1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2014 NVIDIA CORPORATION.  All rights reserved.
4 */
5
6#include <linux/clk.h>
7#include <linux/delay.h>
8#include <linux/dma-mapping.h>
9#include <linux/export.h>
10#include <linux/interrupt.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/of.h>
14#include <linux/of_platform.h>
15#include <linux/platform_device.h>
16#include <linux/slab.h>
17#include <linux/sort.h>
18#include <linux/tegra-icc.h>
19
20#include <soc/tegra/fuse.h>
21
22#include "mc.h"
23
24static const struct of_device_id tegra_mc_of_match[] = {
25#ifdef CONFIG_ARCH_TEGRA_2x_SOC
26	{ .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
27#endif
28#ifdef CONFIG_ARCH_TEGRA_3x_SOC
29	{ .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
30#endif
31#ifdef CONFIG_ARCH_TEGRA_114_SOC
32	{ .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
33#endif
34#ifdef CONFIG_ARCH_TEGRA_124_SOC
35	{ .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
36#endif
37#ifdef CONFIG_ARCH_TEGRA_132_SOC
38	{ .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
39#endif
40#ifdef CONFIG_ARCH_TEGRA_210_SOC
41	{ .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
42#endif
43#ifdef CONFIG_ARCH_TEGRA_186_SOC
44	{ .compatible = "nvidia,tegra186-mc", .data = &tegra186_mc_soc },
45#endif
46#ifdef CONFIG_ARCH_TEGRA_194_SOC
47	{ .compatible = "nvidia,tegra194-mc", .data = &tegra194_mc_soc },
48#endif
49#ifdef CONFIG_ARCH_TEGRA_234_SOC
50	{ .compatible = "nvidia,tegra234-mc", .data = &tegra234_mc_soc },
51#endif
52	{ /* sentinel */ }
53};
54MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
55
56static void tegra_mc_devm_action_put_device(void *data)
57{
58	struct tegra_mc *mc = data;
59
60	put_device(mc->dev);
61}
62
63/**
64 * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
65 * @dev: device pointer for the consumer device
66 *
67 * This function will search for the Memory Controller node in a device-tree
68 * and retrieve the Memory Controller handle.
69 *
70 * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
71 */
72struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
73{
74	struct platform_device *pdev;
75	struct device_node *np;
76	struct tegra_mc *mc;
77	int err;
78
79	np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
80	if (!np)
81		return ERR_PTR(-ENOENT);
82
83	pdev = of_find_device_by_node(np);
84	of_node_put(np);
85	if (!pdev)
86		return ERR_PTR(-ENODEV);
87
88	mc = platform_get_drvdata(pdev);
89	if (!mc) {
90		put_device(&pdev->dev);
91		return ERR_PTR(-EPROBE_DEFER);
92	}
93
94	err = devm_add_action_or_reset(dev, tegra_mc_devm_action_put_device, mc);
95	if (err)
96		return ERR_PTR(err);
97
98	return mc;
99}
100EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);
101
102int tegra_mc_probe_device(struct tegra_mc *mc, struct device *dev)
103{
104	if (mc->soc->ops && mc->soc->ops->probe_device)
105		return mc->soc->ops->probe_device(mc, dev);
106
107	return 0;
108}
109EXPORT_SYMBOL_GPL(tegra_mc_probe_device);
110
111int tegra_mc_get_carveout_info(struct tegra_mc *mc, unsigned int id,
112                               phys_addr_t *base, u64 *size)
113{
114	u32 offset;
115
116	if (id < 1 || id >= mc->soc->num_carveouts)
117		return -EINVAL;
118
119	if (id < 6)
120		offset = 0xc0c + 0x50 * (id - 1);
121	else
122		offset = 0x2004 + 0x50 * (id - 6);
123
124	*base = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x0);
125#ifdef CONFIG_PHYS_ADDR_T_64BIT
126	*base |= (phys_addr_t)mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x4) << 32;
127#endif
128
129	if (size)
130		*size = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x8) << 17;
131
132	return 0;
133}
134EXPORT_SYMBOL_GPL(tegra_mc_get_carveout_info);
135
136static int tegra_mc_block_dma_common(struct tegra_mc *mc,
137				     const struct tegra_mc_reset *rst)
138{
139	unsigned long flags;
140	u32 value;
141
142	spin_lock_irqsave(&mc->lock, flags);
143
144	value = mc_readl(mc, rst->control) | BIT(rst->bit);
145	mc_writel(mc, value, rst->control);
146
147	spin_unlock_irqrestore(&mc->lock, flags);
148
149	return 0;
150}
151
152static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
153				       const struct tegra_mc_reset *rst)
154{
155	return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
156}
157
158static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
159				       const struct tegra_mc_reset *rst)
160{
161	unsigned long flags;
162	u32 value;
163
164	spin_lock_irqsave(&mc->lock, flags);
165
166	value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
167	mc_writel(mc, value, rst->control);
168
169	spin_unlock_irqrestore(&mc->lock, flags);
170
171	return 0;
172}
173
174static int tegra_mc_reset_status_common(struct tegra_mc *mc,
175					const struct tegra_mc_reset *rst)
176{
177	return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
178}
179
180const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
181	.block_dma = tegra_mc_block_dma_common,
182	.dma_idling = tegra_mc_dma_idling_common,
183	.unblock_dma = tegra_mc_unblock_dma_common,
184	.reset_status = tegra_mc_reset_status_common,
185};
186
187static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
188{
189	return container_of(rcdev, struct tegra_mc, reset);
190}
191
192static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
193							unsigned long id)
194{
195	unsigned int i;
196
197	for (i = 0; i < mc->soc->num_resets; i++)
198		if (mc->soc->resets[i].id == id)
199			return &mc->soc->resets[i];
200
201	return NULL;
202}
203
204static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
205				    unsigned long id)
206{
207	struct tegra_mc *mc = reset_to_mc(rcdev);
208	const struct tegra_mc_reset_ops *rst_ops;
209	const struct tegra_mc_reset *rst;
210	int retries = 500;
211	int err;
212
213	rst = tegra_mc_reset_find(mc, id);
214	if (!rst)
215		return -ENODEV;
216
217	rst_ops = mc->soc->reset_ops;
218	if (!rst_ops)
219		return -ENODEV;
220
221	/* DMA flushing will fail if reset is already asserted */
222	if (rst_ops->reset_status) {
223		/* check whether reset is asserted */
224		if (rst_ops->reset_status(mc, rst))
225			return 0;
226	}
227
228	if (rst_ops->block_dma) {
229		/* block clients DMA requests */
230		err = rst_ops->block_dma(mc, rst);
231		if (err) {
232			dev_err(mc->dev, "failed to block %s DMA: %d\n",
233				rst->name, err);
234			return err;
235		}
236	}
237
238	if (rst_ops->dma_idling) {
239		/* wait for completion of the outstanding DMA requests */
240		while (!rst_ops->dma_idling(mc, rst)) {
241			if (!retries--) {
242				dev_err(mc->dev, "failed to flush %s DMA\n",
243					rst->name);
244				return -EBUSY;
245			}
246
247			usleep_range(10, 100);
248		}
249	}
250
251	if (rst_ops->hotreset_assert) {
252		/* clear clients DMA requests sitting before arbitration */
253		err = rst_ops->hotreset_assert(mc, rst);
254		if (err) {
255			dev_err(mc->dev, "failed to hot reset %s: %d\n",
256				rst->name, err);
257			return err;
258		}
259	}
260
261	return 0;
262}
263
264static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
265				      unsigned long id)
266{
267	struct tegra_mc *mc = reset_to_mc(rcdev);
268	const struct tegra_mc_reset_ops *rst_ops;
269	const struct tegra_mc_reset *rst;
270	int err;
271
272	rst = tegra_mc_reset_find(mc, id);
273	if (!rst)
274		return -ENODEV;
275
276	rst_ops = mc->soc->reset_ops;
277	if (!rst_ops)
278		return -ENODEV;
279
280	if (rst_ops->hotreset_deassert) {
281		/* take out client from hot reset */
282		err = rst_ops->hotreset_deassert(mc, rst);
283		if (err) {
284			dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
285				rst->name, err);
286			return err;
287		}
288	}
289
290	if (rst_ops->unblock_dma) {
291		/* allow new DMA requests to proceed to arbitration */
292		err = rst_ops->unblock_dma(mc, rst);
293		if (err) {
294			dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
295				rst->name, err);
296			return err;
297		}
298	}
299
300	return 0;
301}
302
303static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
304				    unsigned long id)
305{
306	struct tegra_mc *mc = reset_to_mc(rcdev);
307	const struct tegra_mc_reset_ops *rst_ops;
308	const struct tegra_mc_reset *rst;
309
310	rst = tegra_mc_reset_find(mc, id);
311	if (!rst)
312		return -ENODEV;
313
314	rst_ops = mc->soc->reset_ops;
315	if (!rst_ops)
316		return -ENODEV;
317
318	return rst_ops->reset_status(mc, rst);
319}
320
321static const struct reset_control_ops tegra_mc_reset_ops = {
322	.assert = tegra_mc_hotreset_assert,
323	.deassert = tegra_mc_hotreset_deassert,
324	.status = tegra_mc_hotreset_status,
325};
326
327static int tegra_mc_reset_setup(struct tegra_mc *mc)
328{
329	int err;
330
331	mc->reset.ops = &tegra_mc_reset_ops;
332	mc->reset.owner = THIS_MODULE;
333	mc->reset.of_node = mc->dev->of_node;
334	mc->reset.of_reset_n_cells = 1;
335	mc->reset.nr_resets = mc->soc->num_resets;
336
337	err = reset_controller_register(&mc->reset);
338	if (err < 0)
339		return err;
340
341	return 0;
342}
343
344int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
345{
346	unsigned int i;
347	struct tegra_mc_timing *timing = NULL;
348
349	for (i = 0; i < mc->num_timings; i++) {
350		if (mc->timings[i].rate == rate) {
351			timing = &mc->timings[i];
352			break;
353		}
354	}
355
356	if (!timing) {
357		dev_err(mc->dev, "no memory timing registered for rate %lu\n",
358			rate);
359		return -EINVAL;
360	}
361
362	for (i = 0; i < mc->soc->num_emem_regs; ++i)
363		mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
364
365	return 0;
366}
367EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);
368
369unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
370{
371	u8 dram_count;
372
373	dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
374	dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
375	dram_count++;
376
377	return dram_count;
378}
379EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);
380
381#if defined(CONFIG_ARCH_TEGRA_3x_SOC) || \
382    defined(CONFIG_ARCH_TEGRA_114_SOC) || \
383    defined(CONFIG_ARCH_TEGRA_124_SOC) || \
384    defined(CONFIG_ARCH_TEGRA_132_SOC) || \
385    defined(CONFIG_ARCH_TEGRA_210_SOC)
386static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
387{
388	unsigned long long tick;
389	unsigned int i;
390	u32 value;
391
392	/* compute the number of MC clock cycles per tick */
393	tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
394	do_div(tick, NSEC_PER_SEC);
395
396	value = mc_readl(mc, MC_EMEM_ARB_CFG);
397	value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
398	value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
399	mc_writel(mc, value, MC_EMEM_ARB_CFG);
400
401	/* write latency allowance defaults */
402	for (i = 0; i < mc->soc->num_clients; i++) {
403		const struct tegra_mc_client *client = &mc->soc->clients[i];
404		u32 value;
405
406		value = mc_readl(mc, client->regs.la.reg);
407		value &= ~(client->regs.la.mask << client->regs.la.shift);
408		value |= (client->regs.la.def & client->regs.la.mask) << client->regs.la.shift;
409		mc_writel(mc, value, client->regs.la.reg);
410	}
411
412	/* latch new values */
413	mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
414
415	return 0;
416}
417
418static int load_one_timing(struct tegra_mc *mc,
419			   struct tegra_mc_timing *timing,
420			   struct device_node *node)
421{
422	int err;
423	u32 tmp;
424
425	err = of_property_read_u32(node, "clock-frequency", &tmp);
426	if (err) {
427		dev_err(mc->dev,
428			"timing %pOFn: failed to read rate\n", node);
429		return err;
430	}
431
432	timing->rate = tmp;
433	timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
434					 sizeof(u32), GFP_KERNEL);
435	if (!timing->emem_data)
436		return -ENOMEM;
437
438	err = of_property_read_u32_array(node, "nvidia,emem-configuration",
439					 timing->emem_data,
440					 mc->soc->num_emem_regs);
441	if (err) {
442		dev_err(mc->dev,
443			"timing %pOFn: failed to read EMEM configuration\n",
444			node);
445		return err;
446	}
447
448	return 0;
449}
450
451static int load_timings(struct tegra_mc *mc, struct device_node *node)
452{
453	struct device_node *child;
454	struct tegra_mc_timing *timing;
455	int child_count = of_get_child_count(node);
456	int i = 0, err;
457
458	mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
459				   GFP_KERNEL);
460	if (!mc->timings)
461		return -ENOMEM;
462
463	mc->num_timings = child_count;
464
465	for_each_child_of_node(node, child) {
466		timing = &mc->timings[i++];
467
468		err = load_one_timing(mc, timing, child);
469		if (err) {
470			of_node_put(child);
471			return err;
472		}
473	}
474
475	return 0;
476}
477
478static int tegra_mc_setup_timings(struct tegra_mc *mc)
479{
480	struct device_node *node;
481	u32 ram_code, node_ram_code;
482	int err;
483
484	ram_code = tegra_read_ram_code();
485
486	mc->num_timings = 0;
487
488	for_each_child_of_node(mc->dev->of_node, node) {
489		err = of_property_read_u32(node, "nvidia,ram-code",
490					   &node_ram_code);
491		if (err || (node_ram_code != ram_code))
492			continue;
493
494		err = load_timings(mc, node);
495		of_node_put(node);
496		if (err)
497			return err;
498		break;
499	}
500
501	if (mc->num_timings == 0)
502		dev_warn(mc->dev,
503			 "no memory timings for RAM code %u registered\n",
504			 ram_code);
505
506	return 0;
507}
508
509int tegra30_mc_probe(struct tegra_mc *mc)
510{
511	int err;
512
513	mc->clk = devm_clk_get_optional(mc->dev, "mc");
514	if (IS_ERR(mc->clk)) {
515		dev_err(mc->dev, "failed to get MC clock: %ld\n", PTR_ERR(mc->clk));
516		return PTR_ERR(mc->clk);
517	}
518
519	/* ensure that debug features are disabled */
520	mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
521
522	err = tegra_mc_setup_latency_allowance(mc);
523	if (err < 0) {
524		dev_err(mc->dev, "failed to setup latency allowance: %d\n", err);
525		return err;
526	}
527
528	err = tegra_mc_setup_timings(mc);
529	if (err < 0) {
530		dev_err(mc->dev, "failed to setup timings: %d\n", err);
531		return err;
532	}
533
534	return 0;
535}
536
537const struct tegra_mc_ops tegra30_mc_ops = {
538	.probe = tegra30_mc_probe,
539	.handle_irq = tegra30_mc_handle_irq,
540};
541#endif
542
543static int mc_global_intstatus_to_channel(const struct tegra_mc *mc, u32 status,
544					  unsigned int *mc_channel)
545{
546	if ((status & mc->soc->ch_intmask) == 0)
547		return -EINVAL;
548
549	*mc_channel = __ffs((status & mc->soc->ch_intmask) >>
550			    mc->soc->global_intstatus_channel_shift);
551
552	return 0;
553}
554
555static u32 mc_channel_to_global_intstatus(const struct tegra_mc *mc,
556					  unsigned int channel)
557{
558	return BIT(channel) << mc->soc->global_intstatus_channel_shift;
559}
560
561irqreturn_t tegra30_mc_handle_irq(int irq, void *data)
562{
563	struct tegra_mc *mc = data;
564	unsigned int bit, channel;
565	unsigned long status;
566
567	if (mc->soc->num_channels) {
568		u32 global_status;
569		int err;
570
571		global_status = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, MC_GLOBAL_INTSTATUS);
572		err = mc_global_intstatus_to_channel(mc, global_status, &channel);
573		if (err < 0) {
574			dev_err_ratelimited(mc->dev, "unknown interrupt channel 0x%08x\n",
575					    global_status);
576			return IRQ_NONE;
577		}
578
579		/* mask all interrupts to avoid flooding */
580		status = mc_ch_readl(mc, channel, MC_INTSTATUS) & mc->soc->intmask;
581	} else {
582		status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
583	}
584
585	if (!status)
586		return IRQ_NONE;
587
588	for_each_set_bit(bit, &status, 32) {
589		const char *error = tegra_mc_status_names[bit] ?: "unknown";
590		const char *client = "unknown", *desc;
591		const char *direction, *secure;
592		u32 status_reg, addr_reg;
593		u32 intmask = BIT(bit);
594		phys_addr_t addr = 0;
595#ifdef CONFIG_PHYS_ADDR_T_64BIT
596		u32 addr_hi_reg = 0;
597#endif
598		unsigned int i;
599		char perm[7];
600		u8 id, type;
601		u32 value;
602
603		switch (intmask) {
604		case MC_INT_DECERR_VPR:
605			status_reg = MC_ERR_VPR_STATUS;
606			addr_reg = MC_ERR_VPR_ADR;
607			break;
608
609		case MC_INT_SECERR_SEC:
610			status_reg = MC_ERR_SEC_STATUS;
611			addr_reg = MC_ERR_SEC_ADR;
612			break;
613
614		case MC_INT_DECERR_MTS:
615			status_reg = MC_ERR_MTS_STATUS;
616			addr_reg = MC_ERR_MTS_ADR;
617			break;
618
619		case MC_INT_DECERR_GENERALIZED_CARVEOUT:
620			status_reg = MC_ERR_GENERALIZED_CARVEOUT_STATUS;
621			addr_reg = MC_ERR_GENERALIZED_CARVEOUT_ADR;
622			break;
623
624		case MC_INT_DECERR_ROUTE_SANITY:
625			status_reg = MC_ERR_ROUTE_SANITY_STATUS;
626			addr_reg = MC_ERR_ROUTE_SANITY_ADR;
627			break;
628
629		default:
630			status_reg = MC_ERR_STATUS;
631			addr_reg = MC_ERR_ADR;
632
633#ifdef CONFIG_PHYS_ADDR_T_64BIT
634			if (mc->soc->has_addr_hi_reg)
635				addr_hi_reg = MC_ERR_ADR_HI;
636#endif
637			break;
638		}
639
640		if (mc->soc->num_channels)
641			value = mc_ch_readl(mc, channel, status_reg);
642		else
643			value = mc_readl(mc, status_reg);
644
645#ifdef CONFIG_PHYS_ADDR_T_64BIT
646		if (mc->soc->num_address_bits > 32) {
647			if (addr_hi_reg) {
648				if (mc->soc->num_channels)
649					addr = mc_ch_readl(mc, channel, addr_hi_reg);
650				else
651					addr = mc_readl(mc, addr_hi_reg);
652			} else {
653				addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
654					MC_ERR_STATUS_ADR_HI_MASK);
655			}
656			addr <<= 32;
657		}
658#endif
659
660		if (value & MC_ERR_STATUS_RW)
661			direction = "write";
662		else
663			direction = "read";
664
665		if (value & MC_ERR_STATUS_SECURITY)
666			secure = "secure ";
667		else
668			secure = "";
669
670		id = value & mc->soc->client_id_mask;
671
672		for (i = 0; i < mc->soc->num_clients; i++) {
673			if (mc->soc->clients[i].id == id) {
674				client = mc->soc->clients[i].name;
675				break;
676			}
677		}
678
679		type = (value & MC_ERR_STATUS_TYPE_MASK) >>
680		       MC_ERR_STATUS_TYPE_SHIFT;
681		desc = tegra_mc_error_names[type];
682
683		switch (value & MC_ERR_STATUS_TYPE_MASK) {
684		case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
685			perm[0] = ' ';
686			perm[1] = '[';
687
688			if (value & MC_ERR_STATUS_READABLE)
689				perm[2] = 'R';
690			else
691				perm[2] = '-';
692
693			if (value & MC_ERR_STATUS_WRITABLE)
694				perm[3] = 'W';
695			else
696				perm[3] = '-';
697
698			if (value & MC_ERR_STATUS_NONSECURE)
699				perm[4] = '-';
700			else
701				perm[4] = 'S';
702
703			perm[5] = ']';
704			perm[6] = '\0';
705			break;
706
707		default:
708			perm[0] = '\0';
709			break;
710		}
711
712		if (mc->soc->num_channels)
713			value = mc_ch_readl(mc, channel, addr_reg);
714		else
715			value = mc_readl(mc, addr_reg);
716		addr |= value;
717
718		dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
719				    client, secure, direction, &addr, error,
720				    desc, perm);
721	}
722
723	/* clear interrupts */
724	if (mc->soc->num_channels) {
725		mc_ch_writel(mc, channel, status, MC_INTSTATUS);
726		mc_ch_writel(mc, MC_BROADCAST_CHANNEL,
727			     mc_channel_to_global_intstatus(mc, channel),
728			     MC_GLOBAL_INTSTATUS);
729	} else {
730		mc_writel(mc, status, MC_INTSTATUS);
731	}
732
733	return IRQ_HANDLED;
734}
735
736const char *const tegra_mc_status_names[32] = {
737	[ 1] = "External interrupt",
738	[ 6] = "EMEM address decode error",
739	[ 7] = "GART page fault",
740	[ 8] = "Security violation",
741	[ 9] = "EMEM arbitration error",
742	[10] = "Page fault",
743	[11] = "Invalid APB ASID update",
744	[12] = "VPR violation",
745	[13] = "Secure carveout violation",
746	[16] = "MTS carveout violation",
747	[17] = "Generalized carveout violation",
748	[20] = "Route Sanity error",
749};
750
751const char *const tegra_mc_error_names[8] = {
752	[2] = "EMEM decode error",
753	[3] = "TrustZone violation",
754	[4] = "Carveout violation",
755	[6] = "SMMU translation error",
756};
757
758struct icc_node *tegra_mc_icc_xlate(const struct of_phandle_args *spec, void *data)
759{
760	struct tegra_mc *mc = icc_provider_to_tegra_mc(data);
761	struct icc_node *node;
762
763	list_for_each_entry(node, &mc->provider.nodes, node_list) {
764		if (node->id == spec->args[0])
765			return node;
766	}
767
768	/*
769	 * If a client driver calls devm_of_icc_get() before the MC driver
770	 * is probed, then return EPROBE_DEFER to the client driver.
771	 */
772	return ERR_PTR(-EPROBE_DEFER);
773}
774
775static int tegra_mc_icc_get(struct icc_node *node, u32 *average, u32 *peak)
776{
777	*average = 0;
778	*peak = 0;
779
780	return 0;
781}
782
783static int tegra_mc_icc_set(struct icc_node *src, struct icc_node *dst)
784{
785	return 0;
786}
787
788const struct tegra_mc_icc_ops tegra_mc_icc_ops = {
789	.xlate = tegra_mc_icc_xlate,
790	.aggregate = icc_std_aggregate,
791	.get_bw = tegra_mc_icc_get,
792	.set = tegra_mc_icc_set,
793};
794
795/*
796 * Memory Controller (MC) has few Memory Clients that are issuing memory
797 * bandwidth allocation requests to the MC interconnect provider. The MC
798 * provider aggregates the requests and then sends the aggregated request
799 * up to the External Memory Controller (EMC) interconnect provider which
800 * re-configures hardware interface to External Memory (EMEM) in accordance
801 * to the required bandwidth. Each MC interconnect node represents an
802 * individual Memory Client.
803 *
804 * Memory interconnect topology:
805 *
806 *               +----+
807 * +--------+    |    |
808 * | TEXSRD +--->+    |
809 * +--------+    |    |
810 *               |    |    +-----+    +------+
811 *    ...        | MC +--->+ EMC +--->+ EMEM |
812 *               |    |    +-----+    +------+
813 * +--------+    |    |
814 * | DISP.. +--->+    |
815 * +--------+    |    |
816 *               +----+
817 */
818static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
819{
820	struct icc_node *node;
821	unsigned int i;
822	int err;
823
824	/* older device-trees don't have interconnect properties */
825	if (!device_property_present(mc->dev, "#interconnect-cells") ||
826	    !mc->soc->icc_ops)
827		return 0;
828
829	mc->provider.dev = mc->dev;
830	mc->provider.data = &mc->provider;
831	mc->provider.set = mc->soc->icc_ops->set;
832	mc->provider.aggregate = mc->soc->icc_ops->aggregate;
833	mc->provider.get_bw = mc->soc->icc_ops->get_bw;
834	mc->provider.xlate = mc->soc->icc_ops->xlate;
835	mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;
836
837	icc_provider_init(&mc->provider);
838
839	/* create Memory Controller node */
840	node = icc_node_create(TEGRA_ICC_MC);
841	if (IS_ERR(node))
842		return PTR_ERR(node);
843
844	node->name = "Memory Controller";
845	icc_node_add(node, &mc->provider);
846
847	/* link Memory Controller to External Memory Controller */
848	err = icc_link_create(node, TEGRA_ICC_EMC);
849	if (err)
850		goto remove_nodes;
851
852	for (i = 0; i < mc->soc->num_clients; i++) {
853		/* create MC client node */
854		node = icc_node_create(mc->soc->clients[i].id);
855		if (IS_ERR(node)) {
856			err = PTR_ERR(node);
857			goto remove_nodes;
858		}
859
860		node->name = mc->soc->clients[i].name;
861		icc_node_add(node, &mc->provider);
862
863		/* link Memory Client to Memory Controller */
864		err = icc_link_create(node, TEGRA_ICC_MC);
865		if (err)
866			goto remove_nodes;
867
868		node->data = (struct tegra_mc_client *)&(mc->soc->clients[i]);
869	}
870
871	err = icc_provider_register(&mc->provider);
872	if (err)
873		goto remove_nodes;
874
875	return 0;
876
877remove_nodes:
878	icc_nodes_remove(&mc->provider);
879
880	return err;
881}
882
883static void tegra_mc_num_channel_enabled(struct tegra_mc *mc)
884{
885	unsigned int i;
886	u32 value;
887
888	value = mc_ch_readl(mc, 0, MC_EMEM_ADR_CFG_CHANNEL_ENABLE);
889	if (value <= 0) {
890		mc->num_channels = mc->soc->num_channels;
891		return;
892	}
893
894	for (i = 0; i < 32; i++) {
895		if (value & BIT(i))
896			mc->num_channels++;
897	}
898}
899
900static int tegra_mc_probe(struct platform_device *pdev)
901{
902	struct tegra_mc *mc;
903	u64 mask;
904	int err;
905
906	mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
907	if (!mc)
908		return -ENOMEM;
909
910	platform_set_drvdata(pdev, mc);
911	spin_lock_init(&mc->lock);
912	mc->soc = of_device_get_match_data(&pdev->dev);
913	mc->dev = &pdev->dev;
914
915	mask = DMA_BIT_MASK(mc->soc->num_address_bits);
916
917	err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
918	if (err < 0) {
919		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
920		return err;
921	}
922
923	/* length of MC tick in nanoseconds */
924	mc->tick = 30;
925
926	mc->regs = devm_platform_ioremap_resource(pdev, 0);
927	if (IS_ERR(mc->regs))
928		return PTR_ERR(mc->regs);
929
930	mc->debugfs.root = debugfs_create_dir("mc", NULL);
931
932	if (mc->soc->ops && mc->soc->ops->probe) {
933		err = mc->soc->ops->probe(mc);
934		if (err < 0)
935			return err;
936	}
937
938	tegra_mc_num_channel_enabled(mc);
939
940	if (mc->soc->ops && mc->soc->ops->handle_irq) {
941		mc->irq = platform_get_irq(pdev, 0);
942		if (mc->irq < 0)
943			return mc->irq;
944
945		WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
946
947		if (mc->soc->num_channels)
948			mc_ch_writel(mc, MC_BROADCAST_CHANNEL, mc->soc->intmask,
949				     MC_INTMASK);
950		else
951			mc_writel(mc, mc->soc->intmask, MC_INTMASK);
952
953		err = devm_request_irq(&pdev->dev, mc->irq, mc->soc->ops->handle_irq, 0,
954				       dev_name(&pdev->dev), mc);
955		if (err < 0) {
956			dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
957				err);
958			return err;
959		}
960	}
961
962	if (mc->soc->reset_ops) {
963		err = tegra_mc_reset_setup(mc);
964		if (err < 0)
965			dev_err(&pdev->dev, "failed to register reset controller: %d\n", err);
966	}
967
968	err = tegra_mc_interconnect_setup(mc);
969	if (err < 0)
970		dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
971			err);
972
973	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
974		mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
975		if (IS_ERR(mc->smmu)) {
976			dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
977				PTR_ERR(mc->smmu));
978			mc->smmu = NULL;
979		}
980	}
981
982	return 0;
983}
984
985static void tegra_mc_sync_state(struct device *dev)
986{
987	struct tegra_mc *mc = dev_get_drvdata(dev);
988
989	/* check whether ICC provider is registered */
990	if (mc->provider.dev == dev)
991		icc_sync_state(dev);
992}
993
994static struct platform_driver tegra_mc_driver = {
995	.driver = {
996		.name = "tegra-mc",
997		.of_match_table = tegra_mc_of_match,
998		.suppress_bind_attrs = true,
999		.sync_state = tegra_mc_sync_state,
1000	},
1001	.prevent_deferred_probe = true,
1002	.probe = tegra_mc_probe,
1003};
1004
1005static int tegra_mc_init(void)
1006{
1007	return platform_driver_register(&tegra_mc_driver);
1008}
1009arch_initcall(tegra_mc_init);
1010
1011MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
1012MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
1013