1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2/*
3 * Copyright(c) 2020-2023 Cornelis Networks, Inc.
4 * Copyright(c) 2015-2020 Intel Corporation.
5 */
6
7#ifndef _HFI1_KERNEL_H
8#define _HFI1_KERNEL_H
9
10#include <linux/refcount.h>
11#include <linux/interrupt.h>
12#include <linux/pci.h>
13#include <linux/dma-mapping.h>
14#include <linux/mutex.h>
15#include <linux/list.h>
16#include <linux/scatterlist.h>
17#include <linux/slab.h>
18#include <linux/io.h>
19#include <linux/fs.h>
20#include <linux/completion.h>
21#include <linux/kref.h>
22#include <linux/sched.h>
23#include <linux/cdev.h>
24#include <linux/delay.h>
25#include <linux/kthread.h>
26#include <linux/i2c.h>
27#include <linux/i2c-algo-bit.h>
28#include <linux/xarray.h>
29#include <rdma/ib_hdrs.h>
30#include <rdma/opa_addr.h>
31#include <linux/rhashtable.h>
32#include <rdma/rdma_vt.h>
33
34#include "chip_registers.h"
35#include "common.h"
36#include "opfn.h"
37#include "verbs.h"
38#include "pio.h"
39#include "chip.h"
40#include "mad.h"
41#include "qsfp.h"
42#include "platform.h"
43#include "affinity.h"
44#include "msix.h"
45
46/* bumped 1 from s/w major version of TrueScale */
47#define HFI1_CHIP_VERS_MAJ 3U
48
49/* don't care about this except printing */
50#define HFI1_CHIP_VERS_MIN 0U
51
52/* The Organization Unique Identifier (Mfg code), and its position in GUID */
53#define HFI1_OUI 0x001175
54#define HFI1_OUI_LSB 40
55
56#define DROP_PACKET_OFF		0
57#define DROP_PACKET_ON		1
58
59#define NEIGHBOR_TYPE_HFI		0
60#define NEIGHBOR_TYPE_SWITCH	1
61
62#define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
63
64extern unsigned long hfi1_cap_mask;
65#define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
66#define HFI1_CAP_UGET_MASK(mask, cap) \
67	(((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
68#define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
69#define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
70#define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
71#define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
72#define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
73			HFI1_CAP_MISC_MASK)
74/* Offline Disabled Reason is 4-bits */
75#define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
76
77/*
78 * Control context is always 0 and handles the error packets.
79 * It also handles the VL15 and multicast packets.
80 */
81#define HFI1_CTRL_CTXT    0
82
83/*
84 * Driver context will store software counters for each of the events
85 * associated with these status registers
86 */
87#define NUM_CCE_ERR_STATUS_COUNTERS 41
88#define NUM_RCV_ERR_STATUS_COUNTERS 64
89#define NUM_MISC_ERR_STATUS_COUNTERS 13
90#define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
91#define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
92#define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
93#define NUM_SEND_ERR_STATUS_COUNTERS 3
94#define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
95#define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
96
97/*
98 * per driver stats, either not device nor port-specific, or
99 * summed over all of the devices and ports.
100 * They are described by name via ipathfs filesystem, so layout
101 * and number of elements can change without breaking compatibility.
102 * If members are added or deleted hfi1_statnames[] in debugfs.c must
103 * change to match.
104 */
105struct hfi1_ib_stats {
106	__u64 sps_ints; /* number of interrupts handled */
107	__u64 sps_errints; /* number of error interrupts */
108	__u64 sps_txerrs; /* tx-related packet errors */
109	__u64 sps_rcverrs; /* non-crc rcv packet errors */
110	__u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
111	__u64 sps_nopiobufs; /* no pio bufs avail from kernel */
112	__u64 sps_ctxts; /* number of contexts currently open */
113	__u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
114	__u64 sps_buffull;
115	__u64 sps_hdrfull;
116};
117
118extern struct hfi1_ib_stats hfi1_stats;
119extern const struct pci_error_handlers hfi1_pci_err_handler;
120
121extern int num_driver_cntrs;
122
123/*
124 * First-cut criterion for "device is active" is
125 * two thousand dwords combined Tx, Rx traffic per
126 * 5-second interval. SMA packets are 64 dwords,
127 * and occur "a few per second", presumably each way.
128 */
129#define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
130
131/*
132 * Below contains all data related to a single context (formerly called port).
133 */
134
135struct hfi1_opcode_stats_perctx;
136
137struct ctxt_eager_bufs {
138	struct eager_buffer {
139		void *addr;
140		dma_addr_t dma;
141		ssize_t len;
142	} *buffers;
143	struct {
144		void *addr;
145		dma_addr_t dma;
146	} *rcvtids;
147	u32 size;                /* total size of eager buffers */
148	u32 rcvtid_size;         /* size of each eager rcv tid */
149	u16 count;               /* size of buffers array */
150	u16 numbufs;             /* number of buffers allocated */
151	u16 alloced;             /* number of rcvarray entries used */
152	u16 threshold;           /* head update threshold */
153};
154
155struct exp_tid_set {
156	struct list_head list;
157	u32 count;
158};
159
160struct hfi1_ctxtdata;
161typedef int (*intr_handler)(struct hfi1_ctxtdata *rcd, int data);
162typedef void (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
163
164struct tid_queue {
165	struct list_head queue_head;
166			/* queue head for QP TID resource waiters */
167	u32 enqueue;	/* count of tid enqueues */
168	u32 dequeue;	/* count of tid dequeues */
169};
170
171struct hfi1_ctxtdata {
172	/* rcvhdrq base, needs mmap before useful */
173	void *rcvhdrq;
174	/* kernel virtual address where hdrqtail is updated */
175	volatile __le64 *rcvhdrtail_kvaddr;
176	/* so functions that need physical port can get it easily */
177	struct hfi1_pportdata *ppd;
178	/* so file ops can get at unit */
179	struct hfi1_devdata *dd;
180	/* this receive context's assigned PIO ACK send context */
181	struct send_context *sc;
182	/* per context recv functions */
183	const rhf_rcv_function_ptr *rhf_rcv_function_map;
184	/*
185	 * The interrupt handler for a particular receive context can vary
186	 * throughout it's lifetime. This is not a lock protected data member so
187	 * it must be updated atomically and the prev and new value must always
188	 * be valid. Worst case is we process an extra interrupt and up to 64
189	 * packets with the wrong interrupt handler.
190	 */
191	intr_handler do_interrupt;
192	/** fast handler after autoactive */
193	intr_handler fast_handler;
194	/** slow handler */
195	intr_handler slow_handler;
196	/* napi pointer assiociated with netdev */
197	struct napi_struct *napi;
198	/* verbs rx_stats per rcd */
199	struct hfi1_opcode_stats_perctx *opstats;
200	/* clear interrupt mask */
201	u64 imask;
202	/* ctxt rcvhdrq head offset */
203	u32 head;
204	/* number of rcvhdrq entries */
205	u16 rcvhdrq_cnt;
206	u8 ireg;	/* clear interrupt register */
207	/* receive packet sequence counter */
208	u8 seq_cnt;
209	/* size of each of the rcvhdrq entries */
210	u8 rcvhdrqentsize;
211	/* offset of RHF within receive header entry */
212	u8 rhf_offset;
213	/* dynamic receive available interrupt timeout */
214	u8 rcvavail_timeout;
215	/* Indicates that this is vnic context */
216	bool is_vnic;
217	/* vnic queue index this context is mapped to */
218	u8 vnic_q_idx;
219	/* Is ASPM interrupt supported for this context */
220	bool aspm_intr_supported;
221	/* ASPM state (enabled/disabled) for this context */
222	bool aspm_enabled;
223	/* Is ASPM processing enabled for this context (in intr context) */
224	bool aspm_intr_enable;
225	struct ctxt_eager_bufs egrbufs;
226	/* QPs waiting for context processing */
227	struct list_head qp_wait_list;
228	/* tid allocation lists */
229	struct exp_tid_set tid_group_list;
230	struct exp_tid_set tid_used_list;
231	struct exp_tid_set tid_full_list;
232
233	/* Timer for re-enabling ASPM if interrupt activity quiets down */
234	struct timer_list aspm_timer;
235	/* per-context configuration flags */
236	unsigned long flags;
237	/* array of tid_groups */
238	struct tid_group  *groups;
239	/* mmap of hdrq, must fit in 44 bits */
240	dma_addr_t rcvhdrq_dma;
241	dma_addr_t rcvhdrqtailaddr_dma;
242	/* Last interrupt timestamp */
243	ktime_t aspm_ts_last_intr;
244	/* Last timestamp at which we scheduled a timer for this context */
245	ktime_t aspm_ts_timer_sched;
246	/* Lock to serialize between intr, timer intr and user threads */
247	spinlock_t aspm_lock;
248	/* Reference count the base context usage */
249	struct kref kref;
250	/* numa node of this context */
251	int numa_id;
252	/* associated msix interrupt. */
253	s16 msix_intr;
254	/* job key */
255	u16 jkey;
256	/* number of RcvArray groups for this context. */
257	u16 rcv_array_groups;
258	/* index of first eager TID entry. */
259	u16 eager_base;
260	/* number of expected TID entries */
261	u16 expected_count;
262	/* index of first expected TID entry. */
263	u16 expected_base;
264	/* Device context index */
265	u8 ctxt;
266
267	/* PSM Specific fields */
268	/* lock protecting all Expected TID data */
269	struct mutex exp_mutex;
270	/* lock protecting all Expected TID data of kernel contexts */
271	spinlock_t exp_lock;
272	/* Queue for QP's waiting for HW TID flows */
273	struct tid_queue flow_queue;
274	/* Queue for QP's waiting for HW receive array entries */
275	struct tid_queue rarr_queue;
276	/* when waiting for rcv or pioavail */
277	wait_queue_head_t wait;
278	/* uuid from PSM */
279	u8 uuid[16];
280	/* same size as task_struct .comm[], command that opened context */
281	char comm[TASK_COMM_LEN];
282	/* Bitmask of in use context(s) */
283	DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS);
284	/* per-context event flags for fileops/intr communication */
285	unsigned long event_flags;
286	/* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
287	void *subctxt_uregbase;
288	/* An array of pages for the eager receive buffers * N */
289	void *subctxt_rcvegrbuf;
290	/* An array of pages for the eager header queue entries * N */
291	void *subctxt_rcvhdr_base;
292	/* total number of polled urgent packets */
293	u32 urgent;
294	/* saved total number of polled urgent packets for poll edge trigger */
295	u32 urgent_poll;
296	/* Type of packets or conditions we want to poll for */
297	u16 poll_type;
298	/* non-zero if ctxt is being shared. */
299	u16 subctxt_id;
300	/* The version of the library which opened this ctxt */
301	u32 userversion;
302	/*
303	 * non-zero if ctxt can be shared, and defines the maximum number of
304	 * sub-contexts for this device context.
305	 */
306	u8 subctxt_cnt;
307
308	/* Bit mask to track free TID RDMA HW flows */
309	unsigned long flow_mask;
310	struct tid_flow_state flows[RXE_NUM_TID_FLOWS];
311};
312
313/**
314 * rcvhdrq_size - return total size in bytes for header queue
315 * @rcd: the receive context
316 *
317 * rcvhdrqentsize is in DWs, so we have to convert to bytes
318 *
319 */
320static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd)
321{
322	return PAGE_ALIGN(rcd->rcvhdrq_cnt *
323			  rcd->rcvhdrqentsize * sizeof(u32));
324}
325
326/*
327 * Represents a single packet at a high level. Put commonly computed things in
328 * here so we do not have to keep doing them over and over. The rule of thumb is
329 * if something is used one time to derive some value, store that something in
330 * here. If it is used multiple times, then store the result of that derivation
331 * in here.
332 */
333struct hfi1_packet {
334	void *ebuf;
335	void *hdr;
336	void *payload;
337	struct hfi1_ctxtdata *rcd;
338	__le32 *rhf_addr;
339	struct rvt_qp *qp;
340	struct ib_other_headers *ohdr;
341	struct ib_grh *grh;
342	struct opa_16b_mgmt *mgmt;
343	u64 rhf;
344	u32 maxcnt;
345	u32 rhqoff;
346	u32 dlid;
347	u32 slid;
348	int numpkt;
349	u16 tlen;
350	s16 etail;
351	u16 pkey;
352	u8 hlen;
353	u8 rsize;
354	u8 updegr;
355	u8 etype;
356	u8 extra_byte;
357	u8 pad;
358	u8 sc;
359	u8 sl;
360	u8 opcode;
361	bool migrated;
362};
363
364/* Packet types */
365#define HFI1_PKT_TYPE_9B  0
366#define HFI1_PKT_TYPE_16B 1
367
368/*
369 * OPA 16B Header
370 */
371#define OPA_16B_L4_MASK		0xFFull
372#define OPA_16B_SC_MASK		0x1F00000ull
373#define OPA_16B_SC_SHIFT	20
374#define OPA_16B_LID_MASK	0xFFFFFull
375#define OPA_16B_DLID_MASK	0xF000ull
376#define OPA_16B_DLID_SHIFT	20
377#define OPA_16B_DLID_HIGH_SHIFT	12
378#define OPA_16B_SLID_MASK	0xF00ull
379#define OPA_16B_SLID_SHIFT	20
380#define OPA_16B_SLID_HIGH_SHIFT	8
381#define OPA_16B_BECN_MASK       0x80000000ull
382#define OPA_16B_BECN_SHIFT      31
383#define OPA_16B_FECN_MASK       0x10000000ull
384#define OPA_16B_FECN_SHIFT      28
385#define OPA_16B_L2_MASK		0x60000000ull
386#define OPA_16B_L2_SHIFT	29
387#define OPA_16B_PKEY_MASK	0xFFFF0000ull
388#define OPA_16B_PKEY_SHIFT	16
389#define OPA_16B_LEN_MASK	0x7FF00000ull
390#define OPA_16B_LEN_SHIFT	20
391#define OPA_16B_RC_MASK		0xE000000ull
392#define OPA_16B_RC_SHIFT	25
393#define OPA_16B_AGE_MASK	0xFF0000ull
394#define OPA_16B_AGE_SHIFT	16
395#define OPA_16B_ENTROPY_MASK	0xFFFFull
396
397/*
398 * OPA 16B L2/L4 Encodings
399 */
400#define OPA_16B_L4_9B		0x00
401#define OPA_16B_L2_TYPE		0x02
402#define OPA_16B_L4_FM		0x08
403#define OPA_16B_L4_IB_LOCAL	0x09
404#define OPA_16B_L4_IB_GLOBAL	0x0A
405#define OPA_16B_L4_ETHR		OPA_VNIC_L4_ETHR
406
407/*
408 * OPA 16B Management
409 */
410#define OPA_16B_L4_FM_PAD	3  /* fixed 3B pad */
411#define OPA_16B_L4_FM_HLEN	24 /* 16B(16) + L4_FM(8) */
412
413static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr)
414{
415	return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK);
416}
417
418static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr)
419{
420	return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT);
421}
422
423static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr)
424{
425	return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) |
426		     (((hdr->lrh[2] & OPA_16B_DLID_MASK) >>
427		     OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT));
428}
429
430static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr)
431{
432	return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) |
433		     (((hdr->lrh[2] & OPA_16B_SLID_MASK) >>
434		     OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT));
435}
436
437static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr)
438{
439	return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT);
440}
441
442static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr)
443{
444	return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT);
445}
446
447static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr)
448{
449	return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT);
450}
451
452static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr)
453{
454	return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT);
455}
456
457static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr)
458{
459	return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT);
460}
461
462static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr)
463{
464	return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT);
465}
466
467static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr)
468{
469	return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT);
470}
471
472static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr)
473{
474	return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK);
475}
476
477#define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw))
478
479/*
480 * BTH
481 */
482#define OPA_16B_BTH_PAD_MASK	7
483static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr)
484{
485	return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) &
486		   OPA_16B_BTH_PAD_MASK);
487}
488
489/*
490 * 16B Management
491 */
492#define OPA_16B_MGMT_QPN_MASK	0xFFFFFF
493static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt)
494{
495	return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK;
496}
497
498static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt)
499{
500	return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK;
501}
502
503static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt,
504				    u32 dest_qp, u32 src_qp)
505{
506	mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK);
507	mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK);
508}
509
510/**
511 * hfi1_get_rc_ohdr - get extended header
512 * @opah - the opaheader
513 */
514static inline struct ib_other_headers *
515hfi1_get_rc_ohdr(struct hfi1_opa_header *opah)
516{
517	struct ib_other_headers *ohdr;
518	struct ib_header *hdr = NULL;
519	struct hfi1_16b_header *hdr_16b = NULL;
520
521	/* Find out where the BTH is */
522	if (opah->hdr_type == HFI1_PKT_TYPE_9B) {
523		hdr = &opah->ibh;
524		if (ib_get_lnh(hdr) == HFI1_LRH_BTH)
525			ohdr = &hdr->u.oth;
526		else
527			ohdr = &hdr->u.l.oth;
528	} else {
529		u8 l4;
530
531		hdr_16b = &opah->opah;
532		l4  = hfi1_16B_get_l4(hdr_16b);
533		if (l4 == OPA_16B_L4_IB_LOCAL)
534			ohdr = &hdr_16b->u.oth;
535		else
536			ohdr = &hdr_16b->u.l.oth;
537	}
538	return ohdr;
539}
540
541struct rvt_sge_state;
542
543/*
544 * Get/Set IB link-level config parameters for f_get/set_ib_cfg()
545 * Mostly for MADs that set or query link parameters, also ipath
546 * config interfaces
547 */
548#define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
549#define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
550#define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
551#define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
552#define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
553#define HFI1_IB_CFG_SPD 5 /* current Link spd */
554#define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
555#define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
556#define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
557#define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
558#define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
559#define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
560#define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
561#define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
562#define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
563#define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
564#define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
565#define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
566#define HFI1_IB_CFG_VL_HIGH_LIMIT 19
567#define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
568#define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
569
570/*
571 * HFI or Host Link States
572 *
573 * These describe the states the driver thinks the logical and physical
574 * states are in.  Used as an argument to set_link_state().  Implemented
575 * as bits for easy multi-state checking.  The actual state can only be
576 * one.
577 */
578#define __HLS_UP_INIT_BP	0
579#define __HLS_UP_ARMED_BP	1
580#define __HLS_UP_ACTIVE_BP	2
581#define __HLS_DN_DOWNDEF_BP	3	/* link down default */
582#define __HLS_DN_POLL_BP	4
583#define __HLS_DN_DISABLE_BP	5
584#define __HLS_DN_OFFLINE_BP	6
585#define __HLS_VERIFY_CAP_BP	7
586#define __HLS_GOING_UP_BP	8
587#define __HLS_GOING_OFFLINE_BP  9
588#define __HLS_LINK_COOLDOWN_BP 10
589
590#define HLS_UP_INIT	  BIT(__HLS_UP_INIT_BP)
591#define HLS_UP_ARMED	  BIT(__HLS_UP_ARMED_BP)
592#define HLS_UP_ACTIVE	  BIT(__HLS_UP_ACTIVE_BP)
593#define HLS_DN_DOWNDEF	  BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
594#define HLS_DN_POLL	  BIT(__HLS_DN_POLL_BP)
595#define HLS_DN_DISABLE	  BIT(__HLS_DN_DISABLE_BP)
596#define HLS_DN_OFFLINE	  BIT(__HLS_DN_OFFLINE_BP)
597#define HLS_VERIFY_CAP	  BIT(__HLS_VERIFY_CAP_BP)
598#define HLS_GOING_UP	  BIT(__HLS_GOING_UP_BP)
599#define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
600#define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
601
602#define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
603#define HLS_DOWN ~(HLS_UP)
604
605#define HLS_DEFAULT HLS_DN_POLL
606
607/* use this MTU size if none other is given */
608#define HFI1_DEFAULT_ACTIVE_MTU 10240
609/* use this MTU size as the default maximum */
610#define HFI1_DEFAULT_MAX_MTU 10240
611/* default partition key */
612#define DEFAULT_PKEY 0xffff
613
614/*
615 * Possible fabric manager config parameters for fm_{get,set}_table()
616 */
617#define FM_TBL_VL_HIGH_ARB		1 /* Get/set VL high prio weights */
618#define FM_TBL_VL_LOW_ARB		2 /* Get/set VL low prio weights */
619#define FM_TBL_BUFFER_CONTROL		3 /* Get/set Buffer Control */
620#define FM_TBL_SC2VLNT			4 /* Get/set SC->VLnt */
621#define FM_TBL_VL_PREEMPT_ELEMS		5 /* Get (no set) VL preempt elems */
622#define FM_TBL_VL_PREEMPT_MATRIX	6 /* Get (no set) VL preempt matrix */
623
624/*
625 * Possible "operations" for f_rcvctrl(ppd, op, ctxt)
626 * these are bits so they can be combined, e.g.
627 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
628 */
629#define HFI1_RCVCTRL_TAILUPD_ENB 0x01
630#define HFI1_RCVCTRL_TAILUPD_DIS 0x02
631#define HFI1_RCVCTRL_CTXT_ENB 0x04
632#define HFI1_RCVCTRL_CTXT_DIS 0x08
633#define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
634#define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
635#define HFI1_RCVCTRL_PKEY_ENB 0x40  /* Note, default is enabled */
636#define HFI1_RCVCTRL_PKEY_DIS 0x80
637#define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
638#define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
639#define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
640#define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
641#define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
642#define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
643#define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
644#define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
645#define HFI1_RCVCTRL_URGENT_ENB 0x40000
646#define HFI1_RCVCTRL_URGENT_DIS 0x80000
647
648/* partition enforcement flags */
649#define HFI1_PART_ENFORCE_IN	0x1
650#define HFI1_PART_ENFORCE_OUT	0x2
651
652/* how often we check for synthetic counter wrap around */
653#define SYNTH_CNT_TIME 3
654
655/* Counter flags */
656#define CNTR_NORMAL		0x0 /* Normal counters, just read register */
657#define CNTR_SYNTH		0x1 /* Synthetic counters, saturate at all 1s */
658#define CNTR_DISABLED		0x2 /* Disable this counter */
659#define CNTR_32BIT		0x4 /* Simulate 64 bits for this counter */
660#define CNTR_VL			0x8 /* Per VL counter */
661#define CNTR_SDMA              0x10
662#define CNTR_INVALID_VL		-1  /* Specifies invalid VL */
663#define CNTR_MODE_W		0x0
664#define CNTR_MODE_R		0x1
665
666/* VLs Supported/Operational */
667#define HFI1_MIN_VLS_SUPPORTED 1
668#define HFI1_MAX_VLS_SUPPORTED 8
669
670#define HFI1_GUIDS_PER_PORT  5
671#define HFI1_PORT_GUID_INDEX 0
672
673static inline void incr_cntr64(u64 *cntr)
674{
675	if (*cntr < (u64)-1LL)
676		(*cntr)++;
677}
678
679#define MAX_NAME_SIZE 64
680struct hfi1_msix_entry {
681	enum irq_type type;
682	int irq;
683	void *arg;
684	cpumask_t mask;
685	struct irq_affinity_notify notify;
686};
687
688struct hfi1_msix_info {
689	/* lock to synchronize in_use_msix access */
690	spinlock_t msix_lock;
691	DECLARE_BITMAP(in_use_msix, CCE_NUM_MSIX_VECTORS);
692	struct hfi1_msix_entry *msix_entries;
693	u16 max_requested;
694};
695
696/* per-SL CCA information */
697struct cca_timer {
698	struct hrtimer hrtimer;
699	struct hfi1_pportdata *ppd; /* read-only */
700	int sl; /* read-only */
701	u16 ccti; /* read/write - current value of CCTI */
702};
703
704struct link_down_reason {
705	/*
706	 * SMA-facing value.  Should be set from .latest when
707	 * HLS_UP_* -> HLS_DN_* transition actually occurs.
708	 */
709	u8 sma;
710	u8 latest;
711};
712
713enum {
714	LO_PRIO_TABLE,
715	HI_PRIO_TABLE,
716	MAX_PRIO_TABLE
717};
718
719struct vl_arb_cache {
720	/* protect vl arb cache */
721	spinlock_t lock;
722	struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
723};
724
725/*
726 * The structure below encapsulates data relevant to a physical IB Port.
727 * Current chips support only one such port, but the separation
728 * clarifies things a bit. Note that to conform to IB conventions,
729 * port-numbers are one-based. The first or only port is port1.
730 */
731struct hfi1_pportdata {
732	struct hfi1_ibport ibport_data;
733
734	struct hfi1_devdata *dd;
735
736	/* PHY support */
737	struct qsfp_data qsfp_info;
738	/* Values for SI tuning of SerDes */
739	u32 port_type;
740	u32 tx_preset_eq;
741	u32 tx_preset_noeq;
742	u32 rx_preset;
743	u8  local_atten;
744	u8  remote_atten;
745	u8  default_atten;
746	u8  max_power_class;
747
748	/* did we read platform config from scratch registers? */
749	bool config_from_scratch;
750
751	/* GUIDs for this interface, in host order, guids[0] is a port guid */
752	u64 guids[HFI1_GUIDS_PER_PORT];
753
754	/* GUID for peer interface, in host order */
755	u64 neighbor_guid;
756
757	/* up or down physical link state */
758	u32 linkup;
759
760	/*
761	 * this address is mapped read-only into user processes so they can
762	 * get status cheaply, whenever they want.  One qword of status per port
763	 */
764	u64 *statusp;
765
766	/* SendDMA related entries */
767
768	struct workqueue_struct *hfi1_wq;
769	struct workqueue_struct *link_wq;
770
771	/* move out of interrupt context */
772	struct work_struct link_vc_work;
773	struct work_struct link_up_work;
774	struct work_struct link_down_work;
775	struct work_struct sma_message_work;
776	struct work_struct freeze_work;
777	struct work_struct link_downgrade_work;
778	struct work_struct link_bounce_work;
779	struct delayed_work start_link_work;
780	/* host link state variables */
781	struct mutex hls_lock;
782	u32 host_link_state;
783
784	/* these are the "32 bit" regs */
785
786	u32 ibmtu; /* The MTU programmed for this unit */
787	/*
788	 * Current max size IB packet (in bytes) including IB headers, that
789	 * we can send. Changes when ibmtu changes.
790	 */
791	u32 ibmaxlen;
792	u32 current_egress_rate; /* units [10^6 bits/sec] */
793	/* LID programmed for this instance */
794	u32 lid;
795	/* list of pkeys programmed; 0 if not set */
796	u16 pkeys[MAX_PKEY_VALUES];
797	u16 link_width_supported;
798	u16 link_width_downgrade_supported;
799	u16 link_speed_supported;
800	u16 link_width_enabled;
801	u16 link_width_downgrade_enabled;
802	u16 link_speed_enabled;
803	u16 link_width_active;
804	u16 link_width_downgrade_tx_active;
805	u16 link_width_downgrade_rx_active;
806	u16 link_speed_active;
807	u8 vls_supported;
808	u8 vls_operational;
809	u8 actual_vls_operational;
810	/* LID mask control */
811	u8 lmc;
812	/* Rx Polarity inversion (compensate for ~tx on partner) */
813	u8 rx_pol_inv;
814
815	u8 hw_pidx;     /* physical port index */
816	u32 port;        /* IB port number and index into dd->pports - 1 */
817	/* type of neighbor node */
818	u8 neighbor_type;
819	u8 neighbor_normal;
820	u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
821	u8 neighbor_port_number;
822	u8 is_sm_config_started;
823	u8 offline_disabled_reason;
824	u8 is_active_optimize_enabled;
825	u8 driver_link_ready;	/* driver ready for active link */
826	u8 link_enabled;	/* link enabled? */
827	u8 linkinit_reason;
828	u8 local_tx_rate;	/* rate given to 8051 firmware */
829	u8 qsfp_retry_count;
830
831	/* placeholders for IB MAD packet settings */
832	u8 overrun_threshold;
833	u8 phy_error_threshold;
834	unsigned int is_link_down_queued;
835
836	/* Used to override LED behavior for things like maintenance beaconing*/
837	/*
838	 * Alternates per phase of blink
839	 * [0] holds LED off duration, [1] holds LED on duration
840	 */
841	unsigned long led_override_vals[2];
842	u8 led_override_phase; /* LSB picks from vals[] */
843	atomic_t led_override_timer_active;
844	/* Used to flash LEDs in override mode */
845	struct timer_list led_override_timer;
846
847	u32 sm_trap_qp;
848	u32 sa_qp;
849
850	/*
851	 * cca_timer_lock protects access to the per-SL cca_timer
852	 * structures (specifically the ccti member).
853	 */
854	spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
855	struct cca_timer cca_timer[OPA_MAX_SLS];
856
857	/* List of congestion control table entries */
858	struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
859
860	/* congestion entries, each entry corresponding to a SL */
861	struct opa_congestion_setting_entry_shadow
862		congestion_entries[OPA_MAX_SLS];
863
864	/*
865	 * cc_state_lock protects (write) access to the per-port
866	 * struct cc_state.
867	 */
868	spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
869
870	struct cc_state __rcu *cc_state;
871
872	/* Total number of congestion control table entries */
873	u16 total_cct_entry;
874
875	/* Bit map identifying service level */
876	u32 cc_sl_control_map;
877
878	/* CA's max number of 64 entry units in the congestion control table */
879	u8 cc_max_table_entries;
880
881	/*
882	 * begin congestion log related entries
883	 * cc_log_lock protects all congestion log related data
884	 */
885	spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
886	u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
887	u16 threshold_event_counter;
888	struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
889	int cc_log_idx; /* index for logging events */
890	int cc_mad_idx; /* index for reporting events */
891	/* end congestion log related entries */
892
893	struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
894
895	/* port relative counter buffer */
896	u64 *cntrs;
897	/* port relative synthetic counter buffer */
898	u64 *scntrs;
899	/* port_xmit_discards are synthesized from different egress errors */
900	u64 port_xmit_discards;
901	u64 port_xmit_discards_vl[C_VL_COUNT];
902	u64 port_xmit_constraint_errors;
903	u64 port_rcv_constraint_errors;
904	/* count of 'link_err' interrupts from DC */
905	u64 link_downed;
906	/* number of times link retrained successfully */
907	u64 link_up;
908	/* number of times a link unknown frame was reported */
909	u64 unknown_frame_count;
910	/* port_ltp_crc_mode is returned in 'portinfo' MADs */
911	u16 port_ltp_crc_mode;
912	/* port_crc_mode_enabled is the crc we support */
913	u8 port_crc_mode_enabled;
914	/* mgmt_allowed is also returned in 'portinfo' MADs */
915	u8 mgmt_allowed;
916	u8 part_enforce; /* partition enforcement flags */
917	struct link_down_reason local_link_down_reason;
918	struct link_down_reason neigh_link_down_reason;
919	/* Value to be sent to link peer on LinkDown .*/
920	u8 remote_link_down_reason;
921	/* Error events that will cause a port bounce. */
922	u32 port_error_action;
923	struct work_struct linkstate_active_work;
924	/* Does this port need to prescan for FECNs */
925	bool cc_prescan;
926	/*
927	 * Sample sendWaitCnt & sendWaitVlCnt during link transition
928	 * and counter request.
929	 */
930	u64 port_vl_xmit_wait_last[C_VL_COUNT + 1];
931	u16 prev_link_width;
932	u64 vl_xmit_flit_cnt[C_VL_COUNT + 1];
933};
934
935typedef void (*opcode_handler)(struct hfi1_packet *packet);
936typedef void (*hfi1_make_req)(struct rvt_qp *qp,
937			      struct hfi1_pkt_state *ps,
938			      struct rvt_swqe *wqe);
939extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[];
940extern const rhf_rcv_function_ptr netdev_rhf_rcv_functions[];
941
942/* return values for the RHF receive functions */
943#define RHF_RCV_CONTINUE  0	/* keep going */
944#define RHF_RCV_DONE	  1	/* stop, this packet processed */
945#define RHF_RCV_REPROCESS 2	/* stop. retain this packet */
946
947struct rcv_array_data {
948	u16 ngroups;
949	u16 nctxt_extra;
950	u8 group_size;
951};
952
953struct per_vl_data {
954	u16 mtu;
955	struct send_context *sc;
956};
957
958/* 16 to directly index */
959#define PER_VL_SEND_CONTEXTS 16
960
961struct err_info_rcvport {
962	u8 status_and_code;
963	u64 packet_flit1;
964	u64 packet_flit2;
965};
966
967struct err_info_constraint {
968	u8 status;
969	u16 pkey;
970	u32 slid;
971};
972
973struct hfi1_temp {
974	unsigned int curr;       /* current temperature */
975	unsigned int lo_lim;     /* low temperature limit */
976	unsigned int hi_lim;     /* high temperature limit */
977	unsigned int crit_lim;   /* critical temperature limit */
978	u8 triggers;      /* temperature triggers */
979};
980
981struct hfi1_i2c_bus {
982	struct hfi1_devdata *controlling_dd; /* current controlling device */
983	struct i2c_adapter adapter;	/* bus details */
984	struct i2c_algo_bit_data algo;	/* bus algorithm details */
985	int num;			/* bus number, 0 or 1 */
986};
987
988/* common data between shared ASIC HFIs */
989struct hfi1_asic_data {
990	struct hfi1_devdata *dds[2];	/* back pointers */
991	struct mutex asic_resource_mutex;
992	struct hfi1_i2c_bus *i2c_bus0;
993	struct hfi1_i2c_bus *i2c_bus1;
994};
995
996/* sizes for both the QP and RSM map tables */
997#define NUM_MAP_ENTRIES	 256
998#define NUM_MAP_REGS      32
999
1000/* Virtual NIC information */
1001struct hfi1_vnic_data {
1002	struct kmem_cache *txreq_cache;
1003	u8 num_vports;
1004};
1005
1006struct hfi1_vnic_vport_info;
1007
1008/* device data struct now contains only "general per-device" info.
1009 * fields related to a physical IB port are in a hfi1_pportdata struct.
1010 */
1011struct sdma_engine;
1012struct sdma_vl_map;
1013
1014#define BOARD_VERS_MAX 96 /* how long the version string can be */
1015#define SERIAL_MAX 16 /* length of the serial number */
1016
1017typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
1018struct hfi1_netdev_rx;
1019struct hfi1_devdata {
1020	struct hfi1_ibdev verbs_dev;     /* must be first */
1021	/* pointers to related structs for this device */
1022	/* pci access data structure */
1023	struct pci_dev *pcidev;
1024	struct cdev user_cdev;
1025	struct cdev diag_cdev;
1026	struct cdev ui_cdev;
1027	struct device *user_device;
1028	struct device *diag_device;
1029	struct device *ui_device;
1030
1031	/* first mapping up to RcvArray */
1032	u8 __iomem *kregbase1;
1033	resource_size_t physaddr;
1034
1035	/* second uncached mapping from RcvArray to pio send buffers */
1036	u8 __iomem *kregbase2;
1037	/* for detecting offset above kregbase2 address */
1038	u32 base2_start;
1039
1040	/* Per VL data. Enough for all VLs but not all elements are set/used. */
1041	struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
1042	/* send context data */
1043	struct send_context_info *send_contexts;
1044	/* map hardware send contexts to software index */
1045	u8 *hw_to_sw;
1046	/* spinlock for allocating and releasing send context resources */
1047	spinlock_t sc_lock;
1048	/* lock for pio_map */
1049	spinlock_t pio_map_lock;
1050	/* Send Context initialization lock. */
1051	spinlock_t sc_init_lock;
1052	/* lock for sdma_map */
1053	spinlock_t                          sde_map_lock;
1054	/* array of kernel send contexts */
1055	struct send_context **kernel_send_context;
1056	/* array of vl maps */
1057	struct pio_vl_map __rcu *pio_map;
1058	/* default flags to last descriptor */
1059	u64 default_desc1;
1060
1061	/* fields common to all SDMA engines */
1062
1063	volatile __le64                    *sdma_heads_dma; /* DMA'ed by chip */
1064	dma_addr_t                          sdma_heads_phys;
1065	void                               *sdma_pad_dma; /* DMA'ed by chip */
1066	dma_addr_t                          sdma_pad_phys;
1067	/* for deallocation */
1068	size_t                              sdma_heads_size;
1069	/* num used */
1070	u32                                 num_sdma;
1071	/* array of engines sized by num_sdma */
1072	struct sdma_engine                 *per_sdma;
1073	/* array of vl maps */
1074	struct sdma_vl_map __rcu           *sdma_map;
1075	/* SPC freeze waitqueue and variable */
1076	wait_queue_head_t		  sdma_unfreeze_wq;
1077	atomic_t			  sdma_unfreeze_count;
1078
1079	u32 lcb_access_count;		/* count of LCB users */
1080
1081	/* common data between shared ASIC HFIs in this OS */
1082	struct hfi1_asic_data *asic_data;
1083
1084	/* mem-mapped pointer to base of PIO buffers */
1085	void __iomem *piobase;
1086	/*
1087	 * write-combining mem-mapped pointer to base of RcvArray
1088	 * memory.
1089	 */
1090	void __iomem *rcvarray_wc;
1091	/*
1092	 * credit return base - a per-NUMA range of DMA address that
1093	 * the chip will use to update the per-context free counter
1094	 */
1095	struct credit_return_base *cr_base;
1096
1097	/* send context numbers and sizes for each type */
1098	struct sc_config_sizes sc_sizes[SC_MAX];
1099
1100	char *boardname; /* human readable board info */
1101
1102	u64 ctx0_seq_drop;
1103
1104	/* reset value */
1105	u64 z_int_counter;
1106	u64 z_rcv_limit;
1107	u64 z_send_schedule;
1108
1109	u64 __percpu *send_schedule;
1110	/* number of reserved contexts for netdev usage */
1111	u16 num_netdev_contexts;
1112	/* number of receive contexts in use by the driver */
1113	u32 num_rcv_contexts;
1114	/* number of pio send contexts in use by the driver */
1115	u32 num_send_contexts;
1116	/*
1117	 * number of ctxts available for PSM open
1118	 */
1119	u32 freectxts;
1120	/* total number of available user/PSM contexts */
1121	u32 num_user_contexts;
1122	/* base receive interrupt timeout, in CSR units */
1123	u32 rcv_intr_timeout_csr;
1124
1125	spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
1126	spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
1127	spinlock_t uctxt_lock; /* protect rcd changes */
1128	struct mutex dc8051_lock; /* exclusive access to 8051 */
1129	struct workqueue_struct *update_cntr_wq;
1130	struct work_struct update_cntr_work;
1131	/* exclusive access to 8051 memory */
1132	spinlock_t dc8051_memlock;
1133	int dc8051_timed_out;	/* remember if the 8051 timed out */
1134	/*
1135	 * A page that will hold event notification bitmaps for all
1136	 * contexts. This page will be mapped into all processes.
1137	 */
1138	unsigned long *events;
1139	/*
1140	 * per unit status, see also portdata statusp
1141	 * mapped read-only into user processes so they can get unit and
1142	 * IB link status cheaply
1143	 */
1144	struct hfi1_status *status;
1145
1146	/* revision register shadow */
1147	u64 revision;
1148	/* Base GUID for device (network order) */
1149	u64 base_guid;
1150
1151	/* both sides of the PCIe link are gen3 capable */
1152	u8 link_gen3_capable;
1153	u8 dc_shutdown;
1154	/* localbus width (1, 2,4,8,16,32) from config space  */
1155	u32 lbus_width;
1156	/* localbus speed in MHz */
1157	u32 lbus_speed;
1158	int unit; /* unit # of this chip */
1159	int node; /* home node of this chip */
1160
1161	/* save these PCI fields to restore after a reset */
1162	u32 pcibar0;
1163	u32 pcibar1;
1164	u32 pci_rom;
1165	u16 pci_command;
1166	u16 pcie_devctl;
1167	u16 pcie_lnkctl;
1168	u16 pcie_devctl2;
1169	u32 pci_msix0;
1170	u32 pci_tph2;
1171
1172	/*
1173	 * ASCII serial number, from flash, large enough for original
1174	 * all digit strings, and longer serial number format
1175	 */
1176	u8 serial[SERIAL_MAX];
1177	/* human readable board version */
1178	u8 boardversion[BOARD_VERS_MAX];
1179	u8 lbus_info[32]; /* human readable localbus info */
1180	/* chip major rev, from CceRevision */
1181	u8 majrev;
1182	/* chip minor rev, from CceRevision */
1183	u8 minrev;
1184	/* hardware ID */
1185	u8 hfi1_id;
1186	/* implementation code */
1187	u8 icode;
1188	/* vAU of this device */
1189	u8 vau;
1190	/* vCU of this device */
1191	u8 vcu;
1192	/* link credits of this device */
1193	u16 link_credits;
1194	/* initial vl15 credits to use */
1195	u16 vl15_init;
1196
1197	/*
1198	 * Cached value for vl15buf, read during verify cap interrupt. VL15
1199	 * credits are to be kept at 0 and set when handling the link-up
1200	 * interrupt. This removes the possibility of receiving VL15 MAD
1201	 * packets before this HFI is ready.
1202	 */
1203	u16 vl15buf_cached;
1204
1205	/* Misc small ints */
1206	u8 n_krcv_queues;
1207	u8 qos_shift;
1208
1209	u16 irev;	/* implementation revision */
1210	u32 dc8051_ver; /* 8051 firmware version */
1211
1212	spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
1213	struct platform_config platform_config;
1214	struct platform_config_cache pcfg_cache;
1215
1216	struct diag_client *diag_client;
1217
1218	/* general interrupt: mask of handled interrupts */
1219	u64 gi_mask[CCE_NUM_INT_CSRS];
1220
1221	struct rcv_array_data rcv_entries;
1222
1223	/* cycle length of PS* counters in HW (in picoseconds) */
1224	u16 psxmitwait_check_rate;
1225
1226	/*
1227	 * 64 bit synthetic counters
1228	 */
1229	struct timer_list synth_stats_timer;
1230
1231	/* MSI-X information */
1232	struct hfi1_msix_info msix_info;
1233
1234	/*
1235	 * device counters
1236	 */
1237	char *cntrnames;
1238	size_t cntrnameslen;
1239	size_t ndevcntrs;
1240	u64 *cntrs;
1241	u64 *scntrs;
1242
1243	/*
1244	 * remembered values for synthetic counters
1245	 */
1246	u64 last_tx;
1247	u64 last_rx;
1248
1249	/*
1250	 * per-port counters
1251	 */
1252	size_t nportcntrs;
1253	char *portcntrnames;
1254	size_t portcntrnameslen;
1255
1256	struct err_info_rcvport err_info_rcvport;
1257	struct err_info_constraint err_info_rcv_constraint;
1258	struct err_info_constraint err_info_xmit_constraint;
1259
1260	atomic_t drop_packet;
1261	bool do_drop;
1262	u8 err_info_uncorrectable;
1263	u8 err_info_fmconfig;
1264
1265	/*
1266	 * Software counters for the status bits defined by the
1267	 * associated error status registers
1268	 */
1269	u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
1270	u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
1271	u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
1272	u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
1273	u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
1274	u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
1275	u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
1276
1277	/* Software counter that spans all contexts */
1278	u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
1279	/* Software counter that spans all DMA engines */
1280	u64 sw_send_dma_eng_err_status_cnt[
1281		NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
1282	/* Software counter that aggregates all cce_err_status errors */
1283	u64 sw_cce_err_status_aggregate;
1284	/* Software counter that aggregates all bypass packet rcv errors */
1285	u64 sw_rcv_bypass_packet_errors;
1286
1287	/* Save the enabled LCB error bits */
1288	u64 lcb_err_en;
1289	struct cpu_mask_set *comp_vect;
1290	int *comp_vect_mappings;
1291	u32 comp_vect_possible_cpus;
1292
1293	/*
1294	 * Capability to have different send engines simply by changing a
1295	 * pointer value.
1296	 */
1297	send_routine process_pio_send ____cacheline_aligned_in_smp;
1298	send_routine process_dma_send;
1299	void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
1300				u64 pbc, const void *from, size_t count);
1301	int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx,
1302				     struct hfi1_vnic_vport_info *vinfo,
1303				     struct sk_buff *skb, u64 pbc, u8 plen);
1304	/* hfi1_pportdata, points to array of (physical) port-specific
1305	 * data structs, indexed by pidx (0..n-1)
1306	 */
1307	struct hfi1_pportdata *pport;
1308	/* receive context data */
1309	struct hfi1_ctxtdata **rcd;
1310	u64 __percpu *int_counter;
1311	/* verbs tx opcode stats */
1312	struct hfi1_opcode_stats_perctx __percpu *tx_opstats;
1313	/* device (not port) flags, basically device capabilities */
1314	u16 flags;
1315	/* Number of physical ports available */
1316	u8 num_pports;
1317	/* Lowest context number which can be used by user processes or VNIC */
1318	u8 first_dyn_alloc_ctxt;
1319	/* adding a new field here would make it part of this cacheline */
1320
1321	/* seqlock for sc2vl */
1322	seqlock_t sc2vl_lock ____cacheline_aligned_in_smp;
1323	u64 sc2vl[4];
1324	u64 __percpu *rcv_limit;
1325	/* adding a new field here would make it part of this cacheline */
1326
1327	/* OUI comes from the HW. Used everywhere as 3 separate bytes. */
1328	u8 oui1;
1329	u8 oui2;
1330	u8 oui3;
1331
1332	/* Timer and counter used to detect RcvBufOvflCnt changes */
1333	struct timer_list rcverr_timer;
1334
1335	wait_queue_head_t event_queue;
1336
1337	/* receive context tail dummy address */
1338	__le64 *rcvhdrtail_dummy_kvaddr;
1339	dma_addr_t rcvhdrtail_dummy_dma;
1340
1341	u32 rcv_ovfl_cnt;
1342	/* Serialize ASPM enable/disable between multiple verbs contexts */
1343	spinlock_t aspm_lock;
1344	/* Number of verbs contexts which have disabled ASPM */
1345	atomic_t aspm_disabled_cnt;
1346	/* Keeps track of user space clients */
1347	refcount_t user_refcount;
1348	/* Used to wait for outstanding user space clients before dev removal */
1349	struct completion user_comp;
1350
1351	bool eprom_available;	/* true if EPROM is available for this device */
1352	bool aspm_supported;	/* Does HW support ASPM */
1353	bool aspm_enabled;	/* ASPM state: enabled/disabled */
1354	struct rhashtable *sdma_rht;
1355
1356	/* vnic data */
1357	struct hfi1_vnic_data vnic;
1358	/* Lock to protect IRQ SRC register access */
1359	spinlock_t irq_src_lock;
1360	int vnic_num_vports;
1361	struct hfi1_netdev_rx *netdev_rx;
1362	struct hfi1_affinity_node *affinity_entry;
1363
1364	/* Keeps track of IPoIB RSM rule users */
1365	atomic_t ipoib_rsm_usr_num;
1366};
1367
1368/* 8051 firmware version helper */
1369#define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c))
1370#define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16)
1371#define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8)
1372#define dc8051_ver_patch(a) ((a) & 0x0000ff)
1373
1374/* f_put_tid types */
1375#define PT_EXPECTED       0
1376#define PT_EAGER          1
1377#define PT_INVALID_FLUSH  2
1378#define PT_INVALID        3
1379
1380struct tid_rb_node;
1381
1382/* Private data for file operations */
1383struct hfi1_filedata {
1384	struct srcu_struct pq_srcu;
1385	struct hfi1_devdata *dd;
1386	struct hfi1_ctxtdata *uctxt;
1387	struct hfi1_user_sdma_comp_q *cq;
1388	/* update side lock for SRCU */
1389	spinlock_t pq_rcu_lock;
1390	struct hfi1_user_sdma_pkt_q __rcu *pq;
1391	u16 subctxt;
1392	/* for cpu affinity; -1 if none */
1393	int rec_cpu_num;
1394	u32 tid_n_pinned;
1395	bool use_mn;
1396	struct tid_rb_node **entry_to_rb;
1397	spinlock_t tid_lock; /* protect tid_[limit,used] counters */
1398	u32 tid_limit;
1399	u32 tid_used;
1400	u32 *invalid_tids;
1401	u32 invalid_tid_idx;
1402	/* protect invalid_tids array and invalid_tid_idx */
1403	spinlock_t invalid_lock;
1404};
1405
1406extern struct xarray hfi1_dev_table;
1407struct hfi1_devdata *hfi1_lookup(int unit);
1408
1409static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt)
1410{
1411	return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
1412		HFI1_MAX_SHARED_CTXTS;
1413}
1414
1415int hfi1_init(struct hfi1_devdata *dd, int reinit);
1416int hfi1_count_active_units(void);
1417
1418int hfi1_diag_add(struct hfi1_devdata *dd);
1419void hfi1_diag_remove(struct hfi1_devdata *dd);
1420void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
1421
1422void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
1423
1424int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1425int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd);
1426int hfi1_create_kctxts(struct hfi1_devdata *dd);
1427int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
1428			 struct hfi1_ctxtdata **rcd);
1429void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd);
1430void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
1431			 struct hfi1_devdata *dd, u8 hw_pidx, u32 port);
1432void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1433int hfi1_rcd_put(struct hfi1_ctxtdata *rcd);
1434int hfi1_rcd_get(struct hfi1_ctxtdata *rcd);
1435struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
1436						 u16 ctxt);
1437struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt);
1438int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread);
1439int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1440int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1441int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget);
1442int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget);
1443void set_all_slowpath(struct hfi1_devdata *dd);
1444
1445extern const struct pci_device_id hfi1_pci_tbl[];
1446void hfi1_make_ud_req_9B(struct rvt_qp *qp,
1447			 struct hfi1_pkt_state *ps,
1448			 struct rvt_swqe *wqe);
1449
1450void hfi1_make_ud_req_16B(struct rvt_qp *qp,
1451			  struct hfi1_pkt_state *ps,
1452			  struct rvt_swqe *wqe);
1453
1454/* receive packet handler dispositions */
1455#define RCV_PKT_OK      0x0 /* keep going */
1456#define RCV_PKT_LIMIT   0x1 /* stop, hit limit, start thread */
1457#define RCV_PKT_DONE    0x2 /* stop, no more packets detected */
1458
1459/**
1460 * hfi1_rcd_head - add accessor for rcd head
1461 * @rcd: the context
1462 */
1463static inline u32 hfi1_rcd_head(struct hfi1_ctxtdata *rcd)
1464{
1465	return rcd->head;
1466}
1467
1468/**
1469 * hfi1_set_rcd_head - add accessor for rcd head
1470 * @rcd: the context
1471 * @head: the new head
1472 */
1473static inline void hfi1_set_rcd_head(struct hfi1_ctxtdata *rcd, u32 head)
1474{
1475	rcd->head = head;
1476}
1477
1478/* calculate the current RHF address */
1479static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
1480{
1481	return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset;
1482}
1483
1484/* return DMA_RTAIL configuration */
1485static inline bool get_dma_rtail_setting(struct hfi1_ctxtdata *rcd)
1486{
1487	return !!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL);
1488}
1489
1490/**
1491 * hfi1_seq_incr_wrap - wrapping increment for sequence
1492 * @seq: the current sequence number
1493 *
1494 * Returns: the incremented seq
1495 */
1496static inline u8 hfi1_seq_incr_wrap(u8 seq)
1497{
1498	if (++seq > RHF_MAX_SEQ)
1499		seq = 1;
1500	return seq;
1501}
1502
1503/**
1504 * hfi1_seq_cnt - return seq_cnt member
1505 * @rcd: the receive context
1506 *
1507 * Return seq_cnt member
1508 */
1509static inline u8 hfi1_seq_cnt(struct hfi1_ctxtdata *rcd)
1510{
1511	return rcd->seq_cnt;
1512}
1513
1514/**
1515 * hfi1_set_seq_cnt - return seq_cnt member
1516 * @rcd: the receive context
1517 *
1518 * Return seq_cnt member
1519 */
1520static inline void hfi1_set_seq_cnt(struct hfi1_ctxtdata *rcd, u8 cnt)
1521{
1522	rcd->seq_cnt = cnt;
1523}
1524
1525/**
1526 * last_rcv_seq - is last
1527 * @rcd: the receive context
1528 * @seq: sequence
1529 *
1530 * return true if last packet
1531 */
1532static inline bool last_rcv_seq(struct hfi1_ctxtdata *rcd, u32 seq)
1533{
1534	return seq != rcd->seq_cnt;
1535}
1536
1537/**
1538 * rcd_seq_incr - increment context sequence number
1539 * @rcd: the receive context
1540 * @seq: the current sequence number
1541 *
1542 * Returns: true if the this was the last packet
1543 */
1544static inline bool hfi1_seq_incr(struct hfi1_ctxtdata *rcd, u32 seq)
1545{
1546	rcd->seq_cnt = hfi1_seq_incr_wrap(rcd->seq_cnt);
1547	return last_rcv_seq(rcd, seq);
1548}
1549
1550/**
1551 * get_hdrqentsize - return hdrq entry size
1552 * @rcd: the receive context
1553 */
1554static inline u8 get_hdrqentsize(struct hfi1_ctxtdata *rcd)
1555{
1556	return rcd->rcvhdrqentsize;
1557}
1558
1559/**
1560 * get_hdrq_cnt - return hdrq count
1561 * @rcd: the receive context
1562 */
1563static inline u16 get_hdrq_cnt(struct hfi1_ctxtdata *rcd)
1564{
1565	return rcd->rcvhdrq_cnt;
1566}
1567
1568/**
1569 * hfi1_is_slowpath - check if this context is slow path
1570 * @rcd: the receive context
1571 */
1572static inline bool hfi1_is_slowpath(struct hfi1_ctxtdata *rcd)
1573{
1574	return rcd->do_interrupt == rcd->slow_handler;
1575}
1576
1577/**
1578 * hfi1_is_fastpath - check if this context is fast path
1579 * @rcd: the receive context
1580 */
1581static inline bool hfi1_is_fastpath(struct hfi1_ctxtdata *rcd)
1582{
1583	if (rcd->ctxt == HFI1_CTRL_CTXT)
1584		return false;
1585
1586	return rcd->do_interrupt == rcd->fast_handler;
1587}
1588
1589/**
1590 * hfi1_set_fast - change to the fast handler
1591 * @rcd: the receive context
1592 */
1593static inline void hfi1_set_fast(struct hfi1_ctxtdata *rcd)
1594{
1595	if (unlikely(!rcd))
1596		return;
1597	if (unlikely(!hfi1_is_fastpath(rcd)))
1598		rcd->do_interrupt = rcd->fast_handler;
1599}
1600
1601int hfi1_reset_device(int);
1602
1603void receive_interrupt_work(struct work_struct *work);
1604
1605/* extract service channel from header and rhf */
1606static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf)
1607{
1608	return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4);
1609}
1610
1611#define HFI1_JKEY_WIDTH       16
1612#define HFI1_JKEY_MASK        (BIT(16) - 1)
1613#define HFI1_ADMIN_JKEY_RANGE 32
1614
1615/*
1616 * J_KEYs are split and allocated in the following groups:
1617 *   0 - 31    - users with administrator privileges
1618 *  32 - 63    - kernel protocols using KDETH packets
1619 *  64 - 65535 - all other users using KDETH packets
1620 */
1621static inline u16 generate_jkey(kuid_t uid)
1622{
1623	u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK;
1624
1625	if (capable(CAP_SYS_ADMIN))
1626		jkey &= HFI1_ADMIN_JKEY_RANGE - 1;
1627	else if (jkey < 64)
1628		jkey |= BIT(HFI1_JKEY_WIDTH - 1);
1629
1630	return jkey;
1631}
1632
1633/*
1634 * active_egress_rate
1635 *
1636 * returns the active egress rate in units of [10^6 bits/sec]
1637 */
1638static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
1639{
1640	u16 link_speed = ppd->link_speed_active;
1641	u16 link_width = ppd->link_width_active;
1642	u32 egress_rate;
1643
1644	if (link_speed == OPA_LINK_SPEED_25G)
1645		egress_rate = 25000;
1646	else /* assume OPA_LINK_SPEED_12_5G */
1647		egress_rate = 12500;
1648
1649	switch (link_width) {
1650	case OPA_LINK_WIDTH_4X:
1651		egress_rate *= 4;
1652		break;
1653	case OPA_LINK_WIDTH_3X:
1654		egress_rate *= 3;
1655		break;
1656	case OPA_LINK_WIDTH_2X:
1657		egress_rate *= 2;
1658		break;
1659	default:
1660		/* assume IB_WIDTH_1X */
1661		break;
1662	}
1663
1664	return egress_rate;
1665}
1666
1667/*
1668 * egress_cycles
1669 *
1670 * Returns the number of 'fabric clock cycles' to egress a packet
1671 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
1672 * rate is (approximately) 805 MHz, the units of the returned value
1673 * are (1/805 MHz).
1674 */
1675static inline u32 egress_cycles(u32 len, u32 rate)
1676{
1677	u32 cycles;
1678
1679	/*
1680	 * cycles is:
1681	 *
1682	 *          (length) [bits] / (rate) [bits/sec]
1683	 *  ---------------------------------------------------
1684	 *  fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
1685	 */
1686
1687	cycles = len * 8; /* bits */
1688	cycles *= 805;
1689	cycles /= rate;
1690
1691	return cycles;
1692}
1693
1694void set_link_ipg(struct hfi1_pportdata *ppd);
1695void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn,
1696		  u32 rqpn, u8 svc_type);
1697void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
1698		u16 pkey, u32 slid, u32 dlid, u8 sc5,
1699		const struct ib_grh *old_grh);
1700void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1701		    u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1702		    u8 sc5, const struct ib_grh *old_grh);
1703typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1704				u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1705				u8 sc5, const struct ib_grh *old_grh);
1706
1707#define PKEY_CHECK_INVALID -1
1708int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1709		      u8 sc5, int8_t s_pkey_index);
1710
1711#define PACKET_EGRESS_TIMEOUT 350
1712static inline void pause_for_credit_return(struct hfi1_devdata *dd)
1713{
1714	/* Pause at least 1us, to ensure chip returns all credits */
1715	u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
1716
1717	udelay(usec ? usec : 1);
1718}
1719
1720/**
1721 * sc_to_vlt() - reverse lookup sc to vl
1722 * @dd - devdata
1723 * @sc5 - 5 bit sc
1724 */
1725static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
1726{
1727	unsigned seq;
1728	u8 rval;
1729
1730	if (sc5 >= OPA_MAX_SCS)
1731		return (u8)(0xff);
1732
1733	do {
1734		seq = read_seqbegin(&dd->sc2vl_lock);
1735		rval = *(((u8 *)dd->sc2vl) + sc5);
1736	} while (read_seqretry(&dd->sc2vl_lock, seq));
1737
1738	return rval;
1739}
1740
1741#define PKEY_MEMBER_MASK 0x8000
1742#define PKEY_LOW_15_MASK 0x7fff
1743
1744/*
1745 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1746 * being an entry from the ingress partition key table), return 0
1747 * otherwise. Use the matching criteria for ingress partition keys
1748 * specified in the OPAv1 spec., section 9.10.14.
1749 */
1750static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
1751{
1752	u16 mkey = pkey & PKEY_LOW_15_MASK;
1753	u16 ment = ent & PKEY_LOW_15_MASK;
1754
1755	if (mkey == ment) {
1756		/*
1757		 * If pkey[15] is clear (limited partition member),
1758		 * is bit 15 in the corresponding table element
1759		 * clear (limited member)?
1760		 */
1761		if (!(pkey & PKEY_MEMBER_MASK))
1762			return !!(ent & PKEY_MEMBER_MASK);
1763		return 1;
1764	}
1765	return 0;
1766}
1767
1768/*
1769 * ingress_pkey_table_search - search the entire pkey table for
1770 * an entry which matches 'pkey'. return 0 if a match is found,
1771 * and 1 otherwise.
1772 */
1773static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
1774{
1775	int i;
1776
1777	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1778		if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1779			return 0;
1780	}
1781	return 1;
1782}
1783
1784/*
1785 * ingress_pkey_table_fail - record a failure of ingress pkey validation,
1786 * i.e., increment port_rcv_constraint_errors for the port, and record
1787 * the 'error info' for this failure.
1788 */
1789static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
1790				    u32 slid)
1791{
1792	struct hfi1_devdata *dd = ppd->dd;
1793
1794	incr_cntr64(&ppd->port_rcv_constraint_errors);
1795	if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
1796		dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
1797		dd->err_info_rcv_constraint.slid = slid;
1798		dd->err_info_rcv_constraint.pkey = pkey;
1799	}
1800}
1801
1802/*
1803 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
1804 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
1805 * is a hint as to the best place in the partition key table to begin
1806 * searching. This function should not be called on the data path because
1807 * of performance reasons. On datapath pkey check is expected to be done
1808 * by HW and rcv_pkey_check function should be called instead.
1809 */
1810static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1811				     u8 sc5, u8 idx, u32 slid, bool force)
1812{
1813	if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1814		return 0;
1815
1816	/* If SC15, pkey[0:14] must be 0x7fff */
1817	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1818		goto bad;
1819
1820	/* Is the pkey = 0x0, or 0x8000? */
1821	if ((pkey & PKEY_LOW_15_MASK) == 0)
1822		goto bad;
1823
1824	/* The most likely matching pkey has index 'idx' */
1825	if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
1826		return 0;
1827
1828	/* no match - try the whole table */
1829	if (!ingress_pkey_table_search(ppd, pkey))
1830		return 0;
1831
1832bad:
1833	ingress_pkey_table_fail(ppd, pkey, slid);
1834	return 1;
1835}
1836
1837/*
1838 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
1839 * otherwise. It only ensures pkey is vlid for QP0. This function
1840 * should be called on the data path instead of ingress_pkey_check
1841 * as on data path, pkey check is done by HW (except for QP0).
1842 */
1843static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1844				 u8 sc5, u16 slid)
1845{
1846	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1847		return 0;
1848
1849	/* If SC15, pkey[0:14] must be 0x7fff */
1850	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1851		goto bad;
1852
1853	return 0;
1854bad:
1855	ingress_pkey_table_fail(ppd, pkey, slid);
1856	return 1;
1857}
1858
1859/* MTU handling */
1860
1861/* MTU enumeration, 256-4k match IB */
1862#define OPA_MTU_0     0
1863#define OPA_MTU_256   1
1864#define OPA_MTU_512   2
1865#define OPA_MTU_1024  3
1866#define OPA_MTU_2048  4
1867#define OPA_MTU_4096  5
1868
1869u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
1870int mtu_to_enum(u32 mtu, int default_if_bad);
1871u16 enum_to_mtu(int mtu);
1872static inline int valid_ib_mtu(unsigned int mtu)
1873{
1874	return mtu == 256 || mtu == 512 ||
1875		mtu == 1024 || mtu == 2048 ||
1876		mtu == 4096;
1877}
1878
1879static inline int valid_opa_max_mtu(unsigned int mtu)
1880{
1881	return mtu >= 2048 &&
1882		(valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
1883}
1884
1885int set_mtu(struct hfi1_pportdata *ppd);
1886
1887int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc);
1888void hfi1_disable_after_error(struct hfi1_devdata *dd);
1889int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit);
1890int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode);
1891
1892int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t);
1893int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t);
1894
1895void set_up_vau(struct hfi1_devdata *dd, u8 vau);
1896void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf);
1897void reset_link_credits(struct hfi1_devdata *dd);
1898void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
1899
1900int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
1901
1902static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
1903{
1904	return ppd->dd;
1905}
1906
1907static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
1908{
1909	return container_of(dev, struct hfi1_devdata, verbs_dev);
1910}
1911
1912static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
1913{
1914	return dd_from_dev(to_idev(ibdev));
1915}
1916
1917static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
1918{
1919	return container_of(ibp, struct hfi1_pportdata, ibport_data);
1920}
1921
1922static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
1923{
1924	return container_of(rdi, struct hfi1_ibdev, rdi);
1925}
1926
1927static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u32 port)
1928{
1929	struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1930	u32 pidx = port - 1; /* IB number port from 1, hdw from 0 */
1931
1932	WARN_ON(pidx >= dd->num_pports);
1933	return &dd->pport[pidx].ibport_data;
1934}
1935
1936static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd)
1937{
1938	return &rcd->ppd->ibport_data;
1939}
1940
1941/**
1942 * hfi1_may_ecn - Check whether FECN or BECN processing should be done
1943 * @pkt: the packet to be evaluated
1944 *
1945 * Check whether the FECN or BECN bits in the packet's header are
1946 * enabled, depending on packet type.
1947 *
1948 * This function only checks for FECN and BECN bits. Additional checks
1949 * are done in the slowpath (hfi1_process_ecn_slowpath()) in order to
1950 * ensure correct handling.
1951 */
1952static inline bool hfi1_may_ecn(struct hfi1_packet *pkt)
1953{
1954	bool fecn, becn;
1955
1956	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
1957		fecn = hfi1_16B_get_fecn(pkt->hdr);
1958		becn = hfi1_16B_get_becn(pkt->hdr);
1959	} else {
1960		fecn = ib_bth_get_fecn(pkt->ohdr);
1961		becn = ib_bth_get_becn(pkt->ohdr);
1962	}
1963	return fecn || becn;
1964}
1965
1966bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
1967			       bool prescan);
1968static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt)
1969{
1970	bool do_work;
1971
1972	do_work = hfi1_may_ecn(pkt);
1973	if (unlikely(do_work))
1974		return hfi1_process_ecn_slowpath(qp, pkt, false);
1975	return false;
1976}
1977
1978/*
1979 * Return the indexed PKEY from the port PKEY table.
1980 */
1981static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
1982{
1983	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1984	u16 ret;
1985
1986	if (index >= ARRAY_SIZE(ppd->pkeys))
1987		ret = 0;
1988	else
1989		ret = ppd->pkeys[index];
1990
1991	return ret;
1992}
1993
1994/*
1995 * Return the indexed GUID from the port GUIDs table.
1996 */
1997static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index)
1998{
1999	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2000
2001	WARN_ON(index >= HFI1_GUIDS_PER_PORT);
2002	return cpu_to_be64(ppd->guids[index]);
2003}
2004
2005/*
2006 * Called by readers of cc_state only, must call under rcu_read_lock().
2007 */
2008static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
2009{
2010	return rcu_dereference(ppd->cc_state);
2011}
2012
2013/*
2014 * Called by writers of cc_state only,  must call under cc_state_lock.
2015 */
2016static inline
2017struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd)
2018{
2019	return rcu_dereference_protected(ppd->cc_state,
2020					 lockdep_is_held(&ppd->cc_state_lock));
2021}
2022
2023/*
2024 * values for dd->flags (_device_ related flags)
2025 */
2026#define HFI1_INITTED           0x1    /* chip and driver up and initted */
2027#define HFI1_PRESENT           0x2    /* chip accesses can be done */
2028#define HFI1_FROZEN            0x4    /* chip in SPC freeze */
2029#define HFI1_HAS_SDMA_TIMEOUT  0x8
2030#define HFI1_HAS_SEND_DMA      0x10   /* Supports Send DMA */
2031#define HFI1_FORCED_FREEZE     0x80   /* driver forced freeze mode */
2032#define HFI1_SHUTDOWN          0x100  /* device is shutting down */
2033
2034/* IB dword length mask in PBC (lower 11 bits); same for all chips */
2035#define HFI1_PBC_LENGTH_MASK                     ((1 << 11) - 1)
2036
2037/* ctxt_flag bit offsets */
2038		/* base context has not finished initializing */
2039#define HFI1_CTXT_BASE_UNINIT 1
2040		/* base context initaliation failed */
2041#define HFI1_CTXT_BASE_FAILED 2
2042		/* waiting for a packet to arrive */
2043#define HFI1_CTXT_WAITING_RCV 3
2044		/* waiting for an urgent packet to arrive */
2045#define HFI1_CTXT_WAITING_URG 4
2046
2047/* free up any allocated data at closes */
2048int hfi1_init_dd(struct hfi1_devdata *dd);
2049void hfi1_free_devdata(struct hfi1_devdata *dd);
2050
2051/* LED beaconing functions */
2052void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
2053			     unsigned int timeoff);
2054void shutdown_led_override(struct hfi1_pportdata *ppd);
2055
2056#define HFI1_CREDIT_RETURN_RATE (100)
2057
2058/*
2059 * The number of words for the KDETH protocol field.  If this is
2060 * larger then the actual field used, then part of the payload
2061 * will be in the header.
2062 *
2063 * Optimally, we want this sized so that a typical case will
2064 * use full cache lines.  The typical local KDETH header would
2065 * be:
2066 *
2067 *	Bytes	Field
2068 *	  8	LRH
2069 *	 12	BHT
2070 *	 ??	KDETH
2071 *	  8	RHF
2072 *	---
2073 *	 28 + KDETH
2074 *
2075 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
2076 */
2077#define DEFAULT_RCVHDRSIZE 9
2078
2079/*
2080 * Maximal header byte count:
2081 *
2082 *	Bytes	Field
2083 *	  8	LRH
2084 *	 40	GRH (optional)
2085 *	 12	BTH
2086 *	 ??	KDETH
2087 *	  8	RHF
2088 *	---
2089 *	 68 + KDETH
2090 *
2091 * We also want to maintain a cache line alignment to assist DMA'ing
2092 * of the header bytes.  Round up to a good size.
2093 */
2094#define DEFAULT_RCVHDR_ENTSIZE 32
2095
2096bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm,
2097			u32 nlocked, u32 npages);
2098int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr,
2099			    size_t npages, bool writable, struct page **pages);
2100void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
2101			     size_t npages, bool dirty);
2102
2103/**
2104 * hfi1_rcvhdrtail_kvaddr - return tail kvaddr
2105 * @rcd - the receive context
2106 */
2107static inline __le64 *hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata *rcd)
2108{
2109	return (__le64 *)rcd->rcvhdrtail_kvaddr;
2110}
2111
2112static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
2113{
2114	u64 *kv = (u64 *)hfi1_rcvhdrtail_kvaddr(rcd);
2115
2116	if (kv)
2117		*kv = 0ULL;
2118}
2119
2120static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
2121{
2122	/*
2123	 * volatile because it's a DMA target from the chip, routine is
2124	 * inlined, and don't want register caching or reordering.
2125	 */
2126	return (u32)le64_to_cpu(*hfi1_rcvhdrtail_kvaddr(rcd));
2127}
2128
2129static inline bool hfi1_packet_present(struct hfi1_ctxtdata *rcd)
2130{
2131	if (likely(!rcd->rcvhdrtail_kvaddr)) {
2132		u32 seq = rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)));
2133
2134		return !last_rcv_seq(rcd, seq);
2135	}
2136	return hfi1_rcd_head(rcd) != get_rcvhdrtail(rcd);
2137}
2138
2139/*
2140 * sysfs interface.
2141 */
2142
2143extern const char ib_hfi1_version[];
2144extern const struct attribute_group ib_hfi1_attr_group;
2145extern const struct attribute_group *hfi1_attr_port_groups[];
2146
2147int hfi1_device_create(struct hfi1_devdata *dd);
2148void hfi1_device_remove(struct hfi1_devdata *dd);
2149
2150int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd);
2151void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd);
2152/* Hook for sysfs read of QSFP */
2153int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
2154
2155int hfi1_pcie_init(struct hfi1_devdata *dd);
2156void hfi1_pcie_cleanup(struct pci_dev *pdev);
2157int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev);
2158void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
2159int pcie_speeds(struct hfi1_devdata *dd);
2160int restore_pci_variables(struct hfi1_devdata *dd);
2161int save_pci_variables(struct hfi1_devdata *dd);
2162int do_pcie_gen3_transition(struct hfi1_devdata *dd);
2163void tune_pcie_caps(struct hfi1_devdata *dd);
2164int parse_platform_config(struct hfi1_devdata *dd);
2165int get_platform_config_field(struct hfi1_devdata *dd,
2166			      enum platform_config_table_type_encoding
2167			      table_type, int table_index, int field_index,
2168			      u32 *data, u32 len);
2169
2170struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
2171
2172/*
2173 * Flush write combining store buffers (if present) and perform a write
2174 * barrier.
2175 */
2176static inline void flush_wc(void)
2177{
2178	asm volatile("sfence" : : : "memory");
2179}
2180
2181void handle_eflags(struct hfi1_packet *packet);
2182void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd);
2183
2184/* global module parameter variables */
2185extern unsigned int hfi1_max_mtu;
2186extern unsigned int hfi1_cu;
2187extern unsigned int user_credit_return_threshold;
2188extern int num_user_contexts;
2189extern unsigned long n_krcvqs;
2190extern uint krcvqs[];
2191extern int krcvqsset;
2192extern uint loopback;
2193extern uint quick_linkup;
2194extern uint rcv_intr_timeout;
2195extern uint rcv_intr_count;
2196extern uint rcv_intr_dynamic;
2197extern ushort link_crc_mask;
2198
2199extern struct mutex hfi1_mutex;
2200
2201/* Number of seconds before our card status check...  */
2202#define STATUS_TIMEOUT 60
2203
2204#define DRIVER_NAME		"hfi1"
2205#define HFI1_USER_MINOR_BASE     0
2206#define HFI1_TRACE_MINOR         127
2207#define HFI1_NMINORS             255
2208
2209#define PCI_VENDOR_ID_INTEL 0x8086
2210#define PCI_DEVICE_ID_INTEL0 0x24f0
2211#define PCI_DEVICE_ID_INTEL1 0x24f1
2212
2213#define HFI1_PKT_USER_SC_INTEGRITY					    \
2214	(SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK	    \
2215	| SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK		\
2216	| SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK		    \
2217	| SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
2218
2219#define HFI1_PKT_KERNEL_SC_INTEGRITY					    \
2220	(SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
2221
2222static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
2223						  u16 ctxt_type)
2224{
2225	u64 base_sc_integrity;
2226
2227	/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2228	if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2229		return 0;
2230
2231	base_sc_integrity =
2232	SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2233	| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
2234	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2235	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2236	| SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2237#ifndef CONFIG_FAULT_INJECTION
2238	| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
2239#endif
2240	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2241	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2242	| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2243	| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
2244	| SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2245	| SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2246	| SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
2247	| SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
2248	| SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
2249	| SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2250
2251	if (ctxt_type == SC_USER)
2252		base_sc_integrity |=
2253#ifndef CONFIG_FAULT_INJECTION
2254			SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK |
2255#endif
2256			HFI1_PKT_USER_SC_INTEGRITY;
2257	else if (ctxt_type != SC_KERNEL)
2258		base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
2259
2260	/* turn on send-side job key checks if !A0 */
2261	if (!is_ax(dd))
2262		base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2263
2264	return base_sc_integrity;
2265}
2266
2267static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
2268{
2269	u64 base_sdma_integrity;
2270
2271	/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2272	if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2273		return 0;
2274
2275	base_sdma_integrity =
2276	SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2277	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2278	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2279	| SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2280	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2281	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2282	| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2283	| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
2284	| SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2285	| SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2286	| SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
2287	| SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
2288	| SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
2289	| SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2290
2291	if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
2292		base_sdma_integrity |=
2293		SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK;
2294
2295	/* turn on send-side job key checks if !A0 */
2296	if (!is_ax(dd))
2297		base_sdma_integrity |=
2298			SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2299
2300	return base_sdma_integrity;
2301}
2302
2303#define dd_dev_emerg(dd, fmt, ...) \
2304	dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
2305		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2306
2307#define dd_dev_err(dd, fmt, ...) \
2308	dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
2309		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2310
2311#define dd_dev_err_ratelimited(dd, fmt, ...) \
2312	dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2313			    rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2314			    ##__VA_ARGS__)
2315
2316#define dd_dev_warn(dd, fmt, ...) \
2317	dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
2318		 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2319
2320#define dd_dev_warn_ratelimited(dd, fmt, ...) \
2321	dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2322			     rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2323			     ##__VA_ARGS__)
2324
2325#define dd_dev_info(dd, fmt, ...) \
2326	dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
2327		 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2328
2329#define dd_dev_info_ratelimited(dd, fmt, ...) \
2330	dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2331			     rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2332			     ##__VA_ARGS__)
2333
2334#define dd_dev_dbg(dd, fmt, ...) \
2335	dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
2336		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2337
2338#define hfi1_dev_porterr(dd, port, fmt, ...) \
2339	dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
2340		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__)
2341
2342/*
2343 * this is used for formatting hw error messages...
2344 */
2345struct hfi1_hwerror_msgs {
2346	u64 mask;
2347	const char *msg;
2348	size_t sz;
2349};
2350
2351/* in intr.c... */
2352void hfi1_format_hwerrors(u64 hwerrs,
2353			  const struct hfi1_hwerror_msgs *hwerrmsgs,
2354			  size_t nhwerrmsgs, char *msg, size_t lmsg);
2355
2356#define USER_OPCODE_CHECK_VAL 0xC0
2357#define USER_OPCODE_CHECK_MASK 0xC0
2358#define OPCODE_CHECK_VAL_DISABLED 0x0
2359#define OPCODE_CHECK_MASK_DISABLED 0x0
2360
2361static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
2362{
2363	struct hfi1_pportdata *ppd;
2364	int i;
2365
2366	dd->z_int_counter = get_all_cpu_total(dd->int_counter);
2367	dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
2368	dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
2369
2370	ppd = (struct hfi1_pportdata *)(dd + 1);
2371	for (i = 0; i < dd->num_pports; i++, ppd++) {
2372		ppd->ibport_data.rvp.z_rc_acks =
2373			get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
2374		ppd->ibport_data.rvp.z_rc_qacks =
2375			get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
2376	}
2377}
2378
2379/* Control LED state */
2380static inline void setextled(struct hfi1_devdata *dd, u32 on)
2381{
2382	if (on)
2383		write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
2384	else
2385		write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
2386}
2387
2388/* return the i2c resource given the target */
2389static inline u32 i2c_target(u32 target)
2390{
2391	return target ? CR_I2C2 : CR_I2C1;
2392}
2393
2394/* return the i2c chain chip resource that this HFI uses for QSFP */
2395static inline u32 qsfp_resource(struct hfi1_devdata *dd)
2396{
2397	return i2c_target(dd->hfi1_id);
2398}
2399
2400/* Is this device integrated or discrete? */
2401static inline bool is_integrated(struct hfi1_devdata *dd)
2402{
2403	return dd->pcidev->device == PCI_DEVICE_ID_INTEL1;
2404}
2405
2406/**
2407 * hfi1_need_drop - detect need for drop
2408 * @dd: - the device
2409 *
2410 * In some cases, the first packet needs to be dropped.
2411 *
2412 * Return true is the current packet needs to be dropped and false otherwise.
2413 */
2414static inline bool hfi1_need_drop(struct hfi1_devdata *dd)
2415{
2416	if (unlikely(dd->do_drop &&
2417		     atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
2418		     DROP_PACKET_ON)) {
2419		dd->do_drop = false;
2420		return true;
2421	}
2422	return false;
2423}
2424
2425int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
2426
2427#define DD_DEV_ENTRY(dd)       __string(dev, dev_name(&(dd)->pcidev->dev))
2428#define DD_DEV_ASSIGN(dd)      __assign_str(dev, dev_name(&(dd)->pcidev->dev))
2429
2430static inline void hfi1_update_ah_attr(struct ib_device *ibdev,
2431				       struct rdma_ah_attr *attr)
2432{
2433	struct hfi1_pportdata *ppd;
2434	struct hfi1_ibport *ibp;
2435	u32 dlid = rdma_ah_get_dlid(attr);
2436
2437	/*
2438	 * Kernel clients may not have setup GRH information
2439	 * Set that here.
2440	 */
2441	ibp = to_iport(ibdev, rdma_ah_get_port_num(attr));
2442	ppd = ppd_from_ibp(ibp);
2443	if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ||
2444	      (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) &&
2445	    (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) &&
2446	    (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2447	    (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) ||
2448	    (rdma_ah_get_make_grd(attr))) {
2449		rdma_ah_set_ah_flags(attr, IB_AH_GRH);
2450		rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid));
2451		rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix);
2452	}
2453}
2454
2455/*
2456 * hfi1_check_mcast- Check if the given lid is
2457 * in the OPA multicast range.
2458 *
2459 * The LID might either reside in ah.dlid or might be
2460 * in the GRH of the address handle as DGID if extended
2461 * addresses are in use.
2462 */
2463static inline bool hfi1_check_mcast(u32 lid)
2464{
2465	return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) &&
2466		(lid != be32_to_cpu(OPA_LID_PERMISSIVE)));
2467}
2468
2469#define opa_get_lid(lid, format)	\
2470	__opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format)
2471
2472/* Convert a lid to a specific lid space */
2473static inline u32 __opa_get_lid(u32 lid, u8 format)
2474{
2475	bool is_mcast = hfi1_check_mcast(lid);
2476
2477	switch (format) {
2478	case OPA_PORT_PACKET_FORMAT_8B:
2479	case OPA_PORT_PACKET_FORMAT_10B:
2480		if (is_mcast)
2481			return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2482				0xF0000);
2483		return lid & 0xFFFFF;
2484	case OPA_PORT_PACKET_FORMAT_16B:
2485		if (is_mcast)
2486			return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2487				0xF00000);
2488		return lid & 0xFFFFFF;
2489	case OPA_PORT_PACKET_FORMAT_9B:
2490		if (is_mcast)
2491			return (lid -
2492				opa_get_mcast_base(OPA_MCAST_NR) +
2493				be16_to_cpu(IB_MULTICAST_LID_BASE));
2494		else
2495			return lid & 0xFFFF;
2496	default:
2497		return lid;
2498	}
2499}
2500
2501/* Return true if the given lid is the OPA 16B multicast range */
2502static inline bool hfi1_is_16B_mcast(u32 lid)
2503{
2504	return ((lid >=
2505		opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) &&
2506		(lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)));
2507}
2508
2509static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr)
2510{
2511	const struct ib_global_route *grh = rdma_ah_read_grh(attr);
2512	u32 dlid = rdma_ah_get_dlid(attr);
2513
2514	/* Modify ah_attr.dlid to be in the 32 bit LID space.
2515	 * This is how the address will be laid out:
2516	 * Assuming MCAST_NR to be 4,
2517	 * 32 bit permissive LID = 0xFFFFFFFF
2518	 * Multicast LID range = 0xFFFFFFFE to 0xF0000000
2519	 * Unicast LID range = 0xEFFFFFFF to 1
2520	 * Invalid LID = 0
2521	 */
2522	if (ib_is_opa_gid(&grh->dgid))
2523		dlid = opa_get_lid_from_gid(&grh->dgid);
2524	else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
2525		 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2526		 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)))
2527		dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) +
2528			opa_get_mcast_base(OPA_MCAST_NR);
2529	else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE))
2530		dlid = be32_to_cpu(OPA_LID_PERMISSIVE);
2531
2532	rdma_ah_set_dlid(attr, dlid);
2533}
2534
2535static inline u8 hfi1_get_packet_type(u32 lid)
2536{
2537	/* 9B if lid > 0xF0000000 */
2538	if (lid >= opa_get_mcast_base(OPA_MCAST_NR))
2539		return HFI1_PKT_TYPE_9B;
2540
2541	/* 16B if lid > 0xC000 */
2542	if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B))
2543		return HFI1_PKT_TYPE_16B;
2544
2545	return HFI1_PKT_TYPE_9B;
2546}
2547
2548static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr)
2549{
2550	/*
2551	 * If there was an incoming 16B packet with permissive
2552	 * LIDs, OPA GIDs would have been programmed when those
2553	 * packets were received. A 16B packet will have to
2554	 * be sent in response to that packet. Return a 16B
2555	 * header type if that's the case.
2556	 */
2557	if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE))
2558		return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ?
2559			HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B;
2560
2561	/*
2562	 * Return a 16B header type if either the destination
2563	 * or source lid is extended.
2564	 */
2565	if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B)
2566		return HFI1_PKT_TYPE_16B;
2567
2568	return hfi1_get_packet_type(lid);
2569}
2570
2571static inline void hfi1_make_ext_grh(struct hfi1_packet *packet,
2572				     struct ib_grh *grh, u32 slid,
2573				     u32 dlid)
2574{
2575	struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2576	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2577
2578	if (!ibp)
2579		return;
2580
2581	grh->hop_limit = 1;
2582	grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2583	if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))
2584		grh->sgid.global.interface_id =
2585			OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE));
2586	else
2587		grh->sgid.global.interface_id = OPA_MAKE_ID(slid);
2588
2589	/*
2590	 * Upper layers (like mad) may compare the dgid in the
2591	 * wc that is obtained here with the sgid_index in
2592	 * the wr. Since sgid_index in wr is always 0 for
2593	 * extended lids, set the dgid here to the default
2594	 * IB gid.
2595	 */
2596	grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2597	grh->dgid.global.interface_id =
2598		cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]);
2599}
2600
2601static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload)
2602{
2603	return -(hdr_size + payload + (SIZE_OF_CRC << 2) +
2604		     SIZE_OF_LT) & 0x7;
2605}
2606
2607static inline void hfi1_make_ib_hdr(struct ib_header *hdr,
2608				    u16 lrh0, u16 len,
2609				    u16 dlid, u16 slid)
2610{
2611	hdr->lrh[0] = cpu_to_be16(lrh0);
2612	hdr->lrh[1] = cpu_to_be16(dlid);
2613	hdr->lrh[2] = cpu_to_be16(len);
2614	hdr->lrh[3] = cpu_to_be16(slid);
2615}
2616
2617static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr,
2618				     u32 slid, u32 dlid,
2619				     u16 len, u16 pkey,
2620				     bool becn, bool fecn, u8 l4,
2621				     u8 sc)
2622{
2623	u32 lrh0 = 0;
2624	u32 lrh1 = 0x40000000;
2625	u32 lrh2 = 0;
2626	u32 lrh3 = 0;
2627
2628	lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT);
2629	lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT);
2630	lrh0 = (lrh0 & ~OPA_16B_LID_MASK)  | (slid & OPA_16B_LID_MASK);
2631	lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT);
2632	lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT);
2633	lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK);
2634	lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) |
2635		((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT);
2636	lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) |
2637		((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT);
2638	lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT);
2639	lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4;
2640
2641	hdr->lrh[0] = lrh0;
2642	hdr->lrh[1] = lrh1;
2643	hdr->lrh[2] = lrh2;
2644	hdr->lrh[3] = lrh3;
2645}
2646#endif                          /* _HFI1_KERNEL_H */
2647