1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPU-agnostic ARM page table allocator.
4 *
5 * ARMv7 Short-descriptor format, supporting
6 * - Basic memory attributes
7 * - Simplified access permissions (AP[2:1] model)
8 * - Backwards-compatible TEX remap
9 * - Large pages/supersections (if indicated by the caller)
10 *
11 * Not supporting:
12 * - Legacy access permissions (AP[2:0] model)
13 *
14 * Almost certainly never supporting:
15 * - PXN
16 * - Domains
17 *
18 * Copyright (C) 2014-2015 ARM Limited
19 * Copyright (c) 2014-2015 MediaTek Inc.
20 */
21
22#define pr_fmt(fmt)	"arm-v7s io-pgtable: " fmt
23
24#include <linux/atomic.h>
25#include <linux/dma-mapping.h>
26#include <linux/gfp.h>
27#include <linux/io-pgtable.h>
28#include <linux/iommu.h>
29#include <linux/kernel.h>
30#include <linux/kmemleak.h>
31#include <linux/sizes.h>
32#include <linux/slab.h>
33#include <linux/spinlock.h>
34#include <linux/types.h>
35
36#include <asm/barrier.h>
37
38/* Struct accessors */
39#define io_pgtable_to_data(x)						\
40	container_of((x), struct arm_v7s_io_pgtable, iop)
41
42#define io_pgtable_ops_to_data(x)					\
43	io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
44
45/*
46 * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
47 * and 12 bits in a page.
48 * MediaTek extend 2 bits to reach 34bits, 14 bits at lvl1 and 8 bits at lvl2.
49 */
50#define ARM_V7S_ADDR_BITS		32
51#define _ARM_V7S_LVL_BITS(lvl, cfg)	((lvl) == 1 ? ((cfg)->ias - 20) : 8)
52#define ARM_V7S_LVL_SHIFT(lvl)		((lvl) == 1 ? 20 : 12)
53#define ARM_V7S_TABLE_SHIFT		10
54
55#define ARM_V7S_PTES_PER_LVL(lvl, cfg)	(1 << _ARM_V7S_LVL_BITS(lvl, cfg))
56#define ARM_V7S_TABLE_SIZE(lvl, cfg)						\
57	(ARM_V7S_PTES_PER_LVL(lvl, cfg) * sizeof(arm_v7s_iopte))
58
59#define ARM_V7S_BLOCK_SIZE(lvl)		(1UL << ARM_V7S_LVL_SHIFT(lvl))
60#define ARM_V7S_LVL_MASK(lvl)		((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
61#define ARM_V7S_TABLE_MASK		((u32)(~0U << ARM_V7S_TABLE_SHIFT))
62#define _ARM_V7S_IDX_MASK(lvl, cfg)	(ARM_V7S_PTES_PER_LVL(lvl, cfg) - 1)
63#define ARM_V7S_LVL_IDX(addr, lvl, cfg)	({				\
64	int _l = lvl;							\
65	((addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l, cfg); \
66})
67
68/*
69 * Large page/supersection entries are effectively a block of 16 page/section
70 * entries, along the lines of the LPAE contiguous hint, but all with the
71 * same output address. For want of a better common name we'll call them
72 * "contiguous" versions of their respective page/section entries here, but
73 * noting the distinction (WRT to TLB maintenance) that they represent *one*
74 * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
75 */
76#define ARM_V7S_CONT_PAGES		16
77
78/* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
79#define ARM_V7S_PTE_TYPE_TABLE		0x1
80#define ARM_V7S_PTE_TYPE_PAGE		0x2
81#define ARM_V7S_PTE_TYPE_CONT_PAGE	0x1
82
83#define ARM_V7S_PTE_IS_VALID(pte)	(((pte) & 0x3) != 0)
84#define ARM_V7S_PTE_IS_TABLE(pte, lvl) \
85	((lvl) == 1 && (((pte) & 0x3) == ARM_V7S_PTE_TYPE_TABLE))
86
87/* Page table bits */
88#define ARM_V7S_ATTR_XN(lvl)		BIT(4 * (2 - (lvl)))
89#define ARM_V7S_ATTR_B			BIT(2)
90#define ARM_V7S_ATTR_C			BIT(3)
91#define ARM_V7S_ATTR_NS_TABLE		BIT(3)
92#define ARM_V7S_ATTR_NS_SECTION		BIT(19)
93
94#define ARM_V7S_CONT_SECTION		BIT(18)
95#define ARM_V7S_CONT_PAGE_XN_SHIFT	15
96
97/*
98 * The attribute bits are consistently ordered*, but occupy bits [17:10] of
99 * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
100 * fields relative to that 8-bit block, plus a total shift relative to the PTE.
101 */
102#define ARM_V7S_ATTR_SHIFT(lvl)		(16 - (lvl) * 6)
103
104#define ARM_V7S_ATTR_MASK		0xff
105#define ARM_V7S_ATTR_AP0		BIT(0)
106#define ARM_V7S_ATTR_AP1		BIT(1)
107#define ARM_V7S_ATTR_AP2		BIT(5)
108#define ARM_V7S_ATTR_S			BIT(6)
109#define ARM_V7S_ATTR_NG			BIT(7)
110#define ARM_V7S_TEX_SHIFT		2
111#define ARM_V7S_TEX_MASK		0x7
112#define ARM_V7S_ATTR_TEX(val)		(((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
113
114/* MediaTek extend the bits below for PA 32bit/33bit/34bit */
115#define ARM_V7S_ATTR_MTK_PA_BIT32	BIT(9)
116#define ARM_V7S_ATTR_MTK_PA_BIT33	BIT(4)
117#define ARM_V7S_ATTR_MTK_PA_BIT34	BIT(5)
118
119/* *well, except for TEX on level 2 large pages, of course :( */
120#define ARM_V7S_CONT_PAGE_TEX_SHIFT	6
121#define ARM_V7S_CONT_PAGE_TEX_MASK	(ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
122
123/* Simplified access permissions */
124#define ARM_V7S_PTE_AF			ARM_V7S_ATTR_AP0
125#define ARM_V7S_PTE_AP_UNPRIV		ARM_V7S_ATTR_AP1
126#define ARM_V7S_PTE_AP_RDONLY		ARM_V7S_ATTR_AP2
127
128/* Register bits */
129#define ARM_V7S_RGN_NC			0
130#define ARM_V7S_RGN_WBWA		1
131#define ARM_V7S_RGN_WT			2
132#define ARM_V7S_RGN_WB			3
133
134#define ARM_V7S_PRRR_TYPE_DEVICE	1
135#define ARM_V7S_PRRR_TYPE_NORMAL	2
136#define ARM_V7S_PRRR_TR(n, type)	(((type) & 0x3) << ((n) * 2))
137#define ARM_V7S_PRRR_DS0		BIT(16)
138#define ARM_V7S_PRRR_DS1		BIT(17)
139#define ARM_V7S_PRRR_NS0		BIT(18)
140#define ARM_V7S_PRRR_NS1		BIT(19)
141#define ARM_V7S_PRRR_NOS(n)		BIT((n) + 24)
142
143#define ARM_V7S_NMRR_IR(n, attr)	(((attr) & 0x3) << ((n) * 2))
144#define ARM_V7S_NMRR_OR(n, attr)	(((attr) & 0x3) << ((n) * 2 + 16))
145
146#define ARM_V7S_TTBR_S			BIT(1)
147#define ARM_V7S_TTBR_NOS		BIT(5)
148#define ARM_V7S_TTBR_ORGN_ATTR(attr)	(((attr) & 0x3) << 3)
149#define ARM_V7S_TTBR_IRGN_ATTR(attr)					\
150	((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
151
152#ifdef CONFIG_ZONE_DMA32
153#define ARM_V7S_TABLE_GFP_DMA GFP_DMA32
154#define ARM_V7S_TABLE_SLAB_FLAGS SLAB_CACHE_DMA32
155#else
156#define ARM_V7S_TABLE_GFP_DMA GFP_DMA
157#define ARM_V7S_TABLE_SLAB_FLAGS SLAB_CACHE_DMA
158#endif
159
160typedef u32 arm_v7s_iopte;
161
162static bool selftest_running;
163
164struct arm_v7s_io_pgtable {
165	struct io_pgtable	iop;
166
167	arm_v7s_iopte		*pgd;
168	struct kmem_cache	*l2_tables;
169	spinlock_t		split_lock;
170};
171
172static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl);
173
174static dma_addr_t __arm_v7s_dma_addr(void *pages)
175{
176	return (dma_addr_t)virt_to_phys(pages);
177}
178
179static bool arm_v7s_is_mtk_enabled(struct io_pgtable_cfg *cfg)
180{
181	return IS_ENABLED(CONFIG_PHYS_ADDR_T_64BIT) &&
182		(cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_EXT);
183}
184
185static arm_v7s_iopte to_mtk_iopte(phys_addr_t paddr, arm_v7s_iopte pte)
186{
187	if (paddr & BIT_ULL(32))
188		pte |= ARM_V7S_ATTR_MTK_PA_BIT32;
189	if (paddr & BIT_ULL(33))
190		pte |= ARM_V7S_ATTR_MTK_PA_BIT33;
191	if (paddr & BIT_ULL(34))
192		pte |= ARM_V7S_ATTR_MTK_PA_BIT34;
193	return pte;
194}
195
196static arm_v7s_iopte paddr_to_iopte(phys_addr_t paddr, int lvl,
197				    struct io_pgtable_cfg *cfg)
198{
199	arm_v7s_iopte pte = paddr & ARM_V7S_LVL_MASK(lvl);
200
201	if (arm_v7s_is_mtk_enabled(cfg))
202		return to_mtk_iopte(paddr, pte);
203
204	return pte;
205}
206
207static phys_addr_t iopte_to_paddr(arm_v7s_iopte pte, int lvl,
208				  struct io_pgtable_cfg *cfg)
209{
210	arm_v7s_iopte mask;
211	phys_addr_t paddr;
212
213	if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
214		mask = ARM_V7S_TABLE_MASK;
215	else if (arm_v7s_pte_is_cont(pte, lvl))
216		mask = ARM_V7S_LVL_MASK(lvl) * ARM_V7S_CONT_PAGES;
217	else
218		mask = ARM_V7S_LVL_MASK(lvl);
219
220	paddr = pte & mask;
221	if (!arm_v7s_is_mtk_enabled(cfg))
222		return paddr;
223
224	if (pte & ARM_V7S_ATTR_MTK_PA_BIT32)
225		paddr |= BIT_ULL(32);
226	if (pte & ARM_V7S_ATTR_MTK_PA_BIT33)
227		paddr |= BIT_ULL(33);
228	if (pte & ARM_V7S_ATTR_MTK_PA_BIT34)
229		paddr |= BIT_ULL(34);
230	return paddr;
231}
232
233static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl,
234				  struct arm_v7s_io_pgtable *data)
235{
236	return phys_to_virt(iopte_to_paddr(pte, lvl, &data->iop.cfg));
237}
238
239static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
240				   struct arm_v7s_io_pgtable *data)
241{
242	struct io_pgtable_cfg *cfg = &data->iop.cfg;
243	struct device *dev = cfg->iommu_dev;
244	phys_addr_t phys;
245	dma_addr_t dma;
246	size_t size = ARM_V7S_TABLE_SIZE(lvl, cfg);
247	void *table = NULL;
248	gfp_t gfp_l1;
249
250	/*
251	 * ARM_MTK_TTBR_EXT extend the translation table base support larger
252	 * memory address.
253	 */
254	gfp_l1 = cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_TTBR_EXT ?
255		 GFP_KERNEL : ARM_V7S_TABLE_GFP_DMA;
256
257	if (lvl == 1)
258		table = (void *)__get_free_pages(gfp_l1 | __GFP_ZERO, get_order(size));
259	else if (lvl == 2)
260		table = kmem_cache_zalloc(data->l2_tables, gfp);
261
262	if (!table)
263		return NULL;
264
265	phys = virt_to_phys(table);
266	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_TTBR_EXT ?
267	    phys >= (1ULL << cfg->oas) : phys != (arm_v7s_iopte)phys) {
268		/* Doesn't fit in PTE */
269		dev_err(dev, "Page table does not fit in PTE: %pa", &phys);
270		goto out_free;
271	}
272	if (!cfg->coherent_walk) {
273		dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
274		if (dma_mapping_error(dev, dma))
275			goto out_free;
276		/*
277		 * We depend on the IOMMU being able to work with any physical
278		 * address directly, so if the DMA layer suggests otherwise by
279		 * translating or truncating them, that bodes very badly...
280		 */
281		if (dma != phys)
282			goto out_unmap;
283	}
284	if (lvl == 2)
285		kmemleak_ignore(table);
286	return table;
287
288out_unmap:
289	dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
290	dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
291out_free:
292	if (lvl == 1)
293		free_pages((unsigned long)table, get_order(size));
294	else
295		kmem_cache_free(data->l2_tables, table);
296	return NULL;
297}
298
299static void __arm_v7s_free_table(void *table, int lvl,
300				 struct arm_v7s_io_pgtable *data)
301{
302	struct io_pgtable_cfg *cfg = &data->iop.cfg;
303	struct device *dev = cfg->iommu_dev;
304	size_t size = ARM_V7S_TABLE_SIZE(lvl, cfg);
305
306	if (!cfg->coherent_walk)
307		dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
308				 DMA_TO_DEVICE);
309	if (lvl == 1)
310		free_pages((unsigned long)table, get_order(size));
311	else
312		kmem_cache_free(data->l2_tables, table);
313}
314
315static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
316			       struct io_pgtable_cfg *cfg)
317{
318	if (cfg->coherent_walk)
319		return;
320
321	dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
322				   num_entries * sizeof(*ptep), DMA_TO_DEVICE);
323}
324static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
325			      int num_entries, struct io_pgtable_cfg *cfg)
326{
327	int i;
328
329	for (i = 0; i < num_entries; i++)
330		ptep[i] = pte;
331
332	__arm_v7s_pte_sync(ptep, num_entries, cfg);
333}
334
335static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
336					 struct io_pgtable_cfg *cfg)
337{
338	bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
339	arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S;
340
341	if (!(prot & IOMMU_MMIO))
342		pte |= ARM_V7S_ATTR_TEX(1);
343	if (ap) {
344		pte |= ARM_V7S_PTE_AF;
345		if (!(prot & IOMMU_PRIV))
346			pte |= ARM_V7S_PTE_AP_UNPRIV;
347		if (!(prot & IOMMU_WRITE))
348			pte |= ARM_V7S_PTE_AP_RDONLY;
349	}
350	pte <<= ARM_V7S_ATTR_SHIFT(lvl);
351
352	if ((prot & IOMMU_NOEXEC) && ap)
353		pte |= ARM_V7S_ATTR_XN(lvl);
354	if (prot & IOMMU_MMIO)
355		pte |= ARM_V7S_ATTR_B;
356	else if (prot & IOMMU_CACHE)
357		pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;
358
359	pte |= ARM_V7S_PTE_TYPE_PAGE;
360	if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
361		pte |= ARM_V7S_ATTR_NS_SECTION;
362
363	return pte;
364}
365
366static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
367{
368	int prot = IOMMU_READ;
369	arm_v7s_iopte attr = pte >> ARM_V7S_ATTR_SHIFT(lvl);
370
371	if (!(attr & ARM_V7S_PTE_AP_RDONLY))
372		prot |= IOMMU_WRITE;
373	if (!(attr & ARM_V7S_PTE_AP_UNPRIV))
374		prot |= IOMMU_PRIV;
375	if ((attr & (ARM_V7S_TEX_MASK << ARM_V7S_TEX_SHIFT)) == 0)
376		prot |= IOMMU_MMIO;
377	else if (pte & ARM_V7S_ATTR_C)
378		prot |= IOMMU_CACHE;
379	if (pte & ARM_V7S_ATTR_XN(lvl))
380		prot |= IOMMU_NOEXEC;
381
382	return prot;
383}
384
385static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
386{
387	if (lvl == 1) {
388		pte |= ARM_V7S_CONT_SECTION;
389	} else if (lvl == 2) {
390		arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
391		arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;
392
393		pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
394		pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
395		       (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
396		       ARM_V7S_PTE_TYPE_CONT_PAGE;
397	}
398	return pte;
399}
400
401static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
402{
403	if (lvl == 1) {
404		pte &= ~ARM_V7S_CONT_SECTION;
405	} else if (lvl == 2) {
406		arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
407		arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
408					   ARM_V7S_CONT_PAGE_TEX_SHIFT);
409
410		pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
411		pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
412		       (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
413		       ARM_V7S_PTE_TYPE_PAGE;
414	}
415	return pte;
416}
417
418static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
419{
420	if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
421		return pte & ARM_V7S_CONT_SECTION;
422	else if (lvl == 2)
423		return !(pte & ARM_V7S_PTE_TYPE_PAGE);
424	return false;
425}
426
427static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *,
428			      struct iommu_iotlb_gather *, unsigned long,
429			      size_t, int, arm_v7s_iopte *);
430
431static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
432			    unsigned long iova, phys_addr_t paddr, int prot,
433			    int lvl, int num_entries, arm_v7s_iopte *ptep)
434{
435	struct io_pgtable_cfg *cfg = &data->iop.cfg;
436	arm_v7s_iopte pte;
437	int i;
438
439	for (i = 0; i < num_entries; i++)
440		if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
441			/*
442			 * We need to unmap and free the old table before
443			 * overwriting it with a block entry.
444			 */
445			arm_v7s_iopte *tblp;
446			size_t sz = ARM_V7S_BLOCK_SIZE(lvl);
447
448			tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl, cfg);
449			if (WARN_ON(__arm_v7s_unmap(data, NULL, iova + i * sz,
450						    sz, lvl, tblp) != sz))
451				return -EINVAL;
452		} else if (ptep[i]) {
453			/* We require an unmap first */
454			WARN_ON(!selftest_running);
455			return -EEXIST;
456		}
457
458	pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
459	if (num_entries > 1)
460		pte = arm_v7s_pte_to_cont(pte, lvl);
461
462	pte |= paddr_to_iopte(paddr, lvl, cfg);
463
464	__arm_v7s_set_pte(ptep, pte, num_entries, cfg);
465	return 0;
466}
467
468static arm_v7s_iopte arm_v7s_install_table(arm_v7s_iopte *table,
469					   arm_v7s_iopte *ptep,
470					   arm_v7s_iopte curr,
471					   struct io_pgtable_cfg *cfg)
472{
473	phys_addr_t phys = virt_to_phys(table);
474	arm_v7s_iopte old, new;
475
476	new = phys | ARM_V7S_PTE_TYPE_TABLE;
477
478	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_TTBR_EXT)
479		new = to_mtk_iopte(phys, new);
480
481	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
482		new |= ARM_V7S_ATTR_NS_TABLE;
483
484	/*
485	 * Ensure the table itself is visible before its PTE can be.
486	 * Whilst we could get away with cmpxchg64_release below, this
487	 * doesn't have any ordering semantics when !CONFIG_SMP.
488	 */
489	dma_wmb();
490
491	old = cmpxchg_relaxed(ptep, curr, new);
492	__arm_v7s_pte_sync(ptep, 1, cfg);
493
494	return old;
495}
496
497static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
498			 phys_addr_t paddr, size_t size, int prot,
499			 int lvl, arm_v7s_iopte *ptep, gfp_t gfp)
500{
501	struct io_pgtable_cfg *cfg = &data->iop.cfg;
502	arm_v7s_iopte pte, *cptep;
503	int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
504
505	/* Find our entry at the current level */
506	ptep += ARM_V7S_LVL_IDX(iova, lvl, cfg);
507
508	/* If we can install a leaf entry at this level, then do so */
509	if (num_entries)
510		return arm_v7s_init_pte(data, iova, paddr, prot,
511					lvl, num_entries, ptep);
512
513	/* We can't allocate tables at the final level */
514	if (WARN_ON(lvl == 2))
515		return -EINVAL;
516
517	/* Grab a pointer to the next level */
518	pte = READ_ONCE(*ptep);
519	if (!pte) {
520		cptep = __arm_v7s_alloc_table(lvl + 1, gfp, data);
521		if (!cptep)
522			return -ENOMEM;
523
524		pte = arm_v7s_install_table(cptep, ptep, 0, cfg);
525		if (pte)
526			__arm_v7s_free_table(cptep, lvl + 1, data);
527	} else {
528		/* We've no easy way of knowing if it's synced yet, so... */
529		__arm_v7s_pte_sync(ptep, 1, cfg);
530	}
531
532	if (ARM_V7S_PTE_IS_TABLE(pte, lvl)) {
533		cptep = iopte_deref(pte, lvl, data);
534	} else if (pte) {
535		/* We require an unmap first */
536		WARN_ON(!selftest_running);
537		return -EEXIST;
538	}
539
540	/* Rinse, repeat */
541	return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep, gfp);
542}
543
544static int arm_v7s_map_pages(struct io_pgtable_ops *ops, unsigned long iova,
545			     phys_addr_t paddr, size_t pgsize, size_t pgcount,
546			     int prot, gfp_t gfp, size_t *mapped)
547{
548	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
549	int ret = -EINVAL;
550
551	if (WARN_ON(iova >= (1ULL << data->iop.cfg.ias) ||
552		    paddr >= (1ULL << data->iop.cfg.oas)))
553		return -ERANGE;
554
555	/* If no access, then nothing to do */
556	if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
557		return 0;
558
559	while (pgcount--) {
560		ret = __arm_v7s_map(data, iova, paddr, pgsize, prot, 1, data->pgd,
561				    gfp);
562		if (ret)
563			break;
564
565		iova += pgsize;
566		paddr += pgsize;
567		*mapped += pgsize;
568	}
569	/*
570	 * Synchronise all PTE updates for the new mapping before there's
571	 * a chance for anything to kick off a table walk for the new iova.
572	 */
573	wmb();
574
575	return ret;
576}
577
578static void arm_v7s_free_pgtable(struct io_pgtable *iop)
579{
580	struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
581	int i;
582
583	for (i = 0; i < ARM_V7S_PTES_PER_LVL(1, &data->iop.cfg); i++) {
584		arm_v7s_iopte pte = data->pgd[i];
585
586		if (ARM_V7S_PTE_IS_TABLE(pte, 1))
587			__arm_v7s_free_table(iopte_deref(pte, 1, data),
588					     2, data);
589	}
590	__arm_v7s_free_table(data->pgd, 1, data);
591	kmem_cache_destroy(data->l2_tables);
592	kfree(data);
593}
594
595static arm_v7s_iopte arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
596					unsigned long iova, int idx, int lvl,
597					arm_v7s_iopte *ptep)
598{
599	struct io_pgtable *iop = &data->iop;
600	arm_v7s_iopte pte;
601	size_t size = ARM_V7S_BLOCK_SIZE(lvl);
602	int i;
603
604	/* Check that we didn't lose a race to get the lock */
605	pte = *ptep;
606	if (!arm_v7s_pte_is_cont(pte, lvl))
607		return pte;
608
609	ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
610	pte = arm_v7s_cont_to_pte(pte, lvl);
611	for (i = 0; i < ARM_V7S_CONT_PAGES; i++)
612		ptep[i] = pte + i * size;
613
614	__arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, &iop->cfg);
615
616	size *= ARM_V7S_CONT_PAGES;
617	io_pgtable_tlb_flush_walk(iop, iova, size, size);
618	return pte;
619}
620
621static size_t arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
622				      struct iommu_iotlb_gather *gather,
623				      unsigned long iova, size_t size,
624				      arm_v7s_iopte blk_pte,
625				      arm_v7s_iopte *ptep)
626{
627	struct io_pgtable_cfg *cfg = &data->iop.cfg;
628	arm_v7s_iopte pte, *tablep;
629	int i, unmap_idx, num_entries, num_ptes;
630
631	tablep = __arm_v7s_alloc_table(2, GFP_ATOMIC, data);
632	if (!tablep)
633		return 0; /* Bytes unmapped */
634
635	num_ptes = ARM_V7S_PTES_PER_LVL(2, cfg);
636	num_entries = size >> ARM_V7S_LVL_SHIFT(2);
637	unmap_idx = ARM_V7S_LVL_IDX(iova, 2, cfg);
638
639	pte = arm_v7s_prot_to_pte(arm_v7s_pte_to_prot(blk_pte, 1), 2, cfg);
640	if (num_entries > 1)
641		pte = arm_v7s_pte_to_cont(pte, 2);
642
643	for (i = 0; i < num_ptes; i += num_entries, pte += size) {
644		/* Unmap! */
645		if (i == unmap_idx)
646			continue;
647
648		__arm_v7s_set_pte(&tablep[i], pte, num_entries, cfg);
649	}
650
651	pte = arm_v7s_install_table(tablep, ptep, blk_pte, cfg);
652	if (pte != blk_pte) {
653		__arm_v7s_free_table(tablep, 2, data);
654
655		if (!ARM_V7S_PTE_IS_TABLE(pte, 1))
656			return 0;
657
658		tablep = iopte_deref(pte, 1, data);
659		return __arm_v7s_unmap(data, gather, iova, size, 2, tablep);
660	}
661
662	io_pgtable_tlb_add_page(&data->iop, gather, iova, size);
663	return size;
664}
665
666static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
667			      struct iommu_iotlb_gather *gather,
668			      unsigned long iova, size_t size, int lvl,
669			      arm_v7s_iopte *ptep)
670{
671	arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
672	struct io_pgtable *iop = &data->iop;
673	int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
674
675	/* Something went horribly wrong and we ran out of page table */
676	if (WARN_ON(lvl > 2))
677		return 0;
678
679	idx = ARM_V7S_LVL_IDX(iova, lvl, &iop->cfg);
680	ptep += idx;
681	do {
682		pte[i] = READ_ONCE(ptep[i]);
683		if (WARN_ON(!ARM_V7S_PTE_IS_VALID(pte[i])))
684			return 0;
685	} while (++i < num_entries);
686
687	/*
688	 * If we've hit a contiguous 'large page' entry at this level, it
689	 * needs splitting first, unless we're unmapping the whole lot.
690	 *
691	 * For splitting, we can't rewrite 16 PTEs atomically, and since we
692	 * can't necessarily assume TEX remap we don't have a software bit to
693	 * mark live entries being split. In practice (i.e. DMA API code), we
694	 * will never be splitting large pages anyway, so just wrap this edge
695	 * case in a lock for the sake of correctness and be done with it.
696	 */
697	if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl)) {
698		unsigned long flags;
699
700		spin_lock_irqsave(&data->split_lock, flags);
701		pte[0] = arm_v7s_split_cont(data, iova, idx, lvl, ptep);
702		spin_unlock_irqrestore(&data->split_lock, flags);
703	}
704
705	/* If the size matches this level, we're in the right place */
706	if (num_entries) {
707		size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);
708
709		__arm_v7s_set_pte(ptep, 0, num_entries, &iop->cfg);
710
711		for (i = 0; i < num_entries; i++) {
712			if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
713				/* Also flush any partial walks */
714				io_pgtable_tlb_flush_walk(iop, iova, blk_size,
715						ARM_V7S_BLOCK_SIZE(lvl + 1));
716				ptep = iopte_deref(pte[i], lvl, data);
717				__arm_v7s_free_table(ptep, lvl + 1, data);
718			} else if (!iommu_iotlb_gather_queued(gather)) {
719				io_pgtable_tlb_add_page(iop, gather, iova, blk_size);
720			}
721			iova += blk_size;
722		}
723		return size;
724	} else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
725		/*
726		 * Insert a table at the next level to map the old region,
727		 * minus the part we want to unmap
728		 */
729		return arm_v7s_split_blk_unmap(data, gather, iova, size, pte[0],
730					       ptep);
731	}
732
733	/* Keep on walkin' */
734	ptep = iopte_deref(pte[0], lvl, data);
735	return __arm_v7s_unmap(data, gather, iova, size, lvl + 1, ptep);
736}
737
738static size_t arm_v7s_unmap_pages(struct io_pgtable_ops *ops, unsigned long iova,
739				  size_t pgsize, size_t pgcount,
740				  struct iommu_iotlb_gather *gather)
741{
742	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
743	size_t unmapped = 0, ret;
744
745	if (WARN_ON(iova >= (1ULL << data->iop.cfg.ias)))
746		return 0;
747
748	while (pgcount--) {
749		ret = __arm_v7s_unmap(data, gather, iova, pgsize, 1, data->pgd);
750		if (!ret)
751			break;
752
753		unmapped += pgsize;
754		iova += pgsize;
755	}
756
757	return unmapped;
758}
759
760static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
761					unsigned long iova)
762{
763	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
764	arm_v7s_iopte *ptep = data->pgd, pte;
765	int lvl = 0;
766	u32 mask;
767
768	do {
769		ptep += ARM_V7S_LVL_IDX(iova, ++lvl, &data->iop.cfg);
770		pte = READ_ONCE(*ptep);
771		ptep = iopte_deref(pte, lvl, data);
772	} while (ARM_V7S_PTE_IS_TABLE(pte, lvl));
773
774	if (!ARM_V7S_PTE_IS_VALID(pte))
775		return 0;
776
777	mask = ARM_V7S_LVL_MASK(lvl);
778	if (arm_v7s_pte_is_cont(pte, lvl))
779		mask *= ARM_V7S_CONT_PAGES;
780	return iopte_to_paddr(pte, lvl, &data->iop.cfg) | (iova & ~mask);
781}
782
783static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
784						void *cookie)
785{
786	struct arm_v7s_io_pgtable *data;
787	slab_flags_t slab_flag;
788	phys_addr_t paddr;
789
790	if (cfg->ias > (arm_v7s_is_mtk_enabled(cfg) ? 34 : ARM_V7S_ADDR_BITS))
791		return NULL;
792
793	if (cfg->oas > (arm_v7s_is_mtk_enabled(cfg) ? 35 : ARM_V7S_ADDR_BITS))
794		return NULL;
795
796	if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
797			    IO_PGTABLE_QUIRK_NO_PERMS |
798			    IO_PGTABLE_QUIRK_ARM_MTK_EXT |
799			    IO_PGTABLE_QUIRK_ARM_MTK_TTBR_EXT))
800		return NULL;
801
802	/* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
803	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_EXT &&
804	    !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS))
805			return NULL;
806
807	if ((cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_TTBR_EXT) &&
808	    !arm_v7s_is_mtk_enabled(cfg))
809		return NULL;
810
811	data = kmalloc(sizeof(*data), GFP_KERNEL);
812	if (!data)
813		return NULL;
814
815	spin_lock_init(&data->split_lock);
816
817	/*
818	 * ARM_MTK_TTBR_EXT extend the translation table base support larger
819	 * memory address.
820	 */
821	slab_flag = cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_TTBR_EXT ?
822		    0 : ARM_V7S_TABLE_SLAB_FLAGS;
823
824	data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
825					    ARM_V7S_TABLE_SIZE(2, cfg),
826					    ARM_V7S_TABLE_SIZE(2, cfg),
827					    slab_flag, NULL);
828	if (!data->l2_tables)
829		goto out_free_data;
830
831	data->iop.ops = (struct io_pgtable_ops) {
832		.map_pages	= arm_v7s_map_pages,
833		.unmap_pages	= arm_v7s_unmap_pages,
834		.iova_to_phys	= arm_v7s_iova_to_phys,
835	};
836
837	/* We have to do this early for __arm_v7s_alloc_table to work... */
838	data->iop.cfg = *cfg;
839
840	/*
841	 * Unless the IOMMU driver indicates supersection support by
842	 * having SZ_16M set in the initial bitmap, they won't be used.
843	 */
844	cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
845
846	/* TCR: T0SZ=0, EAE=0 (if applicable) */
847	cfg->arm_v7s_cfg.tcr = 0;
848
849	/*
850	 * TEX remap: the indices used map to the closest equivalent types
851	 * under the non-TEX-remap interpretation of those attribute bits,
852	 * excepting various implementation-defined aspects of shareability.
853	 */
854	cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
855				ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
856				ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
857				ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
858				ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
859	cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
860				ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);
861
862	/* Looking good; allocate a pgd */
863	data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
864	if (!data->pgd)
865		goto out_free_data;
866
867	/* Ensure the empty pgd is visible before any actual TTBR write */
868	wmb();
869
870	/* TTBR */
871	paddr = virt_to_phys(data->pgd);
872	if (arm_v7s_is_mtk_enabled(cfg))
873		cfg->arm_v7s_cfg.ttbr = paddr | upper_32_bits(paddr);
874	else
875		cfg->arm_v7s_cfg.ttbr = paddr | ARM_V7S_TTBR_S |
876					(cfg->coherent_walk ? (ARM_V7S_TTBR_NOS |
877					 ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
878					 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA)) :
879					(ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_NC) |
880					 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_NC)));
881	return &data->iop;
882
883out_free_data:
884	kmem_cache_destroy(data->l2_tables);
885	kfree(data);
886	return NULL;
887}
888
889struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
890	.alloc	= arm_v7s_alloc_pgtable,
891	.free	= arm_v7s_free_pgtable,
892};
893
894#ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
895
896static struct io_pgtable_cfg *cfg_cookie __initdata;
897
898static void __init dummy_tlb_flush_all(void *cookie)
899{
900	WARN_ON(cookie != cfg_cookie);
901}
902
903static void __init dummy_tlb_flush(unsigned long iova, size_t size,
904				   size_t granule, void *cookie)
905{
906	WARN_ON(cookie != cfg_cookie);
907	WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
908}
909
910static void __init dummy_tlb_add_page(struct iommu_iotlb_gather *gather,
911				      unsigned long iova, size_t granule,
912				      void *cookie)
913{
914	dummy_tlb_flush(iova, granule, granule, cookie);
915}
916
917static const struct iommu_flush_ops dummy_tlb_ops __initconst = {
918	.tlb_flush_all	= dummy_tlb_flush_all,
919	.tlb_flush_walk	= dummy_tlb_flush,
920	.tlb_add_page	= dummy_tlb_add_page,
921};
922
923#define __FAIL(ops)	({				\
924		WARN(1, "selftest: test failed\n");	\
925		selftest_running = false;		\
926		-EFAULT;				\
927})
928
929static int __init arm_v7s_do_selftests(void)
930{
931	struct io_pgtable_ops *ops;
932	struct io_pgtable_cfg cfg = {
933		.tlb = &dummy_tlb_ops,
934		.oas = 32,
935		.ias = 32,
936		.coherent_walk = true,
937		.quirks = IO_PGTABLE_QUIRK_ARM_NS,
938		.pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
939	};
940	unsigned int iova, size, iova_start;
941	unsigned int i, loopnr = 0;
942	size_t mapped;
943
944	selftest_running = true;
945
946	cfg_cookie = &cfg;
947
948	ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
949	if (!ops) {
950		pr_err("selftest: failed to allocate io pgtable ops\n");
951		return -EINVAL;
952	}
953
954	/*
955	 * Initial sanity checks.
956	 * Empty page tables shouldn't provide any translations.
957	 */
958	if (ops->iova_to_phys(ops, 42))
959		return __FAIL(ops);
960
961	if (ops->iova_to_phys(ops, SZ_1G + 42))
962		return __FAIL(ops);
963
964	if (ops->iova_to_phys(ops, SZ_2G + 42))
965		return __FAIL(ops);
966
967	/*
968	 * Distinct mappings of different granule sizes.
969	 */
970	iova = 0;
971	for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
972		size = 1UL << i;
973		if (ops->map_pages(ops, iova, iova, size, 1,
974				   IOMMU_READ | IOMMU_WRITE |
975				   IOMMU_NOEXEC | IOMMU_CACHE,
976				   GFP_KERNEL, &mapped))
977			return __FAIL(ops);
978
979		/* Overlapping mappings */
980		if (!ops->map_pages(ops, iova, iova + size, size, 1,
981				    IOMMU_READ | IOMMU_NOEXEC, GFP_KERNEL,
982				    &mapped))
983			return __FAIL(ops);
984
985		if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
986			return __FAIL(ops);
987
988		iova += SZ_16M;
989		loopnr++;
990	}
991
992	/* Partial unmap */
993	i = 1;
994	size = 1UL << __ffs(cfg.pgsize_bitmap);
995	while (i < loopnr) {
996		iova_start = i * SZ_16M;
997		if (ops->unmap_pages(ops, iova_start + size, size, 1, NULL) != size)
998			return __FAIL(ops);
999
1000		/* Remap of partial unmap */
1001		if (ops->map_pages(ops, iova_start + size, size, size, 1,
1002				   IOMMU_READ, GFP_KERNEL, &mapped))
1003			return __FAIL(ops);
1004
1005		if (ops->iova_to_phys(ops, iova_start + size + 42)
1006		    != (size + 42))
1007			return __FAIL(ops);
1008		i++;
1009	}
1010
1011	/* Full unmap */
1012	iova = 0;
1013	for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
1014		size = 1UL << i;
1015
1016		if (ops->unmap_pages(ops, iova, size, 1, NULL) != size)
1017			return __FAIL(ops);
1018
1019		if (ops->iova_to_phys(ops, iova + 42))
1020			return __FAIL(ops);
1021
1022		/* Remap full block */
1023		if (ops->map_pages(ops, iova, iova, size, 1, IOMMU_WRITE,
1024				   GFP_KERNEL, &mapped))
1025			return __FAIL(ops);
1026
1027		if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
1028			return __FAIL(ops);
1029
1030		iova += SZ_16M;
1031	}
1032
1033	free_io_pgtable_ops(ops);
1034
1035	selftest_running = false;
1036
1037	pr_info("self test ok\n");
1038	return 0;
1039}
1040subsys_initcall(arm_v7s_do_selftests);
1041#endif
1042