1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _BCACHE_BSET_H
3#define _BCACHE_BSET_H
4
5#include <linux/kernel.h>
6#include <linux/types.h>
7
8#include "bcache_ondisk.h"
9#include "util.h" /* for time_stats */
10
11/*
12 * BKEYS:
13 *
14 * A bkey contains a key, a size field, a variable number of pointers, and some
15 * ancillary flag bits.
16 *
17 * We use two different functions for validating bkeys, bch_ptr_invalid and
18 * bch_ptr_bad().
19 *
20 * bch_ptr_invalid() primarily filters out keys and pointers that would be
21 * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
22 * pointer that occur in normal practice but don't point to real data.
23 *
24 * The one exception to the rule that ptr_invalid() filters out invalid keys is
25 * that it also filters out keys of size 0 - these are keys that have been
26 * completely overwritten. It'd be safe to delete these in memory while leaving
27 * them on disk, just unnecessary work - so we filter them out when resorting
28 * instead.
29 *
30 * We can't filter out stale keys when we're resorting, because garbage
31 * collection needs to find them to ensure bucket gens don't wrap around -
32 * unless we're rewriting the btree node those stale keys still exist on disk.
33 *
34 * We also implement functions here for removing some number of sectors from the
35 * front or the back of a bkey - this is mainly used for fixing overlapping
36 * extents, by removing the overlapping sectors from the older key.
37 *
38 * BSETS:
39 *
40 * A bset is an array of bkeys laid out contiguously in memory in sorted order,
41 * along with a header. A btree node is made up of a number of these, written at
42 * different times.
43 *
44 * There could be many of them on disk, but we never allow there to be more than
45 * 4 in memory - we lazily resort as needed.
46 *
47 * We implement code here for creating and maintaining auxiliary search trees
48 * (described below) for searching an individial bset, and on top of that we
49 * implement a btree iterator.
50 *
51 * BTREE ITERATOR:
52 *
53 * Most of the code in bcache doesn't care about an individual bset - it needs
54 * to search entire btree nodes and iterate over them in sorted order.
55 *
56 * The btree iterator code serves both functions; it iterates through the keys
57 * in a btree node in sorted order, starting from either keys after a specific
58 * point (if you pass it a search key) or the start of the btree node.
59 *
60 * AUXILIARY SEARCH TREES:
61 *
62 * Since keys are variable length, we can't use a binary search on a bset - we
63 * wouldn't be able to find the start of the next key. But binary searches are
64 * slow anyways, due to terrible cache behaviour; bcache originally used binary
65 * searches and that code topped out at under 50k lookups/second.
66 *
67 * So we need to construct some sort of lookup table. Since we only insert keys
68 * into the last (unwritten) set, most of the keys within a given btree node are
69 * usually in sets that are mostly constant. We use two different types of
70 * lookup tables to take advantage of this.
71 *
72 * Both lookup tables share in common that they don't index every key in the
73 * set; they index one key every BSET_CACHELINE bytes, and then a linear search
74 * is used for the rest.
75 *
76 * For sets that have been written to disk and are no longer being inserted
77 * into, we construct a binary search tree in an array - traversing a binary
78 * search tree in an array gives excellent locality of reference and is very
79 * fast, since both children of any node are adjacent to each other in memory
80 * (and their grandchildren, and great grandchildren...) - this means
81 * prefetching can be used to great effect.
82 *
83 * It's quite useful performance wise to keep these nodes small - not just
84 * because they're more likely to be in L2, but also because we can prefetch
85 * more nodes on a single cacheline and thus prefetch more iterations in advance
86 * when traversing this tree.
87 *
88 * Nodes in the auxiliary search tree must contain both a key to compare against
89 * (we don't want to fetch the key from the set, that would defeat the purpose),
90 * and a pointer to the key. We use a few tricks to compress both of these.
91 *
92 * To compress the pointer, we take advantage of the fact that one node in the
93 * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
94 * a function (to_inorder()) that takes the index of a node in a binary tree and
95 * returns what its index would be in an inorder traversal, so we only have to
96 * store the low bits of the offset.
97 *
98 * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
99 * compress that,  we take advantage of the fact that when we're traversing the
100 * search tree at every iteration we know that both our search key and the key
101 * we're looking for lie within some range - bounded by our previous
102 * comparisons. (We special case the start of a search so that this is true even
103 * at the root of the tree).
104 *
105 * So we know the key we're looking for is between a and b, and a and b don't
106 * differ higher than bit 50, we don't need to check anything higher than bit
107 * 50.
108 *
109 * We don't usually need the rest of the bits, either; we only need enough bits
110 * to partition the key range we're currently checking.  Consider key n - the
111 * key our auxiliary search tree node corresponds to, and key p, the key
112 * immediately preceding n.  The lowest bit we need to store in the auxiliary
113 * search tree is the highest bit that differs between n and p.
114 *
115 * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
116 * comparison. But we'd really like our nodes in the auxiliary search tree to be
117 * of fixed size.
118 *
119 * The solution is to make them fixed size, and when we're constructing a node
120 * check if p and n differed in the bits we needed them to. If they don't we
121 * flag that node, and when doing lookups we fallback to comparing against the
122 * real key. As long as this doesn't happen to often (and it seems to reliably
123 * happen a bit less than 1% of the time), we win - even on failures, that key
124 * is then more likely to be in cache than if we were doing binary searches all
125 * the way, since we're touching so much less memory.
126 *
127 * The keys in the auxiliary search tree are stored in (software) floating
128 * point, with an exponent and a mantissa. The exponent needs to be big enough
129 * to address all the bits in the original key, but the number of bits in the
130 * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
131 *
132 * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
133 * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
134 * We need one node per 128 bytes in the btree node, which means the auxiliary
135 * search trees take up 3% as much memory as the btree itself.
136 *
137 * Constructing these auxiliary search trees is moderately expensive, and we
138 * don't want to be constantly rebuilding the search tree for the last set
139 * whenever we insert another key into it. For the unwritten set, we use a much
140 * simpler lookup table - it's just a flat array, so index i in the lookup table
141 * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
142 * within each byte range works the same as with the auxiliary search trees.
143 *
144 * These are much easier to keep up to date when we insert a key - we do it
145 * somewhat lazily; when we shift a key up we usually just increment the pointer
146 * to it, only when it would overflow do we go to the trouble of finding the
147 * first key in that range of bytes again.
148 */
149
150struct btree_keys;
151struct btree_iter;
152struct btree_iter_set;
153struct bkey_float;
154
155#define MAX_BSETS		4U
156
157struct bset_tree {
158	/*
159	 * We construct a binary tree in an array as if the array
160	 * started at 1, so that things line up on the same cachelines
161	 * better: see comments in bset.c at cacheline_to_bkey() for
162	 * details
163	 */
164
165	/* size of the binary tree and prev array */
166	unsigned int		size;
167
168	/* function of size - precalculated for to_inorder() */
169	unsigned int		extra;
170
171	/* copy of the last key in the set */
172	struct bkey		end;
173	struct bkey_float	*tree;
174
175	/*
176	 * The nodes in the bset tree point to specific keys - this
177	 * array holds the sizes of the previous key.
178	 *
179	 * Conceptually it's a member of struct bkey_float, but we want
180	 * to keep bkey_float to 4 bytes and prev isn't used in the fast
181	 * path.
182	 */
183	uint8_t			*prev;
184
185	/* The actual btree node, with pointers to each sorted set */
186	struct bset		*data;
187};
188
189struct btree_keys_ops {
190	bool		(*sort_cmp)(struct btree_iter_set l,
191				    struct btree_iter_set r);
192	struct bkey	*(*sort_fixup)(struct btree_iter *iter,
193				       struct bkey *tmp);
194	bool		(*insert_fixup)(struct btree_keys *b,
195					struct bkey *insert,
196					struct btree_iter *iter,
197					struct bkey *replace_key);
198	bool		(*key_invalid)(struct btree_keys *bk,
199				       const struct bkey *k);
200	bool		(*key_bad)(struct btree_keys *bk,
201				   const struct bkey *k);
202	bool		(*key_merge)(struct btree_keys *bk,
203				     struct bkey *l, struct bkey *r);
204	void		(*key_to_text)(char *buf,
205				       size_t size,
206				       const struct bkey *k);
207	void		(*key_dump)(struct btree_keys *keys,
208				    const struct bkey *k);
209
210	/*
211	 * Only used for deciding whether to use START_KEY(k) or just the key
212	 * itself in a couple places
213	 */
214	bool		is_extents;
215};
216
217struct btree_keys {
218	const struct btree_keys_ops	*ops;
219	uint8_t			page_order;
220	uint8_t			nsets;
221	unsigned int		last_set_unwritten:1;
222	bool			*expensive_debug_checks;
223
224	/*
225	 * Sets of sorted keys - the real btree node - plus a binary search tree
226	 *
227	 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
228	 * to the memory we have allocated for this btree node. Additionally,
229	 * set[0]->data points to the entire btree node as it exists on disk.
230	 */
231	struct bset_tree	set[MAX_BSETS];
232};
233
234static inline struct bset_tree *bset_tree_last(struct btree_keys *b)
235{
236	return b->set + b->nsets;
237}
238
239static inline bool bset_written(struct btree_keys *b, struct bset_tree *t)
240{
241	return t <= b->set + b->nsets - b->last_set_unwritten;
242}
243
244static inline bool bkey_written(struct btree_keys *b, struct bkey *k)
245{
246	return !b->last_set_unwritten || k < b->set[b->nsets].data->start;
247}
248
249static inline unsigned int bset_byte_offset(struct btree_keys *b,
250					    struct bset *i)
251{
252	return ((size_t) i) - ((size_t) b->set->data);
253}
254
255static inline unsigned int bset_sector_offset(struct btree_keys *b,
256					      struct bset *i)
257{
258	return bset_byte_offset(b, i) >> 9;
259}
260
261#define __set_bytes(i, k)	(sizeof(*(i)) + (k) * sizeof(uint64_t))
262#define set_bytes(i)		__set_bytes(i, i->keys)
263
264#define __set_blocks(i, k, block_bytes)				\
265	DIV_ROUND_UP(__set_bytes(i, k), block_bytes)
266#define set_blocks(i, block_bytes)				\
267	__set_blocks(i, (i)->keys, block_bytes)
268
269static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b)
270{
271	struct bset_tree *t = bset_tree_last(b);
272
273	BUG_ON((PAGE_SIZE << b->page_order) <
274	       (bset_byte_offset(b, t->data) + set_bytes(t->data)));
275
276	if (!b->last_set_unwritten)
277		return 0;
278
279	return ((PAGE_SIZE << b->page_order) -
280		(bset_byte_offset(b, t->data) + set_bytes(t->data))) /
281		sizeof(u64);
282}
283
284static inline struct bset *bset_next_set(struct btree_keys *b,
285					 unsigned int block_bytes)
286{
287	struct bset *i = bset_tree_last(b)->data;
288
289	return ((void *) i) + roundup(set_bytes(i), block_bytes);
290}
291
292void bch_btree_keys_free(struct btree_keys *b);
293int bch_btree_keys_alloc(struct btree_keys *b, unsigned int page_order,
294			 gfp_t gfp);
295void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
296			 bool *expensive_debug_checks);
297
298void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic);
299void bch_bset_build_written_tree(struct btree_keys *b);
300void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k);
301bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r);
302void bch_bset_insert(struct btree_keys *b, struct bkey *where,
303		     struct bkey *insert);
304unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
305			      struct bkey *replace_key);
306
307enum {
308	BTREE_INSERT_STATUS_NO_INSERT = 0,
309	BTREE_INSERT_STATUS_INSERT,
310	BTREE_INSERT_STATUS_BACK_MERGE,
311	BTREE_INSERT_STATUS_OVERWROTE,
312	BTREE_INSERT_STATUS_FRONT_MERGE,
313};
314
315/* Btree key iteration */
316
317struct btree_iter {
318	size_t size, used;
319#ifdef CONFIG_BCACHE_DEBUG
320	struct btree_keys *b;
321#endif
322	struct btree_iter_set {
323		struct bkey *k, *end;
324	} data[MAX_BSETS];
325};
326
327typedef bool (*ptr_filter_fn)(struct btree_keys *b, const struct bkey *k);
328
329struct bkey *bch_btree_iter_next(struct btree_iter *iter);
330struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
331					struct btree_keys *b,
332					ptr_filter_fn fn);
333
334void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
335			 struct bkey *end);
336struct bkey *bch_btree_iter_init(struct btree_keys *b,
337				 struct btree_iter *iter,
338				 struct bkey *search);
339
340struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
341			       const struct bkey *search);
342
343/*
344 * Returns the first key that is strictly greater than search
345 */
346static inline struct bkey *bch_bset_search(struct btree_keys *b,
347					   struct bset_tree *t,
348					   const struct bkey *search)
349{
350	return search ? __bch_bset_search(b, t, search) : t->data->start;
351}
352
353#define for_each_key_filter(b, k, iter, filter)				\
354	for (bch_btree_iter_init((b), (iter), NULL);			\
355	     ((k) = bch_btree_iter_next_filter((iter), (b), filter));)
356
357#define for_each_key(b, k, iter)					\
358	for (bch_btree_iter_init((b), (iter), NULL);			\
359	     ((k) = bch_btree_iter_next(iter));)
360
361/* Sorting */
362
363struct bset_sort_state {
364	mempool_t		pool;
365
366	unsigned int		page_order;
367	unsigned int		crit_factor;
368
369	struct time_stats	time;
370};
371
372void bch_bset_sort_state_free(struct bset_sort_state *state);
373int bch_bset_sort_state_init(struct bset_sort_state *state,
374			     unsigned int page_order);
375void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state);
376void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
377			 struct bset_sort_state *state);
378void bch_btree_sort_and_fix_extents(struct btree_keys *b,
379				    struct btree_iter *iter,
380				    struct bset_sort_state *state);
381void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
382			    struct bset_sort_state *state);
383
384static inline void bch_btree_sort(struct btree_keys *b,
385				  struct bset_sort_state *state)
386{
387	bch_btree_sort_partial(b, 0, state);
388}
389
390struct bset_stats {
391	size_t sets_written, sets_unwritten;
392	size_t bytes_written, bytes_unwritten;
393	size_t floats, failed;
394};
395
396void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *state);
397
398/* Bkey utility code */
399
400#define bset_bkey_last(i)	bkey_idx((struct bkey *) (i)->d, \
401					 (unsigned int)(i)->keys)
402
403static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned int idx)
404{
405	return bkey_idx(i->start, idx);
406}
407
408static inline void bkey_init(struct bkey *k)
409{
410	*k = ZERO_KEY;
411}
412
413static __always_inline int64_t bkey_cmp(const struct bkey *l,
414					const struct bkey *r)
415{
416	return unlikely(KEY_INODE(l) != KEY_INODE(r))
417		? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
418		: (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
419}
420
421void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
422			      unsigned int i);
423bool __bch_cut_front(const struct bkey *where, struct bkey *k);
424bool __bch_cut_back(const struct bkey *where, struct bkey *k);
425
426static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
427{
428	BUG_ON(bkey_cmp(where, k) > 0);
429	return __bch_cut_front(where, k);
430}
431
432static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
433{
434	BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
435	return __bch_cut_back(where, k);
436}
437
438/*
439 * Pointer '*preceding_key_p' points to a memory object to store preceding
440 * key of k. If the preceding key does not exist, set '*preceding_key_p' to
441 * NULL. So the caller of preceding_key() needs to take care of memory
442 * which '*preceding_key_p' pointed to before calling preceding_key().
443 * Currently the only caller of preceding_key() is bch_btree_insert_key(),
444 * and it points to an on-stack variable, so the memory release is handled
445 * by stackframe itself.
446 */
447static inline void preceding_key(struct bkey *k, struct bkey **preceding_key_p)
448{
449	if (KEY_INODE(k) || KEY_OFFSET(k)) {
450		(**preceding_key_p) = KEY(KEY_INODE(k), KEY_OFFSET(k), 0);
451		if (!(*preceding_key_p)->low)
452			(*preceding_key_p)->high--;
453		(*preceding_key_p)->low--;
454	} else {
455		(*preceding_key_p) = NULL;
456	}
457}
458
459static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k)
460{
461	return b->ops->key_invalid(b, k);
462}
463
464static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k)
465{
466	return b->ops->key_bad(b, k);
467}
468
469static inline void bch_bkey_to_text(struct btree_keys *b, char *buf,
470				    size_t size, const struct bkey *k)
471{
472	return b->ops->key_to_text(buf, size, k);
473}
474
475static inline bool bch_bkey_equal_header(const struct bkey *l,
476					 const struct bkey *r)
477{
478	return (KEY_DIRTY(l) == KEY_DIRTY(r) &&
479		KEY_PTRS(l) == KEY_PTRS(r) &&
480		KEY_CSUM(l) == KEY_CSUM(r));
481}
482
483/* Keylists */
484
485struct keylist {
486	union {
487		struct bkey		*keys;
488		uint64_t		*keys_p;
489	};
490	union {
491		struct bkey		*top;
492		uint64_t		*top_p;
493	};
494
495	/* Enough room for btree_split's keys without realloc */
496#define KEYLIST_INLINE		16
497	uint64_t		inline_keys[KEYLIST_INLINE];
498};
499
500static inline void bch_keylist_init(struct keylist *l)
501{
502	l->top_p = l->keys_p = l->inline_keys;
503}
504
505static inline void bch_keylist_init_single(struct keylist *l, struct bkey *k)
506{
507	l->keys = k;
508	l->top = bkey_next(k);
509}
510
511static inline void bch_keylist_push(struct keylist *l)
512{
513	l->top = bkey_next(l->top);
514}
515
516static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
517{
518	bkey_copy(l->top, k);
519	bch_keylist_push(l);
520}
521
522static inline bool bch_keylist_empty(struct keylist *l)
523{
524	return l->top == l->keys;
525}
526
527static inline void bch_keylist_reset(struct keylist *l)
528{
529	l->top = l->keys;
530}
531
532static inline void bch_keylist_free(struct keylist *l)
533{
534	if (l->keys_p != l->inline_keys)
535		kfree(l->keys_p);
536}
537
538static inline size_t bch_keylist_nkeys(struct keylist *l)
539{
540	return l->top_p - l->keys_p;
541}
542
543static inline size_t bch_keylist_bytes(struct keylist *l)
544{
545	return bch_keylist_nkeys(l) * sizeof(uint64_t);
546}
547
548struct bkey *bch_keylist_pop(struct keylist *l);
549void bch_keylist_pop_front(struct keylist *l);
550int __bch_keylist_realloc(struct keylist *l, unsigned int u64s);
551
552/* Debug stuff */
553
554#ifdef CONFIG_BCACHE_DEBUG
555
556int __bch_count_data(struct btree_keys *b);
557void __printf(2, 3) __bch_check_keys(struct btree_keys *b,
558				     const char *fmt,
559				     ...);
560void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
561void bch_dump_bucket(struct btree_keys *b);
562
563#else
564
565static inline int __bch_count_data(struct btree_keys *b) { return -1; }
566static inline void __printf(2, 3)
567	__bch_check_keys(struct btree_keys *b, const char *fmt, ...) {}
568static inline void bch_dump_bucket(struct btree_keys *b) {}
569void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
570
571#endif
572
573static inline bool btree_keys_expensive_checks(struct btree_keys *b)
574{
575#ifdef CONFIG_BCACHE_DEBUG
576	return *b->expensive_debug_checks;
577#else
578	return false;
579#endif
580}
581
582static inline int bch_count_data(struct btree_keys *b)
583{
584	return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1;
585}
586
587#define bch_check_keys(b, ...)						\
588do {									\
589	if (btree_keys_expensive_checks(b))				\
590		__bch_check_keys(b, __VA_ARGS__);			\
591} while (0)
592
593#endif
594