{ .bank = 0, .offset = EMC_MRW13, },
528		{ .bank = 1, .offset = EMC_MRW13, },
529	},
530	.trim_per_channel = {
531		{ .bank = 0, .offset = EMC_CMD_BRLSHFT_0, },
532		{ .bank = 1, .offset = EMC_CMD_BRLSHFT_1, },
533		{ .bank = 0, .offset = EMC_DATA_BRLSHFT_0, },
534		{ .bank = 1, .offset = EMC_DATA_BRLSHFT_0, },
535		{ .bank = 0, .offset = EMC_DATA_BRLSHFT_1, },
536		{ .bank = 1, .offset = EMC_DATA_BRLSHFT_1, },
537		{ .bank = 0, .offset = EMC_QUSE_BRLSHFT_0, },
538		{ .bank = 1, .offset = EMC_QUSE_BRLSHFT_1, },
539		{ .bank = 0, .offset = EMC_QUSE_BRLSHFT_2, },
540		{ .bank = 1, .offset = EMC_QUSE_BRLSHFT_3, },
541	},
542	.vref_per_channel = {
543		{
544			.bank = 0,
545			.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK0,
546		}, {
547			.bank = 1,
548			.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK0,
549		}, {
550			.bank = 0,
551			.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK1,
552		}, {
553			.bank = 1,
554			.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK1,
555		},
556	},
557};
558
559static void tegra210_emc_train(struct timer_list *timer)
560{
561	struct tegra210_emc *emc = from_timer(emc, timer, training);
562	unsigned long flags;
563
564	if (!emc->last)
565		return;
566
567	spin_lock_irqsave(&emc->lock, flags);
568
569	if (emc->sequence->periodic_compensation)
570		emc->sequence->periodic_compensation(emc);
571
572	spin_unlock_irqrestore(&emc->lock, flags);
573
574	mod_timer(&emc->training,
575		  jiffies + msecs_to_jiffies(emc->training_interval));
576}
577
578static void tegra210_emc_training_start(struct tegra210_emc *emc)
579{
580	mod_timer(&emc->training,
581		  jiffies + msecs_to_jiffies(emc->training_interval));
582}
583
584static void tegra210_emc_training_stop(struct tegra210_emc *emc)
585{
586	del_timer(&emc->training);
587}
588
589static unsigned int tegra210_emc_get_temperature(struct tegra210_emc *emc)
590{
591	unsigned long flags;
592	u32 value, max = 0;
593	unsigned int i;
594
595	spin_lock_irqsave(&emc->lock, flags);
596
597	for (i = 0; i < emc->num_devices; i++) {
598		value = tegra210_emc_mrr_read(emc, i, 4);
599
600		if (value & BIT(7))
601			dev_dbg(emc->dev,
602				"sensor reading changed for device %u: %08x\n",
603				i, value);
604
605		value = FIELD_GET(LPDDR2_MR4_SRR, value);
606		if (value > max)
607			max = value;
608	}
609
610	spin_unlock_irqrestore(&emc->lock, flags);
611
612	return max;
613}
614
615static void tegra210_emc_poll_refresh(struct timer_list *timer)
616{
617	struct tegra210_emc *emc = from_timer(emc, timer, refresh_timer);
618	unsigned int temperature;
619
620	if (!emc->debugfs.temperature)
621		temperature = tegra210_emc_get_temperature(emc);
622	else
623		temperature = emc->debugfs.temperature;
624
625	if (temperature == emc->temperature)
626		goto reset;
627
628	switch (temperature) {
629	case 0 ... 3:
630		/* temperature is fine, using regular refresh */
631		dev_dbg(emc->dev, "switching to nominal refresh...\n");
632		tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_NOMINAL);
633		break;
634
635	case 4:
636		dev_dbg(emc->dev, "switching to 2x refresh...\n");
637		tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_2X);
638		break;
639
640	case 5:
641		dev_dbg(emc->dev, "switching to 4x refresh...\n");
642		tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_4X);
643		break;
644
645	case 6 ... 7:
646		dev_dbg(emc->dev, "switching to throttle refresh...\n");
647		tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_THROTTLE);
648		break;
649
650	default:
651		WARN(1, "invalid DRAM temperature state %u\n", temperature);
652		return;
653	}
654
655	emc->temperature = temperature;
656
657reset:
658	if (atomic_read(&emc->refresh_poll) > 0) {
659		unsigned int interval = emc->refresh_poll_interval;
660		unsigned int timeout = msecs_to_jiffies(interval);
661
662		mod_timer(&emc->refresh_timer, jiffies + timeout);
663	}
664}
665
666static void tegra210_emc_poll_refresh_stop(struct tegra210_emc *emc)
667{
668	atomic_set(&emc->refresh_poll, 0);
669	del_timer_sync(&emc->refresh_timer);
670}
671
672static void tegra210_emc_poll_refresh_start(struct tegra210_emc *emc)
673{
674	atomic_set(&emc->refresh_poll, 1);
675
676	mod_timer(&emc->refresh_timer,
677		  jiffies + msecs_to_jiffies(emc->refresh_poll_interval));
678}
679
680static int tegra210_emc_cd_max_state(struct thermal_cooling_device *cd,
681				     unsigned long *state)
682{
683	*state = 1;
684
685	return 0;
686}
687
688static int tegra210_emc_cd_get_state(struct thermal_cooling_device *cd,
689				     unsigned long *state)
690{
691	struct tegra210_emc *emc = cd->devdata;
692
693	*state = atomic_read(&emc->refresh_poll);
694
695	return 0;
696}
697
698static int tegra210_emc_cd_set_state(struct thermal_cooling_device *cd,
699				     unsigned long state)
700{
701	struct tegra210_emc *emc = cd->devdata;
702
703	if (state == atomic_read(&emc->refresh_poll))
704		return 0;
705
706	if (state)
707		tegra210_emc_poll_refresh_start(emc);
708	else
709		tegra210_emc_poll_refresh_stop(emc);
710
711	return 0;
712}
713
714static const struct thermal_cooling_device_ops tegra210_emc_cd_ops = {
715	.get_max_state = tegra210_emc_cd_max_state,
716	.get_cur_state = tegra210_emc_cd_get_state,
717	.set_cur_state = tegra210_emc_cd_set_state,
718};
719
720static void tegra210_emc_set_clock(struct tegra210_emc *emc, u32 clksrc)
721{
722	emc->sequence->set_clock(emc, clksrc);
723
724	if (emc->next->periodic_training)
725		tegra210_emc_training_start(emc);
726	else
727		tegra210_emc_training_stop(emc);
728}
729
730static void tegra210_change_dll_src(struct tegra210_emc *emc,
731				    u32 clksrc)
732{
733	u32 dll_setting = emc->next->dll_clk_src;
734	u32 emc_clk_src;
735	u32 emc_clk_div;
736
737	emc_clk_src = (clksrc & EMC_CLK_EMC_2X_CLK_SRC_MASK) >>
738		       EMC_CLK_EMC_2X_CLK_SRC_SHIFT;
739	emc_clk_div = (clksrc & EMC_CLK_EMC_2X_CLK_DIVISOR_MASK) >>
740		       EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT;
741
742	dll_setting &= ~(DLL_CLK_EMC_DLL_CLK_SRC_MASK |
743			 DLL_CLK_EMC_DLL_CLK_DIVISOR_MASK);
744	dll_setting |= emc_clk_src << DLL_CLK_EMC_DLL_CLK_SRC_SHIFT;
745	dll_setting |= emc_clk_div << DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT;
746
747	dll_setting &= ~DLL_CLK_EMC_DLL_DDLL_CLK_SEL_MASK;
748	if (emc_clk_src == EMC_CLK_SOURCE_PLLMB_LJ)
749		dll_setting |= (PLLM_VCOB <<
750				DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT);
751	else if (emc_clk_src == EMC_CLK_SOURCE_PLLM_LJ)
752		dll_setting |= (PLLM_VCOA <<
753				DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT);
754	else
755		dll_setting |= (EMC_DLL_SWITCH_OUT <<
756				DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT);
757
758	tegra210_clk_emc_dll_update_setting(dll_setting);
759
760	if (emc->next->clk_out_enb_x_0_clk_enb_emc_dll)
761		tegra210_clk_emc_dll_enable(true);
762	else
763		tegra210_clk_emc_dll_enable(false);
764}
765
766int tegra210_emc_set_refresh(struct tegra210_emc *emc,
767			     enum tegra210_emc_refresh refresh)
768{
769	struct tegra210_emc_timing *timings;
770	unsigned long flags;
771
772	if ((emc->dram_type != DRAM_TYPE_LPDDR2 &&
773	     emc->dram_type != DRAM_TYPE_LPDDR4) ||
774	    !emc->last)
775		return -ENODEV;
776
777	if (refresh > TEGRA210_EMC_REFRESH_THROTTLE)
778		return -EINVAL;
779
780	if (refresh == emc->refresh)
781		return 0;
782
783	spin_lock_irqsave(&emc->lock, flags);
784
785	if (refresh == TEGRA210_EMC_REFRESH_THROTTLE && emc->derated)
786		timings = emc->derated;
787	else
788		timings = emc->nominal;
789
790	if (timings != emc->timings) {
791		unsigned int index = emc->last - emc->timings;
792		u32 clksrc;
793
794		clksrc = emc->provider.configs[index].value |
795			 EMC_CLK_FORCE_CC_TRIGGER;
796
797		emc->next = &timings[index];
798		emc->timings = timings;
799
800		tegra210_emc_set_clock(emc, clksrc);
801	} else {
802		tegra210_emc_adjust_timing(emc, emc->last);
803		tegra210_emc_timing_update(emc);
804
805		if (refresh != TEGRA210_EMC_REFRESH_NOMINAL)
806			emc_writel(emc, EMC_REF_REF_CMD, EMC_REF);
807	}
808
809	spin_unlock_irqrestore(&emc->lock, flags);
810
811	return 0;
812}
813
814u32 tegra210_emc_mrr_read(struct tegra210_emc *emc, unsigned int chip,
815			  unsigned int address)
816{
817	u32 value, ret = 0;
818	unsigned int i;
819
820	value = (chip & EMC_MRR_DEV_SEL_MASK) << EMC_MRR_DEV_SEL_SHIFT |
821		(address & EMC_MRR_MA_MASK) << EMC_MRR_MA_SHIFT;
822	emc_writel(emc, value, EMC_MRR);
823
824	for (i = 0; i < emc->num_channels; i++)
825		WARN(tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
826						  EMC_EMC_STATUS_MRR_DIVLD, 1),
827		     "Timed out waiting for MRR %u (ch=%u)\n", address, i);
828
829	for (i = 0; i < emc->num_channels; i++) {
830		value = emc_channel_readl(emc, i, EMC_MRR);
831		value &= EMC_MRR_DATA_MASK;
832
833		ret = (ret << 16) | value;
834	}
835
836	return ret;
837}
838
839void tegra210_emc_do_clock_change(struct tegra210_emc *emc, u32 clksrc)
840{
841	int err;
842
843	mc_readl(emc->mc, MC_EMEM_ADR_CFG);
844	emc_readl(emc, EMC_INTSTATUS);
845
846	tegra210_clk_emc_update_setting(clksrc);
847
848	err = tegra210_emc_wait_for_update(emc, 0, EMC_INTSTATUS,
849					   EMC_INTSTATUS_CLKCHANGE_COMPLETE,
850					   true);
851	if (err)
852		dev_warn(emc->dev, "clock change completion error: %d\n", err);
853}
854
855struct tegra210_emc_timing *tegra210_emc_find_timing(struct tegra210_emc *emc,
856						     unsigned long rate)
857{
858	unsigned int i;
859
860	for (i = 0; i < emc->num_timings; i++)
861		if (emc->timings[i].rate * 1000UL == rate)
862			return &emc->timings[i];
863
864	return NULL;
865}
866
867int tegra210_emc_wait_for_update(struct tegra210_emc *emc, unsigned int channel,
868				 unsigned int offset, u32 bit_mask, bool state)
869{
870	unsigned int i;
871	u32 value;
872
873	for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; i++) {
874		value = emc_channel_readl(emc, channel, offset);
875		if (!!(value & bit_mask) == state)
876			return 0;
877
878		udelay(1);
879	}
880
881	return -ETIMEDOUT;
882}
883
884void tegra210_emc_set_shadow_bypass(struct tegra210_emc *emc, int set)
885{
886	u32 emc_dbg = emc_readl(emc, EMC_DBG);
887
888	if (set)
889		emc_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG);
890	else
891		emc_writel(emc, emc_dbg & ~EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG);
892}
893
894u32 tegra210_emc_get_dll_state(struct tegra210_emc_timing *next)
895{
896	if (next->emc_emrs & 0x1)
897		return 0;
898
899	return 1;
900}
901
902void tegra210_emc_timing_update(struct tegra210_emc *emc)
903{
904	unsigned int i;
905	int err = 0;
906
907	emc_writel(emc, 0x1, EMC_TIMING_CONTROL);
908
909	for (i = 0; i < emc->num_channels; i++) {
910		err |= tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
911						    EMC_EMC_STATUS_TIMING_UPDATE_STALLED,
912						    false);
913	}
914
915	if (err)
916		dev_warn(emc->dev, "timing update error: %d\n", err);
917}
918
919unsigned long tegra210_emc_actual_osc_clocks(u32 in)
920{
921	if (in < 0x40)
922		return in * 16;
923	else if (in < 0x80)
924		return 2048;
925	else if (in < 0xc0)
926		return 4096;
927	else
928		return 8192;
929}
930
931void tegra210_emc_start_periodic_compensation(struct tegra210_emc *emc)
932{
933	u32 mpc_req = 0x4b;
934
935	emc_writel(emc, mpc_req, EMC_MPC);
936	mpc_req = emc_readl(emc, EMC_MPC);
937}
938
939u32 tegra210_emc_compensate(struct tegra210_emc_timing *next, u32 offset)
940{
941	u32 temp = 0, rate = next->rate / 1000;
942	s32 delta[4], delta_taps[4];
943	s32 new[] = {
944		TRIM_REG(0, 0, 0, 0),
945		TRIM_REG(0, 0, 0, 1),
946		TRIM_REG(0, 0, 1, 2),
947		TRIM_REG(0, 0, 1, 3),
948
949		TRIM_REG(1, 0, 2, 4),
950		TRIM_REG(1, 0, 2, 5),
951		TRIM_REG(1, 0, 3, 6),
952		TRIM_REG(1, 0, 3, 7),
953
954		TRIM_REG(0, 1, 0, 0),
955		TRIM_REG(0, 1, 0, 1),
956		TRIM_REG(0, 1, 1, 2),
957		TRIM_REG(0, 1, 1, 3),
958
959		TRIM_REG(1, 1, 2, 4),
960		TRIM_REG(1, 1, 2, 5),
961		TRIM_REG(1, 1, 3, 6),
962		TRIM_REG(1, 1, 3, 7)
963	};
964	unsigned i;
965
966	switch (offset) {
967	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0:
968	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1:
969	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2:
970	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3:
971	case EMC_DATA_BRLSHFT_0:
972		delta[0] = 128 * (next->current_dram_clktree[C0D0U0] -
973				  next->trained_dram_clktree[C0D0U0]);
974		delta[1] = 128 * (next->current_dram_clktree[C0D0U1] -
975				  next->trained_dram_clktree[C0D0U1]);
976		delta[2] = 128 * (next->current_dram_clktree[C1D0U0] -
977				  next->trained_dram_clktree[C1D0U0]);
978		delta[3] = 128 * (next->current_dram_clktree[C1D0U1] -
979				  next->trained_dram_clktree[C1D0U1]);
980
981		delta_taps[0] = (delta[0] * (s32)rate) / 1000000;
982		delta_taps[1] = (delta[1] * (s32)rate) / 1000000;
983		delta_taps[2] = (delta[2] * (s32)rate) / 1000000;
984		delta_taps[3] = (delta[3] * (s32)rate) / 1000000;
985
986		for (i = 0; i < 4; i++) {
987			if ((delta_taps[i] > next->tree_margin) ||
988			    (delta_taps[i] < (-1 * next->tree_margin))) {
989				new[i * 2] = new[i * 2] + delta_taps[i];
990				new[i * 2 + 1] = new[i * 2 + 1] +
991							delta_taps[i];
992			}
993		}
994
995		if (offset == EMC_DATA_BRLSHFT_0) {
996			for (i = 0; i < 8; i++)
997				new[i] = new[i] / 64;
998		} else {
999			for (i = 0; i < 8; i++)
1000				new[i] = new[i] % 64;
1001		}
1002
1003		break;
1004
1005	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0:
1006	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1:
1007	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2:
1008	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3:
1009	case EMC_DATA_BRLSHFT_1:
1010		delta[0] = 128 * (next->current_dram_clktree[C0D1U0] -
1011				  next->trained_dram_clktree[C0D1U0]);
1012		delta[1] = 128 * (next->current_dram_clktree[C0D1U1] -
1013				  next->trained_dram_clktree[C0D1U1]);
1014		delta[2] = 128 * (next->current_dram_clktree[C1D1U0] -
1015				  next->trained_dram_clktree[C1D1U0]);
1016		delta[3] = 128 * (next->current_dram_clktree[C1D1U1] -
1017				  next->trained_dram_clktree[C1D1U1]);
1018
1019		delta_taps[0] = (delta[0] * (s32)rate) / 1000000;
1020		delta_taps[1] = (delta[1] * (s32)rate) / 1000000;
1021		delta_taps[2] = (delta[2] * (s32)rate) / 1000000;
1022		delta_taps[3] = (delta[3] * (s32)rate) / 1000000;
1023
1024		for (i = 0; i < 4; i++) {
1025			if ((delta_taps[i] > next->tree_margin) ||
1026			    (delta_taps[i] < (-1 * next->tree_margin))) {
1027				new[8 + i * 2] = new[8 + i * 2] +
1028							delta_taps[i];
1029				new[8 + i * 2 + 1] = new[8 + i * 2 + 1] +
1030							delta_taps[i];
1031			}
1032		}
1033
1034		if (offset == EMC_DATA_BRLSHFT_1) {
1035			for (i = 0; i < 8; i++)
1036				new[i + 8] = new[i + 8] / 64;
1037		} else {
1038			for (i = 0; i < 8; i++)
1039				new[i + 8] = new[i + 8] % 64;
1040		}
1041
1042		break;
1043	}
1044
1045	switch (offset) {
1046	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0:
1047		temp = CALC_TEMP(0, 0, 0, 1, 0);
1048		break;
1049
1050	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1:
1051		temp = CALC_TEMP(0, 1, 2, 3, 2);
1052		break;
1053
1054	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2:
1055		temp = CALC_TEMP(0, 2, 4, 5, 4);
1056		break;
1057
1058	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3:
1059		temp = CALC_TEMP(0, 3, 6, 7, 6);
1060		break;
1061
1062	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0:
1063		temp = CALC_TEMP(1, 0, 0, 1, 8);
1064		break;
1065
1066	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1:
1067		temp = CALC_TEMP(1, 1, 2, 3, 10);
1068		break;
1069
1070	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2:
1071		temp = CALC_TEMP(1, 2, 4, 5, 12);
1072		break;
1073
1074	case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3:
1075		temp = CALC_TEMP(1, 3, 6, 7, 14);
1076		break;
1077
1078	case EMC_DATA_BRLSHFT_0:
1079		temp = ((new[0] <<
1080			 EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_SHIFT) &
1081			 EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_MASK) |
1082		       ((new[1] <<
1083			 EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_SHIFT) &
1084			 EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_MASK) |
1085		       ((new[2] <<
1086			 EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_SHIFT) &
1087			 EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_MASK) |
1088		       ((new[3] <<
1089			 EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_SHIFT) &
1090			 EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_MASK) |
1091		       ((new[4] <<
1092			 EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_SHIFT) &
1093			 EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_MASK) |
1094		       ((new[5] <<
1095			 EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_SHIFT) &
1096			 EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_MASK) |
1097		       ((new[6] <<
1098			 EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_SHIFT) &
1099			 EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_MASK) |
1100		       ((new[7] <<
1101			 EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_SHIFT) &
1102			 EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_MASK);
1103		break;
1104
1105	case EMC_DATA_BRLSHFT_1:
1106		temp = ((new[8] <<
1107			 EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_SHIFT) &
1108			 EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_MASK) |
1109		       ((new[9] <<
1110			 EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_SHIFT) &
1111			 EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_MASK) |
1112		       ((new[10] <<
1113			 EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_SHIFT) &
1114			 EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_MASK) |
1115		       ((new[11] <<
1116			 EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_SHIFT) &
1117			 EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_MASK) |
1118		       ((new[12] <<
1119			 EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_SHIFT) &
1120			 EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_MASK) |
1121		       ((new[13] <<
1122			 EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_SHIFT) &
1123			 EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_MASK) |
1124		       ((new[14] <<
1125			 EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_SHIFT) &
1126			 EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_MASK) |
1127		       ((new[15] <<
1128			 EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_SHIFT) &
1129			 EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_MASK);
1130		break;
1131
1132	default:
1133		break;
1134	}
1135
1136	return temp;
1137}
1138
1139u32 tegra210_emc_dll_prelock(struct tegra210_emc *emc, u32 clksrc)
1140{
1141	unsigned int i;
1142	u32 value;
1143
1144	value = emc_readl(emc, EMC_CFG_DIG_DLL);
1145	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_LOCK_LIMIT_MASK;
1146	value |= (3 << EMC_CFG_DIG_DLL_CFG_DLL_LOCK_LIMIT_SHIFT);
1147	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
1148	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK;
1149	value |= (3 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
1150	value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
1151	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
1152	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
1153	emc_writel(emc, value, EMC_CFG_DIG_DLL);
1154	emc_writel(emc, 1, EMC_TIMING_CONTROL);
1155
1156	for (i = 0; i < emc->num_channels; i++)
1157		tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
1158					     EMC_EMC_STATUS_TIMING_UPDATE_STALLED,
1159					     0);
1160
1161	for (i = 0; i < emc->num_channels; i++) {
1162		while (true) {
1163			value = emc_channel_readl(emc, i, EMC_CFG_DIG_DLL);
1164			if ((value & EMC_CFG_DIG_DLL_CFG_DLL_EN) == 0)
1165				break;
1166		}
1167	}
1168
1169	value = emc->next->burst_regs[EMC_DLL_CFG_0_INDEX];
1170	emc_writel(emc, value, EMC_DLL_CFG_0);
1171
1172	value = emc_readl(emc, EMC_DLL_CFG_1);
1173	value &= EMC_DLL_CFG_1_DDLLCAL_CTRL_START_TRIM_MASK;
1174
1175	if (emc->next->rate >= 400000 && emc->next->rate < 600000)
1176		value |= 150;
1177	else if (emc->next->rate >= 600000 && emc->next->rate < 800000)
1178		value |= 100;
1179	else if (emc->next->rate >= 800000 && emc->next->rate < 1000000)
1180		value |= 70;
1181	else if (emc->next->rate >= 1000000 && emc->next->rate < 1200000)
1182		value |= 30;
1183	else
1184		value |= 20;
1185
1186	emc_writel(emc, value, EMC_DLL_CFG_1);
1187
1188	tegra210_change_dll_src(emc, clksrc);
1189
1190	value = emc_readl(emc, EMC_CFG_DIG_DLL);
1191	value |= EMC_CFG_DIG_DLL_CFG_DLL_EN;
1192	emc_writel(emc, value, EMC_CFG_DIG_DLL);
1193
1194	tegra210_emc_timing_update(emc);
1195
1196	for (i = 0; i < emc->num_channels; i++) {
1197		while (true) {
1198			value = emc_channel_readl(emc, 0, EMC_CFG_DIG_DLL);
1199			if (value & EMC_CFG_DIG_DLL_CFG_DLL_EN)
1200				break;
1201		}
1202	}
1203
1204	while (true) {
1205		value = emc_readl(emc, EMC_DIG_DLL_STATUS);
1206
1207		if ((value & EMC_DIG_DLL_STATUS_DLL_PRIV_UPDATED) == 0)
1208			continue;
1209
1210		if ((value & EMC_DIG_DLL_STATUS_DLL_LOCK) == 0)
1211			continue;
1212
1213		break;
1214	}
1215
1216	value = emc_readl(emc, EMC_DIG_DLL_STATUS);
1217
1218	return value & EMC_DIG_DLL_STATUS_DLL_OUT_MASK;
1219}
1220
1221u32 tegra210_emc_dvfs_power_ramp_up(struct tegra210_emc *emc, u32 clk,
1222				    bool flip_backward)
1223{
1224	u32 cmd_pad, dq_pad, rfu1, cfg5, common_tx, ramp_up_wait = 0;
1225	const struct tegra210_emc_timing *timing;
1226
1227	if (flip_backward)
1228		timing = emc->last;
1229	else
1230		timing = emc->next;
1231
1232	cmd_pad = timing->burst_regs[EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX];
1233	dq_pad = timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
1234	rfu1 = timing->burst_regs[EMC_PMACRO_BRICK_CTRL_RFU1_INDEX];
1235	cfg5 = timing->burst_regs[EMC_FBIO_CFG5_INDEX];
1236	common_tx = timing->burst_regs[EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX];
1237
1238	cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
1239
1240	if (clk < 1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD) {
1241		ccfifo_writel(emc, common_tx & 0xa,
1242			      EMC_PMACRO_COMMON_PAD_TX_CTRL, 0);
1243		ccfifo_writel(emc, common_tx & 0xf,
1244			      EMC_PMACRO_COMMON_PAD_TX_CTRL,
1245			      (100000 / clk) + 1);
1246		ramp_up_wait += 100000;
1247	} else {
1248		ccfifo_writel(emc, common_tx | 0x8,
1249			      EMC_PMACRO_COMMON_PAD_TX_CTRL, 0);
1250	}
1251
1252	if (clk < 1000000 / DVFS_FGCG_HIGH_SPEED_THRESHOLD) {
1253		if (clk < 1000000 / IOBRICK_DCC_THRESHOLD) {
1254			cmd_pad |=
1255				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
1256				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC;
1257			cmd_pad &=
1258				~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
1259				  EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC);
1260			ccfifo_writel(emc, cmd_pad,
1261				      EMC_PMACRO_CMD_PAD_TX_CTRL,
1262				      (100000 / clk) + 1);
1263			ramp_up_wait += 100000;
1264
1265			dq_pad |=
1266				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
1267				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC;
1268			dq_pad &=
1269			       ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
1270				 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC);
1271			ccfifo_writel(emc, dq_pad,
1272				      EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
1273			ccfifo_writel(emc, rfu1 & 0xfe40fe40,
1274				      EMC_PMACRO_BRICK_CTRL_RFU1, 0);
1275		} else {
1276			ccfifo_writel(emc, rfu1 & 0xfe40fe40,
1277				      EMC_PMACRO_BRICK_CTRL_RFU1,
1278				      (100000 / clk) + 1);
1279			ramp_up_wait += 100000;
1280		}
1281
1282		ccfifo_writel(emc, rfu1 & 0xfeedfeed,
1283			      EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1);
1284		ramp_up_wait += 100000;
1285
1286		if (clk < 1000000 / IOBRICK_DCC_THRESHOLD) {
1287			cmd_pad |=
1288				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
1289				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC |
1290				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
1291				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC;
1292			ccfifo_writel(emc, cmd_pad,
1293				      EMC_PMACRO_CMD_PAD_TX_CTRL,
1294				      (100000 / clk) + 1);
1295			ramp_up_wait += 100000;
1296
1297			dq_pad |=
1298				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
1299				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC |
1300				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
1301				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC;
1302			ccfifo_writel(emc, dq_pad,
1303				      EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
1304			ccfifo_writel(emc, rfu1,
1305				      EMC_PMACRO_BRICK_CTRL_RFU1, 0);
1306		} else {
1307			ccfifo_writel(emc, rfu1,
1308				      EMC_PMACRO_BRICK_CTRL_RFU1,
1309				      (100000 / clk) + 1);
1310			ramp_up_wait += 100000;
1311		}
1312
1313		ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS,
1314			      EMC_FBIO_CFG5, (100000 / clk) + 10);
1315		ramp_up_wait += 100000 + (10 * clk);
1316	} else if (clk < 1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD) {
1317		ccfifo_writel(emc, rfu1 | 0x06000600,
1318			      EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1);
1319		ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS,
1320			      EMC_FBIO_CFG5, (100000 / clk) + 10);
1321		ramp_up_wait += 100000 + 10 * clk;
1322	} else {
1323		ccfifo_writel(emc, rfu1 | 0x00000600,
1324			      EMC_PMACRO_BRICK_CTRL_RFU1, 0);
1325		ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS,
1326			      EMC_FBIO_CFG5, 12);
1327		ramp_up_wait += 12 * clk;
1328	}
1329
1330	cmd_pad &= ~EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
1331	ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, 5);
1332
1333	return ramp_up_wait;
1334}
1335
1336u32 tegra210_emc_dvfs_power_ramp_down(struct tegra210_emc *emc, u32 clk,
1337				      bool flip_backward)
1338{
1339	u32 ramp_down_wait = 0, cmd_pad, dq_pad, rfu1, cfg5, common_tx;
1340	const struct tegra210_emc_timing *entry;
1341	u32 seq_wait;
1342
1343	if (flip_backward)
1344		entry = emc->next;
1345	else
1346		entry = emc->last;
1347
1348	cmd_pad = entry->burst_regs[EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX];
1349	dq_pad = entry->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
1350	rfu1 = entry->burst_regs[EMC_PMACRO_BRICK_CTRL_RFU1_INDEX];
1351	cfg5 = entry->burst_regs[EMC_FBIO_CFG5_INDEX];
1352	common_tx = entry->burst_regs[EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX];
1353
1354	cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
1355
1356	ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, 0);
1357	ccfifo_writel(emc, cfg5 | EMC_FBIO_CFG5_CMD_TX_DIS,
1358		      EMC_FBIO_CFG5, 12);
1359	ramp_down_wait = 12 * clk;
1360
1361	seq_wait = (100000 / clk) + 1;
1362
1363	if (clk < (1000000 / DVFS_FGCG_HIGH_SPEED_THRESHOLD)) {
1364		if (clk < (1000000 / IOBRICK_DCC_THRESHOLD)) {
1365			cmd_pad &=
1366				~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
1367				  EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC);
1368			cmd_pad |=
1369				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
1370				EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC;
1371			ccfifo_writel(emc, cmd_pad,
1372				      EMC_PMACRO_CMD_PAD_TX_CTRL, seq_wait);
1373			ramp_down_wait += 100000;
1374
1375			dq_pad &=
1376			      ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
1377				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC);
1378			dq_pad |=
1379				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
1380				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC;
1381			ccfifo_writel(emc, dq_pad,
1382				      EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
1383			ccfifo_writel(emc, rfu1 & ~0x01120112,
1384				      EMC_PMACRO_BRICK_CTRL_RFU1, 0);
1385		} else {
1386			ccfifo_writel(emc, rfu1 & ~0x01120112,
1387				      EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait);
1388			ramp_down_wait += 100000;
1389		}
1390
1391		ccfifo_writel(emc, rfu1 & ~0x01bf01bf,
1392			      EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait);
1393		ramp_down_wait += 100000;
1394
1395		if (clk < (1000000 / IOBRICK_DCC_THRESHOLD)) {
1396			cmd_pad &=
1397				~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
1398				  EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC |
1399				  EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
1400				  EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC);
1401			ccfifo_writel(emc, cmd_pad,
1402				      EMC_PMACRO_CMD_PAD_TX_CTRL, seq_wait);
1403			ramp_down_wait += 100000;
1404
1405			dq_pad &=
1406			      ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
1407				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC |
1408				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
1409				EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC);
1410			ccfifo_writel(emc, dq_pad,
1411				      EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
1412			ccfifo_writel(emc, rfu1 & ~0x07ff07ff,
1413				      EMC_PMACRO_BRICK_CTRL_RFU1, 0);
1414		} else {
1415			ccfifo_writel(emc, rfu1 & ~0x07ff07ff,
1416				      EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait);
1417			ramp_down_wait += 100000;
1418		}
1419	} else {
1420		ccfifo_writel(emc, rfu1 & ~0xffff07ff,
1421			      EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait + 19);
1422		ramp_down_wait += 100000 + (20 * clk);
1423	}
1424
1425	if (clk < (1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD)) {
1426		ramp_down_wait += 100000;
1427		ccfifo_writel(emc, common_tx & ~0x5,
1428			      EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait);
1429		ramp_down_wait += 100000;
1430		ccfifo_writel(emc, common_tx & ~0xf,
1431			      EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait);
1432		ramp_down_wait += 100000;
1433		ccfifo_writel(emc, 0, 0, seq_wait);
1434		ramp_down_wait += 100000;
1435	} else {
1436		ccfifo_writel(emc, common_tx & ~0xf,
1437			      EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait);
1438	}
1439
1440	return ramp_down_wait;
1441}
1442
1443void tegra210_emc_reset_dram_clktree_values(struct tegra210_emc_timing *timing)
1444{
1445	timing->current_dram_clktree[C0D0U0] =
1446		timing->trained_dram_clktree[C0D0U0];
1447	timing->current_dram_clktree[C0D0U1] =
1448		timing->trained_dram_clktree[C0D0U1];
1449	timing->current_dram_clktree[C1D0U0] =
1450		timing->trained_dram_clktree[C1D0U0];
1451	timing->current_dram_clktree[C1D0U1] =
1452		timing->trained_dram_clktree[C1D0U1];
1453	timing->current_dram_clktree[C1D1U0] =
1454		timing->trained_dram_clktree[C1D1U0];
1455	timing->current_dram_clktree[C1D1U1] =
1456		timing->trained_dram_clktree[C1D1U1];
1457}
1458
1459static void update_dll_control(struct tegra210_emc *emc, u32 value, bool state)
1460{
1461	unsigned int i;
1462
1463	emc_writel(emc, value, EMC_CFG_DIG_DLL);
1464	tegra210_emc_timing_update(emc);
1465
1466	for (i = 0; i < emc->num_channels; i++)
1467		tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL,
1468					     EMC_CFG_DIG_DLL_CFG_DLL_EN,
1469					     state);
1470}
1471
1472void tegra210_emc_dll_disable(struct tegra210_emc *emc)
1473{
1474	u32 value;
1475
1476	value = emc_readl(emc, EMC_CFG_DIG_DLL);
1477	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
1478
1479	update_dll_control(emc, value, false);
1480}
1481
1482void tegra210_emc_dll_enable(struct tegra210_emc *emc)
1483{
1484	u32 value;
1485
1486	value = emc_readl(emc, EMC_CFG_DIG_DLL);
1487	value |= EMC_CFG_DIG_DLL_CFG_DLL_EN;
1488
1489	update_dll_control(emc, value, true);
1490}
1491
1492void tegra210_emc_adjust_timing(struct tegra210_emc *emc,
1493				struct tegra210_emc_timing *timing)
1494{
1495	u32 dsr_cntrl = timing->burst_regs[EMC_DYN_SELF_REF_CONTROL_INDEX];
1496	u32 pre_ref = timing->burst_regs[EMC_PRE_REFRESH_REQ_CNT_INDEX];
1497	u32 ref = timing->burst_regs[EMC_REFRESH_INDEX];
1498
1499	switch (emc->refresh) {
1500	case TEGRA210_EMC_REFRESH_NOMINAL:
1501	case TEGRA210_EMC_REFRESH_THROTTLE:
1502		break;
1503
1504	case TEGRA210_EMC_REFRESH_2X:
1505		ref = REFRESH_SPEEDUP(ref, 2);
1506		pre_ref = REFRESH_SPEEDUP(pre_ref, 2);
1507		dsr_cntrl = REFRESH_SPEEDUP(dsr_cntrl, 2);
1508		break;
1509
1510	case TEGRA210_EMC_REFRESH_4X:
1511		ref = REFRESH_SPEEDUP(ref, 4);
1512		pre_ref = REFRESH_SPEEDUP(pre_ref, 4);
1513		dsr_cntrl = REFRESH_SPEEDUP(dsr_cntrl, 4);
1514		break;
1515
1516	default:
1517		dev_warn(emc->dev, "failed to set refresh: %d\n", emc->refresh);
1518		return;
1519	}
1520
1521	emc_writel(emc, ref, emc->offsets->burst[EMC_REFRESH_INDEX]);
1522	emc_writel(emc, pre_ref,
1523		   emc->offsets->burst[EMC_PRE_REFRESH_REQ_CNT_INDEX]);
1524	emc_writel(emc, dsr_cntrl,
1525		   emc->offsets->burst[EMC_DYN_SELF_REF_CONTROL_INDEX]);
1526}
1527
1528static int tegra210_emc_set_rate(struct device *dev,
1529				 const struct tegra210_clk_emc_config *config)
1530{
1531	struct tegra210_emc *emc = dev_get_drvdata(dev);
1532	struct tegra210_emc_timing *timing = NULL;
1533	unsigned long rate = config->rate;
1534	s64 last_change_delay;
1535	unsigned long flags;
1536	unsigned int i;
1537
1538	if (rate == emc->last->rate * 1000UL)
1539		return 0;
1540
1541	for (i = 0; i < emc->num_timings; i++) {
1542		if (emc->timings[i].rate * 1000UL == rate) {
1543			timing = &emc->timings[i];
1544			break;
1545		}
1546	}
1547
1548	if (!timing)
1549		return -EINVAL;
1550
1551	if (rate > 204000000 && !timing->trained)
1552		return -EINVAL;
1553
1554	emc->next = timing;
1555	last_change_delay = ktime_us_delta(ktime_get(), emc->clkchange_time);
1556
1557	/* XXX use non-busy-looping sleep? */
1558	if ((last_change_delay >= 0) &&
1559	    (last_change_delay < emc->clkchange_delay))
1560		udelay(emc->clkchange_delay - (int)last_change_delay);
1561
1562	spin_lock_irqsave(&emc->lock, flags);
1563	tegra210_emc_set_clock(emc, config->value);
1564	emc->clkchange_time = ktime_get();
1565	emc->last = timing;
1566	spin_unlock_irqrestore(&emc->lock, flags);
1567
1568	return 0;
1569}
1570
1571/*
1572 * debugfs interface
1573 *
1574 * The memory controller driver exposes some files in debugfs that can be used
1575 * to control the EMC frequency. The top-level directory can be found here:
1576 *
1577 *   /sys/kernel/debug/emc
1578 *
1579 * It contains the following files:
1580 *
1581 *   - available_rates: This file contains a list of valid, space-separated
1582 *     EMC frequencies.
1583 *
1584 *   - min_rate: Writing a value to this file sets the given frequency as the
1585 *       floor of the permitted range. If this is higher than the currently
1586 *       configured EMC frequency, this will cause the frequency to be
1587 *       increased so that it stays within the valid range.
1588 *
1589 *   - max_rate: Similarily to the min_rate file, writing a value to this file
1590 *       sets the given frequency as the ceiling of the permitted range. If
1591 *       the value is lower than the currently configured EMC frequency, this
1592 *       will cause the frequency to be decreased so that it stays within the
1593 *       valid range.
1594 */
1595
1596static bool tegra210_emc_validate_rate(struct tegra210_emc *emc,
1597				       unsigned long rate)
1598{
1599	unsigned int i;
1600
1601	for (i = 0; i < emc->num_timings; i++)
1602		if (rate == emc->timings[i].rate * 1000UL)
1603			return true;
1604
1605	return false;
1606}
1607
1608static int tegra210_emc_debug_available_rates_show(struct seq_file *s,
1609						   void *data)
1610{
1611	struct tegra210_emc *emc = s->private;
1612	const char *prefix = "";
1613	unsigned int i;
1614
1615	for (i = 0; i < emc->num_timings; i++) {
1616		seq_printf(s, "%s%u", prefix, emc->timings[i].rate * 1000);
1617		prefix = " ";
1618	}
1619
1620	seq_puts(s, "\n");
1621
1622	return 0;
1623}
1624DEFINE_SHOW_ATTRIBUTE(tegra210_emc_debug_available_rates);
1625
1626static int tegra210_emc_debug_min_rate_get(void *data, u64 *rate)
1627{
1628	struct tegra210_emc *emc = data;
1629
1630	*rate = emc->debugfs.min_rate;
1631
1632	return 0;
1633}
1634
1635static int tegra210_emc_debug_min_rate_set(void *data, u64 rate)
1636{
1637	struct tegra210_emc *emc = data;
1638	int err;
1639
1640	if (!tegra210_emc_validate_rate(emc, rate))
1641		return -EINVAL;
1642
1643	err = clk_set_min_rate(emc->clk, rate);
1644	if (err < 0)
1645		return err;
1646
1647	emc->debugfs.min_rate = rate;
1648
1649	return 0;
1650}
1651
1652DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_min_rate_fops,
1653			tegra210_emc_debug_min_rate_get,
1654			tegra210_emc_debug_min_rate_set, "%llu\n");
1655
1656static int tegra210_emc_debug_max_rate_get(void *data, u64 *rate)
1657{
1658	struct tegra210_emc *emc = data;
1659
1660	*rate = emc->debugfs.max_rate;
1661
1662	return 0;
1663}
1664
1665static int tegra210_emc_debug_max_rate_set(void *data, u64 rate)
1666{
1667	struct tegra210_emc *emc = data;
1668	int err;
1669
1670	if (!tegra210_emc_validate_rate(emc, rate))
1671		return -EINVAL;
1672
1673	err = clk_set_max_rate(emc->clk, rate);
1674	if (err < 0)
1675		return err;
1676
1677	emc->debugfs.max_rate = rate;
1678
1679	return 0;
1680}
1681
1682DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_max_rate_fops,
1683			tegra210_emc_debug_max_rate_get,
1684			tegra210_emc_debug_max_rate_set, "%llu\n");
1685
1686static int tegra210_emc_debug_temperature_get(void *data, u64 *temperature)
1687{
1688	struct tegra210_emc *emc = data;
1689	unsigned int value;
1690
1691	if (!emc->debugfs.temperature)
1692		value = tegra210_emc_get_temperature(emc);
1693	else
1694		value = emc->debugfs.temperature;
1695
1696	*temperature = value;
1697
1698	return 0;
1699}
1700
1701static int tegra210_emc_debug_temperature_set(void *data, u64 temperature)
1702{
1703	struct tegra210_emc *emc = data;
1704
1705	if (temperature > 7)
1706		return -EINVAL;
1707
1708	emc->debugfs.temperature = temperature;
1709
1710	return 0;
1711}
1712
1713DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_temperature_fops,
1714			tegra210_emc_debug_temperature_get,
1715			tegra210_emc_debug_temperature_set, "%llu\n");
1716
1717static void tegra210_emc_debugfs_init(struct tegra210_emc *emc)
1718{
1719	struct device *dev = emc->dev;
1720	unsigned int i;
1721	int err;
1722
1723	emc->debugfs.min_rate = ULONG_MAX;
1724	emc->debugfs.max_rate = 0;
1725
1726	for (i = 0; i < emc->num_timings; i++) {
1727		if (emc->timings[i].rate * 1000UL < emc->debugfs.min_rate)
1728			emc->debugfs.min_rate = emc->timings[i].rate * 1000UL;
1729
1730		if (emc->timings[i].rate * 1000UL > emc->debugfs.max_rate)
1731			emc->debugfs.max_rate = emc->timings[i].rate * 1000UL;
1732	}
1733
1734	if (!emc->num_timings) {
1735		emc->debugfs.min_rate = clk_get_rate(emc->clk);
1736		emc->debugfs.max_rate = emc->debugfs.min_rate;
1737	}
1738
1739	err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
1740				 emc->debugfs.max_rate);
1741	if (err < 0) {
1742		dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
1743			emc->debugfs.min_rate, emc->debugfs.max_rate,
1744			emc->clk);
1745		return;
1746	}
1747
1748	emc->debugfs.root = debugfs_create_dir("emc", NULL);
1749
1750	debugfs_create_file("available_rates", 0444, emc->debugfs.root, emc,
1751			    &tegra210_emc_debug_available_rates_fops);
1752	debugfs_create_file("min_rate", 0644, emc->debugfs.root, emc,
1753			    &tegra210_emc_debug_min_rate_fops);
1754	debugfs_create_file("max_rate", 0644, emc->debugfs.root, emc,
1755			    &tegra210_emc_debug_max_rate_fops);
1756	debugfs_create_file("temperature", 0644, emc->debugfs.root, emc,
1757			    &tegra210_emc_debug_temperature_fops);
1758}
1759
1760static void tegra210_emc_detect(struct tegra210_emc *emc)
1761{
1762	u32 value;
1763
1764	/* probe the number of connected DRAM devices */
1765	value = mc_readl(emc->mc, MC_EMEM_ADR_CFG);
1766
1767	if (value & MC_EMEM_ADR_CFG_EMEM_NUMDEV)
1768		emc->num_devices = 2;
1769	else
1770		emc->num_devices = 1;
1771
1772	/* probe the type of DRAM */
1773	value = emc_readl(emc, EMC_FBIO_CFG5);
1774	emc->dram_type = value & 0x3;
1775
1776	/* probe the number of channels */
1777	value = emc_readl(emc, EMC_FBIO_CFG7);
1778
1779	if ((value & EMC_FBIO_CFG7_CH1_ENABLE) &&
1780	    (value & EMC_FBIO_CFG7_CH0_ENABLE))
1781		emc->num_channels = 2;
1782	else
1783		emc->num_channels = 1;
1784}
1785
1786static int tegra210_emc_validate_timings(struct tegra210_emc *emc,
1787					 struct tegra210_emc_timing *timings,
1788					 unsigned int num_timings)
1789{
1790	unsigned int i;
1791
1792	for (i = 0; i < num_timings; i++) {
1793		u32 min_volt = timings[i].min_volt;
1794		u32 rate = timings[i].rate;
1795
1796		if (!rate)
1797			return -EINVAL;
1798
1799		if ((i > 0) && ((rate <= timings[i - 1].rate) ||
1800		    (min_volt < timings[i - 1].min_volt)))
1801			return -EINVAL;
1802
1803		if (timings[i].revision != timings[0].revision)
1804			continue;
1805	}
1806
1807	return 0;
1808}
1809
1810static int tegra210_emc_probe(struct platform_device *pdev)
1811{
1812	struct thermal_cooling_device *cd;
1813	unsigned long current_rate;
1814	struct tegra210_emc *emc;
1815	struct device_node *np;
1816	unsigned int i;
1817	int err;
1818
1819	emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
1820	if (!emc)
1821		return -ENOMEM;
1822
1823	emc->clk = devm_clk_get(&pdev->dev, "emc");
1824	if (IS_ERR(emc->clk))
1825		return PTR_ERR(emc->clk);
1826
1827	platform_set_drvdata(pdev, emc);
1828	spin_lock_init(&emc->lock);
1829	emc->dev = &pdev->dev;
1830
1831	emc->mc = devm_tegra_memory_controller_get(&pdev->dev);
1832	if (IS_ERR(emc->mc))
1833		return PTR_ERR(emc->mc);
1834
1835	emc->regs = devm_platform_ioremap_resource(pdev, 0);
1836	if (IS_ERR(emc->regs))
1837		return PTR_ERR(emc->regs);
1838
1839	for (i = 0; i < 2; i++) {
1840		emc->channel[i] = devm_platform_ioremap_resource(pdev, 1 + i);
1841		if (IS_ERR(emc->channel[i]))
1842			return PTR_ERR(emc->channel[i]);
1843
1844	}
1845
1846	tegra210_emc_detect(emc);
1847	np = pdev->dev.of_node;
1848
1849	/* attach to the nominal and (optional) derated tables */
1850	err = of_reserved_mem_device_init_by_name(emc->dev, np, "nominal");
1851	if (err < 0) {
1852		dev_err(emc->dev, "failed to get nominal EMC table: %d\n", err);
1853		return err;
1854	}
1855
1856	err = of_reserved_mem_device_init_by_name(emc->dev, np, "derated");
1857	if (err < 0 && err != -ENODEV) {
1858		dev_err(emc->dev, "failed to get derated EMC table: %d\n", err);
1859		goto release;
1860	}
1861
1862	/* validate the tables */
1863	if (emc->nominal) {
1864		err = tegra210_emc_validate_timings(emc, emc->nominal,
1865						    emc->num_timings);
1866		if (err < 0)
1867			goto release;
1868	}
1869
1870	if (emc->derated) {
1871		err = tegra210_emc_validate_timings(emc, emc->derated,
1872						    emc->num_timings);
1873		if (err < 0)
1874			goto release;
1875	}
1876
1877	/* default to the nominal table */
1878	emc->timings = emc->nominal;
1879
1880	/* pick the current timing based on the current EMC clock rate */
1881	current_rate = clk_get_rate(emc->clk) / 1000;
1882
1883	for (i = 0; i < emc->num_timings; i++) {
1884		if (emc->timings[i].rate == current_rate) {
1885			emc->last = &emc->timings[i];
1886			break;
1887		}
1888	}
1889
1890	if (i == emc->num_timings) {
1891		dev_err(emc->dev, "no EMC table entry found for %lu kHz\n",
1892			current_rate);
1893		err = -ENOENT;
1894		goto release;
1895	}
1896
1897	/* pick a compatible clock change sequence for the EMC table */
1898	for (i = 0; i < ARRAY_SIZE(tegra210_emc_sequences); i++) {
1899		const struct tegra210_emc_sequence *sequence =
1900				tegra210_emc_sequences[i];
1901
1902		if (emc->timings[0].revision == sequence->revision) {
1903			emc->sequence = sequence;
1904			break;
1905		}
1906	}
1907
1908	if (!emc->sequence) {
1909		dev_err(&pdev->dev, "sequence %u not supported\n",
1910			emc->timings[0].revision);
1911		err = -ENOTSUPP;
1912		goto release;
1913	}
1914
1915	emc->offsets = &tegra210_emc_table_register_offsets;
1916	emc->refresh = TEGRA210_EMC_REFRESH_NOMINAL;
1917
1918	emc->provider.owner = THIS_MODULE;
1919	emc->provider.dev = &pdev->dev;
1920	emc->provider.set_rate = tegra210_emc_set_rate;
1921
1922	emc->provider.configs = devm_kcalloc(&pdev->dev, emc->num_timings,
1923					     sizeof(*emc->provider.configs),
1924					     GFP_KERNEL);
1925	if (!emc->provider.configs) {
1926		err = -ENOMEM;
1927		goto release;
1928	}
1929
1930	emc->provider.num_configs = emc->num_timings;
1931
1932	for (i = 0; i < emc->provider.num_configs; i++) {
1933		struct tegra210_emc_timing *timing = &emc->timings[i];
1934		struct tegra210_clk_emc_config *config =
1935				&emc->provider.configs[i];
1936		u32 value;
1937
1938		config->rate = timing->rate * 1000UL;
1939		config->value = timing->clk_src_emc;
1940
1941		value = timing->burst_mc_regs[MC_EMEM_ARB_MISC0_INDEX];
1942
1943		if ((value & MC_EMEM_ARB_MISC0_EMC_SAME_FREQ) == 0)
1944			config->same_freq = false;
1945		else
1946			config->same_freq = true;
1947	}
1948
1949	err = tegra210_clk_emc_attach(emc->clk, &emc->provider);
1950	if (err < 0) {
1951		dev_err(&pdev->dev, "failed to attach to EMC clock: %d\n", err);
1952		goto release;
1953	}
1954
1955	emc->clkchange_delay = 100;
1956	emc->training_interval = 100;
1957	dev_set_drvdata(emc->dev, emc);
1958
1959	timer_setup(&emc->refresh_timer, tegra210_emc_poll_refresh,
1960		    TIMER_DEFERRABLE);
1961	atomic_set(&emc->refresh_poll, 0);
1962	emc->refresh_poll_interval = 1000;
1963
1964	timer_setup(&emc->training, tegra210_emc_train, 0);
1965
1966	tegra210_emc_debugfs_init(emc);
1967
1968	cd = devm_thermal_of_cooling_device_register(emc->dev, np, "emc", emc,
1969						     &tegra210_emc_cd_ops);
1970	if (IS_ERR(cd)) {
1971		err = PTR_ERR(cd);
1972		dev_err(emc->dev, "failed to register cooling device: %d\n",
1973			err);
1974		goto detach;
1975	}
1976
1977	return 0;
1978
1979detach:
1980	debugfs_remove_recursive(emc->debugfs.root);
1981	tegra210_clk_emc_detach(emc->clk);
1982release:
1983	of_reserved_mem_device_release(emc->dev);
1984
1985	return err;
1986}
1987
1988static void tegra210_emc_remove(struct platform_device *pdev)
1989{
1990	struct tegra210_emc *emc = platform_get_drvdata(pdev);
1991
1992	debugfs_remove_recursive(emc->debugfs.root);
1993	tegra210_clk_emc_detach(emc->clk);
1994	of_reserved_mem_device_release(emc->dev);
1995}
1996
1997static int __maybe_unused tegra210_emc_suspend(struct device *dev)
1998{
1999	struct tegra210_emc *emc = dev_get_drvdata(dev);
2000	int err;
2001
2002	err = clk_rate_exclusive_get(emc->clk);
2003	if (err < 0) {
2004		dev_err(emc->dev, "failed to acquire clock: %d\n", err);
2005		return err;
2006	}
2007
2008	emc->resume_rate = clk_get_rate(emc->clk);
2009
2010	clk_set_rate(emc->clk, 204000000);
2011	tegra210_clk_emc_detach(emc->clk);
2012
2013	dev_dbg(dev, "suspending at %lu Hz\n", clk_get_rate(emc->clk));
2014
2015	return 0;
2016}
2017
2018static int __maybe_unused tegra210_emc_resume(struct device *dev)
2019{
2020	struct tegra210_emc *emc = dev_get_drvdata(dev);
2021	int err;
2022
2023	err = tegra210_clk_emc_attach(emc->clk, &emc->provider);
2024	if (err < 0) {
2025		dev_err(dev, "failed to attach to EMC clock: %d\n", err);
2026		return err;
2027	}
2028
2029	clk_set_rate(emc->clk, emc->resume_rate);
2030	clk_rate_exclusive_put(emc->clk);
2031
2032	dev_dbg(dev, "resuming at %lu Hz\n", clk_get_rate(emc->clk));
2033
2034	return 0;
2035}
2036
2037static const struct dev_pm_ops tegra210_emc_pm_ops = {
2038	SET_SYSTEM_SLEEP_PM_OPS(tegra210_emc_suspend, tegra210_emc_resume)
2039};
2040
2041static const struct of_device_id tegra210_emc_of_match[] = {
2042	{ .compatible = "nvidia,tegra210-emc", },
2043	{ },
2044};
2045MODULE_DEVICE_TABLE(of, tegra210_emc_of_match);
2046
2047static struct platform_driver tegra210_emc_driver = {
2048	.driver = {
2049		.name = "tegra210-emc",
2050		.of_match_table = tegra210_emc_of_match,
2051		.pm = &tegra210_emc_pm_ops,
2052	},
2053	.probe = tegra210_emc_probe,
2054	.remove_new = tegra210_emc_remove,
2055};
2056
2057module_platform_driver(tegra210_emc_driver);
2058
2059MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
2060MODULE_AUTHOR("Joseph Lo <josephl@nvidia.com>");
2061MODULE_DESCRIPTION("NVIDIA Tegra210 EMC driver");
2062MODULE_LICENSE("GPL v2");
2063