1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2011-2016 Synaptics Incorporated
4 * Copyright (c) 2011 Unixphere
5 */
6
7#include <linux/kernel.h>
8#include <linux/rmi.h>
9#include <linux/slab.h>
10#include <linux/uaccess.h>
11#include <linux/of.h>
12#include <asm/unaligned.h>
13#include "rmi_driver.h"
14
15#define RMI_PRODUCT_ID_LENGTH    10
16#define RMI_PRODUCT_INFO_LENGTH   2
17
18#define RMI_DATE_CODE_LENGTH      3
19
20#define PRODUCT_ID_OFFSET 0x10
21#define PRODUCT_INFO_OFFSET 0x1E
22
23
24/* Force a firmware reset of the sensor */
25#define RMI_F01_CMD_DEVICE_RESET	1
26
27/* Various F01_RMI_QueryX bits */
28
29#define RMI_F01_QRY1_CUSTOM_MAP		BIT(0)
30#define RMI_F01_QRY1_NON_COMPLIANT	BIT(1)
31#define RMI_F01_QRY1_HAS_LTS		BIT(2)
32#define RMI_F01_QRY1_HAS_SENSOR_ID	BIT(3)
33#define RMI_F01_QRY1_HAS_CHARGER_INP	BIT(4)
34#define RMI_F01_QRY1_HAS_ADJ_DOZE	BIT(5)
35#define RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF	BIT(6)
36#define RMI_F01_QRY1_HAS_QUERY42	BIT(7)
37
38#define RMI_F01_QRY5_YEAR_MASK		0x1f
39#define RMI_F01_QRY6_MONTH_MASK		0x0f
40#define RMI_F01_QRY7_DAY_MASK		0x1f
41
42#define RMI_F01_QRY2_PRODINFO_MASK	0x7f
43
44#define RMI_F01_BASIC_QUERY_LEN		21 /* From Query 00 through 20 */
45
46struct f01_basic_properties {
47	u8 manufacturer_id;
48	bool has_lts;
49	bool has_adjustable_doze;
50	bool has_adjustable_doze_holdoff;
51	char dom[11]; /* YYYY/MM/DD + '\0' */
52	u8 product_id[RMI_PRODUCT_ID_LENGTH + 1];
53	u16 productinfo;
54	u32 firmware_id;
55	u32 package_id;
56};
57
58/* F01 device status bits */
59
60/* Most recent device status event */
61#define RMI_F01_STATUS_CODE(status)		((status) & 0x0f)
62/* The device has lost its configuration for some reason. */
63#define RMI_F01_STATUS_UNCONFIGURED(status)	(!!((status) & 0x80))
64/* The device is in bootloader mode */
65#define RMI_F01_STATUS_BOOTLOADER(status)	((status) & 0x40)
66
67/* Control register bits */
68
69/*
70 * Sleep mode controls power management on the device and affects all
71 * functions of the device.
72 */
73#define RMI_F01_CTRL0_SLEEP_MODE_MASK	0x03
74
75#define RMI_SLEEP_MODE_NORMAL		0x00
76#define RMI_SLEEP_MODE_SENSOR_SLEEP	0x01
77#define RMI_SLEEP_MODE_RESERVED0	0x02
78#define RMI_SLEEP_MODE_RESERVED1	0x03
79
80/*
81 * This bit disables whatever sleep mode may be selected by the sleep_mode
82 * field and forces the device to run at full power without sleeping.
83 */
84#define RMI_F01_CTRL0_NOSLEEP_BIT	BIT(2)
85
86/*
87 * When this bit is set, the touch controller employs a noise-filtering
88 * algorithm designed for use with a connected battery charger.
89 */
90#define RMI_F01_CTRL0_CHARGER_BIT	BIT(5)
91
92/*
93 * Sets the report rate for the device. The effect of this setting is
94 * highly product dependent. Check the spec sheet for your particular
95 * touch sensor.
96 */
97#define RMI_F01_CTRL0_REPORTRATE_BIT	BIT(6)
98
99/*
100 * Written by the host as an indicator that the device has been
101 * successfully configured.
102 */
103#define RMI_F01_CTRL0_CONFIGURED_BIT	BIT(7)
104
105/**
106 * struct f01_device_control - controls basic sensor functions
107 *
108 * @ctrl0: see the bit definitions above.
109 * @doze_interval: controls the interval between checks for finger presence
110 *	when the touch sensor is in doze mode, in units of 10ms.
111 * @wakeup_threshold: controls the capacitance threshold at which the touch
112 *	sensor will decide to wake up from that low power state.
113 * @doze_holdoff: controls how long the touch sensor waits after the last
114 *	finger lifts before entering the doze state, in units of 100ms.
115 */
116struct f01_device_control {
117	u8 ctrl0;
118	u8 doze_interval;
119	u8 wakeup_threshold;
120	u8 doze_holdoff;
121};
122
123struct f01_data {
124	struct f01_basic_properties properties;
125	struct f01_device_control device_control;
126
127	u16 doze_interval_addr;
128	u16 wakeup_threshold_addr;
129	u16 doze_holdoff_addr;
130
131	bool suspended;
132	bool old_nosleep;
133
134	unsigned int num_of_irq_regs;
135};
136
137static int rmi_f01_read_properties(struct rmi_device *rmi_dev,
138				   u16 query_base_addr,
139				   struct f01_basic_properties *props)
140{
141	u8 queries[RMI_F01_BASIC_QUERY_LEN];
142	int ret;
143	int query_offset = query_base_addr;
144	bool has_ds4_queries = false;
145	bool has_query42 = false;
146	bool has_sensor_id = false;
147	bool has_package_id_query = false;
148	bool has_build_id_query = false;
149	u16 prod_info_addr;
150	u8 ds4_query_len;
151
152	ret = rmi_read_block(rmi_dev, query_offset,
153			       queries, RMI_F01_BASIC_QUERY_LEN);
154	if (ret) {
155		dev_err(&rmi_dev->dev,
156			"Failed to read device query registers: %d\n", ret);
157		return ret;
158	}
159
160	prod_info_addr = query_offset + 17;
161	query_offset += RMI_F01_BASIC_QUERY_LEN;
162
163	/* Now parse what we got */
164	props->manufacturer_id = queries[0];
165
166	props->has_lts = queries[1] & RMI_F01_QRY1_HAS_LTS;
167	props->has_adjustable_doze =
168			queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE;
169	props->has_adjustable_doze_holdoff =
170			queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF;
171	has_query42 = queries[1] & RMI_F01_QRY1_HAS_QUERY42;
172	has_sensor_id = queries[1] & RMI_F01_QRY1_HAS_SENSOR_ID;
173
174	snprintf(props->dom, sizeof(props->dom), "20%02d/%02d/%02d",
175		 queries[5] & RMI_F01_QRY5_YEAR_MASK,
176		 queries[6] & RMI_F01_QRY6_MONTH_MASK,
177		 queries[7] & RMI_F01_QRY7_DAY_MASK);
178
179	memcpy(props->product_id, &queries[11],
180		RMI_PRODUCT_ID_LENGTH);
181	props->product_id[RMI_PRODUCT_ID_LENGTH] = '\0';
182
183	props->productinfo =
184			((queries[2] & RMI_F01_QRY2_PRODINFO_MASK) << 7) |
185			(queries[3] & RMI_F01_QRY2_PRODINFO_MASK);
186
187	if (has_sensor_id)
188		query_offset++;
189
190	if (has_query42) {
191		ret = rmi_read(rmi_dev, query_offset, queries);
192		if (ret) {
193			dev_err(&rmi_dev->dev,
194				"Failed to read query 42 register: %d\n", ret);
195			return ret;
196		}
197
198		has_ds4_queries = !!(queries[0] & BIT(0));
199		query_offset++;
200	}
201
202	if (has_ds4_queries) {
203		ret = rmi_read(rmi_dev, query_offset, &ds4_query_len);
204		if (ret) {
205			dev_err(&rmi_dev->dev,
206				"Failed to read DS4 queries length: %d\n", ret);
207			return ret;
208		}
209		query_offset++;
210
211		if (ds4_query_len > 0) {
212			ret = rmi_read(rmi_dev, query_offset, queries);
213			if (ret) {
214				dev_err(&rmi_dev->dev,
215					"Failed to read DS4 queries: %d\n",
216					ret);
217				return ret;
218			}
219
220			has_package_id_query = !!(queries[0] & BIT(0));
221			has_build_id_query = !!(queries[0] & BIT(1));
222		}
223
224		if (has_package_id_query) {
225			ret = rmi_read_block(rmi_dev, prod_info_addr,
226					     queries, sizeof(__le64));
227			if (ret) {
228				dev_err(&rmi_dev->dev,
229					"Failed to read package info: %d\n",
230					ret);
231				return ret;
232			}
233
234			props->package_id = get_unaligned_le64(queries);
235			prod_info_addr++;
236		}
237
238		if (has_build_id_query) {
239			ret = rmi_read_block(rmi_dev, prod_info_addr, queries,
240					    3);
241			if (ret) {
242				dev_err(&rmi_dev->dev,
243					"Failed to read product info: %d\n",
244					ret);
245				return ret;
246			}
247
248			props->firmware_id = queries[1] << 8 | queries[0];
249			props->firmware_id += queries[2] * 65536;
250		}
251	}
252
253	return 0;
254}
255
256const char *rmi_f01_get_product_ID(struct rmi_function *fn)
257{
258	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
259
260	return f01->properties.product_id;
261}
262
263static ssize_t rmi_driver_manufacturer_id_show(struct device *dev,
264					       struct device_attribute *dattr,
265					       char *buf)
266{
267	struct rmi_driver_data *data = dev_get_drvdata(dev);
268	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
269
270	return sysfs_emit(buf, "%d\n", f01->properties.manufacturer_id);
271}
272
273static DEVICE_ATTR(manufacturer_id, 0444,
274		   rmi_driver_manufacturer_id_show, NULL);
275
276static ssize_t rmi_driver_dom_show(struct device *dev,
277				   struct device_attribute *dattr, char *buf)
278{
279	struct rmi_driver_data *data = dev_get_drvdata(dev);
280	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
281
282	return sysfs_emit(buf, "%s\n", f01->properties.dom);
283}
284
285static DEVICE_ATTR(date_of_manufacture, 0444, rmi_driver_dom_show, NULL);
286
287static ssize_t rmi_driver_product_id_show(struct device *dev,
288					  struct device_attribute *dattr,
289					  char *buf)
290{
291	struct rmi_driver_data *data = dev_get_drvdata(dev);
292	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
293
294	return sysfs_emit(buf, "%s\n", f01->properties.product_id);
295}
296
297static DEVICE_ATTR(product_id, 0444, rmi_driver_product_id_show, NULL);
298
299static ssize_t rmi_driver_firmware_id_show(struct device *dev,
300					   struct device_attribute *dattr,
301					   char *buf)
302{
303	struct rmi_driver_data *data = dev_get_drvdata(dev);
304	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
305
306	return sysfs_emit(buf, "%d\n", f01->properties.firmware_id);
307}
308
309static DEVICE_ATTR(firmware_id, 0444, rmi_driver_firmware_id_show, NULL);
310
311static ssize_t rmi_driver_package_id_show(struct device *dev,
312					  struct device_attribute *dattr,
313					  char *buf)
314{
315	struct rmi_driver_data *data = dev_get_drvdata(dev);
316	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
317
318	u32 package_id = f01->properties.package_id;
319
320	return sysfs_emit(buf, "%04x.%04x\n",
321			  package_id & 0xffff, (package_id >> 16) & 0xffff);
322}
323
324static DEVICE_ATTR(package_id, 0444, rmi_driver_package_id_show, NULL);
325
326static struct attribute *rmi_f01_attrs[] = {
327	&dev_attr_manufacturer_id.attr,
328	&dev_attr_date_of_manufacture.attr,
329	&dev_attr_product_id.attr,
330	&dev_attr_firmware_id.attr,
331	&dev_attr_package_id.attr,
332	NULL
333};
334
335static const struct attribute_group rmi_f01_attr_group = {
336	.attrs = rmi_f01_attrs,
337};
338
339#ifdef CONFIG_OF
340static int rmi_f01_of_probe(struct device *dev,
341				struct rmi_device_platform_data *pdata)
342{
343	int retval;
344	u32 val;
345
346	retval = rmi_of_property_read_u32(dev,
347			(u32 *)&pdata->power_management.nosleep,
348			"syna,nosleep-mode", 1);
349	if (retval)
350		return retval;
351
352	retval = rmi_of_property_read_u32(dev, &val,
353			"syna,wakeup-threshold", 1);
354	if (retval)
355		return retval;
356
357	pdata->power_management.wakeup_threshold = val;
358
359	retval = rmi_of_property_read_u32(dev, &val,
360			"syna,doze-holdoff-ms", 1);
361	if (retval)
362		return retval;
363
364	pdata->power_management.doze_holdoff = val * 100;
365
366	retval = rmi_of_property_read_u32(dev, &val,
367			"syna,doze-interval-ms", 1);
368	if (retval)
369		return retval;
370
371	pdata->power_management.doze_interval = val / 10;
372
373	return 0;
374}
375#else
376static inline int rmi_f01_of_probe(struct device *dev,
377					struct rmi_device_platform_data *pdata)
378{
379	return -ENODEV;
380}
381#endif
382
383static int rmi_f01_probe(struct rmi_function *fn)
384{
385	struct rmi_device *rmi_dev = fn->rmi_dev;
386	struct rmi_driver_data *driver_data = dev_get_drvdata(&rmi_dev->dev);
387	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
388	struct f01_data *f01;
389	int error;
390	u16 ctrl_base_addr = fn->fd.control_base_addr;
391	u8 device_status;
392	u8 temp;
393
394	if (fn->dev.of_node) {
395		error = rmi_f01_of_probe(&fn->dev, pdata);
396		if (error)
397			return error;
398	}
399
400	f01 = devm_kzalloc(&fn->dev, sizeof(struct f01_data), GFP_KERNEL);
401	if (!f01)
402		return -ENOMEM;
403
404	f01->num_of_irq_regs = driver_data->num_of_irq_regs;
405
406	/*
407	 * Set the configured bit and (optionally) other important stuff
408	 * in the device control register.
409	 */
410
411	error = rmi_read(rmi_dev, fn->fd.control_base_addr,
412			 &f01->device_control.ctrl0);
413	if (error) {
414		dev_err(&fn->dev, "Failed to read F01 control: %d\n", error);
415		return error;
416	}
417
418	switch (pdata->power_management.nosleep) {
419	case RMI_REG_STATE_DEFAULT:
420		break;
421	case RMI_REG_STATE_OFF:
422		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT;
423		break;
424	case RMI_REG_STATE_ON:
425		f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
426		break;
427	}
428
429	/*
430	 * Sleep mode might be set as a hangover from a system crash or
431	 * reboot without power cycle.  If so, clear it so the sensor
432	 * is certain to function.
433	 */
434	if ((f01->device_control.ctrl0 & RMI_F01_CTRL0_SLEEP_MODE_MASK) !=
435			RMI_SLEEP_MODE_NORMAL) {
436		dev_warn(&fn->dev,
437			 "WARNING: Non-zero sleep mode found. Clearing...\n");
438		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
439	}
440
441	f01->device_control.ctrl0 |= RMI_F01_CTRL0_CONFIGURED_BIT;
442
443	error = rmi_write(rmi_dev, fn->fd.control_base_addr,
444			  f01->device_control.ctrl0);
445	if (error) {
446		dev_err(&fn->dev, "Failed to write F01 control: %d\n", error);
447		return error;
448	}
449
450	/* Dummy read in order to clear irqs */
451	error = rmi_read(rmi_dev, fn->fd.data_base_addr + 1, &temp);
452	if (error < 0) {
453		dev_err(&fn->dev, "Failed to read Interrupt Status.\n");
454		return error;
455	}
456
457	error = rmi_f01_read_properties(rmi_dev, fn->fd.query_base_addr,
458					&f01->properties);
459	if (error < 0) {
460		dev_err(&fn->dev, "Failed to read F01 properties.\n");
461		return error;
462	}
463
464	dev_info(&fn->dev, "found RMI device, manufacturer: %s, product: %s, fw id: %d\n",
465		 f01->properties.manufacturer_id == 1 ? "Synaptics" : "unknown",
466		 f01->properties.product_id, f01->properties.firmware_id);
467
468	/* Advance to interrupt control registers, then skip over them. */
469	ctrl_base_addr++;
470	ctrl_base_addr += f01->num_of_irq_regs;
471
472	/* read control register */
473	if (f01->properties.has_adjustable_doze) {
474		f01->doze_interval_addr = ctrl_base_addr;
475		ctrl_base_addr++;
476
477		if (pdata->power_management.doze_interval) {
478			f01->device_control.doze_interval =
479				pdata->power_management.doze_interval;
480			error = rmi_write(rmi_dev, f01->doze_interval_addr,
481					  f01->device_control.doze_interval);
482			if (error) {
483				dev_err(&fn->dev,
484					"Failed to configure F01 doze interval register: %d\n",
485					error);
486				return error;
487			}
488		} else {
489			error = rmi_read(rmi_dev, f01->doze_interval_addr,
490					 &f01->device_control.doze_interval);
491			if (error) {
492				dev_err(&fn->dev,
493					"Failed to read F01 doze interval register: %d\n",
494					error);
495				return error;
496			}
497		}
498
499		f01->wakeup_threshold_addr = ctrl_base_addr;
500		ctrl_base_addr++;
501
502		if (pdata->power_management.wakeup_threshold) {
503			f01->device_control.wakeup_threshold =
504				pdata->power_management.wakeup_threshold;
505			error = rmi_write(rmi_dev, f01->wakeup_threshold_addr,
506					  f01->device_control.wakeup_threshold);
507			if (error) {
508				dev_err(&fn->dev,
509					"Failed to configure F01 wakeup threshold register: %d\n",
510					error);
511				return error;
512			}
513		} else {
514			error = rmi_read(rmi_dev, f01->wakeup_threshold_addr,
515					 &f01->device_control.wakeup_threshold);
516			if (error < 0) {
517				dev_err(&fn->dev,
518					"Failed to read F01 wakeup threshold register: %d\n",
519					error);
520				return error;
521			}
522		}
523	}
524
525	if (f01->properties.has_lts)
526		ctrl_base_addr++;
527
528	if (f01->properties.has_adjustable_doze_holdoff) {
529		f01->doze_holdoff_addr = ctrl_base_addr;
530		ctrl_base_addr++;
531
532		if (pdata->power_management.doze_holdoff) {
533			f01->device_control.doze_holdoff =
534				pdata->power_management.doze_holdoff;
535			error = rmi_write(rmi_dev, f01->doze_holdoff_addr,
536					  f01->device_control.doze_holdoff);
537			if (error) {
538				dev_err(&fn->dev,
539					"Failed to configure F01 doze holdoff register: %d\n",
540					error);
541				return error;
542			}
543		} else {
544			error = rmi_read(rmi_dev, f01->doze_holdoff_addr,
545					 &f01->device_control.doze_holdoff);
546			if (error) {
547				dev_err(&fn->dev,
548					"Failed to read F01 doze holdoff register: %d\n",
549					error);
550				return error;
551			}
552		}
553	}
554
555	error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status);
556	if (error < 0) {
557		dev_err(&fn->dev,
558			"Failed to read device status: %d\n", error);
559		return error;
560	}
561
562	if (RMI_F01_STATUS_UNCONFIGURED(device_status)) {
563		dev_err(&fn->dev,
564			"Device was reset during configuration process, status: %#02x!\n",
565			RMI_F01_STATUS_CODE(device_status));
566		return -EINVAL;
567	}
568
569	dev_set_drvdata(&fn->dev, f01);
570
571	error = sysfs_create_group(&fn->rmi_dev->dev.kobj, &rmi_f01_attr_group);
572	if (error)
573		dev_warn(&fn->dev, "Failed to create sysfs group: %d\n", error);
574
575	return 0;
576}
577
578static void rmi_f01_remove(struct rmi_function *fn)
579{
580	/* Note that the bus device is used, not the F01 device */
581	sysfs_remove_group(&fn->rmi_dev->dev.kobj, &rmi_f01_attr_group);
582}
583
584static int rmi_f01_config(struct rmi_function *fn)
585{
586	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
587	int error;
588
589	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
590			  f01->device_control.ctrl0);
591	if (error) {
592		dev_err(&fn->dev,
593			"Failed to write device_control register: %d\n", error);
594		return error;
595	}
596
597	if (f01->properties.has_adjustable_doze) {
598		error = rmi_write(fn->rmi_dev, f01->doze_interval_addr,
599				  f01->device_control.doze_interval);
600		if (error) {
601			dev_err(&fn->dev,
602				"Failed to write doze interval: %d\n", error);
603			return error;
604		}
605
606		error = rmi_write_block(fn->rmi_dev,
607					 f01->wakeup_threshold_addr,
608					 &f01->device_control.wakeup_threshold,
609					 sizeof(u8));
610		if (error) {
611			dev_err(&fn->dev,
612				"Failed to write wakeup threshold: %d\n",
613				error);
614			return error;
615		}
616	}
617
618	if (f01->properties.has_adjustable_doze_holdoff) {
619		error = rmi_write(fn->rmi_dev, f01->doze_holdoff_addr,
620				  f01->device_control.doze_holdoff);
621		if (error) {
622			dev_err(&fn->dev,
623				"Failed to write doze holdoff: %d\n", error);
624			return error;
625		}
626	}
627
628	return 0;
629}
630
631static int rmi_f01_suspend(struct rmi_function *fn)
632{
633	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
634	int error;
635
636	f01->old_nosleep =
637		f01->device_control.ctrl0 & RMI_F01_CTRL0_NOSLEEP_BIT;
638	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT;
639
640	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
641	if (device_may_wakeup(fn->rmi_dev->xport->dev))
642		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_RESERVED1;
643	else
644		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_SENSOR_SLEEP;
645
646	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
647			  f01->device_control.ctrl0);
648	if (error) {
649		dev_err(&fn->dev, "Failed to write sleep mode: %d.\n", error);
650		if (f01->old_nosleep)
651			f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
652		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
653		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL;
654		return error;
655	}
656
657	return 0;
658}
659
660static int rmi_f01_resume(struct rmi_function *fn)
661{
662	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
663	int error;
664
665	if (f01->old_nosleep)
666		f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
667
668	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
669	f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL;
670
671	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
672			  f01->device_control.ctrl0);
673	if (error) {
674		dev_err(&fn->dev,
675			"Failed to restore normal operation: %d.\n", error);
676		return error;
677	}
678
679	return 0;
680}
681
682static irqreturn_t rmi_f01_attention(int irq, void *ctx)
683{
684	struct rmi_function *fn = ctx;
685	struct rmi_device *rmi_dev = fn->rmi_dev;
686	int error;
687	u8 device_status;
688
689	error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status);
690	if (error) {
691		dev_err(&fn->dev,
692			"Failed to read device status: %d.\n", error);
693		return IRQ_RETVAL(error);
694	}
695
696	if (RMI_F01_STATUS_BOOTLOADER(device_status))
697		dev_warn(&fn->dev,
698			 "Device in bootloader mode, please update firmware\n");
699
700	if (RMI_F01_STATUS_UNCONFIGURED(device_status)) {
701		dev_warn(&fn->dev, "Device reset detected.\n");
702		error = rmi_dev->driver->reset_handler(rmi_dev);
703		if (error) {
704			dev_err(&fn->dev, "Device reset failed: %d\n", error);
705			return IRQ_RETVAL(error);
706		}
707	}
708
709	return IRQ_HANDLED;
710}
711
712struct rmi_function_handler rmi_f01_handler = {
713	.driver = {
714		.name	= "rmi4_f01",
715		/*
716		 * Do not allow user unbinding F01 as it is critical
717		 * function.
718		 */
719		.suppress_bind_attrs = true,
720	},
721	.func		= 0x01,
722	.probe		= rmi_f01_probe,
723	.remove		= rmi_f01_remove,
724	.config		= rmi_f01_config,
725	.attention	= rmi_f01_attention,
726	.suspend	= rmi_f01_suspend,
727	.resume		= rmi_f01_resume,
728};
729