1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *
4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
5 */
6
7#define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
8
9#include "fsl_pamu.h"
10
11#include <linux/fsl/guts.h>
12#include <linux/interrupt.h>
13#include <linux/genalloc.h>
14#include <linux/of_address.h>
15#include <linux/of_irq.h>
16#include <linux/platform_device.h>
17
18#include <asm/mpc85xx.h>
19
20/* define indexes for each operation mapping scenario */
21#define OMI_QMAN        0x00
22#define OMI_FMAN        0x01
23#define OMI_QMAN_PRIV   0x02
24#define OMI_CAAM        0x03
25
26#define make64(high, low) (((u64)(high) << 32) | (low))
27
28struct pamu_isr_data {
29	void __iomem *pamu_reg_base;	/* Base address of PAMU regs */
30	unsigned int count;		/* The number of PAMUs */
31};
32
33static struct paace *ppaact;
34static struct paace *spaact;
35
36static bool probed;			/* Has PAMU been probed? */
37
38/*
39 * Table for matching compatible strings, for device tree
40 * guts node, for QorIQ SOCs.
41 * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
42 * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
43 * string would be used.
44 */
45static const struct of_device_id guts_device_ids[] = {
46	{ .compatible = "fsl,qoriq-device-config-1.0", },
47	{ .compatible = "fsl,qoriq-device-config-2.0", },
48	{}
49};
50
51/*
52 * Table for matching compatible strings, for device tree
53 * L3 cache controller node.
54 * "fsl,t4240-l3-cache-controller" corresponds to T4,
55 * "fsl,b4860-l3-cache-controller" corresponds to B4 &
56 * "fsl,p4080-l3-cache-controller" corresponds to other,
57 * SOCs.
58 */
59static const struct of_device_id l3_device_ids[] = {
60	{ .compatible = "fsl,t4240-l3-cache-controller", },
61	{ .compatible = "fsl,b4860-l3-cache-controller", },
62	{ .compatible = "fsl,p4080-l3-cache-controller", },
63	{}
64};
65
66/* maximum subwindows permitted per liodn */
67static u32 max_subwindow_count;
68
69/**
70 * pamu_get_ppaace() - Return the primary PACCE
71 * @liodn: liodn PAACT index for desired PAACE
72 *
73 * Returns the ppace pointer upon success else return
74 * null.
75 */
76static struct paace *pamu_get_ppaace(int liodn)
77{
78	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
79		pr_debug("PPAACT doesn't exist\n");
80		return NULL;
81	}
82
83	return &ppaact[liodn];
84}
85
86/**
87 * pamu_enable_liodn() - Set valid bit of PACCE
88 * @liodn: liodn PAACT index for desired PAACE
89 *
90 * Returns 0 upon success else error code < 0 returned
91 */
92int pamu_enable_liodn(int liodn)
93{
94	struct paace *ppaace;
95
96	ppaace = pamu_get_ppaace(liodn);
97	if (!ppaace) {
98		pr_debug("Invalid primary paace entry\n");
99		return -ENOENT;
100	}
101
102	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
103		pr_debug("liodn %d not configured\n", liodn);
104		return -EINVAL;
105	}
106
107	/* Ensure that all other stores to the ppaace complete first */
108	mb();
109
110	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
111	mb();
112
113	return 0;
114}
115
116/**
117 * pamu_disable_liodn() - Clears valid bit of PACCE
118 * @liodn: liodn PAACT index for desired PAACE
119 *
120 * Returns 0 upon success else error code < 0 returned
121 */
122int pamu_disable_liodn(int liodn)
123{
124	struct paace *ppaace;
125
126	ppaace = pamu_get_ppaace(liodn);
127	if (!ppaace) {
128		pr_debug("Invalid primary paace entry\n");
129		return -ENOENT;
130	}
131
132	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
133	mb();
134
135	return 0;
136}
137
138/* Derive the window size encoding for a particular PAACE entry */
139static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
140{
141	/* Bug if not a power of 2 */
142	BUG_ON(addrspace_size & (addrspace_size - 1));
143
144	/* window size is 2^(WSE+1) bytes */
145	return fls64(addrspace_size) - 2;
146}
147
148/*
149 * Set the PAACE type as primary and set the coherency required domain
150 * attribute
151 */
152static void pamu_init_ppaace(struct paace *ppaace)
153{
154	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
155
156	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
157	       PAACE_M_COHERENCE_REQ);
158}
159
160/*
161 * Function used for updating stash destination for the coressponding
162 * LIODN.
163 */
164int pamu_update_paace_stash(int liodn, u32 value)
165{
166	struct paace *paace;
167
168	paace = pamu_get_ppaace(liodn);
169	if (!paace) {
170		pr_debug("Invalid liodn entry\n");
171		return -ENOENT;
172	}
173	set_bf(paace->impl_attr, PAACE_IA_CID, value);
174
175	mb();
176
177	return 0;
178}
179
180/**
181 * pamu_config_ppaace() - Sets up PPAACE entry for specified liodn
182 *
183 * @liodn: Logical IO device number
184 * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
185 * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
186 *	     stashid not defined
187 * @prot: window permissions
188 *
189 * Returns 0 upon success else error code < 0 returned
190 */
191int pamu_config_ppaace(int liodn, u32 omi, u32 stashid, int prot)
192{
193	struct paace *ppaace;
194
195	ppaace = pamu_get_ppaace(liodn);
196	if (!ppaace)
197		return -ENOENT;
198
199	/* window size is 2^(WSE+1) bytes */
200	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
201	       map_addrspace_size_to_wse(1ULL << 36));
202
203	pamu_init_ppaace(ppaace);
204
205	ppaace->wbah = 0;
206	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
207
208	/* set up operation mapping if it's configured */
209	if (omi < OME_NUMBER_ENTRIES) {
210		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
211		ppaace->op_encode.index_ot.omi = omi;
212	} else if (~omi != 0) {
213		pr_debug("bad operation mapping index: %d\n", omi);
214		return -ENODEV;
215	}
216
217	/* configure stash id */
218	if (~stashid != 0)
219		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
220
221	set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
222	ppaace->twbah = 0;
223	set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, 0);
224	set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
225	set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
226	set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
227	mb();
228
229	return 0;
230}
231
232/**
233 * get_ome_index() - Returns the index in the operation mapping table
234 *                   for device.
235 * @omi_index: pointer for storing the index value
236 * @dev: target device
237 *
238 */
239void get_ome_index(u32 *omi_index, struct device *dev)
240{
241	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
242		*omi_index = OMI_QMAN;
243	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
244		*omi_index = OMI_QMAN_PRIV;
245}
246
247/**
248 * get_stash_id - Returns stash destination id corresponding to a
249 *                cache type and vcpu.
250 * @stash_dest_hint: L1, L2 or L3
251 * @vcpu: vpcu target for a particular cache type.
252 *
253 * Returs stash on success or ~(u32)0 on failure.
254 *
255 */
256u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
257{
258	const u32 *prop;
259	struct device_node *node;
260	u32 cache_level;
261	int len, found = 0;
262	int i;
263
264	/* Fastpath, exit early if L3/CPC cache is target for stashing */
265	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
266		node = of_find_matching_node(NULL, l3_device_ids);
267		if (node) {
268			prop = of_get_property(node, "cache-stash-id", NULL);
269			if (!prop) {
270				pr_debug("missing cache-stash-id at %pOF\n",
271					 node);
272				of_node_put(node);
273				return ~(u32)0;
274			}
275			of_node_put(node);
276			return be32_to_cpup(prop);
277		}
278		return ~(u32)0;
279	}
280
281	for_each_of_cpu_node(node) {
282		prop = of_get_property(node, "reg", &len);
283		for (i = 0; i < len / sizeof(u32); i++) {
284			if (be32_to_cpup(&prop[i]) == vcpu) {
285				found = 1;
286				goto found_cpu_node;
287			}
288		}
289	}
290found_cpu_node:
291
292	/* find the hwnode that represents the cache */
293	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
294		if (stash_dest_hint == cache_level) {
295			prop = of_get_property(node, "cache-stash-id", NULL);
296			if (!prop) {
297				pr_debug("missing cache-stash-id at %pOF\n",
298					 node);
299				of_node_put(node);
300				return ~(u32)0;
301			}
302			of_node_put(node);
303			return be32_to_cpup(prop);
304		}
305
306		prop = of_get_property(node, "next-level-cache", NULL);
307		if (!prop) {
308			pr_debug("can't find next-level-cache at %pOF\n", node);
309			of_node_put(node);
310			return ~(u32)0;  /* can't traverse any further */
311		}
312		of_node_put(node);
313
314		/* advance to next node in cache hierarchy */
315		node = of_find_node_by_phandle(*prop);
316		if (!node) {
317			pr_debug("Invalid node for cache hierarchy\n");
318			return ~(u32)0;
319		}
320	}
321
322	pr_debug("stash dest not found for %d on vcpu %d\n",
323		 stash_dest_hint, vcpu);
324	return ~(u32)0;
325}
326
327/* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
328#define QMAN_PAACE 1
329#define QMAN_PORTAL_PAACE 2
330#define BMAN_PAACE 3
331
332/*
333 * Setup operation mapping and stash destinations for QMAN and QMAN portal.
334 * Memory accesses to QMAN and BMAN private memory need not be coherent, so
335 * clear the PAACE entry coherency attribute for them.
336 */
337static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
338{
339	switch (paace_type) {
340	case QMAN_PAACE:
341		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
342		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
343		/* setup QMAN Private data stashing for the L3 cache */
344		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
345		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
346		       0);
347		break;
348	case QMAN_PORTAL_PAACE:
349		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
350		ppaace->op_encode.index_ot.omi = OMI_QMAN;
351		/* Set DQRR and Frame stashing for the L3 cache */
352		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
353		break;
354	case BMAN_PAACE:
355		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
356		       0);
357		break;
358	}
359}
360
361/*
362 * Setup the operation mapping table for various devices. This is a static
363 * table where each table index corresponds to a particular device. PAMU uses
364 * this table to translate device transaction to appropriate corenet
365 * transaction.
366 */
367static void setup_omt(struct ome *omt)
368{
369	struct ome *ome;
370
371	/* Configure OMI_QMAN */
372	ome = &omt[OMI_QMAN];
373
374	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
375	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
376	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
377	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
378
379	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
380	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
381
382	/* Configure OMI_FMAN */
383	ome = &omt[OMI_FMAN];
384	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
385	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
386
387	/* Configure OMI_QMAN private */
388	ome = &omt[OMI_QMAN_PRIV];
389	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
390	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
391	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
392	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
393
394	/* Configure OMI_CAAM */
395	ome = &omt[OMI_CAAM];
396	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
397	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
398}
399
400/*
401 * Get the maximum number of PAACT table entries
402 * and subwindows supported by PAMU
403 */
404static void get_pamu_cap_values(unsigned long pamu_reg_base)
405{
406	u32 pc_val;
407
408	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
409	/* Maximum number of subwindows per liodn */
410	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
411}
412
413/* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
414static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
415			  phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
416			  phys_addr_t omt_phys)
417{
418	u32 *pc;
419	struct pamu_mmap_regs *pamu_regs;
420
421	pc = (u32 *) (pamu_reg_base + PAMU_PC);
422	pamu_regs = (struct pamu_mmap_regs *)
423		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
424
425	/* set up pointers to corenet control blocks */
426
427	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
428	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
429	ppaact_phys = ppaact_phys + PAACT_SIZE;
430	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
431	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
432
433	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
434	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
435	spaact_phys = spaact_phys + SPAACT_SIZE;
436	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
437	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
438
439	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
440	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
441	omt_phys = omt_phys + OMT_SIZE;
442	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
443	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
444
445	/*
446	 * set PAMU enable bit,
447	 * allow ppaact & omt to be cached
448	 * & enable PAMU access violation interrupts.
449	 */
450
451	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
452		 PAMU_ACCESS_VIOLATION_ENABLE);
453	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
454	return 0;
455}
456
457/* Enable all device LIODNS */
458static void setup_liodns(void)
459{
460	int i, len;
461	struct paace *ppaace;
462	struct device_node *node = NULL;
463	const u32 *prop;
464
465	for_each_node_with_property(node, "fsl,liodn") {
466		prop = of_get_property(node, "fsl,liodn", &len);
467		for (i = 0; i < len / sizeof(u32); i++) {
468			int liodn;
469
470			liodn = be32_to_cpup(&prop[i]);
471			if (liodn >= PAACE_NUMBER_ENTRIES) {
472				pr_debug("Invalid LIODN value %d\n", liodn);
473				continue;
474			}
475			ppaace = pamu_get_ppaace(liodn);
476			pamu_init_ppaace(ppaace);
477			/* window size is 2^(WSE+1) bytes */
478			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
479			ppaace->wbah = 0;
480			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
481			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
482			       PAACE_ATM_NO_XLATE);
483			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
484			       PAACE_AP_PERMS_ALL);
485			if (of_device_is_compatible(node, "fsl,qman-portal"))
486				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
487			if (of_device_is_compatible(node, "fsl,qman"))
488				setup_qbman_paace(ppaace, QMAN_PAACE);
489			if (of_device_is_compatible(node, "fsl,bman"))
490				setup_qbman_paace(ppaace, BMAN_PAACE);
491			mb();
492			pamu_enable_liodn(liodn);
493		}
494	}
495}
496
497static irqreturn_t pamu_av_isr(int irq, void *arg)
498{
499	struct pamu_isr_data *data = arg;
500	phys_addr_t phys;
501	unsigned int i, j, ret;
502
503	pr_emerg("access violation interrupt\n");
504
505	for (i = 0; i < data->count; i++) {
506		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
507		u32 pics = in_be32(p + PAMU_PICS);
508
509		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
510			u32 avs1 = in_be32(p + PAMU_AVS1);
511			struct paace *paace;
512
513			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
514			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
515			pr_emerg("AVS1=%08x\n", avs1);
516			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
517			pr_emerg("AVA=%016llx\n",
518				 make64(in_be32(p + PAMU_AVAH),
519					in_be32(p + PAMU_AVAL)));
520			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
521			pr_emerg("POEA=%016llx\n",
522				 make64(in_be32(p + PAMU_POEAH),
523					in_be32(p + PAMU_POEAL)));
524
525			phys = make64(in_be32(p + PAMU_POEAH),
526				      in_be32(p + PAMU_POEAL));
527
528			/* Assume that POEA points to a PAACE */
529			if (phys) {
530				u32 *paace = phys_to_virt(phys);
531
532				/* Only the first four words are relevant */
533				for (j = 0; j < 4; j++)
534					pr_emerg("PAACE[%u]=%08x\n",
535						 j, in_be32(paace + j));
536			}
537
538			/* clear access violation condition */
539			out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
540			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
541			BUG_ON(!paace);
542			/* check if we got a violation for a disabled LIODN */
543			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
544				/*
545				 * As per hardware erratum A-003638, access
546				 * violation can be reported for a disabled
547				 * LIODN. If we hit that condition, disable
548				 * access violation reporting.
549				 */
550				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
551			} else {
552				/* Disable the LIODN */
553				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
554				BUG_ON(ret);
555				pr_emerg("Disabling liodn %x\n",
556					 avs1 >> PAMU_AVS1_LIODN_SHIFT);
557			}
558			out_be32((p + PAMU_PICS), pics);
559		}
560	}
561
562	return IRQ_HANDLED;
563}
564
565#define LAWAR_EN		0x80000000
566#define LAWAR_TARGET_MASK	0x0FF00000
567#define LAWAR_TARGET_SHIFT	20
568#define LAWAR_SIZE_MASK		0x0000003F
569#define LAWAR_CSDID_MASK	0x000FF000
570#define LAWAR_CSDID_SHIFT	12
571
572#define LAW_SIZE_4K		0xb
573
574struct ccsr_law {
575	u32	lawbarh;	/* LAWn base address high */
576	u32	lawbarl;	/* LAWn base address low */
577	u32	lawar;		/* LAWn attributes */
578	u32	reserved;
579};
580
581/*
582 * Create a coherence subdomain for a given memory block.
583 */
584static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
585{
586	struct device_node *np;
587	const __be32 *iprop;
588	void __iomem *lac = NULL;	/* Local Access Control registers */
589	struct ccsr_law __iomem *law;
590	void __iomem *ccm = NULL;
591	u32 __iomem *csdids;
592	unsigned int i, num_laws, num_csds;
593	u32 law_target = 0;
594	u32 csd_id = 0;
595	int ret = 0;
596
597	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
598	if (!np)
599		return -ENODEV;
600
601	iprop = of_get_property(np, "fsl,num-laws", NULL);
602	if (!iprop) {
603		ret = -ENODEV;
604		goto error;
605	}
606
607	num_laws = be32_to_cpup(iprop);
608	if (!num_laws) {
609		ret = -ENODEV;
610		goto error;
611	}
612
613	lac = of_iomap(np, 0);
614	if (!lac) {
615		ret = -ENODEV;
616		goto error;
617	}
618
619	/* LAW registers are at offset 0xC00 */
620	law = lac + 0xC00;
621
622	of_node_put(np);
623
624	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
625	if (!np) {
626		ret = -ENODEV;
627		goto error;
628	}
629
630	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
631	if (!iprop) {
632		ret = -ENODEV;
633		goto error;
634	}
635
636	num_csds = be32_to_cpup(iprop);
637	if (!num_csds) {
638		ret = -ENODEV;
639		goto error;
640	}
641
642	ccm = of_iomap(np, 0);
643	if (!ccm) {
644		ret = -ENOMEM;
645		goto error;
646	}
647
648	/* The undocumented CSDID registers are at offset 0x600 */
649	csdids = ccm + 0x600;
650
651	of_node_put(np);
652	np = NULL;
653
654	/* Find an unused coherence subdomain ID */
655	for (csd_id = 0; csd_id < num_csds; csd_id++) {
656		if (!csdids[csd_id])
657			break;
658	}
659
660	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
661	csdids[csd_id] = csd_port_id;
662
663	/* Find the DDR LAW that maps to our buffer. */
664	for (i = 0; i < num_laws; i++) {
665		if (law[i].lawar & LAWAR_EN) {
666			phys_addr_t law_start, law_end;
667
668			law_start = make64(law[i].lawbarh, law[i].lawbarl);
669			law_end = law_start +
670				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
671
672			if (law_start <= phys && phys < law_end) {
673				law_target = law[i].lawar & LAWAR_TARGET_MASK;
674				break;
675			}
676		}
677	}
678
679	if (i == 0 || i == num_laws) {
680		/* This should never happen */
681		ret = -ENOENT;
682		goto error;
683	}
684
685	/* Find a free LAW entry */
686	while (law[--i].lawar & LAWAR_EN) {
687		if (i == 0) {
688			/* No higher priority LAW slots available */
689			ret = -ENOENT;
690			goto error;
691		}
692	}
693
694	law[i].lawbarh = upper_32_bits(phys);
695	law[i].lawbarl = lower_32_bits(phys);
696	wmb();
697	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
698		(LAW_SIZE_4K + get_order(size));
699	wmb();
700
701error:
702	if (ccm)
703		iounmap(ccm);
704
705	if (lac)
706		iounmap(lac);
707
708	if (np)
709		of_node_put(np);
710
711	return ret;
712}
713
714/*
715 * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
716 * bit map of snoopers for a given range of memory mapped by a LAW.
717 *
718 * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
719 * table should never need to be updated.  SVRs are guaranteed to be unique, so
720 * there is no worry that a future SOC will inadvertently have one of these
721 * values.
722 */
723static const struct {
724	u32 svr;
725	u32 port_id;
726} port_id_map[] = {
727	{(SVR_P2040 << 8) | 0x10, 0xFF000000},	/* P2040 1.0 */
728	{(SVR_P2040 << 8) | 0x11, 0xFF000000},	/* P2040 1.1 */
729	{(SVR_P2041 << 8) | 0x10, 0xFF000000},	/* P2041 1.0 */
730	{(SVR_P2041 << 8) | 0x11, 0xFF000000},	/* P2041 1.1 */
731	{(SVR_P3041 << 8) | 0x10, 0xFF000000},	/* P3041 1.0 */
732	{(SVR_P3041 << 8) | 0x11, 0xFF000000},	/* P3041 1.1 */
733	{(SVR_P4040 << 8) | 0x20, 0xFFF80000},	/* P4040 2.0 */
734	{(SVR_P4080 << 8) | 0x20, 0xFFF80000},	/* P4080 2.0 */
735	{(SVR_P5010 << 8) | 0x10, 0xFC000000},	/* P5010 1.0 */
736	{(SVR_P5010 << 8) | 0x20, 0xFC000000},	/* P5010 2.0 */
737	{(SVR_P5020 << 8) | 0x10, 0xFC000000},	/* P5020 1.0 */
738	{(SVR_P5021 << 8) | 0x10, 0xFF800000},	/* P5021 1.0 */
739	{(SVR_P5040 << 8) | 0x10, 0xFF800000},	/* P5040 1.0 */
740};
741
742#define SVR_SECURITY	0x80000	/* The Security (E) bit */
743
744static int fsl_pamu_probe(struct platform_device *pdev)
745{
746	struct device *dev = &pdev->dev;
747	void __iomem *pamu_regs = NULL;
748	struct ccsr_guts __iomem *guts_regs = NULL;
749	u32 pamubypenr, pamu_counter;
750	unsigned long pamu_reg_off;
751	unsigned long pamu_reg_base;
752	struct pamu_isr_data *data = NULL;
753	struct device_node *guts_node;
754	u64 size;
755	struct page *p;
756	int ret = 0;
757	int irq;
758	phys_addr_t ppaact_phys;
759	phys_addr_t spaact_phys;
760	struct ome *omt;
761	phys_addr_t omt_phys;
762	size_t mem_size = 0;
763	unsigned int order = 0;
764	u32 csd_port_id = 0;
765	unsigned i;
766	/*
767	 * enumerate all PAMUs and allocate and setup PAMU tables
768	 * for each of them,
769	 * NOTE : All PAMUs share the same LIODN tables.
770	 */
771
772	if (WARN_ON(probed))
773		return -EBUSY;
774
775	pamu_regs = of_iomap(dev->of_node, 0);
776	if (!pamu_regs) {
777		dev_err(dev, "ioremap of PAMU node failed\n");
778		return -ENOMEM;
779	}
780	of_get_address(dev->of_node, 0, &size, NULL);
781
782	irq = irq_of_parse_and_map(dev->of_node, 0);
783	if (!irq) {
784		dev_warn(dev, "no interrupts listed in PAMU node\n");
785		goto error;
786	}
787
788	data = kzalloc(sizeof(*data), GFP_KERNEL);
789	if (!data) {
790		ret = -ENOMEM;
791		goto error;
792	}
793	data->pamu_reg_base = pamu_regs;
794	data->count = size / PAMU_OFFSET;
795
796	/* The ISR needs access to the regs, so we won't iounmap them */
797	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
798	if (ret < 0) {
799		dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
800		goto error;
801	}
802
803	guts_node = of_find_matching_node(NULL, guts_device_ids);
804	if (!guts_node) {
805		dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
806		ret = -ENODEV;
807		goto error;
808	}
809
810	guts_regs = of_iomap(guts_node, 0);
811	of_node_put(guts_node);
812	if (!guts_regs) {
813		dev_err(dev, "ioremap of GUTS node failed\n");
814		ret = -ENODEV;
815		goto error;
816	}
817
818	/* read in the PAMU capability registers */
819	get_pamu_cap_values((unsigned long)pamu_regs);
820	/*
821	 * To simplify the allocation of a coherency domain, we allocate the
822	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
823	 * wastes more memory compared to allocating the buffers separately.
824	 */
825	/* Determine how much memory we need */
826	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
827		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
828		(PAGE_SIZE << get_order(OMT_SIZE));
829	order = get_order(mem_size);
830
831	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
832	if (!p) {
833		dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
834		ret = -ENOMEM;
835		goto error;
836	}
837
838	ppaact = page_address(p);
839	ppaact_phys = page_to_phys(p);
840
841	/* Make sure the memory is naturally aligned */
842	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
843		dev_err(dev, "PAACT/OMT block is unaligned\n");
844		ret = -ENOMEM;
845		goto error;
846	}
847
848	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
849	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
850
851	dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
852
853	/* Check to see if we need to implement the work-around on this SOC */
854
855	/* Determine the Port ID for our coherence subdomain */
856	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
857		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
858			csd_port_id = port_id_map[i].port_id;
859			dev_dbg(dev, "found matching SVR %08x\n",
860				port_id_map[i].svr);
861			break;
862		}
863	}
864
865	if (csd_port_id) {
866		dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
867			&ppaact_phys, mem_size, csd_port_id);
868
869		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
870		if (ret) {
871			dev_err(dev, "could not create coherence subdomain\n");
872			goto error;
873		}
874	}
875
876	spaact_phys = virt_to_phys(spaact);
877	omt_phys = virt_to_phys(omt);
878
879	pamubypenr = in_be32(&guts_regs->pamubypenr);
880
881	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
882	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
883
884		pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
885		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
886			       spaact_phys, omt_phys);
887		/* Disable PAMU bypass for this PAMU */
888		pamubypenr &= ~pamu_counter;
889	}
890
891	setup_omt(omt);
892
893	/* Enable all relevant PAMU(s) */
894	out_be32(&guts_regs->pamubypenr, pamubypenr);
895
896	iounmap(guts_regs);
897
898	/* Enable DMA for the LIODNs in the device tree */
899
900	setup_liodns();
901
902	probed = true;
903
904	return 0;
905
906error:
907	if (irq)
908		free_irq(irq, data);
909
910	kfree_sensitive(data);
911
912	if (pamu_regs)
913		iounmap(pamu_regs);
914
915	if (guts_regs)
916		iounmap(guts_regs);
917
918	if (ppaact)
919		free_pages((unsigned long)ppaact, order);
920
921	ppaact = NULL;
922
923	return ret;
924}
925
926static struct platform_driver fsl_of_pamu_driver = {
927	.driver = {
928		.name = "fsl-of-pamu",
929	},
930	.probe = fsl_pamu_probe,
931};
932
933static __init int fsl_pamu_init(void)
934{
935	struct platform_device *pdev = NULL;
936	struct device_node *np;
937	int ret;
938
939	/*
940	 * The normal OF process calls the probe function at some
941	 * indeterminate later time, after most drivers have loaded.  This is
942	 * too late for us, because PAMU clients (like the Qman driver)
943	 * depend on PAMU being initialized early.
944	 *
945	 * So instead, we "manually" call our probe function by creating the
946	 * platform devices ourselves.
947	 */
948
949	/*
950	 * We assume that there is only one PAMU node in the device tree.  A
951	 * single PAMU node represents all of the PAMU devices in the SOC
952	 * already.   Everything else already makes that assumption, and the
953	 * binding for the PAMU nodes doesn't allow for any parent-child
954	 * relationships anyway.  In other words, support for more than one
955	 * PAMU node would require significant changes to a lot of code.
956	 */
957
958	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
959	if (!np) {
960		pr_err("could not find a PAMU node\n");
961		return -ENODEV;
962	}
963
964	ret = platform_driver_register(&fsl_of_pamu_driver);
965	if (ret) {
966		pr_err("could not register driver (err=%i)\n", ret);
967		goto error_driver_register;
968	}
969
970	pdev = platform_device_alloc("fsl-of-pamu", 0);
971	if (!pdev) {
972		pr_err("could not allocate device %pOF\n", np);
973		ret = -ENOMEM;
974		goto error_device_alloc;
975	}
976	pdev->dev.of_node = of_node_get(np);
977
978	ret = pamu_domain_init();
979	if (ret)
980		goto error_device_add;
981
982	ret = platform_device_add(pdev);
983	if (ret) {
984		pr_err("could not add device %pOF (err=%i)\n", np, ret);
985		goto error_device_add;
986	}
987
988	return 0;
989
990error_device_add:
991	of_node_put(pdev->dev.of_node);
992	pdev->dev.of_node = NULL;
993
994	platform_device_put(pdev);
995
996error_device_alloc:
997	platform_driver_unregister(&fsl_of_pamu_driver);
998
999error_driver_register:
1000	of_node_put(np);
1001
1002	return ret;
1003}
1004arch_initcall(fsl_pamu_init);
1005