1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Windfarm PowerMac thermal control.
4 * Control loops for machines with SMU and PPC970MP processors.
5 *
6 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
7 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
8 */
9#include <linux/types.h>
10#include <linux/errno.h>
11#include <linux/kernel.h>
12#include <linux/device.h>
13#include <linux/platform_device.h>
14#include <linux/reboot.h>
15#include <linux/of.h>
16#include <linux/slab.h>
17
18#include <asm/smu.h>
19
20#include "windfarm.h"
21#include "windfarm_pid.h"
22
23#define VERSION "0.2"
24
25#define DEBUG
26#undef LOTSA_DEBUG
27
28#ifdef DEBUG
29#define DBG(args...)	printk(args)
30#else
31#define DBG(args...)	do { } while(0)
32#endif
33
34#ifdef LOTSA_DEBUG
35#define DBG_LOTS(args...)	printk(args)
36#else
37#define DBG_LOTS(args...)	do { } while(0)
38#endif
39
40/* define this to force CPU overtemp to 60 degree, useful for testing
41 * the overtemp code
42 */
43#undef HACKED_OVERTEMP
44
45/* We currently only handle 2 chips, 4 cores... */
46#define NR_CHIPS	2
47#define NR_CORES	4
48#define NR_CPU_FANS	3 * NR_CHIPS
49
50/* Controls and sensors */
51static struct wf_sensor *sens_cpu_temp[NR_CORES];
52static struct wf_sensor *sens_cpu_power[NR_CORES];
53static struct wf_sensor *hd_temp;
54static struct wf_sensor *slots_power;
55static struct wf_sensor *u4_temp;
56
57static struct wf_control *cpu_fans[NR_CPU_FANS];
58static char *cpu_fan_names[NR_CPU_FANS] = {
59	"cpu-rear-fan-0",
60	"cpu-rear-fan-1",
61	"cpu-front-fan-0",
62	"cpu-front-fan-1",
63	"cpu-pump-0",
64	"cpu-pump-1",
65};
66static struct wf_control *cpufreq_clamp;
67
68/* Second pump isn't required (and isn't actually present) */
69#define CPU_FANS_REQD		(NR_CPU_FANS - 2)
70#define FIRST_PUMP		4
71#define LAST_PUMP		5
72
73/* We keep a temperature history for average calculation of 180s */
74#define CPU_TEMP_HIST_SIZE	180
75
76/* Scale factor for fan speed, *100 */
77static int cpu_fan_scale[NR_CPU_FANS] = {
78	100,
79	100,
80	97,		/* inlet fans run at 97% of exhaust fan */
81	97,
82	100,		/* updated later */
83	100,		/* updated later */
84};
85
86static struct wf_control *backside_fan;
87static struct wf_control *slots_fan;
88static struct wf_control *drive_bay_fan;
89
90/* PID loop state */
91static struct wf_cpu_pid_state cpu_pid[NR_CORES];
92static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
93static int cpu_thist_pt;
94static s64 cpu_thist_total;
95static s32 cpu_all_tmax = 100 << 16;
96static int cpu_last_target;
97static struct wf_pid_state backside_pid;
98static int backside_tick;
99static struct wf_pid_state slots_pid;
100static bool slots_started;
101static struct wf_pid_state drive_bay_pid;
102static int drive_bay_tick;
103
104static int nr_cores;
105static int have_all_controls;
106static int have_all_sensors;
107static bool started;
108
109static int failure_state;
110#define FAILURE_SENSOR		1
111#define FAILURE_FAN		2
112#define FAILURE_PERM		4
113#define FAILURE_LOW_OVERTEMP	8
114#define FAILURE_HIGH_OVERTEMP	16
115
116/* Overtemp values */
117#define LOW_OVER_AVERAGE	0
118#define LOW_OVER_IMMEDIATE	(10 << 16)
119#define LOW_OVER_CLEAR		((-10) << 16)
120#define HIGH_OVER_IMMEDIATE	(14 << 16)
121#define HIGH_OVER_AVERAGE	(10 << 16)
122#define HIGH_OVER_IMMEDIATE	(14 << 16)
123
124
125/* Implementation... */
126static int create_cpu_loop(int cpu)
127{
128	int chip = cpu / 2;
129	int core = cpu & 1;
130	struct smu_sdbp_header *hdr;
131	struct smu_sdbp_cpupiddata *piddata;
132	struct wf_cpu_pid_param pid;
133	struct wf_control *main_fan = cpu_fans[0];
134	s32 tmax;
135	int fmin;
136
137	/* Get FVT params to get Tmax; if not found, assume default */
138	hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
139	if (hdr) {
140		struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
141		tmax = fvt->maxtemp << 16;
142	} else
143		tmax = 95 << 16;	/* default to 95 degrees C */
144
145	/* We keep a global tmax for overtemp calculations */
146	if (tmax < cpu_all_tmax)
147		cpu_all_tmax = tmax;
148
149	kfree(hdr);
150
151	/* Get PID params from the appropriate SAT */
152	hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
153	if (hdr == NULL) {
154		printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
155		return -EINVAL;
156	}
157	piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
158
159	/*
160	 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
161	 * 515 for the 2-way.  That appears to be overkill, so for now,
162	 * impose a minimum of 750 or 515.
163	 */
164	fmin = (nr_cores > 2) ? 750 : 515;
165
166	/* Initialize PID loop */
167	pid.interval = 1;	/* seconds */
168	pid.history_len = piddata->history_len;
169	pid.gd = piddata->gd;
170	pid.gp = piddata->gp;
171	pid.gr = piddata->gr / piddata->history_len;
172	pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
173	pid.ttarget = tmax - (piddata->target_temp_delta << 16);
174	pid.tmax = tmax;
175	pid.min = main_fan->ops->get_min(main_fan);
176	pid.max = main_fan->ops->get_max(main_fan);
177	if (pid.min < fmin)
178		pid.min = fmin;
179
180	wf_cpu_pid_init(&cpu_pid[cpu], &pid);
181
182	kfree(hdr);
183
184	return 0;
185}
186
187static void cpu_max_all_fans(void)
188{
189	int i;
190
191	/* We max all CPU fans in case of a sensor error. We also do the
192	 * cpufreq clamping now, even if it's supposedly done later by the
193	 * generic code anyway, we do it earlier here to react faster
194	 */
195	if (cpufreq_clamp)
196		wf_control_set_max(cpufreq_clamp);
197	for (i = 0; i < NR_CPU_FANS; ++i)
198		if (cpu_fans[i])
199			wf_control_set_max(cpu_fans[i]);
200}
201
202static int cpu_check_overtemp(s32 temp)
203{
204	int new_state = 0;
205	s32 t_avg, t_old;
206
207	/* First check for immediate overtemps */
208	if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
209		new_state |= FAILURE_LOW_OVERTEMP;
210		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
211			printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
212			       " temperature !\n");
213	}
214	if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
215		new_state |= FAILURE_HIGH_OVERTEMP;
216		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
217			printk(KERN_ERR "windfarm: Critical overtemp due to"
218			       " immediate CPU temperature !\n");
219	}
220
221	/* We calculate a history of max temperatures and use that for the
222	 * overtemp management
223	 */
224	t_old = cpu_thist[cpu_thist_pt];
225	cpu_thist[cpu_thist_pt] = temp;
226	cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
227	cpu_thist_total -= t_old;
228	cpu_thist_total += temp;
229	t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
230
231	DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
232		 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
233
234	/* Now check for average overtemps */
235	if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
236		new_state |= FAILURE_LOW_OVERTEMP;
237		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
238			printk(KERN_ERR "windfarm: Overtemp due to average CPU"
239			       " temperature !\n");
240	}
241	if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
242		new_state |= FAILURE_HIGH_OVERTEMP;
243		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
244			printk(KERN_ERR "windfarm: Critical overtemp due to"
245			       " average CPU temperature !\n");
246	}
247
248	/* Now handle overtemp conditions. We don't currently use the windfarm
249	 * overtemp handling core as it's not fully suited to the needs of those
250	 * new machine. This will be fixed later.
251	 */
252	if (new_state) {
253		/* High overtemp -> immediate shutdown */
254		if (new_state & FAILURE_HIGH_OVERTEMP)
255			machine_power_off();
256		if ((failure_state & new_state) != new_state)
257			cpu_max_all_fans();
258		failure_state |= new_state;
259	} else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
260		   (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
261		printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
262		failure_state &= ~FAILURE_LOW_OVERTEMP;
263	}
264
265	return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
266}
267
268static void cpu_fans_tick(void)
269{
270	int err, cpu;
271	s32 greatest_delta = 0;
272	s32 temp, power, t_max = 0;
273	int i, t, target = 0;
274	struct wf_sensor *sr;
275	struct wf_control *ct;
276	struct wf_cpu_pid_state *sp;
277
278	DBG_LOTS(KERN_DEBUG);
279	for (cpu = 0; cpu < nr_cores; ++cpu) {
280		/* Get CPU core temperature */
281		sr = sens_cpu_temp[cpu];
282		err = sr->ops->get_value(sr, &temp);
283		if (err) {
284			DBG("\n");
285			printk(KERN_WARNING "windfarm: CPU %d temperature "
286			       "sensor error %d\n", cpu, err);
287			failure_state |= FAILURE_SENSOR;
288			cpu_max_all_fans();
289			return;
290		}
291
292		/* Keep track of highest temp */
293		t_max = max(t_max, temp);
294
295		/* Get CPU power */
296		sr = sens_cpu_power[cpu];
297		err = sr->ops->get_value(sr, &power);
298		if (err) {
299			DBG("\n");
300			printk(KERN_WARNING "windfarm: CPU %d power "
301			       "sensor error %d\n", cpu, err);
302			failure_state |= FAILURE_SENSOR;
303			cpu_max_all_fans();
304			return;
305		}
306
307		/* Run PID */
308		sp = &cpu_pid[cpu];
309		t = wf_cpu_pid_run(sp, power, temp);
310
311		if (cpu == 0 || sp->last_delta > greatest_delta) {
312			greatest_delta = sp->last_delta;
313			target = t;
314		}
315		DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
316		    cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
317	}
318	DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
319
320	/* Darwin limits decrease to 20 per iteration */
321	if (target < (cpu_last_target - 20))
322		target = cpu_last_target - 20;
323	cpu_last_target = target;
324	for (cpu = 0; cpu < nr_cores; ++cpu)
325		cpu_pid[cpu].target = target;
326
327	/* Handle possible overtemps */
328	if (cpu_check_overtemp(t_max))
329		return;
330
331	/* Set fans */
332	for (i = 0; i < NR_CPU_FANS; ++i) {
333		ct = cpu_fans[i];
334		if (ct == NULL)
335			continue;
336		err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
337		if (err) {
338			printk(KERN_WARNING "windfarm: fan %s reports "
339			       "error %d\n", ct->name, err);
340			failure_state |= FAILURE_FAN;
341			break;
342		}
343	}
344}
345
346/* Backside/U4 fan */
347static struct wf_pid_param backside_param = {
348	.interval	= 5,
349	.history_len	= 2,
350	.gd		= 48 << 20,
351	.gp		= 5 << 20,
352	.gr		= 0,
353	.itarget	= 64 << 16,
354	.additive	= 1,
355};
356
357static void backside_fan_tick(void)
358{
359	s32 temp;
360	int speed;
361	int err;
362
363	if (!backside_fan || !u4_temp)
364		return;
365	if (!backside_tick) {
366		/* first time; initialize things */
367		printk(KERN_INFO "windfarm: Backside control loop started.\n");
368		backside_param.min = backside_fan->ops->get_min(backside_fan);
369		backside_param.max = backside_fan->ops->get_max(backside_fan);
370		wf_pid_init(&backside_pid, &backside_param);
371		backside_tick = 1;
372	}
373	if (--backside_tick > 0)
374		return;
375	backside_tick = backside_pid.param.interval;
376
377	err = u4_temp->ops->get_value(u4_temp, &temp);
378	if (err) {
379		printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
380		       err);
381		failure_state |= FAILURE_SENSOR;
382		wf_control_set_max(backside_fan);
383		return;
384	}
385	speed = wf_pid_run(&backside_pid, temp);
386	DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
387		 FIX32TOPRINT(temp), speed);
388
389	err = backside_fan->ops->set_value(backside_fan, speed);
390	if (err) {
391		printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
392		failure_state |= FAILURE_FAN;
393	}
394}
395
396/* Drive bay fan */
397static struct wf_pid_param drive_bay_prm = {
398	.interval	= 5,
399	.history_len	= 2,
400	.gd		= 30 << 20,
401	.gp		= 5 << 20,
402	.gr		= 0,
403	.itarget	= 40 << 16,
404	.additive	= 1,
405};
406
407static void drive_bay_fan_tick(void)
408{
409	s32 temp;
410	int speed;
411	int err;
412
413	if (!drive_bay_fan || !hd_temp)
414		return;
415	if (!drive_bay_tick) {
416		/* first time; initialize things */
417		printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
418		drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
419		drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
420		wf_pid_init(&drive_bay_pid, &drive_bay_prm);
421		drive_bay_tick = 1;
422	}
423	if (--drive_bay_tick > 0)
424		return;
425	drive_bay_tick = drive_bay_pid.param.interval;
426
427	err = hd_temp->ops->get_value(hd_temp, &temp);
428	if (err) {
429		printk(KERN_WARNING "windfarm: drive bay temp sensor "
430		       "error %d\n", err);
431		failure_state |= FAILURE_SENSOR;
432		wf_control_set_max(drive_bay_fan);
433		return;
434	}
435	speed = wf_pid_run(&drive_bay_pid, temp);
436	DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
437		 FIX32TOPRINT(temp), speed);
438
439	err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
440	if (err) {
441		printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
442		failure_state |= FAILURE_FAN;
443	}
444}
445
446/* PCI slots area fan */
447/* This makes the fan speed proportional to the power consumed */
448static struct wf_pid_param slots_param = {
449	.interval	= 1,
450	.history_len	= 2,
451	.gd		= 0,
452	.gp		= 0,
453	.gr		= 0x1277952,
454	.itarget	= 0,
455	.min		= 1560,
456	.max		= 3510,
457};
458
459static void slots_fan_tick(void)
460{
461	s32 power;
462	int speed;
463	int err;
464
465	if (!slots_fan || !slots_power)
466		return;
467	if (!slots_started) {
468		/* first time; initialize things */
469		printk(KERN_INFO "windfarm: Slots control loop started.\n");
470		wf_pid_init(&slots_pid, &slots_param);
471		slots_started = true;
472	}
473
474	err = slots_power->ops->get_value(slots_power, &power);
475	if (err) {
476		printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
477		       err);
478		failure_state |= FAILURE_SENSOR;
479		wf_control_set_max(slots_fan);
480		return;
481	}
482	speed = wf_pid_run(&slots_pid, power);
483	DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
484		 FIX32TOPRINT(power), speed);
485
486	err = slots_fan->ops->set_value(slots_fan, speed);
487	if (err) {
488		printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
489		failure_state |= FAILURE_FAN;
490	}
491}
492
493static void set_fail_state(void)
494{
495	int i;
496
497	if (cpufreq_clamp)
498		wf_control_set_max(cpufreq_clamp);
499	for (i = 0; i < NR_CPU_FANS; ++i)
500		if (cpu_fans[i])
501			wf_control_set_max(cpu_fans[i]);
502	if (backside_fan)
503		wf_control_set_max(backside_fan);
504	if (slots_fan)
505		wf_control_set_max(slots_fan);
506	if (drive_bay_fan)
507		wf_control_set_max(drive_bay_fan);
508}
509
510static void pm112_tick(void)
511{
512	int i, last_failure;
513
514	if (!started) {
515		started = true;
516		printk(KERN_INFO "windfarm: CPUs control loops started.\n");
517		for (i = 0; i < nr_cores; ++i) {
518			if (create_cpu_loop(i) < 0) {
519				failure_state = FAILURE_PERM;
520				set_fail_state();
521				break;
522			}
523		}
524		DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
525
526#ifdef HACKED_OVERTEMP
527		cpu_all_tmax = 60 << 16;
528#endif
529	}
530
531	/* Permanent failure, bail out */
532	if (failure_state & FAILURE_PERM)
533		return;
534	/* Clear all failure bits except low overtemp which will be eventually
535	 * cleared by the control loop itself
536	 */
537	last_failure = failure_state;
538	failure_state &= FAILURE_LOW_OVERTEMP;
539	cpu_fans_tick();
540	backside_fan_tick();
541	slots_fan_tick();
542	drive_bay_fan_tick();
543
544	DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
545		 last_failure, failure_state);
546
547	/* Check for failures. Any failure causes cpufreq clamping */
548	if (failure_state && last_failure == 0 && cpufreq_clamp)
549		wf_control_set_max(cpufreq_clamp);
550	if (failure_state == 0 && last_failure && cpufreq_clamp)
551		wf_control_set_min(cpufreq_clamp);
552
553	/* That's it for now, we might want to deal with other failures
554	 * differently in the future though
555	 */
556}
557
558static void pm112_new_control(struct wf_control *ct)
559{
560	int i, max_exhaust;
561
562	if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
563		if (wf_get_control(ct) == 0)
564			cpufreq_clamp = ct;
565	}
566
567	for (i = 0; i < NR_CPU_FANS; ++i) {
568		if (!strcmp(ct->name, cpu_fan_names[i])) {
569			if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
570				cpu_fans[i] = ct;
571			break;
572		}
573	}
574	if (i >= NR_CPU_FANS) {
575		/* not a CPU fan, try the others */
576		if (!strcmp(ct->name, "backside-fan")) {
577			if (backside_fan == NULL && wf_get_control(ct) == 0)
578				backside_fan = ct;
579		} else if (!strcmp(ct->name, "slots-fan")) {
580			if (slots_fan == NULL && wf_get_control(ct) == 0)
581				slots_fan = ct;
582		} else if (!strcmp(ct->name, "drive-bay-fan")) {
583			if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
584				drive_bay_fan = ct;
585		}
586		return;
587	}
588
589	for (i = 0; i < CPU_FANS_REQD; ++i)
590		if (cpu_fans[i] == NULL)
591			return;
592
593	/* work out pump scaling factors */
594	max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
595	for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
596		if ((ct = cpu_fans[i]) != NULL)
597			cpu_fan_scale[i] =
598				ct->ops->get_max(ct) * 100 / max_exhaust;
599
600	have_all_controls = 1;
601}
602
603static void pm112_new_sensor(struct wf_sensor *sr)
604{
605	unsigned int i;
606
607	if (!strncmp(sr->name, "cpu-temp-", 9)) {
608		i = sr->name[9] - '0';
609		if (sr->name[10] == 0 && i < NR_CORES &&
610		    sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
611			sens_cpu_temp[i] = sr;
612
613	} else if (!strncmp(sr->name, "cpu-power-", 10)) {
614		i = sr->name[10] - '0';
615		if (sr->name[11] == 0 && i < NR_CORES &&
616		    sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
617			sens_cpu_power[i] = sr;
618	} else if (!strcmp(sr->name, "hd-temp")) {
619		if (hd_temp == NULL && wf_get_sensor(sr) == 0)
620			hd_temp = sr;
621	} else if (!strcmp(sr->name, "slots-power")) {
622		if (slots_power == NULL && wf_get_sensor(sr) == 0)
623			slots_power = sr;
624	} else if (!strcmp(sr->name, "backside-temp")) {
625		if (u4_temp == NULL && wf_get_sensor(sr) == 0)
626			u4_temp = sr;
627	} else
628		return;
629
630	/* check if we have all the sensors we need */
631	for (i = 0; i < nr_cores; ++i)
632		if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
633			return;
634
635	have_all_sensors = 1;
636}
637
638static int pm112_wf_notify(struct notifier_block *self,
639			   unsigned long event, void *data)
640{
641	switch (event) {
642	case WF_EVENT_NEW_SENSOR:
643		pm112_new_sensor(data);
644		break;
645	case WF_EVENT_NEW_CONTROL:
646		pm112_new_control(data);
647		break;
648	case WF_EVENT_TICK:
649		if (have_all_controls && have_all_sensors)
650			pm112_tick();
651	}
652	return 0;
653}
654
655static struct notifier_block pm112_events = {
656	.notifier_call = pm112_wf_notify,
657};
658
659static int wf_pm112_probe(struct platform_device *dev)
660{
661	wf_register_client(&pm112_events);
662	return 0;
663}
664
665static void wf_pm112_remove(struct platform_device *dev)
666{
667	wf_unregister_client(&pm112_events);
668}
669
670static struct platform_driver wf_pm112_driver = {
671	.probe = wf_pm112_probe,
672	.remove_new = wf_pm112_remove,
673	.driver = {
674		.name = "windfarm",
675	},
676};
677
678static int __init wf_pm112_init(void)
679{
680	struct device_node *cpu;
681
682	if (!of_machine_is_compatible("PowerMac11,2"))
683		return -ENODEV;
684
685	/* Count the number of CPU cores */
686	nr_cores = 0;
687	for_each_node_by_type(cpu, "cpu")
688		++nr_cores;
689
690	printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
691
692#ifdef MODULE
693	request_module("windfarm_smu_controls");
694	request_module("windfarm_smu_sensors");
695	request_module("windfarm_smu_sat");
696	request_module("windfarm_lm75_sensor");
697	request_module("windfarm_max6690_sensor");
698	request_module("windfarm_cpufreq_clamp");
699
700#endif /* MODULE */
701
702	platform_driver_register(&wf_pm112_driver);
703	return 0;
704}
705
706static void __exit wf_pm112_exit(void)
707{
708	platform_driver_unregister(&wf_pm112_driver);
709}
710
711module_init(wf_pm112_init);
712module_exit(wf_pm112_exit);
713
714MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
715MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
716MODULE_LICENSE("GPL");
717MODULE_ALIAS("platform:windfarm");
718