1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Activity LED trigger
4 *
5 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
6 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
7 */
8
9#include <linux/init.h>
10#include <linux/kernel.h>
11#include <linux/kernel_stat.h>
12#include <linux/leds.h>
13#include <linux/module.h>
14#include <linux/panic_notifier.h>
15#include <linux/reboot.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/timer.h>
19#include "../leds.h"
20
21static int panic_detected;
22
23struct activity_data {
24	struct timer_list timer;
25	struct led_classdev *led_cdev;
26	u64 last_used;
27	u64 last_boot;
28	int time_left;
29	int state;
30	int invert;
31};
32
33static void led_activity_function(struct timer_list *t)
34{
35	struct activity_data *activity_data = from_timer(activity_data, t,
36							 timer);
37	struct led_classdev *led_cdev = activity_data->led_cdev;
38	unsigned int target;
39	unsigned int usage;
40	int delay;
41	u64 curr_used;
42	u64 curr_boot;
43	s32 diff_used;
44	s32 diff_boot;
45	int cpus;
46	int i;
47
48	if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
49		led_cdev->blink_brightness = led_cdev->new_blink_brightness;
50
51	if (unlikely(panic_detected)) {
52		/* full brightness in case of panic */
53		led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
54		return;
55	}
56
57	cpus = 0;
58	curr_used = 0;
59
60	for_each_possible_cpu(i) {
61		struct kernel_cpustat kcpustat;
62
63		kcpustat_cpu_fetch(&kcpustat, i);
64
65		curr_used += kcpustat.cpustat[CPUTIME_USER]
66			  +  kcpustat.cpustat[CPUTIME_NICE]
67			  +  kcpustat.cpustat[CPUTIME_SYSTEM]
68			  +  kcpustat.cpustat[CPUTIME_SOFTIRQ]
69			  +  kcpustat.cpustat[CPUTIME_IRQ];
70		cpus++;
71	}
72
73	/* We come here every 100ms in the worst case, so that's 100M ns of
74	 * cumulated time. By dividing by 2^16, we get the time resolution
75	 * down to 16us, ensuring we won't overflow 32-bit computations below
76	 * even up to 3k CPUs, while keeping divides cheap on smaller systems.
77	 */
78	curr_boot = ktime_get_boottime_ns() * cpus;
79	diff_boot = (curr_boot - activity_data->last_boot) >> 16;
80	diff_used = (curr_used - activity_data->last_used) >> 16;
81	activity_data->last_boot = curr_boot;
82	activity_data->last_used = curr_used;
83
84	if (diff_boot <= 0 || diff_used < 0)
85		usage = 0;
86	else if (diff_used >= diff_boot)
87		usage = 100;
88	else
89		usage = 100 * diff_used / diff_boot;
90
91	/*
92	 * Now we know the total boot_time multiplied by the number of CPUs, and
93	 * the total idle+wait time for all CPUs. We'll compare how they evolved
94	 * since last call. The % of overall CPU usage is :
95	 *
96	 *      1 - delta_idle / delta_boot
97	 *
98	 * What we want is that when the CPU usage is zero, the LED must blink
99	 * slowly with very faint flashes that are detectable but not disturbing
100	 * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
101	 * blinking frequency to increase up to the point where the load is
102	 * enough to saturate one core in multi-core systems or 50% in single
103	 * core systems. At this point it should reach 10 Hz with a 10/90 duty
104	 * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
105	 * remains stable (10 Hz) and only the duty cycle increases to report
106	 * the activity, up to the point where we have 90ms ON, 10ms OFF when
107	 * all cores are saturated. It's important that the LED never stays in
108	 * a steady state so that it's easy to distinguish an idle or saturated
109	 * machine from a hung one.
110	 *
111	 * This gives us :
112	 *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
113	 *     (10ms ON, 90ms OFF)
114	 *   - below target :
115	 *      ON_ms  = 10
116	 *      OFF_ms = 90 + (1 - usage/target) * 900
117	 *   - above target :
118	 *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
119	 *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
120	 *
121	 * In order to keep a good responsiveness, we cap the sleep time to
122	 * 100 ms and keep track of the sleep time left. This allows us to
123	 * quickly change it if needed.
124	 */
125
126	activity_data->time_left -= 100;
127	if (activity_data->time_left <= 0) {
128		activity_data->time_left = 0;
129		activity_data->state = !activity_data->state;
130		led_set_brightness_nosleep(led_cdev,
131			(activity_data->state ^ activity_data->invert) ?
132			led_cdev->blink_brightness : LED_OFF);
133	}
134
135	target = (cpus > 1) ? (100 / cpus) : 50;
136
137	if (usage < target)
138		delay = activity_data->state ?
139			10 :                        /* ON  */
140			990 - 900 * usage / target; /* OFF */
141	else
142		delay = activity_data->state ?
143			10 + 80 * (usage - target) / (100 - target) : /* ON  */
144			90 - 80 * (usage - target) / (100 - target);  /* OFF */
145
146
147	if (!activity_data->time_left || delay <= activity_data->time_left)
148		activity_data->time_left = delay;
149
150	delay = min_t(int, activity_data->time_left, 100);
151	mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
152}
153
154static ssize_t led_invert_show(struct device *dev,
155                               struct device_attribute *attr, char *buf)
156{
157	struct activity_data *activity_data = led_trigger_get_drvdata(dev);
158
159	return sprintf(buf, "%u\n", activity_data->invert);
160}
161
162static ssize_t led_invert_store(struct device *dev,
163                                struct device_attribute *attr,
164                                const char *buf, size_t size)
165{
166	struct activity_data *activity_data = led_trigger_get_drvdata(dev);
167	unsigned long state;
168	int ret;
169
170	ret = kstrtoul(buf, 0, &state);
171	if (ret)
172		return ret;
173
174	activity_data->invert = !!state;
175
176	return size;
177}
178
179static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
180
181static struct attribute *activity_led_attrs[] = {
182	&dev_attr_invert.attr,
183	NULL
184};
185ATTRIBUTE_GROUPS(activity_led);
186
187static int activity_activate(struct led_classdev *led_cdev)
188{
189	struct activity_data *activity_data;
190
191	activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
192	if (!activity_data)
193		return -ENOMEM;
194
195	led_set_trigger_data(led_cdev, activity_data);
196
197	activity_data->led_cdev = led_cdev;
198	timer_setup(&activity_data->timer, led_activity_function, 0);
199	if (!led_cdev->blink_brightness)
200		led_cdev->blink_brightness = led_cdev->max_brightness;
201	led_activity_function(&activity_data->timer);
202	set_bit(LED_BLINK_SW, &led_cdev->work_flags);
203
204	return 0;
205}
206
207static void activity_deactivate(struct led_classdev *led_cdev)
208{
209	struct activity_data *activity_data = led_get_trigger_data(led_cdev);
210
211	timer_shutdown_sync(&activity_data->timer);
212	kfree(activity_data);
213	clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
214}
215
216static struct led_trigger activity_led_trigger = {
217	.name       = "activity",
218	.activate   = activity_activate,
219	.deactivate = activity_deactivate,
220	.groups     = activity_led_groups,
221};
222
223static int activity_reboot_notifier(struct notifier_block *nb,
224                                    unsigned long code, void *unused)
225{
226	led_trigger_unregister(&activity_led_trigger);
227	return NOTIFY_DONE;
228}
229
230static int activity_panic_notifier(struct notifier_block *nb,
231                                   unsigned long code, void *unused)
232{
233	panic_detected = 1;
234	return NOTIFY_DONE;
235}
236
237static struct notifier_block activity_reboot_nb = {
238	.notifier_call = activity_reboot_notifier,
239};
240
241static struct notifier_block activity_panic_nb = {
242	.notifier_call = activity_panic_notifier,
243};
244
245static int __init activity_init(void)
246{
247	int rc = led_trigger_register(&activity_led_trigger);
248
249	if (!rc) {
250		atomic_notifier_chain_register(&panic_notifier_list,
251					       &activity_panic_nb);
252		register_reboot_notifier(&activity_reboot_nb);
253	}
254	return rc;
255}
256
257static void __exit activity_exit(void)
258{
259	unregister_reboot_notifier(&activity_reboot_nb);
260	atomic_notifier_chain_unregister(&panic_notifier_list,
261					 &activity_panic_nb);
262	led_trigger_unregister(&activity_led_trigger);
263}
264
265module_init(activity_init);
266module_exit(activity_exit);
267
268MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
269MODULE_DESCRIPTION("Activity LED trigger");
270MODULE_LICENSE("GPL v2");
271