1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * v4l2-dv-timings - dv-timings helper functions
4 *
5 * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 */
7
8#include <linux/module.h>
9#include <linux/types.h>
10#include <linux/kernel.h>
11#include <linux/errno.h>
12#include <linux/rational.h>
13#include <linux/videodev2.h>
14#include <linux/v4l2-dv-timings.h>
15#include <media/v4l2-dv-timings.h>
16#include <linux/math64.h>
17#include <linux/hdmi.h>
18#include <media/cec.h>
19
20MODULE_AUTHOR("Hans Verkuil");
21MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22MODULE_LICENSE("GPL");
23
24const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25	V4L2_DV_BT_CEA_640X480P59_94,
26	V4L2_DV_BT_CEA_720X480I59_94,
27	V4L2_DV_BT_CEA_720X480P59_94,
28	V4L2_DV_BT_CEA_720X576I50,
29	V4L2_DV_BT_CEA_720X576P50,
30	V4L2_DV_BT_CEA_1280X720P24,
31	V4L2_DV_BT_CEA_1280X720P25,
32	V4L2_DV_BT_CEA_1280X720P30,
33	V4L2_DV_BT_CEA_1280X720P50,
34	V4L2_DV_BT_CEA_1280X720P60,
35	V4L2_DV_BT_CEA_1920X1080P24,
36	V4L2_DV_BT_CEA_1920X1080P25,
37	V4L2_DV_BT_CEA_1920X1080P30,
38	V4L2_DV_BT_CEA_1920X1080I50,
39	V4L2_DV_BT_CEA_1920X1080P50,
40	V4L2_DV_BT_CEA_1920X1080I60,
41	V4L2_DV_BT_CEA_1920X1080P60,
42	V4L2_DV_BT_DMT_640X350P85,
43	V4L2_DV_BT_DMT_640X400P85,
44	V4L2_DV_BT_DMT_720X400P85,
45	V4L2_DV_BT_DMT_640X480P72,
46	V4L2_DV_BT_DMT_640X480P75,
47	V4L2_DV_BT_DMT_640X480P85,
48	V4L2_DV_BT_DMT_800X600P56,
49	V4L2_DV_BT_DMT_800X600P60,
50	V4L2_DV_BT_DMT_800X600P72,
51	V4L2_DV_BT_DMT_800X600P75,
52	V4L2_DV_BT_DMT_800X600P85,
53	V4L2_DV_BT_DMT_800X600P120_RB,
54	V4L2_DV_BT_DMT_848X480P60,
55	V4L2_DV_BT_DMT_1024X768I43,
56	V4L2_DV_BT_DMT_1024X768P60,
57	V4L2_DV_BT_DMT_1024X768P70,
58	V4L2_DV_BT_DMT_1024X768P75,
59	V4L2_DV_BT_DMT_1024X768P85,
60	V4L2_DV_BT_DMT_1024X768P120_RB,
61	V4L2_DV_BT_DMT_1152X864P75,
62	V4L2_DV_BT_DMT_1280X768P60_RB,
63	V4L2_DV_BT_DMT_1280X768P60,
64	V4L2_DV_BT_DMT_1280X768P75,
65	V4L2_DV_BT_DMT_1280X768P85,
66	V4L2_DV_BT_DMT_1280X768P120_RB,
67	V4L2_DV_BT_DMT_1280X800P60_RB,
68	V4L2_DV_BT_DMT_1280X800P60,
69	V4L2_DV_BT_DMT_1280X800P75,
70	V4L2_DV_BT_DMT_1280X800P85,
71	V4L2_DV_BT_DMT_1280X800P120_RB,
72	V4L2_DV_BT_DMT_1280X960P60,
73	V4L2_DV_BT_DMT_1280X960P85,
74	V4L2_DV_BT_DMT_1280X960P120_RB,
75	V4L2_DV_BT_DMT_1280X1024P60,
76	V4L2_DV_BT_DMT_1280X1024P75,
77	V4L2_DV_BT_DMT_1280X1024P85,
78	V4L2_DV_BT_DMT_1280X1024P120_RB,
79	V4L2_DV_BT_DMT_1360X768P60,
80	V4L2_DV_BT_DMT_1360X768P120_RB,
81	V4L2_DV_BT_DMT_1366X768P60,
82	V4L2_DV_BT_DMT_1366X768P60_RB,
83	V4L2_DV_BT_DMT_1400X1050P60_RB,
84	V4L2_DV_BT_DMT_1400X1050P60,
85	V4L2_DV_BT_DMT_1400X1050P75,
86	V4L2_DV_BT_DMT_1400X1050P85,
87	V4L2_DV_BT_DMT_1400X1050P120_RB,
88	V4L2_DV_BT_DMT_1440X900P60_RB,
89	V4L2_DV_BT_DMT_1440X900P60,
90	V4L2_DV_BT_DMT_1440X900P75,
91	V4L2_DV_BT_DMT_1440X900P85,
92	V4L2_DV_BT_DMT_1440X900P120_RB,
93	V4L2_DV_BT_DMT_1600X900P60_RB,
94	V4L2_DV_BT_DMT_1600X1200P60,
95	V4L2_DV_BT_DMT_1600X1200P65,
96	V4L2_DV_BT_DMT_1600X1200P70,
97	V4L2_DV_BT_DMT_1600X1200P75,
98	V4L2_DV_BT_DMT_1600X1200P85,
99	V4L2_DV_BT_DMT_1600X1200P120_RB,
100	V4L2_DV_BT_DMT_1680X1050P60_RB,
101	V4L2_DV_BT_DMT_1680X1050P60,
102	V4L2_DV_BT_DMT_1680X1050P75,
103	V4L2_DV_BT_DMT_1680X1050P85,
104	V4L2_DV_BT_DMT_1680X1050P120_RB,
105	V4L2_DV_BT_DMT_1792X1344P60,
106	V4L2_DV_BT_DMT_1792X1344P75,
107	V4L2_DV_BT_DMT_1792X1344P120_RB,
108	V4L2_DV_BT_DMT_1856X1392P60,
109	V4L2_DV_BT_DMT_1856X1392P75,
110	V4L2_DV_BT_DMT_1856X1392P120_RB,
111	V4L2_DV_BT_DMT_1920X1200P60_RB,
112	V4L2_DV_BT_DMT_1920X1200P60,
113	V4L2_DV_BT_DMT_1920X1200P75,
114	V4L2_DV_BT_DMT_1920X1200P85,
115	V4L2_DV_BT_DMT_1920X1200P120_RB,
116	V4L2_DV_BT_DMT_1920X1440P60,
117	V4L2_DV_BT_DMT_1920X1440P75,
118	V4L2_DV_BT_DMT_1920X1440P120_RB,
119	V4L2_DV_BT_DMT_2048X1152P60_RB,
120	V4L2_DV_BT_DMT_2560X1600P60_RB,
121	V4L2_DV_BT_DMT_2560X1600P60,
122	V4L2_DV_BT_DMT_2560X1600P75,
123	V4L2_DV_BT_DMT_2560X1600P85,
124	V4L2_DV_BT_DMT_2560X1600P120_RB,
125	V4L2_DV_BT_CEA_3840X2160P24,
126	V4L2_DV_BT_CEA_3840X2160P25,
127	V4L2_DV_BT_CEA_3840X2160P30,
128	V4L2_DV_BT_CEA_3840X2160P50,
129	V4L2_DV_BT_CEA_3840X2160P60,
130	V4L2_DV_BT_CEA_4096X2160P24,
131	V4L2_DV_BT_CEA_4096X2160P25,
132	V4L2_DV_BT_CEA_4096X2160P30,
133	V4L2_DV_BT_CEA_4096X2160P50,
134	V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135	V4L2_DV_BT_CEA_4096X2160P60,
136	{ }
137};
138EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139
140bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141			   const struct v4l2_dv_timings_cap *dvcap,
142			   v4l2_check_dv_timings_fnc fnc,
143			   void *fnc_handle)
144{
145	const struct v4l2_bt_timings *bt = &t->bt;
146	const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147	u32 caps = cap->capabilities;
148	const u32 max_vert = 10240;
149	u32 max_hor = 3 * bt->width;
150
151	if (t->type != V4L2_DV_BT_656_1120)
152		return false;
153	if (t->type != dvcap->type ||
154	    bt->height < cap->min_height ||
155	    bt->height > cap->max_height ||
156	    bt->width < cap->min_width ||
157	    bt->width > cap->max_width ||
158	    bt->pixelclock < cap->min_pixelclock ||
159	    bt->pixelclock > cap->max_pixelclock ||
160	    (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
161	     cap->standards && bt->standards &&
162	     !(bt->standards & cap->standards)) ||
163	    (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
164	    (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
165		return false;
166
167	/* sanity checks for the blanking timings */
168	if (!bt->interlaced &&
169	    (bt->il_vbackporch || bt->il_vsync || bt->il_vfrontporch))
170		return false;
171	/*
172	 * Some video receivers cannot properly separate the frontporch,
173	 * backporch and sync values, and instead they only have the total
174	 * blanking. That can be assigned to any of these three fields.
175	 * So just check that none of these are way out of range.
176	 */
177	if (bt->hfrontporch > max_hor ||
178	    bt->hsync > max_hor || bt->hbackporch > max_hor)
179		return false;
180	if (bt->vfrontporch > max_vert ||
181	    bt->vsync > max_vert || bt->vbackporch > max_vert)
182		return false;
183	if (bt->interlaced && (bt->il_vfrontporch > max_vert ||
184	    bt->il_vsync > max_vert || bt->il_vbackporch > max_vert))
185		return false;
186	return fnc == NULL || fnc(t, fnc_handle);
187}
188EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
189
190int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
191			     const struct v4l2_dv_timings_cap *cap,
192			     v4l2_check_dv_timings_fnc fnc,
193			     void *fnc_handle)
194{
195	u32 i, idx;
196
197	memset(t->reserved, 0, sizeof(t->reserved));
198	for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
199		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
200					  fnc, fnc_handle) &&
201		    idx++ == t->index) {
202			t->timings = v4l2_dv_timings_presets[i];
203			return 0;
204		}
205	}
206	return -EINVAL;
207}
208EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
209
210bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
211			      const struct v4l2_dv_timings_cap *cap,
212			      unsigned pclock_delta,
213			      v4l2_check_dv_timings_fnc fnc,
214			      void *fnc_handle)
215{
216	int i;
217
218	if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
219		return false;
220
221	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
222		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
223					  fnc, fnc_handle) &&
224		    v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
225					  pclock_delta, false)) {
226			u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
227
228			*t = v4l2_dv_timings_presets[i];
229			if (can_reduce_fps(&t->bt))
230				t->bt.flags |= flags;
231
232			return true;
233		}
234	}
235	return false;
236}
237EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
238
239bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
240{
241	unsigned int i;
242
243	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
244		const struct v4l2_bt_timings *bt =
245			&v4l2_dv_timings_presets[i].bt;
246
247		if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
248		    bt->cea861_vic == vic) {
249			*t = v4l2_dv_timings_presets[i];
250			return true;
251		}
252	}
253	return false;
254}
255EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
256
257/**
258 * v4l2_match_dv_timings - check if two timings match
259 * @t1: compare this v4l2_dv_timings struct...
260 * @t2: with this struct.
261 * @pclock_delta: the allowed pixelclock deviation.
262 * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
263 *	match.
264 *
265 * Compare t1 with t2 with a given margin of error for the pixelclock.
266 */
267bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
268			   const struct v4l2_dv_timings *t2,
269			   unsigned pclock_delta, bool match_reduced_fps)
270{
271	if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
272		return false;
273	if (t1->bt.width == t2->bt.width &&
274	    t1->bt.height == t2->bt.height &&
275	    t1->bt.interlaced == t2->bt.interlaced &&
276	    t1->bt.polarities == t2->bt.polarities &&
277	    t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
278	    t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
279	    t1->bt.hfrontporch == t2->bt.hfrontporch &&
280	    t1->bt.hsync == t2->bt.hsync &&
281	    t1->bt.hbackporch == t2->bt.hbackporch &&
282	    t1->bt.vfrontporch == t2->bt.vfrontporch &&
283	    t1->bt.vsync == t2->bt.vsync &&
284	    t1->bt.vbackporch == t2->bt.vbackporch &&
285	    (!match_reduced_fps ||
286	     (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
287		(t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
288	    (!t1->bt.interlaced ||
289		(t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
290		 t1->bt.il_vsync == t2->bt.il_vsync &&
291		 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
292		return true;
293	return false;
294}
295EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
296
297void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
298			   const struct v4l2_dv_timings *t, bool detailed)
299{
300	const struct v4l2_bt_timings *bt = &t->bt;
301	u32 htot, vtot;
302	u32 fps;
303
304	if (t->type != V4L2_DV_BT_656_1120)
305		return;
306
307	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
308	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
309	if (bt->interlaced)
310		vtot /= 2;
311
312	fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
313				  (htot * vtot)) : 0;
314
315	if (prefix == NULL)
316		prefix = "";
317
318	pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix,
319		bt->width, bt->height, bt->interlaced ? "i" : "p",
320		fps / 100, fps % 100, htot, vtot);
321
322	if (!detailed)
323		return;
324
325	pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
326			dev_prefix, bt->hfrontporch,
327			(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
328			bt->hsync, bt->hbackporch);
329	pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
330			dev_prefix, bt->vfrontporch,
331			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
332			bt->vsync, bt->vbackporch);
333	if (bt->interlaced)
334		pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
335			dev_prefix, bt->il_vfrontporch,
336			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
337			bt->il_vsync, bt->il_vbackporch);
338	pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
339	pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
340			dev_prefix, bt->flags,
341			(bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
342			" REDUCED_BLANKING" : "",
343			((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
344			 bt->vsync == 8) ? " (V2)" : "",
345			(bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
346			" CAN_REDUCE_FPS" : "",
347			(bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
348			" REDUCED_FPS" : "",
349			(bt->flags & V4L2_DV_FL_HALF_LINE) ?
350			" HALF_LINE" : "",
351			(bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
352			" CE_VIDEO" : "",
353			(bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
354			" FIRST_FIELD_EXTRA_LINE" : "",
355			(bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
356			" HAS_PICTURE_ASPECT" : "",
357			(bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
358			" HAS_CEA861_VIC" : "",
359			(bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
360			" HAS_HDMI_VIC" : "");
361	pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
362			(bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
363			(bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
364			(bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
365			(bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "",
366			(bt->standards & V4L2_DV_BT_STD_SDI) ?  " SDI" : "");
367	if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
368		pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
369			bt->picture_aspect.numerator,
370			bt->picture_aspect.denominator);
371	if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
372		pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
373	if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
374		pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
375}
376EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
377
378struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
379{
380	struct v4l2_fract ratio = { 1, 1 };
381	unsigned long n, d;
382
383	if (t->type != V4L2_DV_BT_656_1120)
384		return ratio;
385	if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
386		return ratio;
387
388	ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
389	ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
390
391	rational_best_approximation(ratio.numerator, ratio.denominator,
392				    ratio.numerator, ratio.denominator, &n, &d);
393	ratio.numerator = n;
394	ratio.denominator = d;
395	return ratio;
396}
397EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
398
399/** v4l2_calc_timeperframe - helper function to calculate timeperframe based
400 *	v4l2_dv_timings fields.
401 * @t - Timings for the video mode.
402 *
403 * Calculates the expected timeperframe using the pixel clock value and
404 * horizontal/vertical measures. This means that v4l2_dv_timings structure
405 * must be correctly and fully filled.
406 */
407struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
408{
409	const struct v4l2_bt_timings *bt = &t->bt;
410	struct v4l2_fract fps_fract = { 1, 1 };
411	unsigned long n, d;
412	u32 htot, vtot, fps;
413	u64 pclk;
414
415	if (t->type != V4L2_DV_BT_656_1120)
416		return fps_fract;
417
418	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
419	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
420	pclk = bt->pixelclock;
421
422	if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
423	    (bt->flags & V4L2_DV_FL_REDUCED_FPS))
424		pclk = div_u64(pclk * 1000ULL, 1001);
425
426	fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
427	if (!fps)
428		return fps_fract;
429
430	rational_best_approximation(fps, 100, fps, 100, &n, &d);
431
432	fps_fract.numerator = d;
433	fps_fract.denominator = n;
434	return fps_fract;
435}
436EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
437
438/*
439 * CVT defines
440 * Based on Coordinated Video Timings Standard
441 * version 1.1 September 10, 2003
442 */
443
444#define CVT_PXL_CLK_GRAN	250000	/* pixel clock granularity */
445#define CVT_PXL_CLK_GRAN_RB_V2 1000	/* granularity for reduced blanking v2*/
446
447/* Normal blanking */
448#define CVT_MIN_V_BPORCH	7	/* lines */
449#define CVT_MIN_V_PORCH_RND	3	/* lines */
450#define CVT_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
451#define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
452
453/* Normal blanking for CVT uses GTF to calculate horizontal blanking */
454#define CVT_CELL_GRAN		8	/* character cell granularity */
455#define CVT_M			600	/* blanking formula gradient */
456#define CVT_C			40	/* blanking formula offset */
457#define CVT_K			128	/* blanking formula scaling factor */
458#define CVT_J			20	/* blanking formula scaling factor */
459#define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
460#define CVT_M_PRIME (CVT_K * CVT_M / 256)
461
462/* Reduced Blanking */
463#define CVT_RB_MIN_V_BPORCH    7       /* lines  */
464#define CVT_RB_V_FPORCH        3       /* lines  */
465#define CVT_RB_MIN_V_BLANK   460       /* us     */
466#define CVT_RB_H_SYNC         32       /* pixels */
467#define CVT_RB_H_BLANK       160       /* pixels */
468/* Reduce blanking Version 2 */
469#define CVT_RB_V2_H_BLANK     80       /* pixels */
470#define CVT_RB_MIN_V_FPORCH    3       /* lines  */
471#define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
472#define CVT_RB_V_BPORCH        6       /* lines  */
473
474/** v4l2_detect_cvt - detect if the given timings follow the CVT standard
475 * @frame_height - the total height of the frame (including blanking) in lines.
476 * @hfreq - the horizontal frequency in Hz.
477 * @vsync - the height of the vertical sync in lines.
478 * @active_width - active width of image (does not include blanking). This
479 * information is needed only in case of version 2 of reduced blanking.
480 * In other cases, this parameter does not have any effect on timings.
481 * @polarities - the horizontal and vertical polarities (same as struct
482 *		v4l2_bt_timings polarities).
483 * @interlaced - if this flag is true, it indicates interlaced format
484 * @fmt - the resulting timings.
485 *
486 * This function will attempt to detect if the given values correspond to a
487 * valid CVT format. If so, then it will return true, and fmt will be filled
488 * in with the found CVT timings.
489 */
490bool v4l2_detect_cvt(unsigned frame_height,
491		     unsigned hfreq,
492		     unsigned vsync,
493		     unsigned active_width,
494		     u32 polarities,
495		     bool interlaced,
496		     struct v4l2_dv_timings *fmt)
497{
498	int  v_fp, v_bp, h_fp, h_bp, hsync;
499	int  frame_width, image_height, image_width;
500	bool reduced_blanking;
501	bool rb_v2 = false;
502	unsigned pix_clk;
503
504	if (vsync < 4 || vsync > 8)
505		return false;
506
507	if (polarities == V4L2_DV_VSYNC_POS_POL)
508		reduced_blanking = false;
509	else if (polarities == V4L2_DV_HSYNC_POS_POL)
510		reduced_blanking = true;
511	else
512		return false;
513
514	if (reduced_blanking && vsync == 8)
515		rb_v2 = true;
516
517	if (rb_v2 && active_width == 0)
518		return false;
519
520	if (!rb_v2 && vsync > 7)
521		return false;
522
523	if (hfreq == 0)
524		return false;
525
526	/* Vertical */
527	if (reduced_blanking) {
528		if (rb_v2) {
529			v_bp = CVT_RB_V_BPORCH;
530			v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
531			v_fp -= vsync + v_bp;
532
533			if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
534				v_fp = CVT_RB_V2_MIN_V_FPORCH;
535		} else {
536			v_fp = CVT_RB_V_FPORCH;
537			v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
538			v_bp -= vsync + v_fp;
539
540			if (v_bp < CVT_RB_MIN_V_BPORCH)
541				v_bp = CVT_RB_MIN_V_BPORCH;
542		}
543	} else {
544		v_fp = CVT_MIN_V_PORCH_RND;
545		v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
546
547		if (v_bp < CVT_MIN_V_BPORCH)
548			v_bp = CVT_MIN_V_BPORCH;
549	}
550
551	if (interlaced)
552		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
553	else
554		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
555
556	if (image_height < 0)
557		return false;
558
559	/* Aspect ratio based on vsync */
560	switch (vsync) {
561	case 4:
562		image_width = (image_height * 4) / 3;
563		break;
564	case 5:
565		image_width = (image_height * 16) / 9;
566		break;
567	case 6:
568		image_width = (image_height * 16) / 10;
569		break;
570	case 7:
571		/* special case */
572		if (image_height == 1024)
573			image_width = (image_height * 5) / 4;
574		else if (image_height == 768)
575			image_width = (image_height * 15) / 9;
576		else
577			return false;
578		break;
579	case 8:
580		image_width = active_width;
581		break;
582	default:
583		return false;
584	}
585
586	if (!rb_v2)
587		image_width = image_width & ~7;
588
589	/* Horizontal */
590	if (reduced_blanking) {
591		int h_blank;
592		int clk_gran;
593
594		h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
595		clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
596
597		pix_clk = (image_width + h_blank) * hfreq;
598		pix_clk = (pix_clk / clk_gran) * clk_gran;
599
600		h_bp  = h_blank / 2;
601		hsync = CVT_RB_H_SYNC;
602		h_fp  = h_blank - h_bp - hsync;
603
604		frame_width = image_width + h_blank;
605	} else {
606		unsigned ideal_duty_cycle_per_myriad =
607			100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
608		int h_blank;
609
610		if (ideal_duty_cycle_per_myriad < 2000)
611			ideal_duty_cycle_per_myriad = 2000;
612
613		h_blank = image_width * ideal_duty_cycle_per_myriad /
614					(10000 - ideal_duty_cycle_per_myriad);
615		h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
616
617		pix_clk = (image_width + h_blank) * hfreq;
618		pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
619
620		h_bp = h_blank / 2;
621		frame_width = image_width + h_blank;
622
623		hsync = frame_width * CVT_HSYNC_PERCENT / 100;
624		hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
625		h_fp = h_blank - hsync - h_bp;
626	}
627
628	fmt->type = V4L2_DV_BT_656_1120;
629	fmt->bt.polarities = polarities;
630	fmt->bt.width = image_width;
631	fmt->bt.height = image_height;
632	fmt->bt.hfrontporch = h_fp;
633	fmt->bt.vfrontporch = v_fp;
634	fmt->bt.hsync = hsync;
635	fmt->bt.vsync = vsync;
636	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
637
638	if (!interlaced) {
639		fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
640		fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
641	} else {
642		fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
643				      2 * vsync) / 2;
644		fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
645					2 * vsync - fmt->bt.vbackporch;
646		fmt->bt.il_vfrontporch = v_fp;
647		fmt->bt.il_vsync = vsync;
648		fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
649		fmt->bt.interlaced = V4L2_DV_INTERLACED;
650	}
651
652	fmt->bt.pixelclock = pix_clk;
653	fmt->bt.standards = V4L2_DV_BT_STD_CVT;
654
655	if (reduced_blanking)
656		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
657
658	return true;
659}
660EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
661
662/*
663 * GTF defines
664 * Based on Generalized Timing Formula Standard
665 * Version 1.1 September 2, 1999
666 */
667
668#define GTF_PXL_CLK_GRAN	250000	/* pixel clock granularity */
669
670#define GTF_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
671#define GTF_V_FP		1	/* vertical front porch (lines) */
672#define GTF_CELL_GRAN		8	/* character cell granularity */
673
674/* Default */
675#define GTF_D_M			600	/* blanking formula gradient */
676#define GTF_D_C			40	/* blanking formula offset */
677#define GTF_D_K			128	/* blanking formula scaling factor */
678#define GTF_D_J			20	/* blanking formula scaling factor */
679#define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
680#define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
681
682/* Secondary */
683#define GTF_S_M			3600	/* blanking formula gradient */
684#define GTF_S_C			40	/* blanking formula offset */
685#define GTF_S_K			128	/* blanking formula scaling factor */
686#define GTF_S_J			35	/* blanking formula scaling factor */
687#define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
688#define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
689
690/** v4l2_detect_gtf - detect if the given timings follow the GTF standard
691 * @frame_height - the total height of the frame (including blanking) in lines.
692 * @hfreq - the horizontal frequency in Hz.
693 * @vsync - the height of the vertical sync in lines.
694 * @polarities - the horizontal and vertical polarities (same as struct
695 *		v4l2_bt_timings polarities).
696 * @interlaced - if this flag is true, it indicates interlaced format
697 * @aspect - preferred aspect ratio. GTF has no method of determining the
698 *		aspect ratio in order to derive the image width from the
699 *		image height, so it has to be passed explicitly. Usually
700 *		the native screen aspect ratio is used for this. If it
701 *		is not filled in correctly, then 16:9 will be assumed.
702 * @fmt - the resulting timings.
703 *
704 * This function will attempt to detect if the given values correspond to a
705 * valid GTF format. If so, then it will return true, and fmt will be filled
706 * in with the found GTF timings.
707 */
708bool v4l2_detect_gtf(unsigned frame_height,
709		unsigned hfreq,
710		unsigned vsync,
711		u32 polarities,
712		bool interlaced,
713		struct v4l2_fract aspect,
714		struct v4l2_dv_timings *fmt)
715{
716	int pix_clk;
717	int  v_fp, v_bp, h_fp, hsync;
718	int frame_width, image_height, image_width;
719	bool default_gtf;
720	int h_blank;
721
722	if (vsync != 3)
723		return false;
724
725	if (polarities == V4L2_DV_VSYNC_POS_POL)
726		default_gtf = true;
727	else if (polarities == V4L2_DV_HSYNC_POS_POL)
728		default_gtf = false;
729	else
730		return false;
731
732	if (hfreq == 0)
733		return false;
734
735	/* Vertical */
736	v_fp = GTF_V_FP;
737	v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
738	if (interlaced)
739		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
740	else
741		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
742
743	if (image_height < 0)
744		return false;
745
746	if (aspect.numerator == 0 || aspect.denominator == 0) {
747		aspect.numerator = 16;
748		aspect.denominator = 9;
749	}
750	image_width = ((image_height * aspect.numerator) / aspect.denominator);
751	image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
752
753	/* Horizontal */
754	if (default_gtf) {
755		u64 num;
756		u32 den;
757
758		num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
759		      ((u64)image_width * GTF_D_M_PRIME * 1000));
760		den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
761		      (2 * GTF_CELL_GRAN);
762		h_blank = div_u64((num + (den >> 1)), den);
763		h_blank *= (2 * GTF_CELL_GRAN);
764	} else {
765		u64 num;
766		u32 den;
767
768		num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
769		      ((u64)image_width * GTF_S_M_PRIME * 1000));
770		den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
771		      (2 * GTF_CELL_GRAN);
772		h_blank = div_u64((num + (den >> 1)), den);
773		h_blank *= (2 * GTF_CELL_GRAN);
774	}
775
776	frame_width = image_width + h_blank;
777
778	pix_clk = (image_width + h_blank) * hfreq;
779	pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
780
781	hsync = (frame_width * 8 + 50) / 100;
782	hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN;
783
784	h_fp = h_blank / 2 - hsync;
785
786	fmt->type = V4L2_DV_BT_656_1120;
787	fmt->bt.polarities = polarities;
788	fmt->bt.width = image_width;
789	fmt->bt.height = image_height;
790	fmt->bt.hfrontporch = h_fp;
791	fmt->bt.vfrontporch = v_fp;
792	fmt->bt.hsync = hsync;
793	fmt->bt.vsync = vsync;
794	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
795
796	if (!interlaced) {
797		fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
798		fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
799	} else {
800		fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
801				      2 * vsync) / 2;
802		fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
803					2 * vsync - fmt->bt.vbackporch;
804		fmt->bt.il_vfrontporch = v_fp;
805		fmt->bt.il_vsync = vsync;
806		fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
807		fmt->bt.interlaced = V4L2_DV_INTERLACED;
808	}
809
810	fmt->bt.pixelclock = pix_clk;
811	fmt->bt.standards = V4L2_DV_BT_STD_GTF;
812
813	if (!default_gtf)
814		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
815
816	return true;
817}
818EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
819
820/** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
821 *	0x15 and 0x16 from the EDID.
822 * @hor_landscape - byte 0x15 from the EDID.
823 * @vert_portrait - byte 0x16 from the EDID.
824 *
825 * Determines the aspect ratio from the EDID.
826 * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
827 * "Horizontal and Vertical Screen Size or Aspect Ratio"
828 */
829struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
830{
831	struct v4l2_fract aspect = { 16, 9 };
832	u8 ratio;
833
834	/* Nothing filled in, fallback to 16:9 */
835	if (!hor_landscape && !vert_portrait)
836		return aspect;
837	/* Both filled in, so they are interpreted as the screen size in cm */
838	if (hor_landscape && vert_portrait) {
839		aspect.numerator = hor_landscape;
840		aspect.denominator = vert_portrait;
841		return aspect;
842	}
843	/* Only one is filled in, so interpret them as a ratio:
844	   (val + 99) / 100 */
845	ratio = hor_landscape | vert_portrait;
846	/* Change some rounded values into the exact aspect ratio */
847	if (ratio == 79) {
848		aspect.numerator = 16;
849		aspect.denominator = 9;
850	} else if (ratio == 34) {
851		aspect.numerator = 4;
852		aspect.denominator = 3;
853	} else if (ratio == 68) {
854		aspect.numerator = 15;
855		aspect.denominator = 9;
856	} else {
857		aspect.numerator = hor_landscape + 99;
858		aspect.denominator = 100;
859	}
860	if (hor_landscape)
861		return aspect;
862	/* The aspect ratio is for portrait, so swap numerator and denominator */
863	swap(aspect.denominator, aspect.numerator);
864	return aspect;
865}
866EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
867
868/** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
869 *	based on various InfoFrames.
870 * @avi: the AVI InfoFrame
871 * @hdmi: the HDMI Vendor InfoFrame, may be NULL
872 * @height: the frame height
873 *
874 * Determines the HDMI colorimetry information, i.e. how the HDMI
875 * pixel color data should be interpreted.
876 *
877 * Note that some of the newer features (DCI-P3, HDR) are not yet
878 * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
879 * and CTA-861-G standards.
880 */
881struct v4l2_hdmi_colorimetry
882v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
883			 const struct hdmi_vendor_infoframe *hdmi,
884			 unsigned int height)
885{
886	struct v4l2_hdmi_colorimetry c = {
887		V4L2_COLORSPACE_SRGB,
888		V4L2_YCBCR_ENC_DEFAULT,
889		V4L2_QUANTIZATION_FULL_RANGE,
890		V4L2_XFER_FUNC_SRGB
891	};
892	bool is_ce = avi->video_code || (hdmi && hdmi->vic);
893	bool is_sdtv = height <= 576;
894	bool default_is_lim_range_rgb = avi->video_code > 1;
895
896	switch (avi->colorspace) {
897	case HDMI_COLORSPACE_RGB:
898		/* RGB pixel encoding */
899		switch (avi->colorimetry) {
900		case HDMI_COLORIMETRY_EXTENDED:
901			switch (avi->extended_colorimetry) {
902			case HDMI_EXTENDED_COLORIMETRY_OPRGB:
903				c.colorspace = V4L2_COLORSPACE_OPRGB;
904				c.xfer_func = V4L2_XFER_FUNC_OPRGB;
905				break;
906			case HDMI_EXTENDED_COLORIMETRY_BT2020:
907				c.colorspace = V4L2_COLORSPACE_BT2020;
908				c.xfer_func = V4L2_XFER_FUNC_709;
909				break;
910			default:
911				break;
912			}
913			break;
914		default:
915			break;
916		}
917		switch (avi->quantization_range) {
918		case HDMI_QUANTIZATION_RANGE_LIMITED:
919			c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
920			break;
921		case HDMI_QUANTIZATION_RANGE_FULL:
922			break;
923		default:
924			if (default_is_lim_range_rgb)
925				c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
926			break;
927		}
928		break;
929
930	default:
931		/* YCbCr pixel encoding */
932		c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
933		switch (avi->colorimetry) {
934		case HDMI_COLORIMETRY_NONE:
935			if (!is_ce)
936				break;
937			if (is_sdtv) {
938				c.colorspace = V4L2_COLORSPACE_SMPTE170M;
939				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
940			} else {
941				c.colorspace = V4L2_COLORSPACE_REC709;
942				c.ycbcr_enc = V4L2_YCBCR_ENC_709;
943			}
944			c.xfer_func = V4L2_XFER_FUNC_709;
945			break;
946		case HDMI_COLORIMETRY_ITU_601:
947			c.colorspace = V4L2_COLORSPACE_SMPTE170M;
948			c.ycbcr_enc = V4L2_YCBCR_ENC_601;
949			c.xfer_func = V4L2_XFER_FUNC_709;
950			break;
951		case HDMI_COLORIMETRY_ITU_709:
952			c.colorspace = V4L2_COLORSPACE_REC709;
953			c.ycbcr_enc = V4L2_YCBCR_ENC_709;
954			c.xfer_func = V4L2_XFER_FUNC_709;
955			break;
956		case HDMI_COLORIMETRY_EXTENDED:
957			switch (avi->extended_colorimetry) {
958			case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
959				c.colorspace = V4L2_COLORSPACE_REC709;
960				c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
961				c.xfer_func = V4L2_XFER_FUNC_709;
962				break;
963			case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
964				c.colorspace = V4L2_COLORSPACE_REC709;
965				c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
966				c.xfer_func = V4L2_XFER_FUNC_709;
967				break;
968			case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
969				c.colorspace = V4L2_COLORSPACE_SRGB;
970				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
971				c.xfer_func = V4L2_XFER_FUNC_SRGB;
972				break;
973			case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
974				c.colorspace = V4L2_COLORSPACE_OPRGB;
975				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
976				c.xfer_func = V4L2_XFER_FUNC_OPRGB;
977				break;
978			case HDMI_EXTENDED_COLORIMETRY_BT2020:
979				c.colorspace = V4L2_COLORSPACE_BT2020;
980				c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
981				c.xfer_func = V4L2_XFER_FUNC_709;
982				break;
983			case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
984				c.colorspace = V4L2_COLORSPACE_BT2020;
985				c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
986				c.xfer_func = V4L2_XFER_FUNC_709;
987				break;
988			default: /* fall back to ITU_709 */
989				c.colorspace = V4L2_COLORSPACE_REC709;
990				c.ycbcr_enc = V4L2_YCBCR_ENC_709;
991				c.xfer_func = V4L2_XFER_FUNC_709;
992				break;
993			}
994			break;
995		default:
996			break;
997		}
998		/*
999		 * YCC Quantization Range signaling is more-or-less broken,
1000		 * let's just ignore this.
1001		 */
1002		break;
1003	}
1004	return c;
1005}
1006EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
1007
1008/**
1009 * v4l2_get_edid_phys_addr() - find and return the physical address
1010 *
1011 * @edid:	pointer to the EDID data
1012 * @size:	size in bytes of the EDID data
1013 * @offset:	If not %NULL then the location of the physical address
1014 *		bytes in the EDID will be returned here. This is set to 0
1015 *		if there is no physical address found.
1016 *
1017 * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
1018 */
1019u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
1020			    unsigned int *offset)
1021{
1022	unsigned int loc = cec_get_edid_spa_location(edid, size);
1023
1024	if (offset)
1025		*offset = loc;
1026	if (loc == 0)
1027		return CEC_PHYS_ADDR_INVALID;
1028	return (edid[loc] << 8) | edid[loc + 1];
1029}
1030EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
1031
1032/**
1033 * v4l2_set_edid_phys_addr() - find and set the physical address
1034 *
1035 * @edid:	pointer to the EDID data
1036 * @size:	size in bytes of the EDID data
1037 * @phys_addr:	the new physical address
1038 *
1039 * This function finds the location of the physical address in the EDID
1040 * and fills in the given physical address and updates the checksum
1041 * at the end of the EDID block. It does nothing if the EDID doesn't
1042 * contain a physical address.
1043 */
1044void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
1045{
1046	unsigned int loc = cec_get_edid_spa_location(edid, size);
1047	u8 sum = 0;
1048	unsigned int i;
1049
1050	if (loc == 0)
1051		return;
1052	edid[loc] = phys_addr >> 8;
1053	edid[loc + 1] = phys_addr & 0xff;
1054	loc &= ~0x7f;
1055
1056	/* update the checksum */
1057	for (i = loc; i < loc + 127; i++)
1058		sum += edid[i];
1059	edid[i] = 256 - sum;
1060}
1061EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1062
1063/**
1064 * v4l2_phys_addr_for_input() - calculate the PA for an input
1065 *
1066 * @phys_addr:	the physical address of the parent
1067 * @input:	the number of the input port, must be between 1 and 15
1068 *
1069 * This function calculates a new physical address based on the input
1070 * port number. For example:
1071 *
1072 * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1073 *
1074 * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1075 *
1076 * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1077 *
1078 * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1079 *
1080 * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1081 */
1082u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1083{
1084	/* Check if input is sane */
1085	if (WARN_ON(input == 0 || input > 0xf))
1086		return CEC_PHYS_ADDR_INVALID;
1087
1088	if (phys_addr == 0)
1089		return input << 12;
1090
1091	if ((phys_addr & 0x0fff) == 0)
1092		return phys_addr | (input << 8);
1093
1094	if ((phys_addr & 0x00ff) == 0)
1095		return phys_addr | (input << 4);
1096
1097	if ((phys_addr & 0x000f) == 0)
1098		return phys_addr | input;
1099
1100	/*
1101	 * All nibbles are used so no valid physical addresses can be assigned
1102	 * to the input.
1103	 */
1104	return CEC_PHYS_ADDR_INVALID;
1105}
1106EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1107
1108/**
1109 * v4l2_phys_addr_validate() - validate a physical address from an EDID
1110 *
1111 * @phys_addr:	the physical address to validate
1112 * @parent:	if not %NULL, then this is filled with the parents PA.
1113 * @port:	if not %NULL, then this is filled with the input port.
1114 *
1115 * This validates a physical address as read from an EDID. If the
1116 * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1117 * then it will return -EINVAL.
1118 *
1119 * The parent PA is passed into %parent and the input port is passed into
1120 * %port. For example:
1121 *
1122 * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1123 *
1124 * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1125 *
1126 * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1127 *
1128 * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1129 *
1130 * Return: 0 if the PA is valid, -EINVAL if not.
1131 */
1132int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1133{
1134	int i;
1135
1136	if (parent)
1137		*parent = phys_addr;
1138	if (port)
1139		*port = 0;
1140	if (phys_addr == CEC_PHYS_ADDR_INVALID)
1141		return 0;
1142	for (i = 0; i < 16; i += 4)
1143		if (phys_addr & (0xf << i))
1144			break;
1145	if (i == 16)
1146		return 0;
1147	if (parent)
1148		*parent = phys_addr & (0xfff0 << i);
1149	if (port)
1150		*port = (phys_addr >> i) & 0xf;
1151	for (i += 4; i < 16; i += 4)
1152		if ((phys_addr & (0xf << i)) == 0)
1153			return -EINVAL;
1154	return 0;
1155}
1156EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);
1157