1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/media/i2c/ccs/ccs-core.c
4 *
5 * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
6 *
7 * Copyright (C) 2020 Intel Corporation
8 * Copyright (C) 2010--2012 Nokia Corporation
9 * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Based on smiapp driver by Vimarsh Zutshi
12 * Based on jt8ev1.c by Vimarsh Zutshi
13 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
14 */
15
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/device.h>
19#include <linux/firmware.h>
20#include <linux/gpio/consumer.h>
21#include <linux/module.h>
22#include <linux/pm_runtime.h>
23#include <linux/property.h>
24#include <linux/regulator/consumer.h>
25#include <linux/slab.h>
26#include <linux/smiapp.h>
27#include <linux/v4l2-mediabus.h>
28#include <media/v4l2-cci.h>
29#include <media/v4l2-device.h>
30#include <media/v4l2-fwnode.h>
31#include <uapi/linux/ccs.h>
32
33#include "ccs.h"
34
35#define CCS_ALIGN_DIM(dim, flags)	\
36	((flags) & V4L2_SEL_FLAG_GE	\
37	 ? ALIGN((dim), 2)		\
38	 : (dim) & ~1)
39
40static struct ccs_limit_offset {
41	u16	lim;
42	u16	info;
43} ccs_limit_offsets[CCS_L_LAST + 1];
44
45/*
46 * ccs_module_idents - supported camera modules
47 */
48static const struct ccs_module_ident ccs_module_idents[] = {
49	CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
50	CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
51	CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
52	CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
53	CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
54	CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
55	CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
56	CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
57	CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
58	CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
59	CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
60};
61
62#define CCS_DEVICE_FLAG_IS_SMIA		BIT(0)
63
64struct ccs_device {
65	unsigned char flags;
66};
67
68static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
69
70/*
71 *
72 * Dynamic Capability Identification
73 *
74 */
75
76static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
77{
78	switch (width) {
79	case sizeof(u8):
80		*(u8 *)ptr = val;
81		break;
82	case sizeof(u16):
83		*(u16 *)ptr = val;
84		break;
85	case sizeof(u32):
86		*(u32 *)ptr = val;
87		break;
88	}
89}
90
91static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
92			 unsigned int offset, void **__ptr)
93{
94	const struct ccs_limit *linfo;
95
96	if (WARN_ON(limit >= CCS_L_LAST))
97		return -EINVAL;
98
99	linfo = &ccs_limits[ccs_limit_offsets[limit].info];
100
101	if (WARN_ON(!sensor->ccs_limits) ||
102	    WARN_ON(offset + CCI_REG_WIDTH_BYTES(linfo->reg) >
103		    ccs_limit_offsets[limit + 1].lim))
104		return -EINVAL;
105
106	*__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
107
108	return 0;
109}
110
111void ccs_replace_limit(struct ccs_sensor *sensor,
112		       unsigned int limit, unsigned int offset, u32 val)
113{
114	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
115	const struct ccs_limit *linfo;
116	void *ptr;
117	int ret;
118
119	ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
120	if (ret)
121		return;
122
123	linfo = &ccs_limits[ccs_limit_offsets[limit].info];
124
125	dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %u, 0x%x\n",
126		linfo->reg, linfo->name, offset, val, val);
127
128	ccs_assign_limit(ptr, CCI_REG_WIDTH_BYTES(linfo->reg), val);
129}
130
131u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
132		  unsigned int offset)
133{
134	void *ptr;
135	u32 val;
136	int ret;
137
138	ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
139	if (ret)
140		return 0;
141
142	switch (CCI_REG_WIDTH_BYTES(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
143	case sizeof(u8):
144		val = *(u8 *)ptr;
145		break;
146	case sizeof(u16):
147		val = *(u16 *)ptr;
148		break;
149	case sizeof(u32):
150		val = *(u32 *)ptr;
151		break;
152	default:
153		WARN_ON(1);
154		return 0;
155	}
156
157	return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
158}
159
160static int ccs_read_all_limits(struct ccs_sensor *sensor)
161{
162	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
163	void *ptr, *alloc, *end;
164	unsigned int i, l;
165	int ret;
166
167	kfree(sensor->ccs_limits);
168	sensor->ccs_limits = NULL;
169
170	alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
171	if (!alloc)
172		return -ENOMEM;
173
174	end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
175
176	sensor->ccs_limits = alloc;
177
178	for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
179		u32 reg = ccs_limits[i].reg;
180		unsigned int width = CCI_REG_WIDTH_BYTES(reg);
181		unsigned int j;
182
183		if (l == CCS_L_LAST) {
184			dev_err(&client->dev,
185				"internal error --- end of limit array\n");
186			ret = -EINVAL;
187			goto out_err;
188		}
189
190		for (j = 0; j < ccs_limits[i].size / width;
191		     j++, reg += width, ptr += width) {
192			char str[16] = "";
193			u32 val;
194
195			ret = ccs_read_addr_noconv(sensor, reg, &val);
196			if (ret)
197				goto out_err;
198
199			if (ptr + width > end) {
200				dev_err(&client->dev,
201					"internal error --- no room for regs\n");
202				ret = -EINVAL;
203				goto out_err;
204			}
205
206			if (!val && j)
207				break;
208
209			ccs_assign_limit(ptr, width, val);
210
211#ifdef CONFIG_DYNAMIC_DEBUG
212			if (reg & (CCS_FL_FLOAT_IREAL | CCS_FL_IREAL))
213				snprintf(str, sizeof(str), ", %u",
214					 ccs_reg_conv(sensor, reg, val));
215#endif
216
217			dev_dbg(&client->dev,
218				"0x%8.8x \"%s\" = %u, 0x%x%s\n",
219				reg, ccs_limits[i].name, val, val, str);
220		}
221
222		if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
223			continue;
224
225		l++;
226		ptr = alloc + ccs_limit_offsets[l].lim;
227	}
228
229	if (l != CCS_L_LAST) {
230		dev_err(&client->dev,
231			"internal error --- insufficient limits\n");
232		ret = -EINVAL;
233		goto out_err;
234	}
235
236	if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
237		ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
238
239	return 0;
240
241out_err:
242	sensor->ccs_limits = NULL;
243	kfree(alloc);
244
245	return ret;
246}
247
248static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
249{
250	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
251	u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
252	unsigned int i;
253	int pixel_count = 0;
254	int line_count = 0;
255
256	fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
257	fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
258
259	ncol_desc = (fmt_model_subtype
260		     & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
261		>> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
262	nrow_desc = fmt_model_subtype
263		& CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
264
265	dev_dbg(&client->dev, "format_model_type %s\n",
266		fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
267		? "2 byte" :
268		fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
269		? "4 byte" : "is simply bad");
270
271	dev_dbg(&client->dev, "%u column and %u row descriptors\n",
272		ncol_desc, nrow_desc);
273
274	for (i = 0; i < ncol_desc + nrow_desc; i++) {
275		u32 desc;
276		u32 pixelcode;
277		u32 pixels;
278		char *which;
279		char *what;
280
281		if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
282			desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
283
284			pixelcode =
285				(desc
286				 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
287				>> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
288			pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
289		} else if (fmt_model_type
290			   == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
291			desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
292
293			pixelcode =
294				(desc
295				 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
296				>> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
297			pixels = desc &
298				CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
299		} else {
300			dev_dbg(&client->dev,
301				"invalid frame format model type %u\n",
302				fmt_model_type);
303			return -EINVAL;
304		}
305
306		if (i < ncol_desc)
307			which = "columns";
308		else
309			which = "rows";
310
311		switch (pixelcode) {
312		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
313			what = "embedded";
314			break;
315		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
316			what = "dummy";
317			break;
318		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
319			what = "black";
320			break;
321		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
322			what = "dark";
323			break;
324		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
325			what = "visible";
326			break;
327		default:
328			what = "invalid";
329			break;
330		}
331
332		dev_dbg(&client->dev,
333			"%s pixels: %u %s (pixelcode %u)\n",
334			what, pixels, which, pixelcode);
335
336		if (i < ncol_desc) {
337			if (pixelcode ==
338			    CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
339				sensor->visible_pixel_start = pixel_count;
340			pixel_count += pixels;
341			continue;
342		}
343
344		/* Handle row descriptors */
345		switch (pixelcode) {
346		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
347			if (sensor->embedded_end)
348				break;
349			sensor->embedded_start = line_count;
350			sensor->embedded_end = line_count + pixels;
351			break;
352		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
353			sensor->image_start = line_count;
354			break;
355		}
356		line_count += pixels;
357	}
358
359	if (sensor->embedded_end > sensor->image_start) {
360		dev_dbg(&client->dev,
361			"adjusting image start line to %u (was %u)\n",
362			sensor->embedded_end, sensor->image_start);
363		sensor->image_start = sensor->embedded_end;
364	}
365
366	dev_dbg(&client->dev, "embedded data from lines %u to %u\n",
367		sensor->embedded_start, sensor->embedded_end);
368	dev_dbg(&client->dev, "image data starts at line %u\n",
369		sensor->image_start);
370
371	return 0;
372}
373
374static int ccs_pll_configure(struct ccs_sensor *sensor)
375{
376	struct ccs_pll *pll = &sensor->pll;
377	int rval;
378
379	rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
380	if (rval < 0)
381		return rval;
382
383	rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
384	if (rval < 0)
385		return rval;
386
387	rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
388	if (rval < 0)
389		return rval;
390
391	rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
392	if (rval < 0)
393		return rval;
394
395	if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
396	      CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
397		/* Lane op clock ratio does not apply here. */
398		rval = ccs_write(sensor, REQUESTED_LINK_RATE,
399				 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
400					      1000000 / 256 / 256) *
401				 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
402				  sensor->pll.csi2.lanes : 1) <<
403				 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
404				  1 : 0));
405		if (rval < 0)
406			return rval;
407	}
408
409	if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
410		return 0;
411
412	rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
413	if (rval < 0)
414		return rval;
415
416	rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
417	if (rval < 0)
418		return rval;
419
420	if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
421		return 0;
422
423	rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
424	if (rval < 0)
425		return rval;
426
427	rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
428			 pll->op_fr.pre_pll_clk_div);
429	if (rval < 0)
430		return rval;
431
432	return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
433}
434
435static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
436{
437	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
438	struct ccs_pll_limits lim = {
439		.vt_fr = {
440			.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
441			.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
442			.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
443			.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
444			.min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
445			.max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
446			.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
447			.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
448		},
449		.op_fr = {
450			.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
451			.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
452			.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
453			.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
454			.min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
455			.max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
456			.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
457			.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
458		},
459		.op_bk = {
460			 .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
461			 .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
462			 .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
463			 .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
464			 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
465			 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
466			 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
467			 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
468		 },
469		.vt_bk = {
470			 .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
471			 .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
472			 .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
473			 .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
474			 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
475			 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
476			 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
477			 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
478		 },
479		.min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
480		.min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
481	};
482
483	return ccs_pll_calculate(&client->dev, &lim, pll);
484}
485
486static int ccs_pll_update(struct ccs_sensor *sensor)
487{
488	struct ccs_pll *pll = &sensor->pll;
489	int rval;
490
491	pll->binning_horizontal = sensor->binning_horizontal;
492	pll->binning_vertical = sensor->binning_vertical;
493	pll->link_freq =
494		sensor->link_freq->qmenu_int[sensor->link_freq->val];
495	pll->scale_m = sensor->scale_m;
496	pll->bits_per_pixel = sensor->csi_format->compressed;
497
498	rval = ccs_pll_try(sensor, pll);
499	if (rval < 0)
500		return rval;
501
502	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
503				 pll->pixel_rate_pixel_array);
504	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
505
506	return 0;
507}
508
509
510/*
511 *
512 * V4L2 Controls handling
513 *
514 */
515
516static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
517{
518	struct v4l2_ctrl *ctrl = sensor->exposure;
519	int max;
520
521	max = sensor->pa_src.height + sensor->vblank->val -
522		CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
523
524	__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
525}
526
527/*
528 * Order matters.
529 *
530 * 1. Bits-per-pixel, descending.
531 * 2. Bits-per-pixel compressed, descending.
532 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
533 *    orders must be defined.
534 */
535static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
536	{ MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
537	{ MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
538	{ MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
539	{ MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
540	{ MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
541	{ MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
542	{ MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
543	{ MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
544	{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
545	{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
546	{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
547	{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
548	{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
549	{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
550	{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
551	{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
552	{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
553	{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
554	{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
555	{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
556	{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
557	{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
558	{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
559	{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
560};
561
562static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
563
564#define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\
565				 - (unsigned long)ccs_csi_data_formats) \
566				/ sizeof(*ccs_csi_data_formats))
567
568static u32 ccs_pixel_order(struct ccs_sensor *sensor)
569{
570	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
571	int flip = 0;
572
573	if (sensor->hflip) {
574		if (sensor->hflip->val)
575			flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
576
577		if (sensor->vflip->val)
578			flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
579	}
580
581	dev_dbg(&client->dev, "flip %u\n", flip);
582	return sensor->default_pixel_order ^ flip;
583}
584
585static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
586{
587	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
588	unsigned int csi_format_idx =
589		to_csi_format_idx(sensor->csi_format) & ~3;
590	unsigned int internal_csi_format_idx =
591		to_csi_format_idx(sensor->internal_csi_format) & ~3;
592	unsigned int pixel_order = ccs_pixel_order(sensor);
593
594	if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
595			 pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
596		return;
597
598	sensor->mbus_frame_fmts =
599		sensor->default_mbus_frame_fmts << pixel_order;
600	sensor->csi_format =
601		&ccs_csi_data_formats[csi_format_idx + pixel_order];
602	sensor->internal_csi_format =
603		&ccs_csi_data_formats[internal_csi_format_idx
604					 + pixel_order];
605
606	dev_dbg(&client->dev, "new pixel order %s\n",
607		pixel_order_str[pixel_order]);
608}
609
610static const char * const ccs_test_patterns[] = {
611	"Disabled",
612	"Solid Colour",
613	"Eight Vertical Colour Bars",
614	"Colour Bars With Fade to Grey",
615	"Pseudorandom Sequence (PN9)",
616};
617
618static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
619{
620	struct ccs_sensor *sensor =
621		container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
622			->sensor;
623	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
624	int pm_status;
625	u32 orient = 0;
626	unsigned int i;
627	int exposure;
628	int rval;
629
630	switch (ctrl->id) {
631	case V4L2_CID_HFLIP:
632	case V4L2_CID_VFLIP:
633		if (sensor->streaming)
634			return -EBUSY;
635
636		if (sensor->hflip->val)
637			orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
638
639		if (sensor->vflip->val)
640			orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
641
642		ccs_update_mbus_formats(sensor);
643
644		break;
645	case V4L2_CID_VBLANK:
646		exposure = sensor->exposure->val;
647
648		__ccs_update_exposure_limits(sensor);
649
650		if (exposure > sensor->exposure->maximum) {
651			sensor->exposure->val =	sensor->exposure->maximum;
652			rval = ccs_set_ctrl(sensor->exposure);
653			if (rval < 0)
654				return rval;
655		}
656
657		break;
658	case V4L2_CID_LINK_FREQ:
659		if (sensor->streaming)
660			return -EBUSY;
661
662		rval = ccs_pll_update(sensor);
663		if (rval)
664			return rval;
665
666		return 0;
667	case V4L2_CID_TEST_PATTERN:
668		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
669			v4l2_ctrl_activate(
670				sensor->test_data[i],
671				ctrl->val ==
672				V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
673
674		break;
675	}
676
677	pm_status = pm_runtime_get_if_active(&client->dev);
678	if (!pm_status)
679		return 0;
680
681	switch (ctrl->id) {
682	case V4L2_CID_ANALOGUE_GAIN:
683		rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
684
685		break;
686
687	case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
688		rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
689
690		break;
691
692	case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
693		rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
694				 ctrl->val);
695
696		break;
697
698	case V4L2_CID_DIGITAL_GAIN:
699		if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
700		    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
701			rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
702					 ctrl->val);
703			break;
704		}
705
706		rval = ccs_write_addr(sensor,
707				      SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
708				      ctrl->val);
709		if (rval)
710			break;
711
712		rval = ccs_write_addr(sensor,
713				      SMIAPP_REG_U16_DIGITAL_GAIN_RED,
714				      ctrl->val);
715		if (rval)
716			break;
717
718		rval = ccs_write_addr(sensor,
719				      SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
720				      ctrl->val);
721		if (rval)
722			break;
723
724		rval = ccs_write_addr(sensor,
725				      SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
726				      ctrl->val);
727
728		break;
729	case V4L2_CID_EXPOSURE:
730		rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
731
732		break;
733	case V4L2_CID_HFLIP:
734	case V4L2_CID_VFLIP:
735		rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
736
737		break;
738	case V4L2_CID_VBLANK:
739		rval = ccs_write(sensor, FRAME_LENGTH_LINES,
740				 sensor->pa_src.height + ctrl->val);
741
742		break;
743	case V4L2_CID_HBLANK:
744		rval = ccs_write(sensor, LINE_LENGTH_PCK,
745				 sensor->pa_src.width + ctrl->val);
746
747		break;
748	case V4L2_CID_TEST_PATTERN:
749		rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
750
751		break;
752	case V4L2_CID_TEST_PATTERN_RED:
753		rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
754
755		break;
756	case V4L2_CID_TEST_PATTERN_GREENR:
757		rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
758
759		break;
760	case V4L2_CID_TEST_PATTERN_BLUE:
761		rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
762
763		break;
764	case V4L2_CID_TEST_PATTERN_GREENB:
765		rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
766
767		break;
768	case V4L2_CID_CCS_SHADING_CORRECTION:
769		rval = ccs_write(sensor, SHADING_CORRECTION_EN,
770				 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
771				 0);
772
773		if (!rval && sensor->luminance_level)
774			v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
775
776		break;
777	case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
778		rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
779
780		break;
781	case V4L2_CID_PIXEL_RATE:
782		/* For v4l2_ctrl_s_ctrl_int64() used internally. */
783		rval = 0;
784
785		break;
786	default:
787		rval = -EINVAL;
788	}
789
790	if (pm_status > 0) {
791		pm_runtime_mark_last_busy(&client->dev);
792		pm_runtime_put_autosuspend(&client->dev);
793	}
794
795	return rval;
796}
797
798static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
799	.s_ctrl = ccs_set_ctrl,
800};
801
802static int ccs_init_controls(struct ccs_sensor *sensor)
803{
804	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
805	struct v4l2_fwnode_device_properties props;
806	int rval;
807
808	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 19);
809	if (rval)
810		return rval;
811
812	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
813
814	rval = v4l2_fwnode_device_parse(&client->dev, &props);
815	if (rval)
816		return rval;
817
818	rval = v4l2_ctrl_new_fwnode_properties(&sensor->pixel_array->ctrl_handler,
819					       &ccs_ctrl_ops, &props);
820	if (rval)
821		return rval;
822
823	switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
824	case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
825		struct {
826			const char *name;
827			u32 id;
828			s32 value;
829		} const gain_ctrls[] = {
830			{ "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
831			  CCS_LIM(sensor, ANALOG_GAIN_M0), },
832			{ "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
833			  CCS_LIM(sensor, ANALOG_GAIN_C0), },
834			{ "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
835			  CCS_LIM(sensor, ANALOG_GAIN_M1), },
836			{ "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
837			  CCS_LIM(sensor, ANALOG_GAIN_C1), },
838		};
839		struct v4l2_ctrl_config ctrl_cfg = {
840			.type = V4L2_CTRL_TYPE_INTEGER,
841			.ops = &ccs_ctrl_ops,
842			.flags = V4L2_CTRL_FLAG_READ_ONLY,
843			.step = 1,
844		};
845		unsigned int i;
846
847		for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
848			ctrl_cfg.name = gain_ctrls[i].name;
849			ctrl_cfg.id = gain_ctrls[i].id;
850			ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
851				gain_ctrls[i].value;
852
853			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
854					     &ctrl_cfg, NULL);
855		}
856
857		v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
858				  &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
859				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
860				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
861				  max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
862				      1U),
863				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
864	}
865		break;
866
867	case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
868		struct {
869			const char *name;
870			u32 id;
871			u16 min, max, step;
872		} const gain_ctrls[] = {
873			{
874				"Analogue Linear Gain",
875				V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
876				CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
877				CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
878				max(CCS_LIM(sensor,
879					    ANALOG_LINEAR_GAIN_STEP_SIZE),
880				    1U),
881			},
882			{
883				"Analogue Exponential Gain",
884				V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
885				CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
886				CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
887				max(CCS_LIM(sensor,
888					    ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
889				    1U),
890			},
891		};
892		struct v4l2_ctrl_config ctrl_cfg = {
893			.type = V4L2_CTRL_TYPE_INTEGER,
894			.ops = &ccs_ctrl_ops,
895		};
896		unsigned int i;
897
898		for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
899			ctrl_cfg.name = gain_ctrls[i].name;
900			ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
901			ctrl_cfg.max = gain_ctrls[i].max;
902			ctrl_cfg.step = gain_ctrls[i].step;
903			ctrl_cfg.id = gain_ctrls[i].id;
904
905			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
906					     &ctrl_cfg, NULL);
907		}
908	}
909	}
910
911	if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
912	    (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
913	     CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
914		const struct v4l2_ctrl_config ctrl_cfg = {
915			.name = "Shading Correction",
916			.type = V4L2_CTRL_TYPE_BOOLEAN,
917			.id = V4L2_CID_CCS_SHADING_CORRECTION,
918			.ops = &ccs_ctrl_ops,
919			.max = 1,
920			.step = 1,
921		};
922
923		v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
924				     &ctrl_cfg, NULL);
925	}
926
927	if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
928	    CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
929		const struct v4l2_ctrl_config ctrl_cfg = {
930			.name = "Luminance Correction Level",
931			.type = V4L2_CTRL_TYPE_BOOLEAN,
932			.id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
933			.ops = &ccs_ctrl_ops,
934			.max = 255,
935			.step = 1,
936			.def = 128,
937		};
938
939		sensor->luminance_level =
940			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
941					     &ctrl_cfg, NULL);
942	}
943
944	if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
945	    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
946	    CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
947	    SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
948		v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
949				  &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
950				  CCS_LIM(sensor, DIGITAL_GAIN_MIN),
951				  CCS_LIM(sensor, DIGITAL_GAIN_MAX),
952				  max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
953				      1U),
954				  0x100);
955
956	/* Exposure limits will be updated soon, use just something here. */
957	sensor->exposure = v4l2_ctrl_new_std(
958		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
959		V4L2_CID_EXPOSURE, 0, 0, 1, 0);
960
961	sensor->hflip = v4l2_ctrl_new_std(
962		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
963		V4L2_CID_HFLIP, 0, 1, 1, 0);
964	sensor->vflip = v4l2_ctrl_new_std(
965		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
966		V4L2_CID_VFLIP, 0, 1, 1, 0);
967
968	sensor->vblank = v4l2_ctrl_new_std(
969		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
970		V4L2_CID_VBLANK, 0, 1, 1, 0);
971
972	if (sensor->vblank)
973		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
974
975	sensor->hblank = v4l2_ctrl_new_std(
976		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
977		V4L2_CID_HBLANK, 0, 1, 1, 0);
978
979	if (sensor->hblank)
980		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
981
982	sensor->pixel_rate_parray = v4l2_ctrl_new_std(
983		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
984		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
985
986	v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
987				     &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
988				     ARRAY_SIZE(ccs_test_patterns) - 1,
989				     0, 0, ccs_test_patterns);
990
991	if (sensor->pixel_array->ctrl_handler.error) {
992		dev_err(&client->dev,
993			"pixel array controls initialization failed (%d)\n",
994			sensor->pixel_array->ctrl_handler.error);
995		return sensor->pixel_array->ctrl_handler.error;
996	}
997
998	sensor->pixel_array->sd.ctrl_handler =
999		&sensor->pixel_array->ctrl_handler;
1000
1001	v4l2_ctrl_cluster(2, &sensor->hflip);
1002
1003	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
1004	if (rval)
1005		return rval;
1006
1007	sensor->src->ctrl_handler.lock = &sensor->mutex;
1008
1009	sensor->pixel_rate_csi = v4l2_ctrl_new_std(
1010		&sensor->src->ctrl_handler, &ccs_ctrl_ops,
1011		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
1012
1013	if (sensor->src->ctrl_handler.error) {
1014		dev_err(&client->dev,
1015			"src controls initialization failed (%d)\n",
1016			sensor->src->ctrl_handler.error);
1017		return sensor->src->ctrl_handler.error;
1018	}
1019
1020	sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
1021
1022	return 0;
1023}
1024
1025/*
1026 * For controls that require information on available media bus codes
1027 * and linke frequencies.
1028 */
1029static int ccs_init_late_controls(struct ccs_sensor *sensor)
1030{
1031	unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
1032		sensor->csi_format->compressed - sensor->compressed_min_bpp];
1033	unsigned int i;
1034
1035	for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
1036		int max_value = (1 << sensor->csi_format->width) - 1;
1037
1038		sensor->test_data[i] = v4l2_ctrl_new_std(
1039				&sensor->pixel_array->ctrl_handler,
1040				&ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
1041				0, max_value, 1, max_value);
1042	}
1043
1044	sensor->link_freq = v4l2_ctrl_new_int_menu(
1045		&sensor->src->ctrl_handler, &ccs_ctrl_ops,
1046		V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
1047		__ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
1048
1049	return sensor->src->ctrl_handler.error;
1050}
1051
1052static void ccs_free_controls(struct ccs_sensor *sensor)
1053{
1054	unsigned int i;
1055
1056	for (i = 0; i < sensor->ssds_used; i++)
1057		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
1058}
1059
1060static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
1061{
1062	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1063	struct ccs_pll *pll = &sensor->pll;
1064	u8 compressed_max_bpp = 0;
1065	unsigned int type, n;
1066	unsigned int i, pixel_order;
1067	int rval;
1068
1069	type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
1070
1071	dev_dbg(&client->dev, "data_format_model_type %u\n", type);
1072
1073	rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
1074	if (rval)
1075		return rval;
1076
1077	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
1078		dev_dbg(&client->dev, "bad pixel order %u\n", pixel_order);
1079		return -EINVAL;
1080	}
1081
1082	dev_dbg(&client->dev, "pixel order %u (%s)\n", pixel_order,
1083		pixel_order_str[pixel_order]);
1084
1085	switch (type) {
1086	case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
1087		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
1088		break;
1089	case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
1090		n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
1091		break;
1092	default:
1093		return -EINVAL;
1094	}
1095
1096	sensor->default_pixel_order = pixel_order;
1097	sensor->mbus_frame_fmts = 0;
1098
1099	for (i = 0; i < n; i++) {
1100		unsigned int fmt, j;
1101
1102		fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
1103
1104		dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
1105			i, fmt >> 8, (u8)fmt);
1106
1107		for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
1108			const struct ccs_csi_data_format *f =
1109				&ccs_csi_data_formats[j];
1110
1111			if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
1112				continue;
1113
1114			if (f->width != fmt >>
1115			    CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
1116			    f->compressed !=
1117			    (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
1118				continue;
1119
1120			dev_dbg(&client->dev, "jolly good! %u\n", j);
1121
1122			sensor->default_mbus_frame_fmts |= 1 << j;
1123		}
1124	}
1125
1126	/* Figure out which BPP values can be used with which formats. */
1127	pll->binning_horizontal = 1;
1128	pll->binning_vertical = 1;
1129	pll->scale_m = sensor->scale_m;
1130
1131	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1132		sensor->compressed_min_bpp =
1133			min(ccs_csi_data_formats[i].compressed,
1134			    sensor->compressed_min_bpp);
1135		compressed_max_bpp =
1136			max(ccs_csi_data_formats[i].compressed,
1137			    compressed_max_bpp);
1138	}
1139
1140	sensor->valid_link_freqs = devm_kcalloc(
1141		&client->dev,
1142		compressed_max_bpp - sensor->compressed_min_bpp + 1,
1143		sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
1144	if (!sensor->valid_link_freqs)
1145		return -ENOMEM;
1146
1147	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1148		const struct ccs_csi_data_format *f =
1149			&ccs_csi_data_formats[i];
1150		unsigned long *valid_link_freqs =
1151			&sensor->valid_link_freqs[
1152				f->compressed - sensor->compressed_min_bpp];
1153		unsigned int j;
1154
1155		if (!(sensor->default_mbus_frame_fmts & 1 << i))
1156			continue;
1157
1158		pll->bits_per_pixel = f->compressed;
1159
1160		for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
1161			pll->link_freq = sensor->hwcfg.op_sys_clock[j];
1162
1163			rval = ccs_pll_try(sensor, pll);
1164			dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
1165				pll->link_freq, pll->bits_per_pixel,
1166				rval ? "not ok" : "ok");
1167			if (rval)
1168				continue;
1169
1170			set_bit(j, valid_link_freqs);
1171		}
1172
1173		if (!*valid_link_freqs) {
1174			dev_info(&client->dev,
1175				 "no valid link frequencies for %u bpp\n",
1176				 f->compressed);
1177			sensor->default_mbus_frame_fmts &= ~BIT(i);
1178			continue;
1179		}
1180
1181		if (!sensor->csi_format
1182		    || f->width > sensor->csi_format->width
1183		    || (f->width == sensor->csi_format->width
1184			&& f->compressed > sensor->csi_format->compressed)) {
1185			sensor->csi_format = f;
1186			sensor->internal_csi_format = f;
1187		}
1188	}
1189
1190	if (!sensor->csi_format) {
1191		dev_err(&client->dev, "no supported mbus code found\n");
1192		return -EINVAL;
1193	}
1194
1195	ccs_update_mbus_formats(sensor);
1196
1197	return 0;
1198}
1199
1200static void ccs_update_blanking(struct ccs_sensor *sensor)
1201{
1202	struct v4l2_ctrl *vblank = sensor->vblank;
1203	struct v4l2_ctrl *hblank = sensor->hblank;
1204	u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
1205	int min, max;
1206
1207	if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1208		min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1209		max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1210		min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1211		max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1212		min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1213	} else {
1214		min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1215		max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1216		min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1217		max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1218		min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1219	}
1220
1221	min = max_t(int,
1222		    CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1223		    min_fll - sensor->pa_src.height);
1224	max = max_fll -	sensor->pa_src.height;
1225
1226	__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
1227
1228	min = max_t(int, min_llp - sensor->pa_src.width, min_lbp);
1229	max = max_llp - sensor->pa_src.width;
1230
1231	__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
1232
1233	__ccs_update_exposure_limits(sensor);
1234}
1235
1236static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1237{
1238	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1239	int rval;
1240
1241	rval = ccs_pll_update(sensor);
1242	if (rval < 0)
1243		return rval;
1244
1245	/* Output from pixel array, including blanking */
1246	ccs_update_blanking(sensor);
1247
1248	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1249	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1250
1251	dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1252		sensor->pll.pixel_rate_pixel_array /
1253		((sensor->pa_src.width + sensor->hblank->val) *
1254		 (sensor->pa_src.height + sensor->vblank->val) / 100));
1255
1256	return 0;
1257}
1258
1259/*
1260 *
1261 * SMIA++ NVM handling
1262 *
1263 */
1264
1265static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1266			     u8 *status)
1267{
1268	unsigned int i;
1269	int rval;
1270	u32 s;
1271
1272	*status = 0;
1273
1274	rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1275	if (rval)
1276		return rval;
1277
1278	rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1279			 CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1280	if (rval)
1281		return rval;
1282
1283	rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1284	if (rval)
1285		return rval;
1286
1287	if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1288		*status = s;
1289		return -ENODATA;
1290	}
1291
1292	if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1293	    CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1294		for (i = 1000; i > 0; i--) {
1295			if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1296				break;
1297
1298			rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1299			if (rval)
1300				return rval;
1301		}
1302
1303		if (!i)
1304			return -ETIMEDOUT;
1305	}
1306
1307	for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1308		u32 v;
1309
1310		rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1311		if (rval)
1312			return rval;
1313
1314		*nvm++ = v;
1315	}
1316
1317	return 0;
1318}
1319
1320static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1321			size_t nvm_size)
1322{
1323	u8 status = 0;
1324	u32 p;
1325	int rval = 0, rval2;
1326
1327	for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1328		     && !rval; p++) {
1329		rval = ccs_read_nvm_page(sensor, p, nvm, &status);
1330		nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1331	}
1332
1333	if (rval == -ENODATA &&
1334	    status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1335		rval = 0;
1336
1337	rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1338	if (rval < 0)
1339		return rval;
1340	else
1341		return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1342}
1343
1344/*
1345 *
1346 * SMIA++ CCI address control
1347 *
1348 */
1349static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1350{
1351	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1352	int rval;
1353	u32 val;
1354
1355	client->addr = sensor->hwcfg.i2c_addr_dfl;
1356
1357	rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
1358			 sensor->hwcfg.i2c_addr_alt << 1);
1359	if (rval)
1360		return rval;
1361
1362	client->addr = sensor->hwcfg.i2c_addr_alt;
1363
1364	/* verify addr change went ok */
1365	rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1366	if (rval)
1367		return rval;
1368
1369	if (val != sensor->hwcfg.i2c_addr_alt << 1)
1370		return -ENODEV;
1371
1372	return 0;
1373}
1374
1375/*
1376 *
1377 * SMIA++ Mode Control
1378 *
1379 */
1380static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1381{
1382	struct ccs_flash_strobe_parms *strobe_setup;
1383	unsigned int ext_freq = sensor->hwcfg.ext_clk;
1384	u32 tmp;
1385	u32 strobe_adjustment;
1386	u32 strobe_width_high_rs;
1387	int rval;
1388
1389	strobe_setup = sensor->hwcfg.strobe_setup;
1390
1391	/*
1392	 * How to calculate registers related to strobe length. Please
1393	 * do not change, or if you do at least know what you're
1394	 * doing. :-)
1395	 *
1396	 * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
1397	 *
1398	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1399	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment
1400	 *
1401	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1402	 * flash_strobe_adjustment E N, [1 - 0xff]
1403	 *
1404	 * The formula above is written as below to keep it on one
1405	 * line:
1406	 *
1407	 * l / 10^6 = w / e * a
1408	 *
1409	 * Let's mark w * a by x:
1410	 *
1411	 * x = w * a
1412	 *
1413	 * Thus, we get:
1414	 *
1415	 * x = l * e / 10^6
1416	 *
1417	 * The strobe width must be at least as long as requested,
1418	 * thus rounding upwards is needed.
1419	 *
1420	 * x = (l * e + 10^6 - 1) / 10^6
1421	 * -----------------------------
1422	 *
1423	 * Maximum possible accuracy is wanted at all times. Thus keep
1424	 * a as small as possible.
1425	 *
1426	 * Calculate a, assuming maximum w, with rounding upwards:
1427	 *
1428	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1429	 * -------------------------------------
1430	 *
1431	 * Thus, we also get w, with that a, with rounding upwards:
1432	 *
1433	 * w = (x + a - 1) / a
1434	 * -------------------
1435	 *
1436	 * To get limits:
1437	 *
1438	 * x E [1, (2^16 - 1) * (2^8 - 1)]
1439	 *
1440	 * Substituting maximum x to the original formula (with rounding),
1441	 * the maximum l is thus
1442	 *
1443	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1444	 *
1445	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1446	 * --------------------------------------------------
1447	 *
1448	 * flash_strobe_length must be clamped between 1 and
1449	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1450	 *
1451	 * Then,
1452	 *
1453	 * flash_strobe_adjustment = ((flash_strobe_length *
1454	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1455	 *
1456	 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1457	 *	EXTCLK freq + 10^6 - 1) / 10^6 +
1458	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment
1459	 */
1460	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1461		      1000000 + 1, ext_freq);
1462	strobe_setup->strobe_width_high_us =
1463		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1464
1465	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1466			1000000 - 1), 1000000ULL);
1467	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1468	strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1469				strobe_adjustment;
1470
1471	rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1472	if (rval < 0)
1473		goto out;
1474
1475	rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1476	if (rval < 0)
1477		goto out;
1478
1479	rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1480			 strobe_width_high_rs);
1481	if (rval < 0)
1482		goto out;
1483
1484	rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1485			 strobe_setup->strobe_delay);
1486	if (rval < 0)
1487		goto out;
1488
1489	rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1490			 strobe_setup->stobe_start_point);
1491	if (rval < 0)
1492		goto out;
1493
1494	rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1495
1496out:
1497	sensor->hwcfg.strobe_setup->trigger = 0;
1498
1499	return rval;
1500}
1501
1502/* -----------------------------------------------------------------------------
1503 * Power management
1504 */
1505
1506static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1507{
1508	int rval;
1509
1510	rval = ccs_write_data_regs(sensor,
1511				   sensor->sdata.sensor_manufacturer_regs,
1512				   sensor->sdata.num_sensor_manufacturer_regs);
1513	if (rval)
1514		return rval;
1515
1516	return ccs_write_data_regs(sensor,
1517				   sensor->mdata.module_manufacturer_regs,
1518				   sensor->mdata.num_module_manufacturer_regs);
1519}
1520
1521static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
1522{
1523	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1524	u8 val;
1525
1526	if (!sensor->ccs_limits)
1527		return 0;
1528
1529	if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1530	    CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
1531		val = CCS_PHY_CTRL_AUTO;
1532	} else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1533		   CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
1534		val = CCS_PHY_CTRL_UI;
1535	} else {
1536		dev_err(&client->dev, "manual PHY control not supported\n");
1537		return -EINVAL;
1538	}
1539
1540	return ccs_write(sensor, PHY_CTRL, val);
1541}
1542
1543static int ccs_power_on(struct device *dev)
1544{
1545	struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1546	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1547	/*
1548	 * The sub-device related to the I2C device is always the
1549	 * source one, i.e. ssds[0].
1550	 */
1551	struct ccs_sensor *sensor =
1552		container_of(ssd, struct ccs_sensor, ssds[0]);
1553	const struct ccs_device *ccsdev = device_get_match_data(dev);
1554	int rval;
1555
1556	rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1557				     sensor->regulators);
1558	if (rval) {
1559		dev_err(dev, "failed to enable vana regulator\n");
1560		return rval;
1561	}
1562
1563	if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
1564		unsigned int sleep;
1565
1566		rval = clk_prepare_enable(sensor->ext_clk);
1567		if (rval < 0) {
1568			dev_dbg(dev, "failed to enable xclk\n");
1569			goto out_xclk_fail;
1570		}
1571
1572		gpiod_set_value(sensor->reset, 0);
1573		gpiod_set_value(sensor->xshutdown, 1);
1574
1575		if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1576			sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1577		else
1578			sleep = 5000;
1579
1580		usleep_range(sleep, sleep);
1581	}
1582
1583	/*
1584	 * Failures to respond to the address change command have been noticed.
1585	 * Those failures seem to be caused by the sensor requiring a longer
1586	 * boot time than advertised. An additional 10ms delay seems to work
1587	 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1588	 * unnecessary. The failures need to be investigated to find a proper
1589	 * fix, and a delay will likely need to be added here if the I2C write
1590	 * retry hack is reverted before the root cause of the boot time issue
1591	 * is found.
1592	 */
1593
1594	if (!sensor->reset && !sensor->xshutdown) {
1595		u8 retry = 100;
1596		u32 reset;
1597
1598		rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1599		if (rval < 0) {
1600			dev_err(dev, "software reset failed\n");
1601			goto out_cci_addr_fail;
1602		}
1603
1604		do {
1605			rval = ccs_read(sensor, SOFTWARE_RESET, &reset);
1606			reset = !rval && reset == CCS_SOFTWARE_RESET_OFF;
1607			if (reset)
1608				break;
1609
1610			usleep_range(1000, 2000);
1611		} while (--retry);
1612
1613		if (!reset) {
1614			dev_err(dev, "software reset failed\n");
1615			rval = -EIO;
1616			goto out_cci_addr_fail;
1617		}
1618	}
1619
1620	if (sensor->hwcfg.i2c_addr_alt) {
1621		rval = ccs_change_cci_addr(sensor);
1622		if (rval) {
1623			dev_err(dev, "cci address change error\n");
1624			goto out_cci_addr_fail;
1625		}
1626	}
1627
1628	rval = ccs_write(sensor, COMPRESSION_MODE,
1629			 CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1630	if (rval) {
1631		dev_err(dev, "compression mode set failed\n");
1632		goto out_cci_addr_fail;
1633	}
1634
1635	rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1636			 sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1637	if (rval) {
1638		dev_err(dev, "extclk frequency set failed\n");
1639		goto out_cci_addr_fail;
1640	}
1641
1642	rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1643	if (rval) {
1644		dev_err(dev, "csi lane mode set failed\n");
1645		goto out_cci_addr_fail;
1646	}
1647
1648	rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1649			 CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1650	if (rval) {
1651		dev_err(dev, "fast standby set failed\n");
1652		goto out_cci_addr_fail;
1653	}
1654
1655	rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1656			 sensor->hwcfg.csi_signalling_mode);
1657	if (rval) {
1658		dev_err(dev, "csi signalling mode set failed\n");
1659		goto out_cci_addr_fail;
1660	}
1661
1662	rval = ccs_update_phy_ctrl(sensor);
1663	if (rval < 0)
1664		goto out_cci_addr_fail;
1665
1666	rval = ccs_write_msr_regs(sensor);
1667	if (rval)
1668		goto out_cci_addr_fail;
1669
1670	rval = ccs_call_quirk(sensor, post_poweron);
1671	if (rval) {
1672		dev_err(dev, "post_poweron quirks failed\n");
1673		goto out_cci_addr_fail;
1674	}
1675
1676	return 0;
1677
1678out_cci_addr_fail:
1679	gpiod_set_value(sensor->reset, 1);
1680	gpiod_set_value(sensor->xshutdown, 0);
1681	clk_disable_unprepare(sensor->ext_clk);
1682
1683out_xclk_fail:
1684	regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1685			       sensor->regulators);
1686
1687	return rval;
1688}
1689
1690static int ccs_power_off(struct device *dev)
1691{
1692	struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1693	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1694	struct ccs_sensor *sensor =
1695		container_of(ssd, struct ccs_sensor, ssds[0]);
1696
1697	/*
1698	 * Currently power/clock to lens are enable/disabled separately
1699	 * but they are essentially the same signals. So if the sensor is
1700	 * powered off while the lens is powered on the sensor does not
1701	 * really see a power off and next time the cci address change
1702	 * will fail. So do a soft reset explicitly here.
1703	 */
1704	if (sensor->hwcfg.i2c_addr_alt)
1705		ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1706
1707	gpiod_set_value(sensor->reset, 1);
1708	gpiod_set_value(sensor->xshutdown, 0);
1709	clk_disable_unprepare(sensor->ext_clk);
1710	usleep_range(5000, 5000);
1711	regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1712			       sensor->regulators);
1713	sensor->streaming = false;
1714
1715	return 0;
1716}
1717
1718/* -----------------------------------------------------------------------------
1719 * Video stream management
1720 */
1721
1722static int ccs_start_streaming(struct ccs_sensor *sensor)
1723{
1724	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1725	unsigned int binning_mode;
1726	int rval;
1727
1728	mutex_lock(&sensor->mutex);
1729
1730	rval = ccs_write(sensor, CSI_DATA_FORMAT,
1731			 (sensor->csi_format->width << 8) |
1732			 sensor->csi_format->compressed);
1733	if (rval)
1734		goto out;
1735
1736	/* Binning configuration */
1737	if (sensor->binning_horizontal == 1 &&
1738	    sensor->binning_vertical == 1) {
1739		binning_mode = 0;
1740	} else {
1741		u8 binning_type =
1742			(sensor->binning_horizontal << 4)
1743			| sensor->binning_vertical;
1744
1745		rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1746		if (rval < 0)
1747			goto out;
1748
1749		binning_mode = 1;
1750	}
1751	rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1752	if (rval < 0)
1753		goto out;
1754
1755	/* Set up PLL */
1756	rval = ccs_pll_configure(sensor);
1757	if (rval)
1758		goto out;
1759
1760	/* Analog crop start coordinates */
1761	rval = ccs_write(sensor, X_ADDR_START, sensor->pa_src.left);
1762	if (rval < 0)
1763		goto out;
1764
1765	rval = ccs_write(sensor, Y_ADDR_START, sensor->pa_src.top);
1766	if (rval < 0)
1767		goto out;
1768
1769	/* Analog crop end coordinates */
1770	rval = ccs_write(sensor, X_ADDR_END,
1771			 sensor->pa_src.left + sensor->pa_src.width - 1);
1772	if (rval < 0)
1773		goto out;
1774
1775	rval = ccs_write(sensor, Y_ADDR_END,
1776			 sensor->pa_src.top + sensor->pa_src.height - 1);
1777	if (rval < 0)
1778		goto out;
1779
1780	/*
1781	 * Output from pixel array, including blanking, is set using
1782	 * controls below. No need to set here.
1783	 */
1784
1785	/* Digital crop */
1786	if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1787	    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1788		rval = ccs_write(sensor, DIGITAL_CROP_X_OFFSET,
1789				 sensor->scaler_sink.left);
1790		if (rval < 0)
1791			goto out;
1792
1793		rval = ccs_write(sensor, DIGITAL_CROP_Y_OFFSET,
1794				 sensor->scaler_sink.top);
1795		if (rval < 0)
1796			goto out;
1797
1798		rval = ccs_write(sensor, DIGITAL_CROP_IMAGE_WIDTH,
1799				 sensor->scaler_sink.width);
1800		if (rval < 0)
1801			goto out;
1802
1803		rval = ccs_write(sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1804				 sensor->scaler_sink.height);
1805		if (rval < 0)
1806			goto out;
1807	}
1808
1809	/* Scaling */
1810	if (CCS_LIM(sensor, SCALING_CAPABILITY)
1811	    != CCS_SCALING_CAPABILITY_NONE) {
1812		rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1813		if (rval < 0)
1814			goto out;
1815
1816		rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1817		if (rval < 0)
1818			goto out;
1819	}
1820
1821	/* Output size from sensor */
1822	rval = ccs_write(sensor, X_OUTPUT_SIZE, sensor->src_src.width);
1823	if (rval < 0)
1824		goto out;
1825	rval = ccs_write(sensor, Y_OUTPUT_SIZE, sensor->src_src.height);
1826	if (rval < 0)
1827		goto out;
1828
1829	if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1830	    (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1831	     SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1832	    sensor->hwcfg.strobe_setup != NULL &&
1833	    sensor->hwcfg.strobe_setup->trigger != 0) {
1834		rval = ccs_setup_flash_strobe(sensor);
1835		if (rval)
1836			goto out;
1837	}
1838
1839	rval = ccs_call_quirk(sensor, pre_streamon);
1840	if (rval) {
1841		dev_err(&client->dev, "pre_streamon quirks failed\n");
1842		goto out;
1843	}
1844
1845	rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1846
1847out:
1848	mutex_unlock(&sensor->mutex);
1849
1850	return rval;
1851}
1852
1853static int ccs_stop_streaming(struct ccs_sensor *sensor)
1854{
1855	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1856	int rval;
1857
1858	mutex_lock(&sensor->mutex);
1859	rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1860	if (rval)
1861		goto out;
1862
1863	rval = ccs_call_quirk(sensor, post_streamoff);
1864	if (rval)
1865		dev_err(&client->dev, "post_streamoff quirks failed\n");
1866
1867out:
1868	mutex_unlock(&sensor->mutex);
1869	return rval;
1870}
1871
1872/* -----------------------------------------------------------------------------
1873 * V4L2 subdev video operations
1874 */
1875
1876static int ccs_pm_get_init(struct ccs_sensor *sensor)
1877{
1878	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1879	int rval;
1880
1881	/*
1882	 * It can't use pm_runtime_resume_and_get() here, as the driver
1883	 * relies at the returned value to detect if the device was already
1884	 * active or not.
1885	 */
1886	rval = pm_runtime_get_sync(&client->dev);
1887	if (rval < 0)
1888		goto error;
1889
1890	/* Device was already active, so don't set controls */
1891	if (rval == 1 && !sensor->handler_setup_needed)
1892		return 0;
1893
1894	sensor->handler_setup_needed = false;
1895
1896	/* Restore V4L2 controls to the previously suspended device */
1897	rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
1898	if (rval)
1899		goto error;
1900
1901	rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1902	if (rval)
1903		goto error;
1904
1905	/* Keep PM runtime usage_count incremented on success */
1906	return 0;
1907error:
1908	pm_runtime_put(&client->dev);
1909	return rval;
1910}
1911
1912static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1913{
1914	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1915	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1916	int rval;
1917
1918	if (!enable) {
1919		ccs_stop_streaming(sensor);
1920		sensor->streaming = false;
1921		pm_runtime_mark_last_busy(&client->dev);
1922		pm_runtime_put_autosuspend(&client->dev);
1923
1924		return 0;
1925	}
1926
1927	rval = ccs_pm_get_init(sensor);
1928	if (rval)
1929		return rval;
1930
1931	sensor->streaming = true;
1932
1933	rval = ccs_start_streaming(sensor);
1934	if (rval < 0) {
1935		sensor->streaming = false;
1936		pm_runtime_mark_last_busy(&client->dev);
1937		pm_runtime_put_autosuspend(&client->dev);
1938	}
1939
1940	return rval;
1941}
1942
1943static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
1944{
1945	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1946	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1947	int rval;
1948
1949	if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1950		switch (sensor->hwcfg.csi_signalling_mode) {
1951		case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
1952			if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1953			      CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
1954				return -EACCES;
1955			break;
1956		case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
1957			if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1958			      CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
1959				return -EACCES;
1960			break;
1961		default:
1962			return -EACCES;
1963		}
1964	}
1965
1966	rval = ccs_pm_get_init(sensor);
1967	if (rval)
1968		return rval;
1969
1970	if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1971		rval = ccs_write(sensor, MANUAL_LP_CTRL,
1972				 CCS_MANUAL_LP_CTRL_ENABLE);
1973		if (rval)
1974			pm_runtime_put(&client->dev);
1975	}
1976
1977	return rval;
1978}
1979
1980static int ccs_post_streamoff(struct v4l2_subdev *subdev)
1981{
1982	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1983	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1984
1985	return pm_runtime_put(&client->dev);
1986}
1987
1988static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
1989			      struct v4l2_subdev_state *sd_state,
1990			      struct v4l2_subdev_mbus_code_enum *code)
1991{
1992	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1993	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1994	unsigned int i;
1995	int idx = -1;
1996	int rval = -EINVAL;
1997
1998	mutex_lock(&sensor->mutex);
1999
2000	dev_err(&client->dev, "subdev %s, pad %u, index %u\n",
2001		subdev->name, code->pad, code->index);
2002
2003	if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
2004		if (code->index)
2005			goto out;
2006
2007		code->code = sensor->internal_csi_format->code;
2008		rval = 0;
2009		goto out;
2010	}
2011
2012	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2013		if (sensor->mbus_frame_fmts & (1 << i))
2014			idx++;
2015
2016		if (idx == code->index) {
2017			code->code = ccs_csi_data_formats[i].code;
2018			dev_err(&client->dev, "found index %u, i %u, code %x\n",
2019				code->index, i, code->code);
2020			rval = 0;
2021			break;
2022		}
2023	}
2024
2025out:
2026	mutex_unlock(&sensor->mutex);
2027
2028	return rval;
2029}
2030
2031static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
2032{
2033	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2034
2035	if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
2036		return sensor->csi_format->code;
2037	else
2038		return sensor->internal_csi_format->code;
2039}
2040
2041static int __ccs_get_format(struct v4l2_subdev *subdev,
2042			    struct v4l2_subdev_state *sd_state,
2043			    struct v4l2_subdev_format *fmt)
2044{
2045	fmt->format = *v4l2_subdev_state_get_format(sd_state, fmt->pad);
2046	fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2047
2048	return 0;
2049}
2050
2051static int ccs_get_format(struct v4l2_subdev *subdev,
2052			  struct v4l2_subdev_state *sd_state,
2053			  struct v4l2_subdev_format *fmt)
2054{
2055	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2056	int rval;
2057
2058	mutex_lock(&sensor->mutex);
2059	rval = __ccs_get_format(subdev, sd_state, fmt);
2060	mutex_unlock(&sensor->mutex);
2061
2062	return rval;
2063}
2064
2065static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
2066				 struct v4l2_subdev_state *sd_state,
2067				 struct v4l2_rect **crops,
2068				 struct v4l2_rect **comps)
2069{
2070	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2071	unsigned int i;
2072
2073	if (crops)
2074		for (i = 0; i < subdev->entity.num_pads; i++)
2075			crops[i] =
2076				v4l2_subdev_state_get_crop(sd_state, i);
2077	if (comps)
2078		*comps = v4l2_subdev_state_get_compose(sd_state,
2079						       ssd->sink_pad);
2080}
2081
2082/* Changes require propagation only on sink pad. */
2083static void ccs_propagate(struct v4l2_subdev *subdev,
2084			  struct v4l2_subdev_state *sd_state, int which,
2085			  int target)
2086{
2087	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2088	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2089	struct v4l2_rect *comp, *crops[CCS_PADS];
2090	struct v4l2_mbus_framefmt *fmt;
2091
2092	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2093
2094	switch (target) {
2095	case V4L2_SEL_TGT_CROP:
2096		comp->width = crops[CCS_PAD_SINK]->width;
2097		comp->height = crops[CCS_PAD_SINK]->height;
2098		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2099			if (ssd == sensor->scaler) {
2100				sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2101				sensor->scaling_mode =
2102					CCS_SCALING_MODE_NO_SCALING;
2103				sensor->scaler_sink = *comp;
2104			} else if (ssd == sensor->binner) {
2105				sensor->binning_horizontal = 1;
2106				sensor->binning_vertical = 1;
2107			}
2108		}
2109		fallthrough;
2110	case V4L2_SEL_TGT_COMPOSE:
2111		*crops[CCS_PAD_SRC] = *comp;
2112		fmt = v4l2_subdev_state_get_format(sd_state, CCS_PAD_SRC);
2113		fmt->width = comp->width;
2114		fmt->height = comp->height;
2115		if (which == V4L2_SUBDEV_FORMAT_ACTIVE && ssd == sensor->src)
2116			sensor->src_src = *crops[CCS_PAD_SRC];
2117		break;
2118	default:
2119		WARN_ON_ONCE(1);
2120	}
2121}
2122
2123static const struct ccs_csi_data_format
2124*ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
2125{
2126	unsigned int i;
2127
2128	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2129		if (sensor->mbus_frame_fmts & (1 << i) &&
2130		    ccs_csi_data_formats[i].code == code)
2131			return &ccs_csi_data_formats[i];
2132	}
2133
2134	return sensor->csi_format;
2135}
2136
2137static int ccs_set_format_source(struct v4l2_subdev *subdev,
2138				 struct v4l2_subdev_state *sd_state,
2139				 struct v4l2_subdev_format *fmt)
2140{
2141	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2142	const struct ccs_csi_data_format *csi_format,
2143		*old_csi_format = sensor->csi_format;
2144	unsigned long *valid_link_freqs;
2145	u32 code = fmt->format.code;
2146	unsigned int i;
2147	int rval;
2148
2149	rval = __ccs_get_format(subdev, sd_state, fmt);
2150	if (rval)
2151		return rval;
2152
2153	/*
2154	 * Media bus code is changeable on src subdev's source pad. On
2155	 * other source pads we just get format here.
2156	 */
2157	if (subdev != &sensor->src->sd)
2158		return 0;
2159
2160	csi_format = ccs_validate_csi_data_format(sensor, code);
2161
2162	fmt->format.code = csi_format->code;
2163
2164	if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
2165		return 0;
2166
2167	sensor->csi_format = csi_format;
2168
2169	if (csi_format->width != old_csi_format->width)
2170		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
2171			__v4l2_ctrl_modify_range(
2172				sensor->test_data[i], 0,
2173				(1 << csi_format->width) - 1, 1, 0);
2174
2175	if (csi_format->compressed == old_csi_format->compressed)
2176		return 0;
2177
2178	valid_link_freqs =
2179		&sensor->valid_link_freqs[sensor->csi_format->compressed
2180					  - sensor->compressed_min_bpp];
2181
2182	__v4l2_ctrl_modify_range(
2183		sensor->link_freq, 0,
2184		__fls(*valid_link_freqs), ~*valid_link_freqs,
2185		__ffs(*valid_link_freqs));
2186
2187	return ccs_pll_update(sensor);
2188}
2189
2190static int ccs_set_format(struct v4l2_subdev *subdev,
2191			  struct v4l2_subdev_state *sd_state,
2192			  struct v4l2_subdev_format *fmt)
2193{
2194	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2195	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2196	struct v4l2_rect *crops[CCS_PADS];
2197
2198	mutex_lock(&sensor->mutex);
2199
2200	if (fmt->pad == ssd->source_pad) {
2201		int rval;
2202
2203		rval = ccs_set_format_source(subdev, sd_state, fmt);
2204
2205		mutex_unlock(&sensor->mutex);
2206
2207		return rval;
2208	}
2209
2210	/* Sink pad. Width and height are changeable here. */
2211	fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2212	fmt->format.width &= ~1;
2213	fmt->format.height &= ~1;
2214	fmt->format.field = V4L2_FIELD_NONE;
2215
2216	fmt->format.width =
2217		clamp(fmt->format.width,
2218		      CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2219		      CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
2220	fmt->format.height =
2221		clamp(fmt->format.height,
2222		      CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2223		      CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
2224
2225	ccs_get_crop_compose(subdev, sd_state, crops, NULL);
2226
2227	crops[ssd->sink_pad]->left = 0;
2228	crops[ssd->sink_pad]->top = 0;
2229	crops[ssd->sink_pad]->width = fmt->format.width;
2230	crops[ssd->sink_pad]->height = fmt->format.height;
2231	ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
2232
2233	mutex_unlock(&sensor->mutex);
2234
2235	return 0;
2236}
2237
2238/*
2239 * Calculate goodness of scaled image size compared to expected image
2240 * size and flags provided.
2241 */
2242#define SCALING_GOODNESS		100000
2243#define SCALING_GOODNESS_EXTREME	100000000
2244static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
2245			    int h, int ask_h, u32 flags)
2246{
2247	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2248	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2249	int val = 0;
2250
2251	w &= ~1;
2252	ask_w &= ~1;
2253	h &= ~1;
2254	ask_h &= ~1;
2255
2256	if (flags & V4L2_SEL_FLAG_GE) {
2257		if (w < ask_w)
2258			val -= SCALING_GOODNESS;
2259		if (h < ask_h)
2260			val -= SCALING_GOODNESS;
2261	}
2262
2263	if (flags & V4L2_SEL_FLAG_LE) {
2264		if (w > ask_w)
2265			val -= SCALING_GOODNESS;
2266		if (h > ask_h)
2267			val -= SCALING_GOODNESS;
2268	}
2269
2270	val -= abs(w - ask_w);
2271	val -= abs(h - ask_h);
2272
2273	if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2274		val -= SCALING_GOODNESS_EXTREME;
2275
2276	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2277		w, ask_w, h, ask_h, val);
2278
2279	return val;
2280}
2281
2282static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2283				   struct v4l2_subdev_state *sd_state,
2284				   struct v4l2_subdev_selection *sel,
2285				   struct v4l2_rect **crops,
2286				   struct v4l2_rect *comp)
2287{
2288	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2289	unsigned int i;
2290	unsigned int binh = 1, binv = 1;
2291	int best = scaling_goodness(
2292		subdev,
2293		crops[CCS_PAD_SINK]->width, sel->r.width,
2294		crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
2295
2296	for (i = 0; i < sensor->nbinning_subtypes; i++) {
2297		int this = scaling_goodness(
2298			subdev,
2299			crops[CCS_PAD_SINK]->width
2300			/ sensor->binning_subtypes[i].horizontal,
2301			sel->r.width,
2302			crops[CCS_PAD_SINK]->height
2303			/ sensor->binning_subtypes[i].vertical,
2304			sel->r.height, sel->flags);
2305
2306		if (this > best) {
2307			binh = sensor->binning_subtypes[i].horizontal;
2308			binv = sensor->binning_subtypes[i].vertical;
2309			best = this;
2310		}
2311	}
2312	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2313		sensor->binning_vertical = binv;
2314		sensor->binning_horizontal = binh;
2315	}
2316
2317	sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2318	sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2319}
2320
2321/*
2322 * Calculate best scaling ratio and mode for given output resolution.
2323 *
2324 * Try all of these: horizontal ratio, vertical ratio and smallest
2325 * size possible (horizontally).
2326 *
2327 * Also try whether horizontal scaler or full scaler gives a better
2328 * result.
2329 */
2330static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2331				   struct v4l2_subdev_state *sd_state,
2332				   struct v4l2_subdev_selection *sel,
2333				   struct v4l2_rect **crops,
2334				   struct v4l2_rect *comp)
2335{
2336	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2337	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2338	u32 min, max, a, b, max_m;
2339	u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2340	int mode = CCS_SCALING_MODE_HORIZONTAL;
2341	u32 try[4];
2342	u32 ntry = 0;
2343	unsigned int i;
2344	int best = INT_MIN;
2345
2346	sel->r.width = min_t(unsigned int, sel->r.width,
2347			     crops[CCS_PAD_SINK]->width);
2348	sel->r.height = min_t(unsigned int, sel->r.height,
2349			      crops[CCS_PAD_SINK]->height);
2350
2351	a = crops[CCS_PAD_SINK]->width
2352		* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2353	b = crops[CCS_PAD_SINK]->height
2354		* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2355	max_m = crops[CCS_PAD_SINK]->width
2356		* CCS_LIM(sensor, SCALER_N_MIN)
2357		/ CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2358
2359	a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2360		  CCS_LIM(sensor, SCALER_M_MAX));
2361	b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2362		  CCS_LIM(sensor, SCALER_M_MAX));
2363	max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2364		      CCS_LIM(sensor, SCALER_M_MAX));
2365
2366	dev_dbg(&client->dev, "scaling: a %u b %u max_m %u\n", a, b, max_m);
2367
2368	min = min(max_m, min(a, b));
2369	max = min(max_m, max(a, b));
2370
2371	try[ntry] = min;
2372	ntry++;
2373	if (min != max) {
2374		try[ntry] = max;
2375		ntry++;
2376	}
2377	if (max != max_m) {
2378		try[ntry] = min + 1;
2379		ntry++;
2380		if (min != max) {
2381			try[ntry] = max + 1;
2382			ntry++;
2383		}
2384	}
2385
2386	for (i = 0; i < ntry; i++) {
2387		int this = scaling_goodness(
2388			subdev,
2389			crops[CCS_PAD_SINK]->width
2390			/ try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2391			sel->r.width,
2392			crops[CCS_PAD_SINK]->height,
2393			sel->r.height,
2394			sel->flags);
2395
2396		dev_dbg(&client->dev, "trying factor %u (%u)\n", try[i], i);
2397
2398		if (this > best) {
2399			scale_m = try[i];
2400			mode = CCS_SCALING_MODE_HORIZONTAL;
2401			best = this;
2402		}
2403
2404		if (CCS_LIM(sensor, SCALING_CAPABILITY)
2405		    == CCS_SCALING_CAPABILITY_HORIZONTAL)
2406			continue;
2407
2408		this = scaling_goodness(
2409			subdev, crops[CCS_PAD_SINK]->width
2410			/ try[i]
2411			* CCS_LIM(sensor, SCALER_N_MIN),
2412			sel->r.width,
2413			crops[CCS_PAD_SINK]->height
2414			/ try[i]
2415			* CCS_LIM(sensor, SCALER_N_MIN),
2416			sel->r.height,
2417			sel->flags);
2418
2419		if (this > best) {
2420			scale_m = try[i];
2421			mode = SMIAPP_SCALING_MODE_BOTH;
2422			best = this;
2423		}
2424	}
2425
2426	sel->r.width =
2427		(crops[CCS_PAD_SINK]->width
2428		 / scale_m
2429		 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2430	if (mode == SMIAPP_SCALING_MODE_BOTH)
2431		sel->r.height =
2432			(crops[CCS_PAD_SINK]->height
2433			 / scale_m
2434			 * CCS_LIM(sensor, SCALER_N_MIN))
2435			& ~1;
2436	else
2437		sel->r.height = crops[CCS_PAD_SINK]->height;
2438
2439	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2440		sensor->scale_m = scale_m;
2441		sensor->scaling_mode = mode;
2442	}
2443}
2444/* We're only called on source pads. This function sets scaling. */
2445static int ccs_set_compose(struct v4l2_subdev *subdev,
2446			   struct v4l2_subdev_state *sd_state,
2447			   struct v4l2_subdev_selection *sel)
2448{
2449	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2450	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2451	struct v4l2_rect *comp, *crops[CCS_PADS];
2452
2453	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2454
2455	sel->r.top = 0;
2456	sel->r.left = 0;
2457
2458	if (ssd == sensor->binner)
2459		ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
2460	else
2461		ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
2462
2463	*comp = sel->r;
2464	ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
2465
2466	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2467		return ccs_pll_blanking_update(sensor);
2468
2469	return 0;
2470}
2471
2472static int ccs_sel_supported(struct v4l2_subdev *subdev,
2473			     struct v4l2_subdev_selection *sel)
2474{
2475	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2476	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2477
2478	/* We only implement crop in three places. */
2479	switch (sel->target) {
2480	case V4L2_SEL_TGT_CROP:
2481	case V4L2_SEL_TGT_CROP_BOUNDS:
2482		if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2483			return 0;
2484		if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2485			return 0;
2486		if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2487		    CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2488		    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2489			return 0;
2490		return -EINVAL;
2491	case V4L2_SEL_TGT_NATIVE_SIZE:
2492		if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2493			return 0;
2494		return -EINVAL;
2495	case V4L2_SEL_TGT_COMPOSE:
2496	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2497		if (sel->pad == ssd->source_pad)
2498			return -EINVAL;
2499		if (ssd == sensor->binner)
2500			return 0;
2501		if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2502		    != CCS_SCALING_CAPABILITY_NONE)
2503			return 0;
2504		fallthrough;
2505	default:
2506		return -EINVAL;
2507	}
2508}
2509
2510static int ccs_set_crop(struct v4l2_subdev *subdev,
2511			struct v4l2_subdev_state *sd_state,
2512			struct v4l2_subdev_selection *sel)
2513{
2514	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2515	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2516	struct v4l2_rect src_size = { 0 }, *crops[CCS_PADS], *comp;
2517
2518	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2519
2520	if (sel->pad == ssd->sink_pad) {
2521		struct v4l2_mbus_framefmt *mfmt =
2522			v4l2_subdev_state_get_format(sd_state, sel->pad);
2523
2524		src_size.width = mfmt->width;
2525		src_size.height = mfmt->height;
2526	} else {
2527		src_size = *comp;
2528	}
2529
2530	if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2531		sel->r.left = 0;
2532		sel->r.top = 0;
2533	}
2534
2535	sel->r.width = min(sel->r.width, src_size.width);
2536	sel->r.height = min(sel->r.height, src_size.height);
2537
2538	sel->r.left = min_t(int, sel->r.left, src_size.width - sel->r.width);
2539	sel->r.top = min_t(int, sel->r.top, src_size.height - sel->r.height);
2540
2541	*crops[sel->pad] = sel->r;
2542
2543	if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2544		ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
2545	else if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE &&
2546		 ssd == sensor->pixel_array)
2547		sensor->pa_src = sel->r;
2548
2549	return 0;
2550}
2551
2552static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2553{
2554	r->top = 0;
2555	r->left = 0;
2556	r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2557	r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2558}
2559
2560static int ccs_get_selection(struct v4l2_subdev *subdev,
2561			     struct v4l2_subdev_state *sd_state,
2562			     struct v4l2_subdev_selection *sel)
2563{
2564	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2565	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2566	struct v4l2_rect *comp, *crops[CCS_PADS];
2567	int ret;
2568
2569	ret = ccs_sel_supported(subdev, sel);
2570	if (ret)
2571		return ret;
2572
2573	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2574
2575	switch (sel->target) {
2576	case V4L2_SEL_TGT_CROP_BOUNDS:
2577	case V4L2_SEL_TGT_NATIVE_SIZE:
2578		if (ssd == sensor->pixel_array) {
2579			ccs_get_native_size(ssd, &sel->r);
2580		} else if (sel->pad == ssd->sink_pad) {
2581			struct v4l2_mbus_framefmt *sink_fmt =
2582				v4l2_subdev_state_get_format(sd_state,
2583							     ssd->sink_pad);
2584			sel->r.top = sel->r.left = 0;
2585			sel->r.width = sink_fmt->width;
2586			sel->r.height = sink_fmt->height;
2587		} else {
2588			sel->r = *comp;
2589		}
2590		break;
2591	case V4L2_SEL_TGT_CROP:
2592	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2593		sel->r = *crops[sel->pad];
2594		break;
2595	case V4L2_SEL_TGT_COMPOSE:
2596		sel->r = *comp;
2597		break;
2598	}
2599
2600	return 0;
2601}
2602
2603static int ccs_set_selection(struct v4l2_subdev *subdev,
2604			     struct v4l2_subdev_state *sd_state,
2605			     struct v4l2_subdev_selection *sel)
2606{
2607	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2608	int ret;
2609
2610	ret = ccs_sel_supported(subdev, sel);
2611	if (ret)
2612		return ret;
2613
2614	mutex_lock(&sensor->mutex);
2615
2616	sel->r.left = max(0, sel->r.left & ~1);
2617	sel->r.top = max(0, sel->r.top & ~1);
2618	sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2619	sel->r.height =	CCS_ALIGN_DIM(sel->r.height, sel->flags);
2620
2621	sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2622			     sel->r.width);
2623	sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2624			      sel->r.height);
2625
2626	switch (sel->target) {
2627	case V4L2_SEL_TGT_CROP:
2628		ret = ccs_set_crop(subdev, sd_state, sel);
2629		break;
2630	case V4L2_SEL_TGT_COMPOSE:
2631		ret = ccs_set_compose(subdev, sd_state, sel);
2632		break;
2633	default:
2634		ret = -EINVAL;
2635	}
2636
2637	mutex_unlock(&sensor->mutex);
2638	return ret;
2639}
2640
2641static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2642{
2643	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2644
2645	*frames = sensor->frame_skip;
2646	return 0;
2647}
2648
2649static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2650{
2651	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2652
2653	*lines = sensor->image_start;
2654
2655	return 0;
2656}
2657
2658/* -----------------------------------------------------------------------------
2659 * sysfs attributes
2660 */
2661
2662static ssize_t
2663nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
2664{
2665	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2666	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2667	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2668	int rval;
2669
2670	if (!sensor->dev_init_done)
2671		return -EBUSY;
2672
2673	rval = ccs_pm_get_init(sensor);
2674	if (rval < 0)
2675		return -ENODEV;
2676
2677	rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
2678	if (rval < 0) {
2679		pm_runtime_put(&client->dev);
2680		dev_err(&client->dev, "nvm read failed\n");
2681		return -ENODEV;
2682	}
2683
2684	pm_runtime_mark_last_busy(&client->dev);
2685	pm_runtime_put_autosuspend(&client->dev);
2686
2687	/*
2688	 * NVM is still way below a PAGE_SIZE, so we can safely
2689	 * assume this for now.
2690	 */
2691	return rval;
2692}
2693static DEVICE_ATTR_RO(nvm);
2694
2695static ssize_t
2696ident_show(struct device *dev, struct device_attribute *attr, char *buf)
2697{
2698	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2699	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2700	struct ccs_module_info *minfo = &sensor->minfo;
2701
2702	if (minfo->mipi_manufacturer_id)
2703		return sysfs_emit(buf, "%4.4x%4.4x%2.2x\n",
2704				    minfo->mipi_manufacturer_id, minfo->model_id,
2705				    minfo->revision_number) + 1;
2706	else
2707		return sysfs_emit(buf, "%2.2x%4.4x%2.2x\n",
2708				    minfo->smia_manufacturer_id, minfo->model_id,
2709				    minfo->revision_number) + 1;
2710}
2711static DEVICE_ATTR_RO(ident);
2712
2713/* -----------------------------------------------------------------------------
2714 * V4L2 subdev core operations
2715 */
2716
2717static int ccs_identify_module(struct ccs_sensor *sensor)
2718{
2719	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2720	struct ccs_module_info *minfo = &sensor->minfo;
2721	unsigned int i;
2722	u32 rev;
2723	int rval = 0;
2724
2725	/* Module info */
2726	rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2727			&minfo->mipi_manufacturer_id);
2728	if (!rval && !minfo->mipi_manufacturer_id)
2729		rval = ccs_read_addr(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2730				     &minfo->smia_manufacturer_id);
2731	if (!rval)
2732		rval = ccs_read(sensor, MODULE_MODEL_ID, &minfo->model_id);
2733	if (!rval)
2734		rval = ccs_read(sensor, MODULE_REVISION_NUMBER_MAJOR, &rev);
2735	if (!rval) {
2736		rval = ccs_read(sensor, MODULE_REVISION_NUMBER_MINOR,
2737				&minfo->revision_number);
2738		minfo->revision_number |= rev << 8;
2739	}
2740	if (!rval)
2741		rval = ccs_read(sensor, MODULE_DATE_YEAR, &minfo->module_year);
2742	if (!rval)
2743		rval = ccs_read(sensor, MODULE_DATE_MONTH,
2744				&minfo->module_month);
2745	if (!rval)
2746		rval = ccs_read(sensor, MODULE_DATE_DAY, &minfo->module_day);
2747
2748	/* Sensor info */
2749	if (!rval)
2750		rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2751				&minfo->sensor_mipi_manufacturer_id);
2752	if (!rval && !minfo->sensor_mipi_manufacturer_id)
2753		rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2754				&minfo->sensor_smia_manufacturer_id);
2755	if (!rval)
2756		rval = ccs_read(sensor, SENSOR_MODEL_ID,
2757				&minfo->sensor_model_id);
2758	if (!rval)
2759		rval = ccs_read(sensor, SENSOR_REVISION_NUMBER,
2760				&minfo->sensor_revision_number);
2761	if (!rval && !minfo->sensor_revision_number)
2762		rval = ccs_read(sensor, SENSOR_REVISION_NUMBER_16,
2763				&minfo->sensor_revision_number);
2764	if (!rval)
2765		rval = ccs_read(sensor, SENSOR_FIRMWARE_VERSION,
2766				&minfo->sensor_firmware_version);
2767
2768	/* SMIA */
2769	if (!rval)
2770		rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2771	if (!rval && !minfo->ccs_version)
2772		rval = ccs_read_addr(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2773				     &minfo->smia_version);
2774	if (!rval && !minfo->ccs_version)
2775		rval = ccs_read_addr(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2776				     &minfo->smiapp_version);
2777
2778	if (rval) {
2779		dev_err(&client->dev, "sensor detection failed\n");
2780		return -ENODEV;
2781	}
2782
2783	if (minfo->mipi_manufacturer_id)
2784		dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2785			minfo->mipi_manufacturer_id, minfo->model_id);
2786	else
2787		dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2788			minfo->smia_manufacturer_id, minfo->model_id);
2789
2790	dev_dbg(&client->dev,
2791		"module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2792		minfo->revision_number, minfo->module_year, minfo->module_month,
2793		minfo->module_day);
2794
2795	if (minfo->sensor_mipi_manufacturer_id)
2796		dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2797			minfo->sensor_mipi_manufacturer_id,
2798			minfo->sensor_model_id);
2799	else
2800		dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2801			minfo->sensor_smia_manufacturer_id,
2802			minfo->sensor_model_id);
2803
2804	dev_dbg(&client->dev,
2805		"sensor revision 0x%4.4x firmware version 0x%2.2x\n",
2806		minfo->sensor_revision_number, minfo->sensor_firmware_version);
2807
2808	if (minfo->ccs_version) {
2809		dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2810			(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2811			>> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2812			(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2813		minfo->name = CCS_NAME;
2814	} else {
2815		dev_dbg(&client->dev,
2816			"smia version %2.2d smiapp version %2.2d\n",
2817			minfo->smia_version, minfo->smiapp_version);
2818		minfo->name = SMIAPP_NAME;
2819		/*
2820		 * Some modules have bad data in the lvalues below. Hope the
2821		 * rvalues have better stuff. The lvalues are module
2822		 * parameters whereas the rvalues are sensor parameters.
2823		 */
2824		if (minfo->sensor_smia_manufacturer_id &&
2825		    !minfo->smia_manufacturer_id && !minfo->model_id) {
2826			minfo->smia_manufacturer_id =
2827				minfo->sensor_smia_manufacturer_id;
2828			minfo->model_id = minfo->sensor_model_id;
2829			minfo->revision_number = minfo->sensor_revision_number;
2830		}
2831	}
2832
2833	for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2834		if (ccs_module_idents[i].mipi_manufacturer_id &&
2835		    ccs_module_idents[i].mipi_manufacturer_id
2836		    != minfo->mipi_manufacturer_id)
2837			continue;
2838		if (ccs_module_idents[i].smia_manufacturer_id &&
2839		    ccs_module_idents[i].smia_manufacturer_id
2840		    != minfo->smia_manufacturer_id)
2841			continue;
2842		if (ccs_module_idents[i].model_id != minfo->model_id)
2843			continue;
2844		if (ccs_module_idents[i].flags
2845		    & CCS_MODULE_IDENT_FLAG_REV_LE) {
2846			if (ccs_module_idents[i].revision_number_major
2847			    < (minfo->revision_number >> 8))
2848				continue;
2849		} else {
2850			if (ccs_module_idents[i].revision_number_major
2851			    != (minfo->revision_number >> 8))
2852				continue;
2853		}
2854
2855		minfo->name = ccs_module_idents[i].name;
2856		minfo->quirk = ccs_module_idents[i].quirk;
2857		break;
2858	}
2859
2860	if (i >= ARRAY_SIZE(ccs_module_idents))
2861		dev_warn(&client->dev,
2862			 "no quirks for this module; let's hope it's fully compliant\n");
2863
2864	dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2865
2866	return 0;
2867}
2868
2869static const struct v4l2_subdev_ops ccs_ops;
2870static const struct media_entity_operations ccs_entity_ops;
2871
2872static int ccs_register_subdev(struct ccs_sensor *sensor,
2873			       struct ccs_subdev *ssd,
2874			       struct ccs_subdev *sink_ssd,
2875			       u16 source_pad, u16 sink_pad, u32 link_flags)
2876{
2877	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2878	int rval;
2879
2880	if (!sink_ssd)
2881		return 0;
2882
2883	rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
2884	if (rval) {
2885		dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2886		return rval;
2887	}
2888
2889	rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2890				     &sink_ssd->sd.entity, sink_pad,
2891				     link_flags);
2892	if (rval) {
2893		dev_err(&client->dev, "media_create_pad_link failed\n");
2894		v4l2_device_unregister_subdev(&ssd->sd);
2895		return rval;
2896	}
2897
2898	return 0;
2899}
2900
2901static void ccs_unregistered(struct v4l2_subdev *subdev)
2902{
2903	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2904	unsigned int i;
2905
2906	for (i = 1; i < sensor->ssds_used; i++)
2907		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2908}
2909
2910static int ccs_registered(struct v4l2_subdev *subdev)
2911{
2912	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2913	int rval;
2914
2915	if (sensor->scaler) {
2916		rval = ccs_register_subdev(sensor, sensor->binner,
2917					   sensor->scaler,
2918					   CCS_PAD_SRC, CCS_PAD_SINK,
2919					   MEDIA_LNK_FL_ENABLED |
2920					   MEDIA_LNK_FL_IMMUTABLE);
2921		if (rval < 0)
2922			return rval;
2923	}
2924
2925	rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
2926				   CCS_PA_PAD_SRC, CCS_PAD_SINK,
2927				   MEDIA_LNK_FL_ENABLED |
2928				   MEDIA_LNK_FL_IMMUTABLE);
2929	if (rval)
2930		goto out_err;
2931
2932	return 0;
2933
2934out_err:
2935	ccs_unregistered(subdev);
2936
2937	return rval;
2938}
2939
2940static void ccs_cleanup(struct ccs_sensor *sensor)
2941{
2942	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2943	unsigned int i;
2944
2945	for (i = 0; i < sensor->ssds_used; i++) {
2946		v4l2_subdev_cleanup(&sensor->ssds[2].sd);
2947		media_entity_cleanup(&sensor->ssds[i].sd.entity);
2948	}
2949
2950	device_remove_file(&client->dev, &dev_attr_nvm);
2951	device_remove_file(&client->dev, &dev_attr_ident);
2952
2953	ccs_free_controls(sensor);
2954}
2955
2956static int ccs_init_subdev(struct ccs_sensor *sensor,
2957			   struct ccs_subdev *ssd, const char *name,
2958			   unsigned short num_pads, u32 function,
2959			   const char *lock_name,
2960			   struct lock_class_key *lock_key)
2961{
2962	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2963	int rval;
2964
2965	if (!ssd)
2966		return 0;
2967
2968	if (ssd != sensor->src)
2969		v4l2_subdev_init(&ssd->sd, &ccs_ops);
2970
2971	ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2972	ssd->sd.entity.function = function;
2973	ssd->sensor = sensor;
2974
2975	ssd->npads = num_pads;
2976	ssd->source_pad = num_pads - 1;
2977
2978	v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
2979
2980	ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2981	if (ssd != sensor->pixel_array)
2982		ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2983
2984	ssd->sd.entity.ops = &ccs_entity_ops;
2985
2986	if (ssd != sensor->src) {
2987		ssd->sd.owner = THIS_MODULE;
2988		ssd->sd.dev = &client->dev;
2989		v4l2_set_subdevdata(&ssd->sd, client);
2990	}
2991
2992	rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
2993	if (rval) {
2994		dev_err(&client->dev, "media_entity_pads_init failed\n");
2995		return rval;
2996	}
2997
2998	rval = __v4l2_subdev_init_finalize(&ssd->sd, lock_name, lock_key);
2999	if (rval) {
3000		media_entity_cleanup(&ssd->sd.entity);
3001		return rval;
3002	}
3003
3004	return 0;
3005}
3006
3007static int ccs_init_state(struct v4l2_subdev *sd,
3008			  struct v4l2_subdev_state *sd_state)
3009{
3010	struct ccs_subdev *ssd = to_ccs_subdev(sd);
3011	struct ccs_sensor *sensor = ssd->sensor;
3012	unsigned int pad = ssd == sensor->pixel_array ?
3013		CCS_PA_PAD_SRC : CCS_PAD_SINK;
3014	struct v4l2_mbus_framefmt *fmt =
3015		v4l2_subdev_state_get_format(sd_state, pad);
3016	struct v4l2_rect *crop =
3017		v4l2_subdev_state_get_crop(sd_state, pad);
3018	bool is_active = !sd->active_state || sd->active_state == sd_state;
3019
3020	mutex_lock(&sensor->mutex);
3021
3022	ccs_get_native_size(ssd, crop);
3023
3024	fmt->width = crop->width;
3025	fmt->height = crop->height;
3026	fmt->code = sensor->internal_csi_format->code;
3027	fmt->field = V4L2_FIELD_NONE;
3028
3029	if (ssd == sensor->pixel_array) {
3030		if (is_active)
3031			sensor->pa_src = *crop;
3032
3033		mutex_unlock(&sensor->mutex);
3034		return 0;
3035	}
3036
3037	fmt = v4l2_subdev_state_get_format(sd_state, CCS_PAD_SRC);
3038	fmt->code = ssd == sensor->src ?
3039		sensor->csi_format->code : sensor->internal_csi_format->code;
3040	fmt->field = V4L2_FIELD_NONE;
3041
3042	ccs_propagate(sd, sd_state, is_active, V4L2_SEL_TGT_CROP);
3043
3044	mutex_unlock(&sensor->mutex);
3045
3046	return 0;
3047}
3048
3049static const struct v4l2_subdev_video_ops ccs_video_ops = {
3050	.s_stream = ccs_set_stream,
3051	.pre_streamon = ccs_pre_streamon,
3052	.post_streamoff = ccs_post_streamoff,
3053};
3054
3055static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
3056	.enum_mbus_code = ccs_enum_mbus_code,
3057	.get_fmt = ccs_get_format,
3058	.set_fmt = ccs_set_format,
3059	.get_selection = ccs_get_selection,
3060	.set_selection = ccs_set_selection,
3061};
3062
3063static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
3064	.g_skip_frames = ccs_get_skip_frames,
3065	.g_skip_top_lines = ccs_get_skip_top_lines,
3066};
3067
3068static const struct v4l2_subdev_ops ccs_ops = {
3069	.video = &ccs_video_ops,
3070	.pad = &ccs_pad_ops,
3071	.sensor = &ccs_sensor_ops,
3072};
3073
3074static const struct media_entity_operations ccs_entity_ops = {
3075	.link_validate = v4l2_subdev_link_validate,
3076};
3077
3078static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
3079	.init_state = ccs_init_state,
3080	.registered = ccs_registered,
3081	.unregistered = ccs_unregistered,
3082};
3083
3084/* -----------------------------------------------------------------------------
3085 * I2C Driver
3086 */
3087
3088static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
3089{
3090	struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
3091	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
3092	struct fwnode_handle *ep;
3093	struct fwnode_handle *fwnode = dev_fwnode(dev);
3094	unsigned int i;
3095	int rval;
3096
3097	ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
3098					     FWNODE_GRAPH_ENDPOINT_NEXT);
3099	if (!ep)
3100		return -ENODEV;
3101
3102	/*
3103	 * Note that we do need to rely on detecting the bus type between CSI-2
3104	 * D-PHY and CCP2 as the old bindings did not require it.
3105	 */
3106	rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
3107	if (rval)
3108		goto out_err;
3109
3110	switch (bus_cfg.bus_type) {
3111	case V4L2_MBUS_CSI2_DPHY:
3112		hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
3113		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3114		break;
3115	case V4L2_MBUS_CSI2_CPHY:
3116		hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
3117		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3118		break;
3119	case V4L2_MBUS_CSI1:
3120	case V4L2_MBUS_CCP2:
3121		hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
3122		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
3123		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
3124		hwcfg->lanes = 1;
3125		break;
3126	default:
3127		dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
3128		rval = -EINVAL;
3129		goto out_err;
3130	}
3131
3132	rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
3133					&hwcfg->ext_clk);
3134	if (rval)
3135		dev_info(dev, "can't get clock-frequency\n");
3136
3137	dev_dbg(dev, "clk %u, mode %u\n", hwcfg->ext_clk,
3138		hwcfg->csi_signalling_mode);
3139
3140	if (!bus_cfg.nr_of_link_frequencies) {
3141		dev_warn(dev, "no link frequencies defined\n");
3142		rval = -EINVAL;
3143		goto out_err;
3144	}
3145
3146	hwcfg->op_sys_clock = devm_kcalloc(
3147		dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
3148		sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3149	if (!hwcfg->op_sys_clock) {
3150		rval = -ENOMEM;
3151		goto out_err;
3152	}
3153
3154	for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
3155		hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
3156		dev_dbg(dev, "freq %u: %lld\n", i, hwcfg->op_sys_clock[i]);
3157	}
3158
3159	v4l2_fwnode_endpoint_free(&bus_cfg);
3160	fwnode_handle_put(ep);
3161
3162	return 0;
3163
3164out_err:
3165	v4l2_fwnode_endpoint_free(&bus_cfg);
3166	fwnode_handle_put(ep);
3167
3168	return rval;
3169}
3170
3171static int ccs_firmware_name(struct i2c_client *client,
3172			     struct ccs_sensor *sensor, char *filename,
3173			     size_t filename_size, bool is_module)
3174{
3175	const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3176	bool is_ccs = !(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA);
3177	bool is_smiapp = sensor->minfo.smiapp_version;
3178	u16 manufacturer_id;
3179	u16 model_id;
3180	u16 revision_number;
3181
3182	/*
3183	 * Old SMIA is module-agnostic. Its sensor identification is based on
3184	 * what now are those of the module.
3185	 */
3186	if (is_module || (!is_ccs && !is_smiapp)) {
3187		manufacturer_id = is_ccs ?
3188			sensor->minfo.mipi_manufacturer_id :
3189			sensor->minfo.smia_manufacturer_id;
3190		model_id = sensor->minfo.model_id;
3191		revision_number = sensor->minfo.revision_number;
3192	} else {
3193		manufacturer_id = is_ccs ?
3194			sensor->minfo.sensor_mipi_manufacturer_id :
3195			sensor->minfo.sensor_smia_manufacturer_id;
3196		model_id = sensor->minfo.sensor_model_id;
3197		revision_number = sensor->minfo.sensor_revision_number;
3198	}
3199
3200	return snprintf(filename, filename_size,
3201			"ccs/%s-%s-%0*x-%4.4x-%0*x.fw",
3202			is_ccs ? "ccs" : is_smiapp ? "smiapp" : "smia",
3203			is_module || (!is_ccs && !is_smiapp) ?
3204				"module" : "sensor",
3205			is_ccs ? 4 : 2, manufacturer_id, model_id,
3206			!is_ccs && !is_module ? 2 : 4, revision_number);
3207}
3208
3209static int ccs_probe(struct i2c_client *client)
3210{
3211	static struct lock_class_key pixel_array_lock_key, binner_lock_key,
3212		scaler_lock_key;
3213	const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3214	struct ccs_sensor *sensor;
3215	const struct firmware *fw;
3216	char filename[40];
3217	unsigned int i;
3218	int rval;
3219
3220	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3221	if (sensor == NULL)
3222		return -ENOMEM;
3223
3224	rval = ccs_get_hwconfig(sensor, &client->dev);
3225	if (rval)
3226		return rval;
3227
3228	sensor->src = &sensor->ssds[sensor->ssds_used];
3229
3230	v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
3231	sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3232
3233	sensor->regulators = devm_kcalloc(&client->dev,
3234					  ARRAY_SIZE(ccs_regulators),
3235					  sizeof(*sensor->regulators),
3236					  GFP_KERNEL);
3237	if (!sensor->regulators)
3238		return -ENOMEM;
3239
3240	for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3241		sensor->regulators[i].supply = ccs_regulators[i];
3242
3243	rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
3244				       sensor->regulators);
3245	if (rval) {
3246		dev_err(&client->dev, "could not get regulators\n");
3247		return rval;
3248	}
3249
3250	sensor->ext_clk = devm_clk_get(&client->dev, NULL);
3251	if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
3252		dev_info(&client->dev, "no clock defined, continuing...\n");
3253		sensor->ext_clk = NULL;
3254	} else if (IS_ERR(sensor->ext_clk)) {
3255		dev_err(&client->dev, "could not get clock (%ld)\n",
3256			PTR_ERR(sensor->ext_clk));
3257		return -EPROBE_DEFER;
3258	}
3259
3260	if (sensor->ext_clk) {
3261		if (sensor->hwcfg.ext_clk) {
3262			unsigned long rate;
3263
3264			rval = clk_set_rate(sensor->ext_clk,
3265					    sensor->hwcfg.ext_clk);
3266			if (rval < 0) {
3267				dev_err(&client->dev,
3268					"unable to set clock freq to %u\n",
3269					sensor->hwcfg.ext_clk);
3270				return rval;
3271			}
3272
3273			rate = clk_get_rate(sensor->ext_clk);
3274			if (rate != sensor->hwcfg.ext_clk) {
3275				dev_err(&client->dev,
3276					"can't set clock freq, asked for %u but got %lu\n",
3277					sensor->hwcfg.ext_clk, rate);
3278				return -EINVAL;
3279			}
3280		} else {
3281			sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
3282			dev_dbg(&client->dev, "obtained clock freq %u\n",
3283				sensor->hwcfg.ext_clk);
3284		}
3285	} else if (sensor->hwcfg.ext_clk) {
3286		dev_dbg(&client->dev, "assuming clock freq %u\n",
3287			sensor->hwcfg.ext_clk);
3288	} else {
3289		dev_err(&client->dev, "unable to obtain clock freq\n");
3290		return -EINVAL;
3291	}
3292
3293	if (!sensor->hwcfg.ext_clk) {
3294		dev_err(&client->dev, "cannot work with xclk frequency 0\n");
3295		return -EINVAL;
3296	}
3297
3298	sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
3299						GPIOD_OUT_HIGH);
3300	if (IS_ERR(sensor->reset))
3301		return PTR_ERR(sensor->reset);
3302	/* Support old users that may have used "xshutdown" property. */
3303	if (!sensor->reset)
3304		sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
3305							    "xshutdown",
3306							    GPIOD_OUT_LOW);
3307	if (IS_ERR(sensor->xshutdown))
3308		return PTR_ERR(sensor->xshutdown);
3309
3310	sensor->regmap = devm_cci_regmap_init_i2c(client, 16);
3311	if (IS_ERR(sensor->regmap)) {
3312		dev_err(&client->dev, "can't initialise CCI (%ld)\n",
3313			PTR_ERR(sensor->regmap));
3314		return PTR_ERR(sensor->regmap);
3315	}
3316
3317	rval = ccs_power_on(&client->dev);
3318	if (rval < 0)
3319		return rval;
3320
3321	mutex_init(&sensor->mutex);
3322
3323	rval = ccs_identify_module(sensor);
3324	if (rval) {
3325		rval = -ENODEV;
3326		goto out_power_off;
3327	}
3328
3329	rval = ccs_firmware_name(client, sensor, filename, sizeof(filename),
3330				 false);
3331	if (rval >= sizeof(filename)) {
3332		rval = -ENOMEM;
3333		goto out_power_off;
3334	}
3335
3336	rval = request_firmware(&fw, filename, &client->dev);
3337	if (!rval) {
3338		ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev,
3339			       true);
3340		release_firmware(fw);
3341	}
3342
3343	if (!(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) ||
3344	    sensor->minfo.smiapp_version) {
3345		rval = ccs_firmware_name(client, sensor, filename,
3346					 sizeof(filename), true);
3347		if (rval >= sizeof(filename)) {
3348			rval = -ENOMEM;
3349			goto out_release_sdata;
3350		}
3351
3352		rval = request_firmware(&fw, filename, &client->dev);
3353		if (!rval) {
3354			ccs_data_parse(&sensor->mdata, fw->data, fw->size,
3355				       &client->dev, true);
3356			release_firmware(fw);
3357		}
3358	}
3359
3360	rval = ccs_read_all_limits(sensor);
3361	if (rval)
3362		goto out_release_mdata;
3363
3364	rval = ccs_read_frame_fmt(sensor);
3365	if (rval) {
3366		rval = -ENODEV;
3367		goto out_free_ccs_limits;
3368	}
3369
3370	rval = ccs_update_phy_ctrl(sensor);
3371	if (rval < 0)
3372		goto out_free_ccs_limits;
3373
3374	rval = ccs_call_quirk(sensor, limits);
3375	if (rval) {
3376		dev_err(&client->dev, "limits quirks failed\n");
3377		goto out_free_ccs_limits;
3378	}
3379
3380	if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3381		sensor->nbinning_subtypes =
3382			min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3383			      CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3384
3385		for (i = 0; i < sensor->nbinning_subtypes; i++) {
3386			sensor->binning_subtypes[i].horizontal =
3387				CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3388				CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3389			sensor->binning_subtypes[i].vertical =
3390				CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3391				CCS_BINNING_SUB_TYPE_ROW_MASK;
3392
3393			dev_dbg(&client->dev, "binning %xx%x\n",
3394				sensor->binning_subtypes[i].horizontal,
3395				sensor->binning_subtypes[i].vertical);
3396		}
3397	}
3398	sensor->binning_horizontal = 1;
3399	sensor->binning_vertical = 1;
3400
3401	if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3402		dev_err(&client->dev, "sysfs ident entry creation failed\n");
3403		rval = -ENOENT;
3404		goto out_free_ccs_limits;
3405	}
3406
3407	if (sensor->minfo.smiapp_version &&
3408	    CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3409	    CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3410		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3411			dev_err(&client->dev, "sysfs nvm entry failed\n");
3412			rval = -EBUSY;
3413			goto out_cleanup;
3414		}
3415	}
3416
3417	if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3418	    !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3419	    !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3420	    !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3421		/* No OP clock branch */
3422		sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3423	} else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3424		   != CCS_SCALING_CAPABILITY_NONE ||
3425		   CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3426		   == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3427		/* We have a scaler or digital crop. */
3428		sensor->scaler = &sensor->ssds[sensor->ssds_used];
3429		sensor->ssds_used++;
3430	}
3431	sensor->binner = &sensor->ssds[sensor->ssds_used];
3432	sensor->ssds_used++;
3433	sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3434	sensor->ssds_used++;
3435
3436	sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3437
3438	/* prepare PLL configuration input values */
3439	sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3440	sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3441	if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3442	    CCS_CLOCK_CALCULATION_LANE_SPEED) {
3443		sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3444		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3445		    CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3446			sensor->pll.vt_lanes =
3447				CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3448			sensor->pll.op_lanes =
3449				CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3450			sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
3451		} else {
3452			sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3453			sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3454		}
3455	}
3456	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3457	    CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3458		sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3459	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3460	    CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3461		sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3462	if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3463	    CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3464		sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3465	if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3466	    CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3467		sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3468				     CCS_PLL_FLAG_FIFO_OVERRATING;
3469	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3470	    CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3471		if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3472		    CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3473			u32 v;
3474
3475			/* Use sensor default in PLL mode selection */
3476			rval = ccs_read(sensor, PLL_MODE, &v);
3477			if (rval)
3478				goto out_cleanup;
3479
3480			if (v == CCS_PLL_MODE_DUAL)
3481				sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3482		} else {
3483			sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3484		}
3485		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3486		    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3487			sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3488		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3489		    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3490			sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3491	}
3492	sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3493	sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3494	sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3495
3496	rval = ccs_get_mbus_formats(sensor);
3497	if (rval) {
3498		rval = -ENODEV;
3499		goto out_cleanup;
3500	}
3501
3502	rval = ccs_init_subdev(sensor, sensor->scaler, " scaler", 2,
3503			       MEDIA_ENT_F_PROC_VIDEO_SCALER,
3504			       "ccs scaler mutex", &scaler_lock_key);
3505	if (rval)
3506		goto out_cleanup;
3507	rval = ccs_init_subdev(sensor, sensor->binner, " binner", 2,
3508			       MEDIA_ENT_F_PROC_VIDEO_SCALER,
3509			       "ccs binner mutex", &binner_lock_key);
3510	if (rval)
3511		goto out_cleanup;
3512	rval = ccs_init_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
3513			       MEDIA_ENT_F_CAM_SENSOR, "ccs pixel array mutex",
3514			       &pixel_array_lock_key);
3515	if (rval)
3516		goto out_cleanup;
3517
3518	rval = ccs_init_controls(sensor);
3519	if (rval < 0)
3520		goto out_cleanup;
3521
3522	rval = ccs_call_quirk(sensor, init);
3523	if (rval)
3524		goto out_cleanup;
3525
3526	rval = ccs_init_late_controls(sensor);
3527	if (rval) {
3528		rval = -ENODEV;
3529		goto out_cleanup;
3530	}
3531
3532	mutex_lock(&sensor->mutex);
3533	rval = ccs_pll_blanking_update(sensor);
3534	mutex_unlock(&sensor->mutex);
3535	if (rval) {
3536		dev_err(&client->dev, "update mode failed\n");
3537		goto out_cleanup;
3538	}
3539
3540	sensor->streaming = false;
3541	sensor->dev_init_done = true;
3542	sensor->handler_setup_needed = true;
3543
3544	rval = ccs_write_msr_regs(sensor);
3545	if (rval)
3546		goto out_cleanup;
3547
3548	pm_runtime_set_active(&client->dev);
3549	pm_runtime_get_noresume(&client->dev);
3550	pm_runtime_enable(&client->dev);
3551
3552	rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
3553	if (rval < 0)
3554		goto out_disable_runtime_pm;
3555
3556	pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3557	pm_runtime_use_autosuspend(&client->dev);
3558	pm_runtime_put_autosuspend(&client->dev);
3559
3560	return 0;
3561
3562out_disable_runtime_pm:
3563	pm_runtime_put_noidle(&client->dev);
3564	pm_runtime_disable(&client->dev);
3565
3566out_cleanup:
3567	ccs_cleanup(sensor);
3568
3569out_release_mdata:
3570	kvfree(sensor->mdata.backing);
3571
3572out_release_sdata:
3573	kvfree(sensor->sdata.backing);
3574
3575out_free_ccs_limits:
3576	kfree(sensor->ccs_limits);
3577
3578out_power_off:
3579	ccs_power_off(&client->dev);
3580	mutex_destroy(&sensor->mutex);
3581
3582	return rval;
3583}
3584
3585static void ccs_remove(struct i2c_client *client)
3586{
3587	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3588	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3589	unsigned int i;
3590
3591	v4l2_async_unregister_subdev(subdev);
3592
3593	pm_runtime_disable(&client->dev);
3594	if (!pm_runtime_status_suspended(&client->dev))
3595		ccs_power_off(&client->dev);
3596	pm_runtime_set_suspended(&client->dev);
3597
3598	for (i = 0; i < sensor->ssds_used; i++)
3599		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3600	ccs_cleanup(sensor);
3601	mutex_destroy(&sensor->mutex);
3602	kfree(sensor->ccs_limits);
3603	kvfree(sensor->sdata.backing);
3604	kvfree(sensor->mdata.backing);
3605}
3606
3607static const struct ccs_device smia_device = {
3608	.flags = CCS_DEVICE_FLAG_IS_SMIA,
3609};
3610
3611static const struct ccs_device ccs_device = {};
3612
3613static const struct acpi_device_id ccs_acpi_table[] = {
3614	{ .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3615	{ },
3616};
3617MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3618
3619static const struct of_device_id ccs_of_table[] = {
3620	{ .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3621	{ .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3622	{ .compatible = "mipi-ccs", .data = &ccs_device },
3623	{ .compatible = "nokia,smia", .data = &smia_device },
3624	{ },
3625};
3626MODULE_DEVICE_TABLE(of, ccs_of_table);
3627
3628static const struct dev_pm_ops ccs_pm_ops = {
3629	SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3630};
3631
3632static struct i2c_driver ccs_i2c_driver = {
3633	.driver	= {
3634		.acpi_match_table = ccs_acpi_table,
3635		.of_match_table = ccs_of_table,
3636		.name = CCS_NAME,
3637		.pm = &ccs_pm_ops,
3638	},
3639	.probe = ccs_probe,
3640	.remove	= ccs_remove,
3641};
3642
3643static int ccs_module_init(void)
3644{
3645	unsigned int i, l;
3646
3647	CCS_BUILD_BUG;
3648
3649	for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3650		if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3651			ccs_limit_offsets[l + 1].lim =
3652				ALIGN(ccs_limit_offsets[l].lim +
3653				      ccs_limits[i].size,
3654				      ccs_limits[i + 1].reg ?
3655				      CCI_REG_WIDTH_BYTES(ccs_limits[i + 1].reg) :
3656				      1U);
3657			ccs_limit_offsets[l].info = i;
3658			l++;
3659		} else {
3660			ccs_limit_offsets[l].lim += ccs_limits[i].size;
3661		}
3662	}
3663
3664	if (WARN_ON(ccs_limits[i].size))
3665		return -EINVAL;
3666
3667	if (WARN_ON(l != CCS_L_LAST))
3668		return -EINVAL;
3669
3670	return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
3671}
3672
3673static void ccs_module_cleanup(void)
3674{
3675	i2c_del_driver(&ccs_i2c_driver);
3676}
3677
3678module_init(ccs_module_init);
3679module_exit(ccs_module_cleanup);
3680
3681MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
3682MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3683MODULE_LICENSE("GPL v2");
3684MODULE_ALIAS("smiapp");
3685