1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Driver for Renesas R-Car MIPI CSI-2 Receiver
4 *
5 * Copyright (C) 2018 Renesas Electronics Corp.
6 */
7
8#include <linux/delay.h>
9#include <linux/interrupt.h>
10#include <linux/io.h>
11#include <linux/module.h>
12#include <linux/of.h>
13#include <linux/of_graph.h>
14#include <linux/platform_device.h>
15#include <linux/pm_runtime.h>
16#include <linux/reset.h>
17#include <linux/sys_soc.h>
18
19#include <media/mipi-csi2.h>
20#include <media/v4l2-ctrls.h>
21#include <media/v4l2-device.h>
22#include <media/v4l2-fwnode.h>
23#include <media/v4l2-mc.h>
24#include <media/v4l2-subdev.h>
25
26struct rcar_csi2;
27
28/* Register offsets and bits */
29
30/* Control Timing Select */
31#define TREF_REG			0x00
32#define TREF_TREF			BIT(0)
33
34/* Software Reset */
35#define SRST_REG			0x04
36#define SRST_SRST			BIT(0)
37
38/* PHY Operation Control */
39#define PHYCNT_REG			0x08
40#define PHYCNT_SHUTDOWNZ		BIT(17)
41#define PHYCNT_RSTZ			BIT(16)
42#define PHYCNT_ENABLECLK		BIT(4)
43#define PHYCNT_ENABLE_3			BIT(3)
44#define PHYCNT_ENABLE_2			BIT(2)
45#define PHYCNT_ENABLE_1			BIT(1)
46#define PHYCNT_ENABLE_0			BIT(0)
47
48/* Checksum Control */
49#define CHKSUM_REG			0x0c
50#define CHKSUM_ECC_EN			BIT(1)
51#define CHKSUM_CRC_EN			BIT(0)
52
53/*
54 * Channel Data Type Select
55 * VCDT[0-15]:  Channel 0 VCDT[16-31]:  Channel 1
56 * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
57 */
58#define VCDT_REG			0x10
59#define VCDT2_REG			0x14
60#define VCDT_VCDTN_EN			BIT(15)
61#define VCDT_SEL_VC(n)			(((n) & 0x3) << 8)
62#define VCDT_SEL_DTN_ON			BIT(6)
63#define VCDT_SEL_DT(n)			(((n) & 0x3f) << 0)
64
65/* Frame Data Type Select */
66#define FRDT_REG			0x18
67
68/* Field Detection Control */
69#define FLD_REG				0x1c
70#define FLD_FLD_NUM(n)			(((n) & 0xff) << 16)
71#define FLD_DET_SEL(n)			(((n) & 0x3) << 4)
72#define FLD_FLD_EN4			BIT(3)
73#define FLD_FLD_EN3			BIT(2)
74#define FLD_FLD_EN2			BIT(1)
75#define FLD_FLD_EN			BIT(0)
76
77/* Automatic Standby Control */
78#define ASTBY_REG			0x20
79
80/* Long Data Type Setting 0 */
81#define LNGDT0_REG			0x28
82
83/* Long Data Type Setting 1 */
84#define LNGDT1_REG			0x2c
85
86/* Interrupt Enable */
87#define INTEN_REG			0x30
88#define INTEN_INT_AFIFO_OF		BIT(27)
89#define INTEN_INT_ERRSOTHS		BIT(4)
90#define INTEN_INT_ERRSOTSYNCHS		BIT(3)
91
92/* Interrupt Source Mask */
93#define INTCLOSE_REG			0x34
94
95/* Interrupt Status Monitor */
96#define INTSTATE_REG			0x38
97#define INTSTATE_INT_ULPS_START		BIT(7)
98#define INTSTATE_INT_ULPS_END		BIT(6)
99
100/* Interrupt Error Status Monitor */
101#define INTERRSTATE_REG			0x3c
102
103/* Short Packet Data */
104#define SHPDAT_REG			0x40
105
106/* Short Packet Count */
107#define SHPCNT_REG			0x44
108
109/* LINK Operation Control */
110#define LINKCNT_REG			0x48
111#define LINKCNT_MONITOR_EN		BIT(31)
112#define LINKCNT_REG_MONI_PACT_EN	BIT(25)
113#define LINKCNT_ICLK_NONSTOP		BIT(24)
114
115/* Lane Swap */
116#define LSWAP_REG			0x4c
117#define LSWAP_L3SEL(n)			(((n) & 0x3) << 6)
118#define LSWAP_L2SEL(n)			(((n) & 0x3) << 4)
119#define LSWAP_L1SEL(n)			(((n) & 0x3) << 2)
120#define LSWAP_L0SEL(n)			(((n) & 0x3) << 0)
121
122/* PHY Test Interface Write Register */
123#define PHTW_REG			0x50
124#define PHTW_DWEN			BIT(24)
125#define PHTW_TESTDIN_DATA(n)		(((n & 0xff)) << 16)
126#define PHTW_CWEN			BIT(8)
127#define PHTW_TESTDIN_CODE(n)		((n & 0xff))
128
129#define PHYFRX_REG			0x64
130#define PHYFRX_FORCERX_MODE_3		BIT(3)
131#define PHYFRX_FORCERX_MODE_2		BIT(2)
132#define PHYFRX_FORCERX_MODE_1		BIT(1)
133#define PHYFRX_FORCERX_MODE_0		BIT(0)
134
135/* V4H BASE registers */
136#define V4H_N_LANES_REG					0x0004
137#define V4H_CSI2_RESETN_REG				0x0008
138#define V4H_PHY_MODE_REG				0x001c
139#define V4H_PHY_SHUTDOWNZ_REG				0x0040
140#define V4H_DPHY_RSTZ_REG				0x0044
141#define V4H_FLDC_REG					0x0804
142#define V4H_FLDD_REG					0x0808
143#define V4H_IDIC_REG					0x0810
144#define V4H_PHY_EN_REG					0x2000
145
146#define V4H_ST_PHYST_REG				0x2814
147#define V4H_ST_PHYST_ST_PHY_READY			BIT(31)
148#define V4H_ST_PHYST_ST_STOPSTATE_3			BIT(3)
149#define V4H_ST_PHYST_ST_STOPSTATE_2			BIT(2)
150#define V4H_ST_PHYST_ST_STOPSTATE_1			BIT(1)
151#define V4H_ST_PHYST_ST_STOPSTATE_0			BIT(0)
152
153/* V4H PPI registers */
154#define V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(n)		(0x21800 + ((n) * 2)) /* n = 0 - 9 */
155#define V4H_PPI_STARTUP_RW_COMMON_STARTUP_1_1_REG	0x21822
156#define V4H_PPI_CALIBCTRL_RW_COMMON_BG_0_REG		0x2184c
157#define V4H_PPI_RW_LPDCOCAL_TIMEBASE_REG		0x21c02
158#define V4H_PPI_RW_LPDCOCAL_NREF_REG			0x21c04
159#define V4H_PPI_RW_LPDCOCAL_NREF_RANGE_REG		0x21c06
160#define V4H_PPI_RW_LPDCOCAL_TWAIT_CONFIG_REG		0x21c0a
161#define V4H_PPI_RW_LPDCOCAL_VT_CONFIG_REG		0x21c0c
162#define V4H_PPI_RW_LPDCOCAL_COARSE_CFG_REG		0x21c10
163#define V4H_PPI_RW_COMMON_CFG_REG			0x21c6c
164#define V4H_PPI_RW_TERMCAL_CFG_0_REG			0x21c80
165#define V4H_PPI_RW_OFFSETCAL_CFG_0_REG			0x21ca0
166
167/* V4H CORE registers */
168#define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(n)	(0x22040 + ((n) * 2)) /* n = 0 - 15 */
169#define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE1_CTRL_2_REG(n)	(0x22440 + ((n) * 2)) /* n = 0 - 15 */
170#define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE2_CTRL_2_REG(n)	(0x22840 + ((n) * 2)) /* n = 0 - 15 */
171#define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE3_CTRL_2_REG(n)	(0x22c40 + ((n) * 2)) /* n = 0 - 15 */
172#define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE4_CTRL_2_REG(n)	(0x23040 + ((n) * 2)) /* n = 0 - 15 */
173#define V4H_CORE_DIG_IOCTRL_RW_AFE_CB_CTRL_2_REG(n)	(0x23840 + ((n) * 2)) /* n = 0 - 11 */
174#define V4H_CORE_DIG_RW_COMMON_REG(n)			(0x23880 + ((n) * 2)) /* n = 0 - 15 */
175#define V4H_CORE_DIG_ANACTRL_RW_COMMON_ANACTRL_REG(n)	(0x239e0 + ((n) * 2)) /* n = 0 - 3 */
176#define V4H_CORE_DIG_CLANE_1_RW_CFG_0_REG		0x2a400
177#define V4H_CORE_DIG_CLANE_1_RW_HS_TX_6_REG		0x2a60c
178
179/* V4H C-PHY */
180#define V4H_CORE_DIG_RW_TRIO0_REG(n)			(0x22100 + ((n) * 2)) /* n = 0 - 3 */
181#define V4H_CORE_DIG_RW_TRIO1_REG(n)			(0x22500 + ((n) * 2)) /* n = 0 - 3 */
182#define V4H_CORE_DIG_RW_TRIO2_REG(n)			(0x22900 + ((n) * 2)) /* n = 0 - 3 */
183#define V4H_CORE_DIG_CLANE_0_RW_LP_0_REG		0x2a080
184#define V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(n)		(0x2a100 + ((n) * 2)) /* n = 0 - 6 */
185#define V4H_CORE_DIG_CLANE_1_RW_LP_0_REG		0x2a480
186#define V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(n)		(0x2a500 + ((n) * 2)) /* n = 0 - 6 */
187#define V4H_CORE_DIG_CLANE_2_RW_LP_0_REG		0x2a880
188#define V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(n)		(0x2a900 + ((n) * 2)) /* n = 0 - 6 */
189
190struct rcsi2_cphy_setting {
191	u16 msps;
192	u16 rx2;
193	u16 trio0;
194	u16 trio1;
195	u16 trio2;
196	u16 lane27;
197	u16 lane29;
198};
199
200static const struct rcsi2_cphy_setting cphy_setting_table_r8a779g0[] = {
201	{ .msps =   80, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0134, .trio2 = 0x6a, .lane27 = 0x0000, .lane29 = 0x0a24 },
202	{ .msps =  100, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x00f5, .trio2 = 0x55, .lane27 = 0x0000, .lane29 = 0x0a24 },
203	{ .msps =  200, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0077, .trio2 = 0x2b, .lane27 = 0x0000, .lane29 = 0x0a44 },
204	{ .msps =  300, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x004d, .trio2 = 0x1d, .lane27 = 0x0000, .lane29 = 0x0a44 },
205	{ .msps =  400, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0038, .trio2 = 0x16, .lane27 = 0x0000, .lane29 = 0x0a64 },
206	{ .msps =  500, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x002b, .trio2 = 0x12, .lane27 = 0x0000, .lane29 = 0x0a64 },
207	{ .msps =  600, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0023, .trio2 = 0x0f, .lane27 = 0x0000, .lane29 = 0x0a64 },
208	{ .msps =  700, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x001d, .trio2 = 0x0d, .lane27 = 0x0000, .lane29 = 0x0a84 },
209	{ .msps =  800, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0018, .trio2 = 0x0c, .lane27 = 0x0000, .lane29 = 0x0a84 },
210	{ .msps =  900, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0015, .trio2 = 0x0b, .lane27 = 0x0000, .lane29 = 0x0a84 },
211	{ .msps = 1000, .rx2 = 0x3e, .trio0 = 0x024a, .trio1 = 0x0012, .trio2 = 0x0a, .lane27 = 0x0400, .lane29 = 0x0a84 },
212	{ .msps = 1100, .rx2 = 0x44, .trio0 = 0x024a, .trio1 = 0x000f, .trio2 = 0x09, .lane27 = 0x0800, .lane29 = 0x0a84 },
213	{ .msps = 1200, .rx2 = 0x4a, .trio0 = 0x024a, .trio1 = 0x000e, .trio2 = 0x08, .lane27 = 0x0c00, .lane29 = 0x0a84 },
214	{ .msps = 1300, .rx2 = 0x51, .trio0 = 0x024a, .trio1 = 0x000c, .trio2 = 0x08, .lane27 = 0x0c00, .lane29 = 0x0aa4 },
215	{ .msps = 1400, .rx2 = 0x57, .trio0 = 0x024a, .trio1 = 0x000b, .trio2 = 0x07, .lane27 = 0x1000, .lane29 = 0x0aa4 },
216	{ .msps = 1500, .rx2 = 0x5d, .trio0 = 0x044a, .trio1 = 0x0009, .trio2 = 0x07, .lane27 = 0x1000, .lane29 = 0x0aa4 },
217	{ .msps = 1600, .rx2 = 0x63, .trio0 = 0x044a, .trio1 = 0x0008, .trio2 = 0x07, .lane27 = 0x1400, .lane29 = 0x0aa4 },
218	{ .msps = 1700, .rx2 = 0x6a, .trio0 = 0x044a, .trio1 = 0x0007, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
219	{ .msps = 1800, .rx2 = 0x70, .trio0 = 0x044a, .trio1 = 0x0007, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
220	{ .msps = 1900, .rx2 = 0x76, .trio0 = 0x044a, .trio1 = 0x0006, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
221	{ .msps = 2000, .rx2 = 0x7c, .trio0 = 0x044a, .trio1 = 0x0005, .trio2 = 0x06, .lane27 = 0x1800, .lane29 = 0x0aa4 },
222	{ .msps = 2100, .rx2 = 0x83, .trio0 = 0x044a, .trio1 = 0x0005, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
223	{ .msps = 2200, .rx2 = 0x89, .trio0 = 0x064a, .trio1 = 0x0004, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
224	{ .msps = 2300, .rx2 = 0x8f, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
225	{ .msps = 2400, .rx2 = 0x95, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
226	{ .msps = 2500, .rx2 = 0x9c, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0aa4 },
227	{ .msps = 2600, .rx2 = 0xa2, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
228	{ .msps = 2700, .rx2 = 0xa8, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
229	{ .msps = 2800, .rx2 = 0xae, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
230	{ .msps = 2900, .rx2 = 0xb5, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
231	{ .msps = 3000, .rx2 = 0xbb, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
232	{ .msps = 3100, .rx2 = 0xc1, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
233	{ .msps = 3200, .rx2 = 0xc7, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
234	{ .msps = 3300, .rx2 = 0xce, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
235	{ .msps = 3400, .rx2 = 0xd4, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
236	{ .msps = 3500, .rx2 = 0xda, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
237	{ /* sentinel */ },
238};
239
240struct phtw_value {
241	u16 data;
242	u16 code;
243};
244
245struct rcsi2_mbps_reg {
246	u16 mbps;
247	u16 reg;
248};
249
250static const struct rcsi2_mbps_reg phtw_mbps_v3u[] = {
251	{ .mbps = 1500, .reg = 0xcc },
252	{ .mbps = 1550, .reg = 0x1d },
253	{ .mbps = 1600, .reg = 0x27 },
254	{ .mbps = 1650, .reg = 0x30 },
255	{ .mbps = 1700, .reg = 0x39 },
256	{ .mbps = 1750, .reg = 0x42 },
257	{ .mbps = 1800, .reg = 0x4b },
258	{ .mbps = 1850, .reg = 0x55 },
259	{ .mbps = 1900, .reg = 0x5e },
260	{ .mbps = 1950, .reg = 0x67 },
261	{ .mbps = 2000, .reg = 0x71 },
262	{ .mbps = 2050, .reg = 0x79 },
263	{ .mbps = 2100, .reg = 0x83 },
264	{ .mbps = 2150, .reg = 0x8c },
265	{ .mbps = 2200, .reg = 0x95 },
266	{ .mbps = 2250, .reg = 0x9e },
267	{ .mbps = 2300, .reg = 0xa7 },
268	{ .mbps = 2350, .reg = 0xb0 },
269	{ .mbps = 2400, .reg = 0xba },
270	{ .mbps = 2450, .reg = 0xc3 },
271	{ .mbps = 2500, .reg = 0xcc },
272	{ /* sentinel */ },
273};
274
275static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
276	{ .mbps =   80, .reg = 0x86 },
277	{ .mbps =   90, .reg = 0x86 },
278	{ .mbps =  100, .reg = 0x87 },
279	{ .mbps =  110, .reg = 0x87 },
280	{ .mbps =  120, .reg = 0x88 },
281	{ .mbps =  130, .reg = 0x88 },
282	{ .mbps =  140, .reg = 0x89 },
283	{ .mbps =  150, .reg = 0x89 },
284	{ .mbps =  160, .reg = 0x8a },
285	{ .mbps =  170, .reg = 0x8a },
286	{ .mbps =  180, .reg = 0x8b },
287	{ .mbps =  190, .reg = 0x8b },
288	{ .mbps =  205, .reg = 0x8c },
289	{ .mbps =  220, .reg = 0x8d },
290	{ .mbps =  235, .reg = 0x8e },
291	{ .mbps =  250, .reg = 0x8e },
292	{ /* sentinel */ },
293};
294
295static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
296	{ .mbps =   80, .reg = 0x00 },
297	{ .mbps =   90, .reg = 0x20 },
298	{ .mbps =  100, .reg = 0x40 },
299	{ .mbps =  110, .reg = 0x02 },
300	{ .mbps =  130, .reg = 0x22 },
301	{ .mbps =  140, .reg = 0x42 },
302	{ .mbps =  150, .reg = 0x04 },
303	{ .mbps =  170, .reg = 0x24 },
304	{ .mbps =  180, .reg = 0x44 },
305	{ .mbps =  200, .reg = 0x06 },
306	{ .mbps =  220, .reg = 0x26 },
307	{ .mbps =  240, .reg = 0x46 },
308	{ .mbps =  250, .reg = 0x08 },
309	{ .mbps =  270, .reg = 0x28 },
310	{ .mbps =  300, .reg = 0x0a },
311	{ .mbps =  330, .reg = 0x2a },
312	{ .mbps =  360, .reg = 0x4a },
313	{ .mbps =  400, .reg = 0x0c },
314	{ .mbps =  450, .reg = 0x2c },
315	{ .mbps =  500, .reg = 0x0e },
316	{ .mbps =  550, .reg = 0x2e },
317	{ .mbps =  600, .reg = 0x10 },
318	{ .mbps =  650, .reg = 0x30 },
319	{ .mbps =  700, .reg = 0x12 },
320	{ .mbps =  750, .reg = 0x32 },
321	{ .mbps =  800, .reg = 0x52 },
322	{ .mbps =  850, .reg = 0x72 },
323	{ .mbps =  900, .reg = 0x14 },
324	{ .mbps =  950, .reg = 0x34 },
325	{ .mbps = 1000, .reg = 0x54 },
326	{ .mbps = 1050, .reg = 0x74 },
327	{ .mbps = 1125, .reg = 0x16 },
328	{ /* sentinel */ },
329};
330
331/* PHY Test Interface Clear */
332#define PHTC_REG			0x58
333#define PHTC_TESTCLR			BIT(0)
334
335/* PHY Frequency Control */
336#define PHYPLL_REG			0x68
337#define PHYPLL_HSFREQRANGE(n)		((n) << 16)
338
339static const struct rcsi2_mbps_reg hsfreqrange_v3u[] = {
340	{ .mbps =   80, .reg = 0x00 },
341	{ .mbps =   90, .reg = 0x10 },
342	{ .mbps =  100, .reg = 0x20 },
343	{ .mbps =  110, .reg = 0x30 },
344	{ .mbps =  120, .reg = 0x01 },
345	{ .mbps =  130, .reg = 0x11 },
346	{ .mbps =  140, .reg = 0x21 },
347	{ .mbps =  150, .reg = 0x31 },
348	{ .mbps =  160, .reg = 0x02 },
349	{ .mbps =  170, .reg = 0x12 },
350	{ .mbps =  180, .reg = 0x22 },
351	{ .mbps =  190, .reg = 0x32 },
352	{ .mbps =  205, .reg = 0x03 },
353	{ .mbps =  220, .reg = 0x13 },
354	{ .mbps =  235, .reg = 0x23 },
355	{ .mbps =  250, .reg = 0x33 },
356	{ .mbps =  275, .reg = 0x04 },
357	{ .mbps =  300, .reg = 0x14 },
358	{ .mbps =  325, .reg = 0x25 },
359	{ .mbps =  350, .reg = 0x35 },
360	{ .mbps =  400, .reg = 0x05 },
361	{ .mbps =  450, .reg = 0x16 },
362	{ .mbps =  500, .reg = 0x26 },
363	{ .mbps =  550, .reg = 0x37 },
364	{ .mbps =  600, .reg = 0x07 },
365	{ .mbps =  650, .reg = 0x18 },
366	{ .mbps =  700, .reg = 0x28 },
367	{ .mbps =  750, .reg = 0x39 },
368	{ .mbps =  800, .reg = 0x09 },
369	{ .mbps =  850, .reg = 0x19 },
370	{ .mbps =  900, .reg = 0x29 },
371	{ .mbps =  950, .reg = 0x3a },
372	{ .mbps = 1000, .reg = 0x0a },
373	{ .mbps = 1050, .reg = 0x1a },
374	{ .mbps = 1100, .reg = 0x2a },
375	{ .mbps = 1150, .reg = 0x3b },
376	{ .mbps = 1200, .reg = 0x0b },
377	{ .mbps = 1250, .reg = 0x1b },
378	{ .mbps = 1300, .reg = 0x2b },
379	{ .mbps = 1350, .reg = 0x3c },
380	{ .mbps = 1400, .reg = 0x0c },
381	{ .mbps = 1450, .reg = 0x1c },
382	{ .mbps = 1500, .reg = 0x2c },
383	{ .mbps = 1550, .reg = 0x3d },
384	{ .mbps = 1600, .reg = 0x0d },
385	{ .mbps = 1650, .reg = 0x1d },
386	{ .mbps = 1700, .reg = 0x2e },
387	{ .mbps = 1750, .reg = 0x3e },
388	{ .mbps = 1800, .reg = 0x0e },
389	{ .mbps = 1850, .reg = 0x1e },
390	{ .mbps = 1900, .reg = 0x2f },
391	{ .mbps = 1950, .reg = 0x3f },
392	{ .mbps = 2000, .reg = 0x0f },
393	{ .mbps = 2050, .reg = 0x40 },
394	{ .mbps = 2100, .reg = 0x41 },
395	{ .mbps = 2150, .reg = 0x42 },
396	{ .mbps = 2200, .reg = 0x43 },
397	{ .mbps = 2300, .reg = 0x45 },
398	{ .mbps = 2350, .reg = 0x46 },
399	{ .mbps = 2400, .reg = 0x47 },
400	{ .mbps = 2450, .reg = 0x48 },
401	{ .mbps = 2500, .reg = 0x49 },
402	{ /* sentinel */ },
403};
404
405static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
406	{ .mbps =   80, .reg = 0x00 },
407	{ .mbps =   90, .reg = 0x10 },
408	{ .mbps =  100, .reg = 0x20 },
409	{ .mbps =  110, .reg = 0x30 },
410	{ .mbps =  120, .reg = 0x01 },
411	{ .mbps =  130, .reg = 0x11 },
412	{ .mbps =  140, .reg = 0x21 },
413	{ .mbps =  150, .reg = 0x31 },
414	{ .mbps =  160, .reg = 0x02 },
415	{ .mbps =  170, .reg = 0x12 },
416	{ .mbps =  180, .reg = 0x22 },
417	{ .mbps =  190, .reg = 0x32 },
418	{ .mbps =  205, .reg = 0x03 },
419	{ .mbps =  220, .reg = 0x13 },
420	{ .mbps =  235, .reg = 0x23 },
421	{ .mbps =  250, .reg = 0x33 },
422	{ .mbps =  275, .reg = 0x04 },
423	{ .mbps =  300, .reg = 0x14 },
424	{ .mbps =  325, .reg = 0x25 },
425	{ .mbps =  350, .reg = 0x35 },
426	{ .mbps =  400, .reg = 0x05 },
427	{ .mbps =  450, .reg = 0x16 },
428	{ .mbps =  500, .reg = 0x26 },
429	{ .mbps =  550, .reg = 0x37 },
430	{ .mbps =  600, .reg = 0x07 },
431	{ .mbps =  650, .reg = 0x18 },
432	{ .mbps =  700, .reg = 0x28 },
433	{ .mbps =  750, .reg = 0x39 },
434	{ .mbps =  800, .reg = 0x09 },
435	{ .mbps =  850, .reg = 0x19 },
436	{ .mbps =  900, .reg = 0x29 },
437	{ .mbps =  950, .reg = 0x3a },
438	{ .mbps = 1000, .reg = 0x0a },
439	{ .mbps = 1050, .reg = 0x1a },
440	{ .mbps = 1100, .reg = 0x2a },
441	{ .mbps = 1150, .reg = 0x3b },
442	{ .mbps = 1200, .reg = 0x0b },
443	{ .mbps = 1250, .reg = 0x1b },
444	{ .mbps = 1300, .reg = 0x2b },
445	{ .mbps = 1350, .reg = 0x3c },
446	{ .mbps = 1400, .reg = 0x0c },
447	{ .mbps = 1450, .reg = 0x1c },
448	{ .mbps = 1500, .reg = 0x2c },
449	{ /* sentinel */ },
450};
451
452static const struct rcsi2_mbps_reg hsfreqrange_m3w[] = {
453	{ .mbps =   80,	.reg = 0x00 },
454	{ .mbps =   90,	.reg = 0x10 },
455	{ .mbps =  100,	.reg = 0x20 },
456	{ .mbps =  110,	.reg = 0x30 },
457	{ .mbps =  120,	.reg = 0x01 },
458	{ .mbps =  130,	.reg = 0x11 },
459	{ .mbps =  140,	.reg = 0x21 },
460	{ .mbps =  150,	.reg = 0x31 },
461	{ .mbps =  160,	.reg = 0x02 },
462	{ .mbps =  170,	.reg = 0x12 },
463	{ .mbps =  180,	.reg = 0x22 },
464	{ .mbps =  190,	.reg = 0x32 },
465	{ .mbps =  205,	.reg = 0x03 },
466	{ .mbps =  220,	.reg = 0x13 },
467	{ .mbps =  235,	.reg = 0x23 },
468	{ .mbps =  250,	.reg = 0x33 },
469	{ .mbps =  275,	.reg = 0x04 },
470	{ .mbps =  300,	.reg = 0x14 },
471	{ .mbps =  325,	.reg = 0x05 },
472	{ .mbps =  350,	.reg = 0x15 },
473	{ .mbps =  400,	.reg = 0x25 },
474	{ .mbps =  450,	.reg = 0x06 },
475	{ .mbps =  500,	.reg = 0x16 },
476	{ .mbps =  550,	.reg = 0x07 },
477	{ .mbps =  600,	.reg = 0x17 },
478	{ .mbps =  650,	.reg = 0x08 },
479	{ .mbps =  700,	.reg = 0x18 },
480	{ .mbps =  750,	.reg = 0x09 },
481	{ .mbps =  800,	.reg = 0x19 },
482	{ .mbps =  850,	.reg = 0x29 },
483	{ .mbps =  900,	.reg = 0x39 },
484	{ .mbps =  950,	.reg = 0x0a },
485	{ .mbps = 1000,	.reg = 0x1a },
486	{ .mbps = 1050,	.reg = 0x2a },
487	{ .mbps = 1100,	.reg = 0x3a },
488	{ .mbps = 1150,	.reg = 0x0b },
489	{ .mbps = 1200,	.reg = 0x1b },
490	{ .mbps = 1250,	.reg = 0x2b },
491	{ .mbps = 1300,	.reg = 0x3b },
492	{ .mbps = 1350,	.reg = 0x0c },
493	{ .mbps = 1400,	.reg = 0x1c },
494	{ .mbps = 1450,	.reg = 0x2c },
495	{ .mbps = 1500,	.reg = 0x3c },
496	{ /* sentinel */ },
497};
498
499/* PHY ESC Error Monitor */
500#define PHEERM_REG			0x74
501
502/* PHY Clock Lane Monitor */
503#define PHCLM_REG			0x78
504#define PHCLM_STOPSTATECKL		BIT(0)
505
506/* PHY Data Lane Monitor */
507#define PHDLM_REG			0x7c
508
509/* CSI0CLK Frequency Configuration Preset Register */
510#define CSI0CLKFCPR_REG			0x260
511#define CSI0CLKFREQRANGE(n)		((n & 0x3f) << 16)
512
513struct rcar_csi2_format {
514	u32 code;
515	unsigned int datatype;
516	unsigned int bpp;
517};
518
519static const struct rcar_csi2_format rcar_csi2_formats[] = {
520	{
521		.code = MEDIA_BUS_FMT_RGB888_1X24,
522		.datatype = MIPI_CSI2_DT_RGB888,
523		.bpp = 24,
524	}, {
525		.code = MEDIA_BUS_FMT_UYVY8_1X16,
526		.datatype = MIPI_CSI2_DT_YUV422_8B,
527		.bpp = 16,
528	}, {
529		.code = MEDIA_BUS_FMT_YUYV8_1X16,
530		.datatype = MIPI_CSI2_DT_YUV422_8B,
531		.bpp = 16,
532	}, {
533		.code = MEDIA_BUS_FMT_UYVY8_2X8,
534		.datatype = MIPI_CSI2_DT_YUV422_8B,
535		.bpp = 16,
536	}, {
537		.code = MEDIA_BUS_FMT_YUYV10_2X10,
538		.datatype = MIPI_CSI2_DT_YUV422_8B,
539		.bpp = 20,
540	}, {
541		.code = MEDIA_BUS_FMT_Y10_1X10,
542		.datatype = MIPI_CSI2_DT_RAW10,
543		.bpp = 10,
544	}, {
545		.code = MEDIA_BUS_FMT_SBGGR8_1X8,
546		.datatype = MIPI_CSI2_DT_RAW8,
547		.bpp = 8,
548	}, {
549		.code = MEDIA_BUS_FMT_SGBRG8_1X8,
550		.datatype = MIPI_CSI2_DT_RAW8,
551		.bpp = 8,
552	}, {
553		.code = MEDIA_BUS_FMT_SGRBG8_1X8,
554		.datatype = MIPI_CSI2_DT_RAW8,
555		.bpp = 8,
556	}, {
557		.code = MEDIA_BUS_FMT_SRGGB8_1X8,
558		.datatype = MIPI_CSI2_DT_RAW8,
559		.bpp = 8,
560	}, {
561		.code = MEDIA_BUS_FMT_Y8_1X8,
562		.datatype = MIPI_CSI2_DT_RAW8,
563		.bpp = 8,
564	},
565};
566
567static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
568{
569	unsigned int i;
570
571	for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
572		if (rcar_csi2_formats[i].code == code)
573			return &rcar_csi2_formats[i];
574
575	return NULL;
576}
577
578enum rcar_csi2_pads {
579	RCAR_CSI2_SINK,
580	RCAR_CSI2_SOURCE_VC0,
581	RCAR_CSI2_SOURCE_VC1,
582	RCAR_CSI2_SOURCE_VC2,
583	RCAR_CSI2_SOURCE_VC3,
584	NR_OF_RCAR_CSI2_PAD,
585};
586
587struct rcar_csi2_info {
588	int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
589	int (*phy_post_init)(struct rcar_csi2 *priv);
590	int (*start_receiver)(struct rcar_csi2 *priv);
591	void (*enter_standby)(struct rcar_csi2 *priv);
592	const struct rcsi2_mbps_reg *hsfreqrange;
593	unsigned int csi0clkfreqrange;
594	unsigned int num_channels;
595	bool clear_ulps;
596	bool use_isp;
597	bool support_dphy;
598	bool support_cphy;
599};
600
601struct rcar_csi2 {
602	struct device *dev;
603	void __iomem *base;
604	const struct rcar_csi2_info *info;
605	struct reset_control *rstc;
606
607	struct v4l2_subdev subdev;
608	struct media_pad pads[NR_OF_RCAR_CSI2_PAD];
609
610	struct v4l2_async_notifier notifier;
611	struct v4l2_subdev *remote;
612	unsigned int remote_pad;
613
614	int channel_vc[4];
615
616	struct mutex lock; /* Protects mf and stream_count. */
617	struct v4l2_mbus_framefmt mf;
618	int stream_count;
619
620	bool cphy;
621	unsigned short lanes;
622	unsigned char lane_swap[4];
623};
624
625static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
626{
627	return container_of(sd, struct rcar_csi2, subdev);
628}
629
630static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
631{
632	return container_of(n, struct rcar_csi2, notifier);
633}
634
635static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
636{
637	return ioread32(priv->base + reg);
638}
639
640static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
641{
642	iowrite32(data, priv->base + reg);
643}
644
645static void rcsi2_write16(struct rcar_csi2 *priv, unsigned int reg, u16 data)
646{
647	iowrite16(data, priv->base + reg);
648}
649
650static void rcsi2_enter_standby_gen3(struct rcar_csi2 *priv)
651{
652	rcsi2_write(priv, PHYCNT_REG, 0);
653	rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
654}
655
656static void rcsi2_enter_standby(struct rcar_csi2 *priv)
657{
658	if (priv->info->enter_standby)
659		priv->info->enter_standby(priv);
660
661	reset_control_assert(priv->rstc);
662	usleep_range(100, 150);
663	pm_runtime_put(priv->dev);
664}
665
666static int rcsi2_exit_standby(struct rcar_csi2 *priv)
667{
668	int ret;
669
670	ret = pm_runtime_resume_and_get(priv->dev);
671	if (ret < 0)
672		return ret;
673
674	reset_control_deassert(priv->rstc);
675
676	return 0;
677}
678
679static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
680				unsigned int lanes)
681{
682	unsigned int timeout;
683
684	/* Wait for the clock and data lanes to enter LP-11 state. */
685	for (timeout = 0; timeout <= 20; timeout++) {
686		const u32 lane_mask = (1 << lanes) - 1;
687
688		if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL)  &&
689		    (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
690			return 0;
691
692		usleep_range(1000, 2000);
693	}
694
695	dev_err(priv->dev, "Timeout waiting for LP-11 state\n");
696
697	return -ETIMEDOUT;
698}
699
700static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
701{
702	const struct rcsi2_mbps_reg *hsfreq;
703	const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
704
705	if (mbps < priv->info->hsfreqrange->mbps)
706		dev_warn(priv->dev, "%u Mbps less than min PHY speed %u Mbps",
707			 mbps, priv->info->hsfreqrange->mbps);
708
709	for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
710		if (hsfreq->mbps >= mbps)
711			break;
712		hsfreq_prev = hsfreq;
713	}
714
715	if (!hsfreq->mbps) {
716		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
717		return -ERANGE;
718	}
719
720	if (hsfreq_prev &&
721	    ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
722		hsfreq = hsfreq_prev;
723
724	rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));
725
726	return 0;
727}
728
729static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
730			   unsigned int lanes)
731{
732	struct v4l2_subdev *source;
733	struct v4l2_ctrl *ctrl;
734	u64 mbps;
735
736	if (!priv->remote)
737		return -ENODEV;
738
739	source = priv->remote;
740
741	/* Read the pixel rate control from remote. */
742	ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
743	if (!ctrl) {
744		dev_err(priv->dev, "no pixel rate control in subdev %s\n",
745			source->name);
746		return -EINVAL;
747	}
748
749	/*
750	 * Calculate the phypll in mbps.
751	 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
752	 * bps = link_freq * 2
753	 */
754	mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
755	do_div(mbps, lanes * 1000000);
756
757	/* Adjust for C-PHY, divide by 2.8. */
758	if (priv->cphy)
759		mbps = div_u64(mbps * 5, 14);
760
761	return mbps;
762}
763
764static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
765				  unsigned int *lanes)
766{
767	struct v4l2_mbus_config mbus_config = { 0 };
768	int ret;
769
770	*lanes = priv->lanes;
771
772	ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
773			       priv->remote_pad, &mbus_config);
774	if (ret == -ENOIOCTLCMD) {
775		dev_dbg(priv->dev, "No remote mbus configuration available\n");
776		return 0;
777	}
778
779	if (ret) {
780		dev_err(priv->dev, "Failed to get remote mbus configuration\n");
781		return ret;
782	}
783
784	switch (mbus_config.type) {
785	case V4L2_MBUS_CSI2_CPHY:
786		if (!priv->cphy)
787			return -EINVAL;
788		break;
789	case V4L2_MBUS_CSI2_DPHY:
790		if (priv->cphy)
791			return -EINVAL;
792		break;
793	default:
794		dev_err(priv->dev, "Unsupported media bus type %u\n",
795			mbus_config.type);
796		return -EINVAL;
797	}
798
799	if (mbus_config.bus.mipi_csi2.num_data_lanes > priv->lanes) {
800		dev_err(priv->dev,
801			"Unsupported mbus config: too many data lanes %u\n",
802			mbus_config.bus.mipi_csi2.num_data_lanes);
803		return -EINVAL;
804	}
805
806	*lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
807
808	return 0;
809}
810
811static int rcsi2_start_receiver_gen3(struct rcar_csi2 *priv)
812{
813	const struct rcar_csi2_format *format;
814	u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
815	unsigned int lanes;
816	unsigned int i;
817	int mbps, ret;
818
819	dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
820		priv->mf.width, priv->mf.height,
821		priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');
822
823	/* Code is validated in set_fmt. */
824	format = rcsi2_code_to_fmt(priv->mf.code);
825	if (!format)
826		return -EINVAL;
827
828	/*
829	 * Enable all supported CSI-2 channels with virtual channel and
830	 * data type matching.
831	 *
832	 * NOTE: It's not possible to get individual datatype for each
833	 *       source virtual channel. Once this is possible in V4L2
834	 *       it should be used here.
835	 */
836	for (i = 0; i < priv->info->num_channels; i++) {
837		u32 vcdt_part;
838
839		if (priv->channel_vc[i] < 0)
840			continue;
841
842		vcdt_part = VCDT_SEL_VC(priv->channel_vc[i]) | VCDT_VCDTN_EN |
843			VCDT_SEL_DTN_ON | VCDT_SEL_DT(format->datatype);
844
845		/* Store in correct reg and offset. */
846		if (i < 2)
847			vcdt |= vcdt_part << ((i % 2) * 16);
848		else
849			vcdt2 |= vcdt_part << ((i % 2) * 16);
850	}
851
852	if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
853		fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
854			| FLD_FLD_EN;
855
856		if (priv->mf.height == 240)
857			fld |= FLD_FLD_NUM(0);
858		else
859			fld |= FLD_FLD_NUM(1);
860	}
861
862	/*
863	 * Get the number of active data lanes inspecting the remote mbus
864	 * configuration.
865	 */
866	ret = rcsi2_get_active_lanes(priv, &lanes);
867	if (ret)
868		return ret;
869
870	phycnt = PHYCNT_ENABLECLK;
871	phycnt |= (1 << lanes) - 1;
872
873	mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
874	if (mbps < 0)
875		return mbps;
876
877	/* Enable interrupts. */
878	rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
879		    | INTEN_INT_ERRSOTSYNCHS);
880
881	/* Init */
882	rcsi2_write(priv, TREF_REG, TREF_TREF);
883	rcsi2_write(priv, PHTC_REG, 0);
884
885	/* Configure */
886	if (!priv->info->use_isp) {
887		rcsi2_write(priv, VCDT_REG, vcdt);
888		if (vcdt2)
889			rcsi2_write(priv, VCDT2_REG, vcdt2);
890	}
891
892	/* Lanes are zero indexed. */
893	rcsi2_write(priv, LSWAP_REG,
894		    LSWAP_L0SEL(priv->lane_swap[0] - 1) |
895		    LSWAP_L1SEL(priv->lane_swap[1] - 1) |
896		    LSWAP_L2SEL(priv->lane_swap[2] - 1) |
897		    LSWAP_L3SEL(priv->lane_swap[3] - 1));
898
899	/* Start */
900	if (priv->info->init_phtw) {
901		ret = priv->info->init_phtw(priv, mbps);
902		if (ret)
903			return ret;
904	}
905
906	if (priv->info->hsfreqrange) {
907		ret = rcsi2_set_phypll(priv, mbps);
908		if (ret)
909			return ret;
910	}
911
912	if (priv->info->csi0clkfreqrange)
913		rcsi2_write(priv, CSI0CLKFCPR_REG,
914			    CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));
915
916	if (priv->info->use_isp)
917		rcsi2_write(priv, PHYFRX_REG,
918			    PHYFRX_FORCERX_MODE_3 | PHYFRX_FORCERX_MODE_2 |
919			    PHYFRX_FORCERX_MODE_1 | PHYFRX_FORCERX_MODE_0);
920
921	rcsi2_write(priv, PHYCNT_REG, phycnt);
922	rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
923		    LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
924	rcsi2_write(priv, FLD_REG, fld);
925	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
926	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);
927
928	ret = rcsi2_wait_phy_start(priv, lanes);
929	if (ret)
930		return ret;
931
932	if (priv->info->use_isp)
933		rcsi2_write(priv, PHYFRX_REG, 0);
934
935	/* Run post PHY start initialization, if needed. */
936	if (priv->info->phy_post_init) {
937		ret = priv->info->phy_post_init(priv);
938		if (ret)
939			return ret;
940	}
941
942	/* Clear Ultra Low Power interrupt. */
943	if (priv->info->clear_ulps)
944		rcsi2_write(priv, INTSTATE_REG,
945			    INTSTATE_INT_ULPS_START |
946			    INTSTATE_INT_ULPS_END);
947	return 0;
948}
949
950static int rcsi2_wait_phy_start_v4h(struct rcar_csi2 *priv, u32 match)
951{
952	unsigned int timeout;
953	u32 status;
954
955	for (timeout = 0; timeout <= 10; timeout++) {
956		status = rcsi2_read(priv, V4H_ST_PHYST_REG);
957		if ((status & match) == match)
958			return 0;
959
960		usleep_range(1000, 2000);
961	}
962
963	return -ETIMEDOUT;
964}
965
966static int rcsi2_c_phy_setting_v4h(struct rcar_csi2 *priv, int msps)
967{
968	const struct rcsi2_cphy_setting *conf;
969
970	for (conf = cphy_setting_table_r8a779g0; conf->msps != 0; conf++) {
971		if (conf->msps > msps)
972			break;
973	}
974
975	if (!conf->msps) {
976		dev_err(priv->dev, "Unsupported PHY speed for msps setting (%u Msps)", msps);
977		return -ERANGE;
978	}
979
980	/* C-PHY specific */
981	rcsi2_write16(priv, V4H_CORE_DIG_RW_COMMON_REG(7), 0x0155);
982	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(7), 0x0068);
983	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(8), 0x0010);
984
985	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_LP_0_REG, 0x463c);
986	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_LP_0_REG, 0x463c);
987	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_LP_0_REG, 0x463c);
988
989	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(0), 0x00d5);
990	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(0), 0x00d5);
991	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(0), 0x00d5);
992
993	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(1), 0x0013);
994	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(1), 0x0013);
995	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(1), 0x0013);
996
997	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(5), 0x0013);
998	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(5), 0x0013);
999	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(5), 0x0013);
1000
1001	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(6), 0x000a);
1002	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(6), 0x000a);
1003	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(6), 0x000a);
1004
1005	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(2), conf->rx2);
1006	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(2), conf->rx2);
1007	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(2), conf->rx2);
1008
1009	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(2), 0x0001);
1010	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE1_CTRL_2_REG(2), 0);
1011	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE2_CTRL_2_REG(2), 0x0001);
1012	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE3_CTRL_2_REG(2), 0x0001);
1013	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE4_CTRL_2_REG(2), 0);
1014
1015	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(0), conf->trio0);
1016	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(0), conf->trio0);
1017	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(0), conf->trio0);
1018
1019	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(2), conf->trio2);
1020	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(2), conf->trio2);
1021	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(2), conf->trio2);
1022
1023	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(1), conf->trio1);
1024	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(1), conf->trio1);
1025	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(1), conf->trio1);
1026
1027	/*
1028	 * Configure pin-swap.
1029	 * TODO: This registers is not documented yet, the values should depend
1030	 * on the 'clock-lanes' and 'data-lanes' devicetree properties.
1031	 */
1032	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_CFG_0_REG, 0xf5);
1033	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_TX_6_REG, 0x5000);
1034
1035	/* Leave Shutdown mode */
1036	rcsi2_write(priv, V4H_DPHY_RSTZ_REG, BIT(0));
1037	rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, BIT(0));
1038
1039	/* Wait for calibration */
1040	if (rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_PHY_READY)) {
1041		dev_err(priv->dev, "PHY calibration failed\n");
1042		return -ETIMEDOUT;
1043	}
1044
1045	/* C-PHY setting - analog programing*/
1046	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(9), conf->lane29);
1047	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(7), conf->lane27);
1048
1049	return 0;
1050}
1051
1052static int rcsi2_start_receiver_v4h(struct rcar_csi2 *priv)
1053{
1054	const struct rcar_csi2_format *format;
1055	unsigned int lanes;
1056	int msps;
1057	int ret;
1058
1059	/* Calculate parameters */
1060	format = rcsi2_code_to_fmt(priv->mf.code);
1061	if (!format)
1062		return -EINVAL;
1063
1064	ret = rcsi2_get_active_lanes(priv, &lanes);
1065	if (ret)
1066		return ret;
1067
1068	msps = rcsi2_calc_mbps(priv, format->bpp, lanes);
1069	if (msps < 0)
1070		return msps;
1071
1072	/* Reset LINK and PHY*/
1073	rcsi2_write(priv, V4H_CSI2_RESETN_REG, 0);
1074	rcsi2_write(priv, V4H_DPHY_RSTZ_REG, 0);
1075	rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, 0);
1076
1077	/* PHY static setting */
1078	rcsi2_write(priv, V4H_PHY_EN_REG, BIT(0));
1079	rcsi2_write(priv, V4H_FLDC_REG, 0);
1080	rcsi2_write(priv, V4H_FLDD_REG, 0);
1081	rcsi2_write(priv, V4H_IDIC_REG, 0);
1082	rcsi2_write(priv, V4H_PHY_MODE_REG, BIT(0));
1083	rcsi2_write(priv, V4H_N_LANES_REG, lanes - 1);
1084
1085	/* Reset CSI2 */
1086	rcsi2_write(priv, V4H_CSI2_RESETN_REG, BIT(0));
1087
1088	/* Registers static setting through APB */
1089	/* Common setting */
1090	rcsi2_write16(priv, V4H_CORE_DIG_ANACTRL_RW_COMMON_ANACTRL_REG(0), 0x1bfd);
1091	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_STARTUP_1_1_REG, 0x0233);
1092	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(6), 0x0027);
1093	rcsi2_write16(priv, V4H_PPI_CALIBCTRL_RW_COMMON_BG_0_REG, 0x01f4);
1094	rcsi2_write16(priv, V4H_PPI_RW_TERMCAL_CFG_0_REG, 0x0013);
1095	rcsi2_write16(priv, V4H_PPI_RW_OFFSETCAL_CFG_0_REG, 0x0003);
1096	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_TIMEBASE_REG, 0x004f);
1097	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_NREF_REG, 0x0320);
1098	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_NREF_RANGE_REG, 0x000f);
1099	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_TWAIT_CONFIG_REG, 0xfe18);
1100	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_VT_CONFIG_REG, 0x0c3c);
1101	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_COARSE_CFG_REG, 0x0105);
1102	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_CB_CTRL_2_REG(6), 0x1000);
1103	rcsi2_write16(priv, V4H_PPI_RW_COMMON_CFG_REG, 0x0003);
1104
1105	/* C-PHY settings */
1106	ret = rcsi2_c_phy_setting_v4h(priv, msps);
1107	if (ret)
1108		return ret;
1109
1110	rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_STOPSTATE_0 |
1111				 V4H_ST_PHYST_ST_STOPSTATE_1 |
1112				 V4H_ST_PHYST_ST_STOPSTATE_2);
1113
1114	return 0;
1115}
1116
1117static int rcsi2_start(struct rcar_csi2 *priv)
1118{
1119	int ret;
1120
1121	ret = rcsi2_exit_standby(priv);
1122	if (ret < 0)
1123		return ret;
1124
1125	ret = priv->info->start_receiver(priv);
1126	if (ret) {
1127		rcsi2_enter_standby(priv);
1128		return ret;
1129	}
1130
1131	ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
1132	if (ret) {
1133		rcsi2_enter_standby(priv);
1134		return ret;
1135	}
1136
1137	return 0;
1138}
1139
1140static void rcsi2_stop(struct rcar_csi2 *priv)
1141{
1142	rcsi2_enter_standby(priv);
1143	v4l2_subdev_call(priv->remote, video, s_stream, 0);
1144}
1145
1146static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
1147{
1148	struct rcar_csi2 *priv = sd_to_csi2(sd);
1149	int ret = 0;
1150
1151	mutex_lock(&priv->lock);
1152
1153	if (!priv->remote) {
1154		ret = -ENODEV;
1155		goto out;
1156	}
1157
1158	if (enable && priv->stream_count == 0) {
1159		ret = rcsi2_start(priv);
1160		if (ret)
1161			goto out;
1162	} else if (!enable && priv->stream_count == 1) {
1163		rcsi2_stop(priv);
1164	}
1165
1166	priv->stream_count += enable ? 1 : -1;
1167out:
1168	mutex_unlock(&priv->lock);
1169
1170	return ret;
1171}
1172
1173static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
1174				struct v4l2_subdev_state *sd_state,
1175				struct v4l2_subdev_format *format)
1176{
1177	struct rcar_csi2 *priv = sd_to_csi2(sd);
1178	struct v4l2_mbus_framefmt *framefmt;
1179
1180	mutex_lock(&priv->lock);
1181
1182	if (!rcsi2_code_to_fmt(format->format.code))
1183		format->format.code = rcar_csi2_formats[0].code;
1184
1185	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1186		priv->mf = format->format;
1187	} else {
1188		framefmt = v4l2_subdev_state_get_format(sd_state, 0);
1189		*framefmt = format->format;
1190	}
1191
1192	mutex_unlock(&priv->lock);
1193
1194	return 0;
1195}
1196
1197static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
1198				struct v4l2_subdev_state *sd_state,
1199				struct v4l2_subdev_format *format)
1200{
1201	struct rcar_csi2 *priv = sd_to_csi2(sd);
1202
1203	mutex_lock(&priv->lock);
1204
1205	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1206		format->format = priv->mf;
1207	else
1208		format->format = *v4l2_subdev_state_get_format(sd_state, 0);
1209
1210	mutex_unlock(&priv->lock);
1211
1212	return 0;
1213}
1214
1215static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
1216	.s_stream = rcsi2_s_stream,
1217};
1218
1219static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
1220	.set_fmt = rcsi2_set_pad_format,
1221	.get_fmt = rcsi2_get_pad_format,
1222};
1223
1224static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
1225	.video	= &rcar_csi2_video_ops,
1226	.pad	= &rcar_csi2_pad_ops,
1227};
1228
1229static irqreturn_t rcsi2_irq(int irq, void *data)
1230{
1231	struct rcar_csi2 *priv = data;
1232	u32 status, err_status;
1233
1234	status = rcsi2_read(priv, INTSTATE_REG);
1235	err_status = rcsi2_read(priv, INTERRSTATE_REG);
1236
1237	if (!status)
1238		return IRQ_HANDLED;
1239
1240	rcsi2_write(priv, INTSTATE_REG, status);
1241
1242	if (!err_status)
1243		return IRQ_HANDLED;
1244
1245	rcsi2_write(priv, INTERRSTATE_REG, err_status);
1246
1247	dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");
1248
1249	return IRQ_WAKE_THREAD;
1250}
1251
1252static irqreturn_t rcsi2_irq_thread(int irq, void *data)
1253{
1254	struct rcar_csi2 *priv = data;
1255
1256	mutex_lock(&priv->lock);
1257	rcsi2_stop(priv);
1258	usleep_range(1000, 2000);
1259	if (rcsi2_start(priv))
1260		dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
1261	mutex_unlock(&priv->lock);
1262
1263	return IRQ_HANDLED;
1264}
1265
1266/* -----------------------------------------------------------------------------
1267 * Async handling and registration of subdevices and links.
1268 */
1269
1270static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
1271			      struct v4l2_subdev *subdev,
1272			      struct v4l2_async_connection *asc)
1273{
1274	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
1275	int pad;
1276
1277	pad = media_entity_get_fwnode_pad(&subdev->entity, asc->match.fwnode,
1278					  MEDIA_PAD_FL_SOURCE);
1279	if (pad < 0) {
1280		dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
1281		return pad;
1282	}
1283
1284	priv->remote = subdev;
1285	priv->remote_pad = pad;
1286
1287	dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);
1288
1289	return media_create_pad_link(&subdev->entity, pad,
1290				     &priv->subdev.entity, 0,
1291				     MEDIA_LNK_FL_ENABLED |
1292				     MEDIA_LNK_FL_IMMUTABLE);
1293}
1294
1295static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
1296				struct v4l2_subdev *subdev,
1297				struct v4l2_async_connection *asc)
1298{
1299	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
1300
1301	priv->remote = NULL;
1302
1303	dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
1304}
1305
1306static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
1307	.bound = rcsi2_notify_bound,
1308	.unbind = rcsi2_notify_unbind,
1309};
1310
1311static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
1312			    struct v4l2_fwnode_endpoint *vep)
1313{
1314	unsigned int i;
1315
1316	/* Only port 0 endpoint 0 is valid. */
1317	if (vep->base.port || vep->base.id)
1318		return -ENOTCONN;
1319
1320	priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
1321
1322	switch (vep->bus_type) {
1323	case V4L2_MBUS_CSI2_DPHY:
1324		if (!priv->info->support_dphy) {
1325			dev_err(priv->dev, "D-PHY not supported\n");
1326			return -EINVAL;
1327		}
1328
1329		if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
1330			dev_err(priv->dev,
1331				"Unsupported number of data-lanes for D-PHY: %u\n",
1332				priv->lanes);
1333			return -EINVAL;
1334		}
1335
1336		priv->cphy = false;
1337		break;
1338	case V4L2_MBUS_CSI2_CPHY:
1339		if (!priv->info->support_cphy) {
1340			dev_err(priv->dev, "C-PHY not supported\n");
1341			return -EINVAL;
1342		}
1343
1344		if (priv->lanes != 3) {
1345			dev_err(priv->dev,
1346				"Unsupported number of data-lanes for C-PHY: %u\n",
1347				priv->lanes);
1348			return -EINVAL;
1349		}
1350
1351		priv->cphy = true;
1352		break;
1353	default:
1354		dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
1355		return -EINVAL;
1356	}
1357
1358	for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
1359		priv->lane_swap[i] = i < priv->lanes ?
1360			vep->bus.mipi_csi2.data_lanes[i] : i;
1361
1362		/* Check for valid lane number. */
1363		if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
1364			dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
1365			return -EINVAL;
1366		}
1367	}
1368
1369	return 0;
1370}
1371
1372static int rcsi2_parse_dt(struct rcar_csi2 *priv)
1373{
1374	struct v4l2_async_connection *asc;
1375	struct fwnode_handle *fwnode;
1376	struct fwnode_handle *ep;
1377	struct v4l2_fwnode_endpoint v4l2_ep = {
1378		.bus_type = V4L2_MBUS_UNKNOWN,
1379	};
1380	int ret;
1381
1382	ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0);
1383	if (!ep) {
1384		dev_err(priv->dev, "Not connected to subdevice\n");
1385		return -EINVAL;
1386	}
1387
1388	ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
1389	if (ret) {
1390		dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
1391		fwnode_handle_put(ep);
1392		return -EINVAL;
1393	}
1394
1395	ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
1396	if (ret) {
1397		fwnode_handle_put(ep);
1398		return ret;
1399	}
1400
1401	fwnode = fwnode_graph_get_remote_endpoint(ep);
1402	fwnode_handle_put(ep);
1403
1404	dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
1405
1406	v4l2_async_subdev_nf_init(&priv->notifier, &priv->subdev);
1407	priv->notifier.ops = &rcar_csi2_notify_ops;
1408
1409	asc = v4l2_async_nf_add_fwnode(&priv->notifier, fwnode,
1410				       struct v4l2_async_connection);
1411	fwnode_handle_put(fwnode);
1412	if (IS_ERR(asc))
1413		return PTR_ERR(asc);
1414
1415	ret = v4l2_async_nf_register(&priv->notifier);
1416	if (ret)
1417		v4l2_async_nf_cleanup(&priv->notifier);
1418
1419	return ret;
1420}
1421
1422/* -----------------------------------------------------------------------------
1423 * PHTW initialization sequences.
1424 *
1425 * NOTE: Magic values are from the datasheet and lack documentation.
1426 */
1427
1428static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
1429{
1430	unsigned int timeout;
1431
1432	rcsi2_write(priv, PHTW_REG,
1433		    PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
1434		    PHTW_CWEN | PHTW_TESTDIN_CODE(code));
1435
1436	/* Wait for DWEN and CWEN to be cleared by hardware. */
1437	for (timeout = 0; timeout <= 20; timeout++) {
1438		if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
1439			return 0;
1440
1441		usleep_range(1000, 2000);
1442	}
1443
1444	dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");
1445
1446	return -ETIMEDOUT;
1447}
1448
1449static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
1450				  const struct phtw_value *values)
1451{
1452	const struct phtw_value *value;
1453	int ret;
1454
1455	for (value = values; value->data || value->code; value++) {
1456		ret = rcsi2_phtw_write(priv, value->data, value->code);
1457		if (ret)
1458			return ret;
1459	}
1460
1461	return 0;
1462}
1463
1464static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
1465				 const struct rcsi2_mbps_reg *values, u16 code)
1466{
1467	const struct rcsi2_mbps_reg *value;
1468	const struct rcsi2_mbps_reg *prev_value = NULL;
1469
1470	for (value = values; value->mbps; value++) {
1471		if (value->mbps >= mbps)
1472			break;
1473		prev_value = value;
1474	}
1475
1476	if (prev_value &&
1477	    ((mbps - prev_value->mbps) <= (value->mbps - mbps)))
1478		value = prev_value;
1479
1480	if (!value->mbps) {
1481		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
1482		return -ERANGE;
1483	}
1484
1485	return rcsi2_phtw_write(priv, value->reg, code);
1486}
1487
1488static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
1489					unsigned int mbps)
1490{
1491	static const struct phtw_value step1[] = {
1492		{ .data = 0xcc, .code = 0xe2 },
1493		{ .data = 0x01, .code = 0xe3 },
1494		{ .data = 0x11, .code = 0xe4 },
1495		{ .data = 0x01, .code = 0xe5 },
1496		{ .data = 0x10, .code = 0x04 },
1497		{ /* sentinel */ },
1498	};
1499
1500	static const struct phtw_value step2[] = {
1501		{ .data = 0x38, .code = 0x08 },
1502		{ .data = 0x01, .code = 0x00 },
1503		{ .data = 0x4b, .code = 0xac },
1504		{ .data = 0x03, .code = 0x00 },
1505		{ .data = 0x80, .code = 0x07 },
1506		{ /* sentinel */ },
1507	};
1508
1509	int ret;
1510
1511	ret = rcsi2_phtw_write_array(priv, step1);
1512	if (ret)
1513		return ret;
1514
1515	if (mbps != 0 && mbps <= 250) {
1516		ret = rcsi2_phtw_write(priv, 0x39, 0x05);
1517		if (ret)
1518			return ret;
1519
1520		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
1521					    0xf1);
1522		if (ret)
1523			return ret;
1524	}
1525
1526	return rcsi2_phtw_write_array(priv, step2);
1527}
1528
1529static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
1530{
1531	return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
1532}
1533
1534static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
1535{
1536	return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
1537}
1538
1539static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1540{
1541	return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
1542}
1543
1544static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1545{
1546	static const struct phtw_value step1[] = {
1547		{ .data = 0xee, .code = 0x34 },
1548		{ .data = 0xee, .code = 0x44 },
1549		{ .data = 0xee, .code = 0x54 },
1550		{ .data = 0xee, .code = 0x84 },
1551		{ .data = 0xee, .code = 0x94 },
1552		{ /* sentinel */ },
1553	};
1554
1555	return rcsi2_phtw_write_array(priv, step1);
1556}
1557
1558static int rcsi2_init_phtw_v3u(struct rcar_csi2 *priv,
1559			       unsigned int mbps)
1560{
1561	/* In case of 1500Mbps or less */
1562	static const struct phtw_value step1[] = {
1563		{ .data = 0xcc, .code = 0xe2 },
1564		{ /* sentinel */ },
1565	};
1566
1567	static const struct phtw_value step2[] = {
1568		{ .data = 0x01, .code = 0xe3 },
1569		{ .data = 0x11, .code = 0xe4 },
1570		{ .data = 0x01, .code = 0xe5 },
1571		{ /* sentinel */ },
1572	};
1573
1574	/* In case of 1500Mbps or less */
1575	static const struct phtw_value step3[] = {
1576		{ .data = 0x38, .code = 0x08 },
1577		{ /* sentinel */ },
1578	};
1579
1580	static const struct phtw_value step4[] = {
1581		{ .data = 0x01, .code = 0x00 },
1582		{ .data = 0x4b, .code = 0xac },
1583		{ .data = 0x03, .code = 0x00 },
1584		{ .data = 0x80, .code = 0x07 },
1585		{ /* sentinel */ },
1586	};
1587
1588	int ret;
1589
1590	if (mbps != 0 && mbps <= 1500)
1591		ret = rcsi2_phtw_write_array(priv, step1);
1592	else
1593		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3u, 0xe2);
1594	if (ret)
1595		return ret;
1596
1597	ret = rcsi2_phtw_write_array(priv, step2);
1598	if (ret)
1599		return ret;
1600
1601	if (mbps != 0 && mbps <= 1500) {
1602		ret = rcsi2_phtw_write_array(priv, step3);
1603		if (ret)
1604			return ret;
1605	}
1606
1607	ret = rcsi2_phtw_write_array(priv, step4);
1608	if (ret)
1609		return ret;
1610
1611	return ret;
1612}
1613
1614/* -----------------------------------------------------------------------------
1615 * Platform Device Driver.
1616 */
1617
1618static int rcsi2_link_setup(struct media_entity *entity,
1619			    const struct media_pad *local,
1620			    const struct media_pad *remote, u32 flags)
1621{
1622	struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1623	struct rcar_csi2 *priv = sd_to_csi2(sd);
1624	struct video_device *vdev;
1625	int channel, vc;
1626	u32 id;
1627
1628	if (!is_media_entity_v4l2_video_device(remote->entity)) {
1629		dev_err(priv->dev, "Remote is not a video device\n");
1630		return -EINVAL;
1631	}
1632
1633	vdev = media_entity_to_video_device(remote->entity);
1634
1635	if (of_property_read_u32(vdev->dev_parent->of_node, "renesas,id", &id)) {
1636		dev_err(priv->dev, "No renesas,id, can't configure routing\n");
1637		return -EINVAL;
1638	}
1639
1640	channel = id % 4;
1641
1642	if (flags & MEDIA_LNK_FL_ENABLED) {
1643		if (media_pad_remote_pad_first(local)) {
1644			dev_dbg(priv->dev,
1645				"Each VC can only be routed to one output channel\n");
1646			return -EINVAL;
1647		}
1648
1649		vc = local->index - 1;
1650
1651		dev_dbg(priv->dev, "Route VC%d to VIN%u on output channel %d\n",
1652			vc, id, channel);
1653	} else {
1654		vc = -1;
1655	}
1656
1657	priv->channel_vc[channel] = vc;
1658
1659	return 0;
1660}
1661
1662static const struct media_entity_operations rcar_csi2_entity_ops = {
1663	.link_setup = rcsi2_link_setup,
1664	.link_validate = v4l2_subdev_link_validate,
1665};
1666
1667static int rcsi2_probe_resources(struct rcar_csi2 *priv,
1668				 struct platform_device *pdev)
1669{
1670	int irq, ret;
1671
1672	priv->base = devm_platform_ioremap_resource(pdev, 0);
1673	if (IS_ERR(priv->base))
1674		return PTR_ERR(priv->base);
1675
1676	irq = platform_get_irq(pdev, 0);
1677	if (irq < 0)
1678		return irq;
1679
1680	ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
1681					rcsi2_irq_thread, IRQF_SHARED,
1682					KBUILD_MODNAME, priv);
1683	if (ret)
1684		return ret;
1685
1686	priv->rstc = devm_reset_control_get(&pdev->dev, NULL);
1687
1688	return PTR_ERR_OR_ZERO(priv->rstc);
1689}
1690
1691static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
1692	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1693	.start_receiver = rcsi2_start_receiver_gen3,
1694	.enter_standby = rcsi2_enter_standby_gen3,
1695	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1696	.csi0clkfreqrange = 0x20,
1697	.num_channels = 4,
1698	.clear_ulps = true,
1699	.support_dphy = true,
1700};
1701
1702static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
1703	.init_phtw = rcsi2_init_phtw_h3es2,
1704	.start_receiver = rcsi2_start_receiver_gen3,
1705	.enter_standby = rcsi2_enter_standby_gen3,
1706	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1707	.csi0clkfreqrange = 0x20,
1708	.num_channels = 4,
1709	.clear_ulps = true,
1710	.support_dphy = true,
1711};
1712
1713static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
1714	.start_receiver = rcsi2_start_receiver_gen3,
1715	.enter_standby = rcsi2_enter_standby_gen3,
1716	.hsfreqrange = hsfreqrange_m3w,
1717	.num_channels = 4,
1718	.support_dphy = true,
1719};
1720
1721static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
1722	.start_receiver = rcsi2_start_receiver_gen3,
1723	.enter_standby = rcsi2_enter_standby_gen3,
1724	.hsfreqrange = hsfreqrange_m3w,
1725	.num_channels = 4,
1726	.support_dphy = true,
1727};
1728
1729static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
1730	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1731	.start_receiver = rcsi2_start_receiver_gen3,
1732	.enter_standby = rcsi2_enter_standby_gen3,
1733	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1734	.csi0clkfreqrange = 0x20,
1735	.num_channels = 4,
1736	.clear_ulps = true,
1737	.support_dphy = true,
1738};
1739
1740static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
1741	.init_phtw = rcsi2_init_phtw_v3m_e3,
1742	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1743	.start_receiver = rcsi2_start_receiver_gen3,
1744	.enter_standby = rcsi2_enter_standby_gen3,
1745	.num_channels = 4,
1746	.support_dphy = true,
1747};
1748
1749static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
1750	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1751	.start_receiver = rcsi2_start_receiver_gen3,
1752	.enter_standby = rcsi2_enter_standby_gen3,
1753	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1754	.csi0clkfreqrange = 0x20,
1755	.clear_ulps = true,
1756	.support_dphy = true,
1757};
1758
1759static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
1760	.init_phtw = rcsi2_init_phtw_v3m_e3,
1761	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1762	.start_receiver = rcsi2_start_receiver_gen3,
1763	.enter_standby = rcsi2_enter_standby_gen3,
1764	.num_channels = 2,
1765	.support_dphy = true,
1766};
1767
1768static const struct rcar_csi2_info rcar_csi2_info_r8a779a0 = {
1769	.init_phtw = rcsi2_init_phtw_v3u,
1770	.start_receiver = rcsi2_start_receiver_gen3,
1771	.enter_standby = rcsi2_enter_standby_gen3,
1772	.hsfreqrange = hsfreqrange_v3u,
1773	.csi0clkfreqrange = 0x20,
1774	.clear_ulps = true,
1775	.use_isp = true,
1776	.support_dphy = true,
1777};
1778
1779static const struct rcar_csi2_info rcar_csi2_info_r8a779g0 = {
1780	.start_receiver = rcsi2_start_receiver_v4h,
1781	.use_isp = true,
1782	.support_cphy = true,
1783};
1784
1785static const struct of_device_id rcar_csi2_of_table[] = {
1786	{
1787		.compatible = "renesas,r8a774a1-csi2",
1788		.data = &rcar_csi2_info_r8a7796,
1789	},
1790	{
1791		.compatible = "renesas,r8a774b1-csi2",
1792		.data = &rcar_csi2_info_r8a77965,
1793	},
1794	{
1795		.compatible = "renesas,r8a774c0-csi2",
1796		.data = &rcar_csi2_info_r8a77990,
1797	},
1798	{
1799		.compatible = "renesas,r8a774e1-csi2",
1800		.data = &rcar_csi2_info_r8a7795,
1801	},
1802	{
1803		.compatible = "renesas,r8a7795-csi2",
1804		.data = &rcar_csi2_info_r8a7795,
1805	},
1806	{
1807		.compatible = "renesas,r8a7796-csi2",
1808		.data = &rcar_csi2_info_r8a7796,
1809	},
1810	{
1811		.compatible = "renesas,r8a77961-csi2",
1812		.data = &rcar_csi2_info_r8a77961,
1813	},
1814	{
1815		.compatible = "renesas,r8a77965-csi2",
1816		.data = &rcar_csi2_info_r8a77965,
1817	},
1818	{
1819		.compatible = "renesas,r8a77970-csi2",
1820		.data = &rcar_csi2_info_r8a77970,
1821	},
1822	{
1823		.compatible = "renesas,r8a77980-csi2",
1824		.data = &rcar_csi2_info_r8a77980,
1825	},
1826	{
1827		.compatible = "renesas,r8a77990-csi2",
1828		.data = &rcar_csi2_info_r8a77990,
1829	},
1830	{
1831		.compatible = "renesas,r8a779a0-csi2",
1832		.data = &rcar_csi2_info_r8a779a0,
1833	},
1834	{
1835		.compatible = "renesas,r8a779g0-csi2",
1836		.data = &rcar_csi2_info_r8a779g0,
1837	},
1838	{ /* sentinel */ },
1839};
1840MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);
1841
1842static const struct soc_device_attribute r8a7795[] = {
1843	{
1844		.soc_id = "r8a7795", .revision = "ES2.*",
1845		.data = &rcar_csi2_info_r8a7795es2,
1846	},
1847	{ /* sentinel */ }
1848};
1849
1850static int rcsi2_probe(struct platform_device *pdev)
1851{
1852	const struct soc_device_attribute *attr;
1853	struct rcar_csi2 *priv;
1854	unsigned int i, num_pads;
1855	int ret;
1856
1857	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1858	if (!priv)
1859		return -ENOMEM;
1860
1861	priv->info = of_device_get_match_data(&pdev->dev);
1862
1863	/*
1864	 * The different ES versions of r8a7795 (H3) behave differently but
1865	 * share the same compatible string.
1866	 */
1867	attr = soc_device_match(r8a7795);
1868	if (attr)
1869		priv->info = attr->data;
1870
1871	priv->dev = &pdev->dev;
1872
1873	mutex_init(&priv->lock);
1874	priv->stream_count = 0;
1875
1876	ret = rcsi2_probe_resources(priv, pdev);
1877	if (ret) {
1878		dev_err(priv->dev, "Failed to get resources\n");
1879		goto error_mutex;
1880	}
1881
1882	platform_set_drvdata(pdev, priv);
1883
1884	ret = rcsi2_parse_dt(priv);
1885	if (ret)
1886		goto error_mutex;
1887
1888	priv->subdev.owner = THIS_MODULE;
1889	priv->subdev.dev = &pdev->dev;
1890	v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
1891	v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
1892	snprintf(priv->subdev.name, sizeof(priv->subdev.name), "%s %s",
1893		 KBUILD_MODNAME, dev_name(&pdev->dev));
1894	priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
1895
1896	priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1897	priv->subdev.entity.ops = &rcar_csi2_entity_ops;
1898
1899	num_pads = priv->info->use_isp ? 2 : NR_OF_RCAR_CSI2_PAD;
1900
1901	priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1902	for (i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++)
1903		priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;
1904
1905	ret = media_entity_pads_init(&priv->subdev.entity, num_pads,
1906				     priv->pads);
1907	if (ret)
1908		goto error_async;
1909
1910	for (i = 0; i < ARRAY_SIZE(priv->channel_vc); i++)
1911		priv->channel_vc[i] = -1;
1912
1913	pm_runtime_enable(&pdev->dev);
1914
1915	ret = v4l2_async_register_subdev(&priv->subdev);
1916	if (ret < 0)
1917		goto error_async;
1918
1919	dev_info(priv->dev, "%d lanes found\n", priv->lanes);
1920
1921	return 0;
1922
1923error_async:
1924	v4l2_async_nf_unregister(&priv->notifier);
1925	v4l2_async_nf_cleanup(&priv->notifier);
1926error_mutex:
1927	mutex_destroy(&priv->lock);
1928
1929	return ret;
1930}
1931
1932static void rcsi2_remove(struct platform_device *pdev)
1933{
1934	struct rcar_csi2 *priv = platform_get_drvdata(pdev);
1935
1936	v4l2_async_nf_unregister(&priv->notifier);
1937	v4l2_async_nf_cleanup(&priv->notifier);
1938	v4l2_async_unregister_subdev(&priv->subdev);
1939
1940	pm_runtime_disable(&pdev->dev);
1941
1942	mutex_destroy(&priv->lock);
1943}
1944
1945static struct platform_driver rcar_csi2_pdrv = {
1946	.remove_new = rcsi2_remove,
1947	.probe	= rcsi2_probe,
1948	.driver	= {
1949		.name	= "rcar-csi2",
1950		.suppress_bind_attrs = true,
1951		.of_match_table	= rcar_csi2_of_table,
1952	},
1953};
1954
1955module_platform_driver(rcar_csi2_pdrv);
1956
1957MODULE_AUTHOR("Niklas S��derlund <niklas.soderlund@ragnatech.se>");
1958MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
1959MODULE_LICENSE("GPL");
1960