1/*
2 * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/slab.h>
35#include <rdma/ib_user_verbs.h>
36
37#include "mlx4_ib.h"
38
39static u32 convert_access(int acc)
40{
41	return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC       : 0) |
42	       (acc & IB_ACCESS_REMOTE_WRITE  ? MLX4_PERM_REMOTE_WRITE : 0) |
43	       (acc & IB_ACCESS_REMOTE_READ   ? MLX4_PERM_REMOTE_READ  : 0) |
44	       (acc & IB_ACCESS_LOCAL_WRITE   ? MLX4_PERM_LOCAL_WRITE  : 0) |
45	       (acc & IB_ACCESS_MW_BIND	      ? MLX4_PERM_BIND_MW      : 0) |
46	       MLX4_PERM_LOCAL_READ;
47}
48
49static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
50{
51	switch (type) {
52	case IB_MW_TYPE_1:	return MLX4_MW_TYPE_1;
53	case IB_MW_TYPE_2:	return MLX4_MW_TYPE_2;
54	default:		return -1;
55	}
56}
57
58struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
59{
60	struct mlx4_ib_mr *mr;
61	int err;
62
63	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
64	if (!mr)
65		return ERR_PTR(-ENOMEM);
66
67	err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
68			    ~0ull, convert_access(acc), 0, 0, &mr->mmr);
69	if (err)
70		goto err_free;
71
72	err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
73	if (err)
74		goto err_mr;
75
76	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
77	mr->umem = NULL;
78
79	return &mr->ibmr;
80
81err_mr:
82	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
83
84err_free:
85	kfree(mr);
86
87	return ERR_PTR(err);
88}
89
90enum {
91	MLX4_MAX_MTT_SHIFT = 31
92};
93
94static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
95					struct mlx4_mtt *mtt,
96					u64 mtt_size, u64 mtt_shift, u64 len,
97					u64 cur_start_addr, u64 *pages,
98					int *start_index, int *npages)
99{
100	u64 cur_end_addr = cur_start_addr + len;
101	u64 cur_end_addr_aligned = 0;
102	u64 mtt_entries;
103	int err = 0;
104	int k;
105
106	len += (cur_start_addr & (mtt_size - 1ULL));
107	cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
108	len += (cur_end_addr_aligned - cur_end_addr);
109	if (len & (mtt_size - 1ULL)) {
110		pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
111			len, mtt_size);
112		return -EINVAL;
113	}
114
115	mtt_entries = (len >> mtt_shift);
116
117	/*
118	 * Align the MTT start address to the mtt_size.
119	 * Required to handle cases when the MR starts in the middle of an MTT
120	 * record. Was not required in old code since the physical addresses
121	 * provided by the dma subsystem were page aligned, which was also the
122	 * MTT size.
123	 */
124	cur_start_addr = round_down(cur_start_addr, mtt_size);
125	/* A new block is started ... */
126	for (k = 0; k < mtt_entries; ++k) {
127		pages[*npages] = cur_start_addr + (mtt_size * k);
128		(*npages)++;
129		/*
130		 * Be friendly to mlx4_write_mtt() and pass it chunks of
131		 * appropriate size.
132		 */
133		if (*npages == PAGE_SIZE / sizeof(u64)) {
134			err = mlx4_write_mtt(dev->dev, mtt, *start_index,
135					     *npages, pages);
136			if (err)
137				return err;
138
139			(*start_index) += *npages;
140			*npages = 0;
141		}
142	}
143
144	return 0;
145}
146
147static inline u64 alignment_of(u64 ptr)
148{
149	return ilog2(ptr & (~(ptr - 1)));
150}
151
152static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
153				       u64 current_block_end,
154				       u64 block_shift)
155{
156	/* Check whether the alignment of the new block is aligned as well as
157	 * the previous block.
158	 * Block address must start with zeros till size of entity_size.
159	 */
160	if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
161		/*
162		 * It is not as well aligned as the previous block-reduce the
163		 * mtt size accordingly. Here we take the last right bit which
164		 * is 1.
165		 */
166		block_shift = alignment_of(next_block_start);
167
168	/*
169	 * Check whether the alignment of the end of previous block - is it
170	 * aligned as well as the start of the block
171	 */
172	if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
173		/*
174		 * It is not as well aligned as the start of the block -
175		 * reduce the mtt size accordingly.
176		 */
177		block_shift = alignment_of(current_block_end);
178
179	return block_shift;
180}
181
182int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
183			   struct ib_umem *umem)
184{
185	u64 *pages;
186	u64 len = 0;
187	int err = 0;
188	u64 mtt_size;
189	u64 cur_start_addr = 0;
190	u64 mtt_shift;
191	int start_index = 0;
192	int npages = 0;
193	struct scatterlist *sg;
194	int i;
195
196	pages = (u64 *) __get_free_page(GFP_KERNEL);
197	if (!pages)
198		return -ENOMEM;
199
200	mtt_shift = mtt->page_shift;
201	mtt_size = 1ULL << mtt_shift;
202
203	for_each_sgtable_dma_sg(&umem->sgt_append.sgt, sg, i) {
204		if (cur_start_addr + len == sg_dma_address(sg)) {
205			/* still the same block */
206			len += sg_dma_len(sg);
207			continue;
208		}
209		/*
210		 * A new block is started ...
211		 * If len is malaligned, write an extra mtt entry to cover the
212		 * misaligned area (round up the division)
213		 */
214		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
215						   mtt_shift, len,
216						   cur_start_addr,
217						   pages, &start_index,
218						   &npages);
219		if (err)
220			goto out;
221
222		cur_start_addr = sg_dma_address(sg);
223		len = sg_dma_len(sg);
224	}
225
226	/* Handle the last block */
227	if (len > 0) {
228		/*
229		 * If len is malaligned, write an extra mtt entry to cover
230		 * the misaligned area (round up the division)
231		 */
232		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
233						   mtt_shift, len,
234						   cur_start_addr, pages,
235						   &start_index, &npages);
236		if (err)
237			goto out;
238	}
239
240	if (npages)
241		err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
242
243out:
244	free_page((unsigned long) pages);
245	return err;
246}
247
248/*
249 * Calculate optimal mtt size based on contiguous pages.
250 * Function will return also the number of pages that are not aligned to the
251 * calculated mtt_size to be added to total number of pages. For that we should
252 * check the first chunk length & last chunk length and if not aligned to
253 * mtt_size we should increment the non_aligned_pages number. All chunks in the
254 * middle already handled as part of mtt shift calculation for both their start
255 * & end addresses.
256 */
257int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
258				       int *num_of_mtts)
259{
260	u64 block_shift = MLX4_MAX_MTT_SHIFT;
261	u64 min_shift = PAGE_SHIFT;
262	u64 last_block_aligned_end = 0;
263	u64 current_block_start = 0;
264	u64 first_block_start = 0;
265	u64 current_block_len = 0;
266	u64 last_block_end = 0;
267	struct scatterlist *sg;
268	u64 current_block_end;
269	u64 misalignment_bits;
270	u64 next_block_start;
271	u64 total_len = 0;
272	int i;
273
274	*num_of_mtts = ib_umem_num_dma_blocks(umem, PAGE_SIZE);
275
276	for_each_sgtable_dma_sg(&umem->sgt_append.sgt, sg, i) {
277		/*
278		 * Initialization - save the first chunk start as the
279		 * current_block_start - block means contiguous pages.
280		 */
281		if (current_block_len == 0 && current_block_start == 0) {
282			current_block_start = sg_dma_address(sg);
283			first_block_start = current_block_start;
284			/*
285			 * Find the bits that are different between the physical
286			 * address and the virtual address for the start of the
287			 * MR.
288			 * umem_get aligned the start_va to a page boundary.
289			 * Therefore, we need to align the start va to the same
290			 * boundary.
291			 * misalignment_bits is needed to handle the  case of a
292			 * single memory region. In this case, the rest of the
293			 * logic will not reduce the block size.  If we use a
294			 * block size which is bigger than the alignment of the
295			 * misalignment bits, we might use the virtual page
296			 * number instead of the physical page number, resulting
297			 * in access to the wrong data.
298			 */
299			misalignment_bits =
300				(start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^
301				current_block_start;
302			block_shift = min(alignment_of(misalignment_bits),
303					  block_shift);
304		}
305
306		/*
307		 * Go over the scatter entries and check if they continue the
308		 * previous scatter entry.
309		 */
310		next_block_start = sg_dma_address(sg);
311		current_block_end = current_block_start	+ current_block_len;
312		/* If we have a split (non-contig.) between two blocks */
313		if (current_block_end != next_block_start) {
314			block_shift = mlx4_ib_umem_calc_block_mtt
315					(next_block_start,
316					 current_block_end,
317					 block_shift);
318
319			/*
320			 * If we reached the minimum shift for 4k page we stop
321			 * the loop.
322			 */
323			if (block_shift <= min_shift)
324				goto end;
325
326			/*
327			 * If not saved yet we are in first block - we save the
328			 * length of first block to calculate the
329			 * non_aligned_pages number at the end.
330			 */
331			total_len += current_block_len;
332
333			/* Start a new block */
334			current_block_start = next_block_start;
335			current_block_len = sg_dma_len(sg);
336			continue;
337		}
338		/* The scatter entry is another part of the current block,
339		 * increase the block size.
340		 * An entry in the scatter can be larger than 4k (page) as of
341		 * dma mapping which merge some blocks together.
342		 */
343		current_block_len += sg_dma_len(sg);
344	}
345
346	/* Account for the last block in the total len */
347	total_len += current_block_len;
348	/* Add to the first block the misalignment that it suffers from. */
349	total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
350	last_block_end = current_block_start + current_block_len;
351	last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
352	total_len += (last_block_aligned_end - last_block_end);
353
354	if (total_len & ((1ULL << block_shift) - 1ULL))
355		pr_warn("misaligned total length detected (%llu, %llu)!",
356			total_len, block_shift);
357
358	*num_of_mtts = total_len >> block_shift;
359end:
360	if (block_shift < min_shift) {
361		/*
362		 * If shift is less than the min we set a warning and return the
363		 * min shift.
364		 */
365		pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
366
367		block_shift = min_shift;
368	}
369	return block_shift;
370}
371
372static struct ib_umem *mlx4_get_umem_mr(struct ib_device *device, u64 start,
373					u64 length, int access_flags)
374{
375	/*
376	 * Force registering the memory as writable if the underlying pages
377	 * are writable.  This is so rereg can change the access permissions
378	 * from readable to writable without having to run through ib_umem_get
379	 * again
380	 */
381	if (!ib_access_writable(access_flags)) {
382		unsigned long untagged_start = untagged_addr(start);
383		struct vm_area_struct *vma;
384
385		mmap_read_lock(current->mm);
386		/*
387		 * FIXME: Ideally this would iterate over all the vmas that
388		 * cover the memory, but for now it requires a single vma to
389		 * entirely cover the MR to support RO mappings.
390		 */
391		vma = find_vma(current->mm, untagged_start);
392		if (vma && vma->vm_end >= untagged_start + length &&
393		    vma->vm_start <= untagged_start) {
394			if (vma->vm_flags & VM_WRITE)
395				access_flags |= IB_ACCESS_LOCAL_WRITE;
396		} else {
397			access_flags |= IB_ACCESS_LOCAL_WRITE;
398		}
399
400		mmap_read_unlock(current->mm);
401	}
402
403	return ib_umem_get(device, start, length, access_flags);
404}
405
406struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
407				  u64 virt_addr, int access_flags,
408				  struct ib_udata *udata)
409{
410	struct mlx4_ib_dev *dev = to_mdev(pd->device);
411	struct mlx4_ib_mr *mr;
412	int shift;
413	int err;
414	int n;
415
416	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
417	if (!mr)
418		return ERR_PTR(-ENOMEM);
419
420	mr->umem = mlx4_get_umem_mr(pd->device, start, length, access_flags);
421	if (IS_ERR(mr->umem)) {
422		err = PTR_ERR(mr->umem);
423		goto err_free;
424	}
425
426	shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
427
428	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
429			    convert_access(access_flags), n, shift, &mr->mmr);
430	if (err)
431		goto err_umem;
432
433	err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
434	if (err)
435		goto err_mr;
436
437	err = mlx4_mr_enable(dev->dev, &mr->mmr);
438	if (err)
439		goto err_mr;
440
441	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
442	mr->ibmr.page_size = 1U << shift;
443
444	return &mr->ibmr;
445
446err_mr:
447	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
448
449err_umem:
450	ib_umem_release(mr->umem);
451
452err_free:
453	kfree(mr);
454
455	return ERR_PTR(err);
456}
457
458struct ib_mr *mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, u64 start,
459				    u64 length, u64 virt_addr,
460				    int mr_access_flags, struct ib_pd *pd,
461				    struct ib_udata *udata)
462{
463	struct mlx4_ib_dev *dev = to_mdev(mr->device);
464	struct mlx4_ib_mr *mmr = to_mmr(mr);
465	struct mlx4_mpt_entry *mpt_entry;
466	struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
467	int err;
468
469	/* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
470	 * we assume that the calls can't run concurrently. Otherwise, a
471	 * race exists.
472	 */
473	err =  mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
474	if (err)
475		return ERR_PTR(err);
476
477	if (flags & IB_MR_REREG_PD) {
478		err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
479					   to_mpd(pd)->pdn);
480
481		if (err)
482			goto release_mpt_entry;
483	}
484
485	if (flags & IB_MR_REREG_ACCESS) {
486		if (ib_access_writable(mr_access_flags) &&
487		    !mmr->umem->writable) {
488			err = -EPERM;
489			goto release_mpt_entry;
490		}
491
492		err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
493					       convert_access(mr_access_flags));
494
495		if (err)
496			goto release_mpt_entry;
497	}
498
499	if (flags & IB_MR_REREG_TRANS) {
500		int shift;
501		int n;
502
503		mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
504		ib_umem_release(mmr->umem);
505		mmr->umem = mlx4_get_umem_mr(mr->device, start, length,
506					     mr_access_flags);
507		if (IS_ERR(mmr->umem)) {
508			err = PTR_ERR(mmr->umem);
509			/* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
510			mmr->umem = NULL;
511			goto release_mpt_entry;
512		}
513		n = ib_umem_num_dma_blocks(mmr->umem, PAGE_SIZE);
514		shift = PAGE_SHIFT;
515
516		err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
517					      virt_addr, length, n, shift,
518					      *pmpt_entry);
519		if (err) {
520			ib_umem_release(mmr->umem);
521			goto release_mpt_entry;
522		}
523		mmr->mmr.iova       = virt_addr;
524		mmr->mmr.size       = length;
525
526		err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
527		if (err) {
528			mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
529			ib_umem_release(mmr->umem);
530			goto release_mpt_entry;
531		}
532	}
533
534	/* If we couldn't transfer the MR to the HCA, just remember to
535	 * return a failure. But dereg_mr will free the resources.
536	 */
537	err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
538	if (!err && flags & IB_MR_REREG_ACCESS)
539		mmr->mmr.access = mr_access_flags;
540
541release_mpt_entry:
542	mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
543	if (err)
544		return ERR_PTR(err);
545	return NULL;
546}
547
548static int
549mlx4_alloc_priv_pages(struct ib_device *device,
550		      struct mlx4_ib_mr *mr,
551		      int max_pages)
552{
553	int ret;
554
555	/* Ensure that size is aligned to DMA cacheline
556	 * requirements.
557	 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
558	 * so page_map_size will never cross PAGE_SIZE.
559	 */
560	mr->page_map_size = roundup(max_pages * sizeof(u64),
561				    MLX4_MR_PAGES_ALIGN);
562
563	/* Prevent cross page boundary allocation. */
564	mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
565	if (!mr->pages)
566		return -ENOMEM;
567
568	mr->page_map = dma_map_single(device->dev.parent, mr->pages,
569				      mr->page_map_size, DMA_TO_DEVICE);
570
571	if (dma_mapping_error(device->dev.parent, mr->page_map)) {
572		ret = -ENOMEM;
573		goto err;
574	}
575
576	return 0;
577
578err:
579	free_page((unsigned long)mr->pages);
580	return ret;
581}
582
583static void
584mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
585{
586	if (mr->pages) {
587		struct ib_device *device = mr->ibmr.device;
588
589		dma_unmap_single(device->dev.parent, mr->page_map,
590				 mr->page_map_size, DMA_TO_DEVICE);
591		free_page((unsigned long)mr->pages);
592		mr->pages = NULL;
593	}
594}
595
596int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
597{
598	struct mlx4_ib_mr *mr = to_mmr(ibmr);
599	int ret;
600
601	mlx4_free_priv_pages(mr);
602
603	ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
604	if (ret)
605		return ret;
606	if (mr->umem)
607		ib_umem_release(mr->umem);
608	kfree(mr);
609
610	return 0;
611}
612
613int mlx4_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
614{
615	struct mlx4_ib_dev *dev = to_mdev(ibmw->device);
616	struct mlx4_ib_mw *mw = to_mmw(ibmw);
617	int err;
618
619	err = mlx4_mw_alloc(dev->dev, to_mpd(ibmw->pd)->pdn,
620			    to_mlx4_type(ibmw->type), &mw->mmw);
621	if (err)
622		return err;
623
624	err = mlx4_mw_enable(dev->dev, &mw->mmw);
625	if (err)
626		goto err_mw;
627
628	ibmw->rkey = mw->mmw.key;
629	return 0;
630
631err_mw:
632	mlx4_mw_free(dev->dev, &mw->mmw);
633	return err;
634}
635
636int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
637{
638	struct mlx4_ib_mw *mw = to_mmw(ibmw);
639
640	mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
641	return 0;
642}
643
644struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
645			       u32 max_num_sg)
646{
647	struct mlx4_ib_dev *dev = to_mdev(pd->device);
648	struct mlx4_ib_mr *mr;
649	int err;
650
651	if (mr_type != IB_MR_TYPE_MEM_REG ||
652	    max_num_sg > MLX4_MAX_FAST_REG_PAGES)
653		return ERR_PTR(-EINVAL);
654
655	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
656	if (!mr)
657		return ERR_PTR(-ENOMEM);
658
659	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
660			    max_num_sg, 0, &mr->mmr);
661	if (err)
662		goto err_free;
663
664	err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
665	if (err)
666		goto err_free_mr;
667
668	mr->max_pages = max_num_sg;
669	err = mlx4_mr_enable(dev->dev, &mr->mmr);
670	if (err)
671		goto err_free_pl;
672
673	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
674	mr->umem = NULL;
675
676	return &mr->ibmr;
677
678err_free_pl:
679	mr->ibmr.device = pd->device;
680	mlx4_free_priv_pages(mr);
681err_free_mr:
682	(void) mlx4_mr_free(dev->dev, &mr->mmr);
683err_free:
684	kfree(mr);
685	return ERR_PTR(err);
686}
687
688static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
689{
690	struct mlx4_ib_mr *mr = to_mmr(ibmr);
691
692	if (unlikely(mr->npages == mr->max_pages))
693		return -ENOMEM;
694
695	mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
696
697	return 0;
698}
699
700int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
701		      unsigned int *sg_offset)
702{
703	struct mlx4_ib_mr *mr = to_mmr(ibmr);
704	int rc;
705
706	mr->npages = 0;
707
708	ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
709				   mr->page_map_size, DMA_TO_DEVICE);
710
711	rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
712
713	ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
714				      mr->page_map_size, DMA_TO_DEVICE);
715
716	return rc;
717}
718