1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright The Asahi Linux Contributors
4 *
5 * Based on irq-lpc32xx:
6 *   Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
7 * Based on irq-bcm2836:
8 *   Copyright 2015 Broadcom
9 */
10
11/*
12 * AIC is a fairly simple interrupt controller with the following features:
13 *
14 * - 896 level-triggered hardware IRQs
15 *   - Single mask bit per IRQ
16 *   - Per-IRQ affinity setting
17 *   - Automatic masking on event delivery (auto-ack)
18 *   - Software triggering (ORed with hw line)
19 * - 2 per-CPU IPIs (meant as "self" and "other", but they are
20 *   interchangeable if not symmetric)
21 * - Automatic prioritization (single event/ack register per CPU, lower IRQs =
22 *   higher priority)
23 * - Automatic masking on ack
24 * - Default "this CPU" register view and explicit per-CPU views
25 *
26 * In addition, this driver also handles FIQs, as these are routed to the same
27 * IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and
28 * performance counters (TODO).
29 *
30 * Implementation notes:
31 *
32 * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
33 *   and one for IPIs.
34 * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
35 *   and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
36 * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
37 * - DT bindings use 3-cell form (like GIC):
38 *   - <0 nr flags> - hwirq #nr
39 *   - <1 nr flags> - FIQ #nr
40 *     - nr=0  Physical HV timer
41 *     - nr=1  Virtual HV timer
42 *     - nr=2  Physical guest timer
43 *     - nr=3  Virtual guest timer
44 */
45
46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48#include <linux/bits.h>
49#include <linux/bitfield.h>
50#include <linux/cpuhotplug.h>
51#include <linux/io.h>
52#include <linux/irqchip.h>
53#include <linux/irqchip/arm-vgic-info.h>
54#include <linux/irqdomain.h>
55#include <linux/jump_label.h>
56#include <linux/limits.h>
57#include <linux/of_address.h>
58#include <linux/slab.h>
59#include <asm/apple_m1_pmu.h>
60#include <asm/cputype.h>
61#include <asm/exception.h>
62#include <asm/sysreg.h>
63#include <asm/virt.h>
64
65#include <dt-bindings/interrupt-controller/apple-aic.h>
66
67/*
68 * AIC v1 registers (MMIO)
69 */
70
71#define AIC_INFO		0x0004
72#define AIC_INFO_NR_IRQ		GENMASK(15, 0)
73
74#define AIC_CONFIG		0x0010
75
76#define AIC_WHOAMI		0x2000
77#define AIC_EVENT		0x2004
78#define AIC_EVENT_DIE		GENMASK(31, 24)
79#define AIC_EVENT_TYPE		GENMASK(23, 16)
80#define AIC_EVENT_NUM		GENMASK(15, 0)
81
82#define AIC_EVENT_TYPE_FIQ	0 /* Software use */
83#define AIC_EVENT_TYPE_IRQ	1
84#define AIC_EVENT_TYPE_IPI	4
85#define AIC_EVENT_IPI_OTHER	1
86#define AIC_EVENT_IPI_SELF	2
87
88#define AIC_IPI_SEND		0x2008
89#define AIC_IPI_ACK		0x200c
90#define AIC_IPI_MASK_SET	0x2024
91#define AIC_IPI_MASK_CLR	0x2028
92
93#define AIC_IPI_SEND_CPU(cpu)	BIT(cpu)
94
95#define AIC_IPI_OTHER		BIT(0)
96#define AIC_IPI_SELF		BIT(31)
97
98#define AIC_TARGET_CPU		0x3000
99
100#define AIC_CPU_IPI_SET(cpu)	(0x5008 + ((cpu) << 7))
101#define AIC_CPU_IPI_CLR(cpu)	(0x500c + ((cpu) << 7))
102#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
103#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
104
105#define AIC_MAX_IRQ		0x400
106
107/*
108 * AIC v2 registers (MMIO)
109 */
110
111#define AIC2_VERSION		0x0000
112#define AIC2_VERSION_VER	GENMASK(7, 0)
113
114#define AIC2_INFO1		0x0004
115#define AIC2_INFO1_NR_IRQ	GENMASK(15, 0)
116#define AIC2_INFO1_LAST_DIE	GENMASK(27, 24)
117
118#define AIC2_INFO2		0x0008
119
120#define AIC2_INFO3		0x000c
121#define AIC2_INFO3_MAX_IRQ	GENMASK(15, 0)
122#define AIC2_INFO3_MAX_DIE	GENMASK(27, 24)
123
124#define AIC2_RESET		0x0010
125#define AIC2_RESET_RESET	BIT(0)
126
127#define AIC2_CONFIG		0x0014
128#define AIC2_CONFIG_ENABLE	BIT(0)
129#define AIC2_CONFIG_PREFER_PCPU	BIT(28)
130
131#define AIC2_TIMEOUT		0x0028
132#define AIC2_CLUSTER_PRIO	0x0030
133#define AIC2_DELAY_GROUPS	0x0100
134
135#define AIC2_IRQ_CFG		0x2000
136
137/*
138 * AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG:
139 *
140 * Repeat for each die:
141 *   IRQ_CFG: u32 * MAX_IRQS
142 *   SW_SET: u32 * (MAX_IRQS / 32)
143 *   SW_CLR: u32 * (MAX_IRQS / 32)
144 *   MASK_SET: u32 * (MAX_IRQS / 32)
145 *   MASK_CLR: u32 * (MAX_IRQS / 32)
146 *   HW_STATE: u32 * (MAX_IRQS / 32)
147 *
148 * This is followed by a set of event registers, each 16K page aligned.
149 * The first one is the AP event register we will use. Unfortunately,
150 * the actual implemented die count is not specified anywhere in the
151 * capability registers, so we have to explicitly specify the event
152 * register as a second reg entry in the device tree to remain
153 * forward-compatible.
154 */
155
156#define AIC2_IRQ_CFG_TARGET	GENMASK(3, 0)
157#define AIC2_IRQ_CFG_DELAY_IDX	GENMASK(7, 5)
158
159#define MASK_REG(x)		(4 * ((x) >> 5))
160#define MASK_BIT(x)		BIT((x) & GENMASK(4, 0))
161
162/*
163 * IMP-DEF sysregs that control FIQ sources
164 */
165
166/* IPI request registers */
167#define SYS_IMP_APL_IPI_RR_LOCAL_EL1	sys_reg(3, 5, 15, 0, 0)
168#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1	sys_reg(3, 5, 15, 0, 1)
169#define IPI_RR_CPU			GENMASK(7, 0)
170/* Cluster only used for the GLOBAL register */
171#define IPI_RR_CLUSTER			GENMASK(23, 16)
172#define IPI_RR_TYPE			GENMASK(29, 28)
173#define IPI_RR_IMMEDIATE		0
174#define IPI_RR_RETRACT			1
175#define IPI_RR_DEFERRED			2
176#define IPI_RR_NOWAKE			3
177
178/* IPI status register */
179#define SYS_IMP_APL_IPI_SR_EL1		sys_reg(3, 5, 15, 1, 1)
180#define IPI_SR_PENDING			BIT(0)
181
182/* Guest timer FIQ enable register */
183#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2	sys_reg(3, 5, 15, 1, 3)
184#define VM_TMR_FIQ_ENABLE_V		BIT(0)
185#define VM_TMR_FIQ_ENABLE_P		BIT(1)
186
187/* Deferred IPI countdown register */
188#define SYS_IMP_APL_IPI_CR_EL1		sys_reg(3, 5, 15, 3, 1)
189
190/* Uncore PMC control register */
191#define SYS_IMP_APL_UPMCR0_EL1		sys_reg(3, 7, 15, 0, 4)
192#define UPMCR0_IMODE			GENMASK(18, 16)
193#define UPMCR0_IMODE_OFF		0
194#define UPMCR0_IMODE_AIC		2
195#define UPMCR0_IMODE_HALT		3
196#define UPMCR0_IMODE_FIQ		4
197
198/* Uncore PMC status register */
199#define SYS_IMP_APL_UPMSR_EL1		sys_reg(3, 7, 15, 6, 4)
200#define UPMSR_IACT			BIT(0)
201
202/* MPIDR fields */
203#define MPIDR_CPU(x)			MPIDR_AFFINITY_LEVEL(x, 0)
204#define MPIDR_CLUSTER(x)		MPIDR_AFFINITY_LEVEL(x, 1)
205
206#define AIC_IRQ_HWIRQ(die, irq)	(FIELD_PREP(AIC_EVENT_DIE, die) | \
207				 FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \
208				 FIELD_PREP(AIC_EVENT_NUM, irq))
209#define AIC_FIQ_HWIRQ(x)	(FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \
210				 FIELD_PREP(AIC_EVENT_NUM, x))
211#define AIC_HWIRQ_IRQ(x)	FIELD_GET(AIC_EVENT_NUM, x)
212#define AIC_HWIRQ_DIE(x)	FIELD_GET(AIC_EVENT_DIE, x)
213#define AIC_NR_SWIPI		32
214
215/*
216 * FIQ hwirq index definitions: FIQ sources use the DT binding defines
217 * directly, except that timers are special. At the irqchip level, the
218 * two timer types are represented by their access method: _EL0 registers
219 * or _EL02 registers. In the DT binding, the timers are represented
220 * by their purpose (HV or guest). This mapping is for when the kernel is
221 * running at EL2 (with VHE). When the kernel is running at EL1, the
222 * mapping differs and aic_irq_domain_translate() performs the remapping.
223 */
224enum fiq_hwirq {
225	/* Must be ordered as in apple-aic.h */
226	AIC_TMR_EL0_PHYS	= AIC_TMR_HV_PHYS,
227	AIC_TMR_EL0_VIRT	= AIC_TMR_HV_VIRT,
228	AIC_TMR_EL02_PHYS	= AIC_TMR_GUEST_PHYS,
229	AIC_TMR_EL02_VIRT	= AIC_TMR_GUEST_VIRT,
230	AIC_CPU_PMU_Effi	= AIC_CPU_PMU_E,
231	AIC_CPU_PMU_Perf	= AIC_CPU_PMU_P,
232	/* No need for this to be discovered from DT */
233	AIC_VGIC_MI,
234	AIC_NR_FIQ
235};
236
237static DEFINE_STATIC_KEY_TRUE(use_fast_ipi);
238
239struct aic_info {
240	int version;
241
242	/* Register offsets */
243	u32 event;
244	u32 target_cpu;
245	u32 irq_cfg;
246	u32 sw_set;
247	u32 sw_clr;
248	u32 mask_set;
249	u32 mask_clr;
250
251	u32 die_stride;
252
253	/* Features */
254	bool fast_ipi;
255};
256
257static const struct aic_info aic1_info __initconst = {
258	.version	= 1,
259
260	.event		= AIC_EVENT,
261	.target_cpu	= AIC_TARGET_CPU,
262};
263
264static const struct aic_info aic1_fipi_info __initconst = {
265	.version	= 1,
266
267	.event		= AIC_EVENT,
268	.target_cpu	= AIC_TARGET_CPU,
269
270	.fast_ipi	= true,
271};
272
273static const struct aic_info aic2_info __initconst = {
274	.version	= 2,
275
276	.irq_cfg	= AIC2_IRQ_CFG,
277
278	.fast_ipi	= true,
279};
280
281static const struct of_device_id aic_info_match[] = {
282	{
283		.compatible = "apple,t8103-aic",
284		.data = &aic1_fipi_info,
285	},
286	{
287		.compatible = "apple,aic",
288		.data = &aic1_info,
289	},
290	{
291		.compatible = "apple,aic2",
292		.data = &aic2_info,
293	},
294	{}
295};
296
297struct aic_irq_chip {
298	void __iomem *base;
299	void __iomem *event;
300	struct irq_domain *hw_domain;
301	struct {
302		cpumask_t aff;
303	} *fiq_aff[AIC_NR_FIQ];
304
305	int nr_irq;
306	int max_irq;
307	int nr_die;
308	int max_die;
309
310	struct aic_info info;
311};
312
313static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
314
315static struct aic_irq_chip *aic_irqc;
316
317static void aic_handle_ipi(struct pt_regs *regs);
318
319static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
320{
321	return readl_relaxed(ic->base + reg);
322}
323
324static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
325{
326	writel_relaxed(val, ic->base + reg);
327}
328
329/*
330 * IRQ irqchip
331 */
332
333static void aic_irq_mask(struct irq_data *d)
334{
335	irq_hw_number_t hwirq = irqd_to_hwirq(d);
336	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
337
338	u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
339	u32 irq = AIC_HWIRQ_IRQ(hwirq);
340
341	aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq));
342}
343
344static void aic_irq_unmask(struct irq_data *d)
345{
346	irq_hw_number_t hwirq = irqd_to_hwirq(d);
347	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
348
349	u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
350	u32 irq = AIC_HWIRQ_IRQ(hwirq);
351
352	aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq));
353}
354
355static void aic_irq_eoi(struct irq_data *d)
356{
357	/*
358	 * Reading the interrupt reason automatically acknowledges and masks
359	 * the IRQ, so we just unmask it here if needed.
360	 */
361	if (!irqd_irq_masked(d))
362		aic_irq_unmask(d);
363}
364
365static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
366{
367	struct aic_irq_chip *ic = aic_irqc;
368	u32 event, type, irq;
369
370	do {
371		/*
372		 * We cannot use a relaxed read here, as reads from DMA buffers
373		 * need to be ordered after the IRQ fires.
374		 */
375		event = readl(ic->event + ic->info.event);
376		type = FIELD_GET(AIC_EVENT_TYPE, event);
377		irq = FIELD_GET(AIC_EVENT_NUM, event);
378
379		if (type == AIC_EVENT_TYPE_IRQ)
380			generic_handle_domain_irq(aic_irqc->hw_domain, event);
381		else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
382			aic_handle_ipi(regs);
383		else if (event != 0)
384			pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
385	} while (event);
386
387	/*
388	 * vGIC maintenance interrupts end up here too, so we need to check
389	 * for them separately. It should however only trigger when NV is
390	 * in use, and be cleared when coming back from the handler.
391	 */
392	if (is_kernel_in_hyp_mode() &&
393	    (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
394	    read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
395		generic_handle_domain_irq(aic_irqc->hw_domain,
396					  AIC_FIQ_HWIRQ(AIC_VGIC_MI));
397
398		if (unlikely((read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
399			     read_sysreg_s(SYS_ICH_MISR_EL2))) {
400			pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
401			sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
402		}
403	}
404}
405
406static int aic_irq_set_affinity(struct irq_data *d,
407				const struct cpumask *mask_val, bool force)
408{
409	irq_hw_number_t hwirq = irqd_to_hwirq(d);
410	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
411	int cpu;
412
413	BUG_ON(!ic->info.target_cpu);
414
415	if (force)
416		cpu = cpumask_first(mask_val);
417	else
418		cpu = cpumask_any_and(mask_val, cpu_online_mask);
419
420	aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu));
421	irq_data_update_effective_affinity(d, cpumask_of(cpu));
422
423	return IRQ_SET_MASK_OK;
424}
425
426static int aic_irq_set_type(struct irq_data *d, unsigned int type)
427{
428	/*
429	 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
430	 * have a way to find out the type of any given IRQ, so just allow both.
431	 */
432	return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
433}
434
435static struct irq_chip aic_chip = {
436	.name = "AIC",
437	.irq_mask = aic_irq_mask,
438	.irq_unmask = aic_irq_unmask,
439	.irq_eoi = aic_irq_eoi,
440	.irq_set_affinity = aic_irq_set_affinity,
441	.irq_set_type = aic_irq_set_type,
442};
443
444static struct irq_chip aic2_chip = {
445	.name = "AIC2",
446	.irq_mask = aic_irq_mask,
447	.irq_unmask = aic_irq_unmask,
448	.irq_eoi = aic_irq_eoi,
449	.irq_set_type = aic_irq_set_type,
450};
451
452/*
453 * FIQ irqchip
454 */
455
456static unsigned long aic_fiq_get_idx(struct irq_data *d)
457{
458	return AIC_HWIRQ_IRQ(irqd_to_hwirq(d));
459}
460
461static void aic_fiq_set_mask(struct irq_data *d)
462{
463	/* Only the guest timers have real mask bits, unfortunately. */
464	switch (aic_fiq_get_idx(d)) {
465	case AIC_TMR_EL02_PHYS:
466		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
467		isb();
468		break;
469	case AIC_TMR_EL02_VIRT:
470		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
471		isb();
472		break;
473	default:
474		break;
475	}
476}
477
478static void aic_fiq_clear_mask(struct irq_data *d)
479{
480	switch (aic_fiq_get_idx(d)) {
481	case AIC_TMR_EL02_PHYS:
482		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
483		isb();
484		break;
485	case AIC_TMR_EL02_VIRT:
486		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
487		isb();
488		break;
489	default:
490		break;
491	}
492}
493
494static void aic_fiq_mask(struct irq_data *d)
495{
496	aic_fiq_set_mask(d);
497	__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
498}
499
500static void aic_fiq_unmask(struct irq_data *d)
501{
502	aic_fiq_clear_mask(d);
503	__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
504}
505
506static void aic_fiq_eoi(struct irq_data *d)
507{
508	/* We mask to ack (where we can), so we need to unmask at EOI. */
509	if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
510		aic_fiq_clear_mask(d);
511}
512
513#define TIMER_FIRING(x)                                                        \
514	(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK |            \
515		 ARCH_TIMER_CTRL_IT_STAT)) ==                                  \
516	 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
517
518static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
519{
520	/*
521	 * It would be really nice if we had a system register that lets us get
522	 * the FIQ source state without having to peek down into sources...
523	 * but such a register does not seem to exist.
524	 *
525	 * So, we have these potential sources to test for:
526	 *  - Fast IPIs (not yet used)
527	 *  - The 4 timers (CNTP, CNTV for each of HV and guest)
528	 *  - Per-core PMCs (not yet supported)
529	 *  - Per-cluster uncore PMCs (not yet supported)
530	 *
531	 * Since not dealing with any of these results in a FIQ storm,
532	 * we check for everything here, even things we don't support yet.
533	 */
534
535	if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
536		if (static_branch_likely(&use_fast_ipi)) {
537			aic_handle_ipi(regs);
538		} else {
539			pr_err_ratelimited("Fast IPI fired. Acking.\n");
540			write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
541		}
542	}
543
544	if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
545		generic_handle_domain_irq(aic_irqc->hw_domain,
546					  AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS));
547
548	if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
549		generic_handle_domain_irq(aic_irqc->hw_domain,
550					  AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT));
551
552	if (is_kernel_in_hyp_mode()) {
553		uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
554
555		if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
556		    TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
557			generic_handle_domain_irq(aic_irqc->hw_domain,
558						  AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS));
559
560		if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
561		    TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
562			generic_handle_domain_irq(aic_irqc->hw_domain,
563						  AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT));
564	}
565
566	if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) {
567		int irq;
568		if (cpumask_test_cpu(smp_processor_id(),
569				     &aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff))
570			irq = AIC_CPU_PMU_P;
571		else
572			irq = AIC_CPU_PMU_E;
573		generic_handle_domain_irq(aic_irqc->hw_domain,
574					  AIC_FIQ_HWIRQ(irq));
575	}
576
577	if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
578			(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
579		/* Same story with uncore PMCs */
580		pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
581		sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
582				   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
583	}
584}
585
586static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
587{
588	return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
589}
590
591static struct irq_chip fiq_chip = {
592	.name = "AIC-FIQ",
593	.irq_mask = aic_fiq_mask,
594	.irq_unmask = aic_fiq_unmask,
595	.irq_ack = aic_fiq_set_mask,
596	.irq_eoi = aic_fiq_eoi,
597	.irq_set_type = aic_fiq_set_type,
598};
599
600/*
601 * Main IRQ domain
602 */
603
604static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
605			      irq_hw_number_t hw)
606{
607	struct aic_irq_chip *ic = id->host_data;
608	u32 type = FIELD_GET(AIC_EVENT_TYPE, hw);
609	struct irq_chip *chip = &aic_chip;
610
611	if (ic->info.version == 2)
612		chip = &aic2_chip;
613
614	if (type == AIC_EVENT_TYPE_IRQ) {
615		irq_domain_set_info(id, irq, hw, chip, id->host_data,
616				    handle_fasteoi_irq, NULL, NULL);
617		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
618	} else {
619		int fiq = FIELD_GET(AIC_EVENT_NUM, hw);
620
621		switch (fiq) {
622		case AIC_CPU_PMU_P:
623		case AIC_CPU_PMU_E:
624			irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff);
625			break;
626		default:
627			irq_set_percpu_devid(irq);
628			break;
629		}
630
631		irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
632				    handle_percpu_devid_irq, NULL, NULL);
633	}
634
635	return 0;
636}
637
638static int aic_irq_domain_translate(struct irq_domain *id,
639				    struct irq_fwspec *fwspec,
640				    unsigned long *hwirq,
641				    unsigned int *type)
642{
643	struct aic_irq_chip *ic = id->host_data;
644	u32 *args;
645	u32 die = 0;
646
647	if (fwspec->param_count < 3 || fwspec->param_count > 4 ||
648	    !is_of_node(fwspec->fwnode))
649		return -EINVAL;
650
651	args = &fwspec->param[1];
652
653	if (fwspec->param_count == 4) {
654		die = args[0];
655		args++;
656	}
657
658	switch (fwspec->param[0]) {
659	case AIC_IRQ:
660		if (die >= ic->nr_die)
661			return -EINVAL;
662		if (args[0] >= ic->nr_irq)
663			return -EINVAL;
664		*hwirq = AIC_IRQ_HWIRQ(die, args[0]);
665		break;
666	case AIC_FIQ:
667		if (die != 0)
668			return -EINVAL;
669		if (args[0] >= AIC_NR_FIQ)
670			return -EINVAL;
671		*hwirq = AIC_FIQ_HWIRQ(args[0]);
672
673		/*
674		 * In EL1 the non-redirected registers are the guest's,
675		 * not EL2's, so remap the hwirqs to match.
676		 */
677		if (!is_kernel_in_hyp_mode()) {
678			switch (args[0]) {
679			case AIC_TMR_GUEST_PHYS:
680				*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS);
681				break;
682			case AIC_TMR_GUEST_VIRT:
683				*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT);
684				break;
685			case AIC_TMR_HV_PHYS:
686			case AIC_TMR_HV_VIRT:
687				return -ENOENT;
688			default:
689				break;
690			}
691		}
692		break;
693	default:
694		return -EINVAL;
695	}
696
697	*type = args[1] & IRQ_TYPE_SENSE_MASK;
698
699	return 0;
700}
701
702static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
703				unsigned int nr_irqs, void *arg)
704{
705	unsigned int type = IRQ_TYPE_NONE;
706	struct irq_fwspec *fwspec = arg;
707	irq_hw_number_t hwirq;
708	int i, ret;
709
710	ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
711	if (ret)
712		return ret;
713
714	for (i = 0; i < nr_irqs; i++) {
715		ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
716		if (ret)
717			return ret;
718	}
719
720	return 0;
721}
722
723static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
724				unsigned int nr_irqs)
725{
726	int i;
727
728	for (i = 0; i < nr_irqs; i++) {
729		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
730
731		irq_set_handler(virq + i, NULL);
732		irq_domain_reset_irq_data(d);
733	}
734}
735
736static const struct irq_domain_ops aic_irq_domain_ops = {
737	.translate	= aic_irq_domain_translate,
738	.alloc		= aic_irq_domain_alloc,
739	.free		= aic_irq_domain_free,
740};
741
742/*
743 * IPI irqchip
744 */
745
746static void aic_ipi_send_fast(int cpu)
747{
748	u64 mpidr = cpu_logical_map(cpu);
749	u64 my_mpidr = read_cpuid_mpidr();
750	u64 cluster = MPIDR_CLUSTER(mpidr);
751	u64 idx = MPIDR_CPU(mpidr);
752
753	if (MPIDR_CLUSTER(my_mpidr) == cluster)
754		write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx),
755			       SYS_IMP_APL_IPI_RR_LOCAL_EL1);
756	else
757		write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster),
758			       SYS_IMP_APL_IPI_RR_GLOBAL_EL1);
759	isb();
760}
761
762static void aic_handle_ipi(struct pt_regs *regs)
763{
764	/*
765	 * Ack the IPI. We need to order this after the AIC event read, but
766	 * that is enforced by normal MMIO ordering guarantees.
767	 *
768	 * For the Fast IPI case, this needs to be ordered before the vIPI
769	 * handling below, so we need to isb();
770	 */
771	if (static_branch_likely(&use_fast_ipi)) {
772		write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
773		isb();
774	} else {
775		aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
776	}
777
778	ipi_mux_process();
779
780	/*
781	 * No ordering needed here; at worst this just changes the timing of
782	 * when the next IPI will be delivered.
783	 */
784	if (!static_branch_likely(&use_fast_ipi))
785		aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
786}
787
788static void aic_ipi_send_single(unsigned int cpu)
789{
790	if (static_branch_likely(&use_fast_ipi))
791		aic_ipi_send_fast(cpu);
792	else
793		aic_ic_write(aic_irqc, AIC_IPI_SEND, AIC_IPI_SEND_CPU(cpu));
794}
795
796static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
797{
798	int base_ipi;
799
800	base_ipi = ipi_mux_create(AIC_NR_SWIPI, aic_ipi_send_single);
801	if (WARN_ON(base_ipi <= 0))
802		return -ENODEV;
803
804	set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
805
806	return 0;
807}
808
809static int aic_init_cpu(unsigned int cpu)
810{
811	/* Mask all hard-wired per-CPU IRQ/FIQ sources */
812
813	/* Pending Fast IPI FIQs */
814	write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
815
816	/* Timer FIQs */
817	sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
818	sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
819
820	/* EL2-only (VHE mode) IRQ sources */
821	if (is_kernel_in_hyp_mode()) {
822		/* Guest timers */
823		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
824				   VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
825
826		/* vGIC maintenance IRQ */
827		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
828	}
829
830	/* PMC FIQ */
831	sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
832			   FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
833
834	/* Uncore PMC FIQ */
835	sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
836			   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
837
838	/* Commit all of the above */
839	isb();
840
841	if (aic_irqc->info.version == 1) {
842		/*
843		 * Make sure the kernel's idea of logical CPU order is the same as AIC's
844		 * If we ever end up with a mismatch here, we will have to introduce
845		 * a mapping table similar to what other irqchip drivers do.
846		 */
847		WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
848
849		/*
850		 * Always keep IPIs unmasked at the hardware level (except auto-masking
851		 * by AIC during processing). We manage masks at the vIPI level.
852		 * These registers only exist on AICv1, AICv2 always uses fast IPIs.
853		 */
854		aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
855		if (static_branch_likely(&use_fast_ipi)) {
856			aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER);
857		} else {
858			aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
859			aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
860		}
861	}
862
863	/* Initialize the local mask state */
864	__this_cpu_write(aic_fiq_unmasked, 0);
865
866	return 0;
867}
868
869static struct gic_kvm_info vgic_info __initdata = {
870	.type			= GIC_V3,
871	.no_maint_irq_mask	= true,
872	.no_hw_deactivation	= true,
873};
874
875static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff)
876{
877	int i, n;
878	u32 fiq;
879
880	if (of_property_read_u32(aff, "apple,fiq-index", &fiq) ||
881	    WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq])
882		return;
883
884	n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32));
885	if (WARN_ON(n < 0))
886		return;
887
888	ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL);
889	if (!ic->fiq_aff[fiq])
890		return;
891
892	for (i = 0; i < n; i++) {
893		struct device_node *cpu_node;
894		u32 cpu_phandle;
895		int cpu;
896
897		if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle))
898			continue;
899
900		cpu_node = of_find_node_by_phandle(cpu_phandle);
901		if (WARN_ON(!cpu_node))
902			continue;
903
904		cpu = of_cpu_node_to_id(cpu_node);
905		of_node_put(cpu_node);
906		if (WARN_ON(cpu < 0))
907			continue;
908
909		cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff);
910	}
911}
912
913static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
914{
915	int i, die;
916	u32 off, start_off;
917	void __iomem *regs;
918	struct aic_irq_chip *irqc;
919	struct device_node *affs;
920	const struct of_device_id *match;
921
922	regs = of_iomap(node, 0);
923	if (WARN_ON(!regs))
924		return -EIO;
925
926	irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
927	if (!irqc) {
928		iounmap(regs);
929		return -ENOMEM;
930	}
931
932	irqc->base = regs;
933
934	match = of_match_node(aic_info_match, node);
935	if (!match)
936		goto err_unmap;
937
938	irqc->info = *(struct aic_info *)match->data;
939
940	aic_irqc = irqc;
941
942	switch (irqc->info.version) {
943	case 1: {
944		u32 info;
945
946		info = aic_ic_read(irqc, AIC_INFO);
947		irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info);
948		irqc->max_irq = AIC_MAX_IRQ;
949		irqc->nr_die = irqc->max_die = 1;
950
951		off = start_off = irqc->info.target_cpu;
952		off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */
953
954		irqc->event = irqc->base;
955
956		break;
957	}
958	case 2: {
959		u32 info1, info3;
960
961		info1 = aic_ic_read(irqc, AIC2_INFO1);
962		info3 = aic_ic_read(irqc, AIC2_INFO3);
963
964		irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1);
965		irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3);
966		irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1;
967		irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3);
968
969		off = start_off = irqc->info.irq_cfg;
970		off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */
971
972		irqc->event = of_iomap(node, 1);
973		if (WARN_ON(!irqc->event))
974			goto err_unmap;
975
976		break;
977	}
978	}
979
980	irqc->info.sw_set = off;
981	off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */
982	irqc->info.sw_clr = off;
983	off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */
984	irqc->info.mask_set = off;
985	off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */
986	irqc->info.mask_clr = off;
987	off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */
988	off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */
989
990	if (irqc->info.fast_ipi)
991		static_branch_enable(&use_fast_ipi);
992	else
993		static_branch_disable(&use_fast_ipi);
994
995	irqc->info.die_stride = off - start_off;
996
997	irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node),
998						 &aic_irq_domain_ops, irqc);
999	if (WARN_ON(!irqc->hw_domain))
1000		goto err_unmap;
1001
1002	irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
1003
1004	if (aic_init_smp(irqc, node))
1005		goto err_remove_domain;
1006
1007	affs = of_get_child_by_name(node, "affinities");
1008	if (affs) {
1009		struct device_node *chld;
1010
1011		for_each_child_of_node(affs, chld)
1012			build_fiq_affinity(irqc, chld);
1013	}
1014	of_node_put(affs);
1015
1016	set_handle_irq(aic_handle_irq);
1017	set_handle_fiq(aic_handle_fiq);
1018
1019	off = 0;
1020	for (die = 0; die < irqc->nr_die; die++) {
1021		for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1022			aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX);
1023		for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1024			aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX);
1025		if (irqc->info.target_cpu)
1026			for (i = 0; i < irqc->nr_irq; i++)
1027				aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1);
1028		off += irqc->info.die_stride;
1029	}
1030
1031	if (irqc->info.version == 2) {
1032		u32 config = aic_ic_read(irqc, AIC2_CONFIG);
1033
1034		config |= AIC2_CONFIG_ENABLE;
1035		aic_ic_write(irqc, AIC2_CONFIG, config);
1036	}
1037
1038	if (!is_kernel_in_hyp_mode())
1039		pr_info("Kernel running in EL1, mapping interrupts");
1040
1041	if (static_branch_likely(&use_fast_ipi))
1042		pr_info("Using Fast IPIs");
1043
1044	cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
1045			  "irqchip/apple-aic/ipi:starting",
1046			  aic_init_cpu, NULL);
1047
1048	if (is_kernel_in_hyp_mode()) {
1049		struct irq_fwspec mi = {
1050			.fwnode		= of_node_to_fwnode(node),
1051			.param_count	= 3,
1052			.param		= {
1053				[0]	= AIC_FIQ, /* This is a lie */
1054				[1]	= AIC_VGIC_MI,
1055				[2]	= IRQ_TYPE_LEVEL_HIGH,
1056			},
1057		};
1058
1059		vgic_info.maint_irq = irq_create_fwspec_mapping(&mi);
1060		WARN_ON(!vgic_info.maint_irq);
1061	}
1062
1063	vgic_set_kvm_info(&vgic_info);
1064
1065	pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs",
1066		irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI);
1067
1068	return 0;
1069
1070err_remove_domain:
1071	irq_domain_remove(irqc->hw_domain);
1072err_unmap:
1073	if (irqc->event && irqc->event != irqc->base)
1074		iounmap(irqc->event);
1075	iounmap(irqc->base);
1076	kfree(irqc);
1077	return -ENODEV;
1078}
1079
1080IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init);
1081IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);
1082