1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2015 - 2020 Intel Corporation.
4 * Copyright(c) 2021 Cornelis Networks.
5 */
6
7/*
8 * This file contains all of the code that is specific to the HFI chip
9 */
10
11#include <linux/pci.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/module.h>
15
16#include "hfi.h"
17#include "trace.h"
18#include "mad.h"
19#include "pio.h"
20#include "sdma.h"
21#include "eprom.h"
22#include "efivar.h"
23#include "platform.h"
24#include "aspm.h"
25#include "affinity.h"
26#include "debugfs.h"
27#include "fault.h"
28#include "netdev.h"
29
30uint num_vls = HFI1_MAX_VLS_SUPPORTED;
31module_param(num_vls, uint, S_IRUGO);
32MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
33
34/*
35 * Default time to aggregate two 10K packets from the idle state
36 * (timer not running). The timer starts at the end of the first packet,
37 * so only the time for one 10K packet and header plus a bit extra is needed.
38 * 10 * 1024 + 64 header byte = 10304 byte
39 * 10304 byte / 12.5 GB/s = 824.32ns
40 */
41uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
42module_param(rcv_intr_timeout, uint, S_IRUGO);
43MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
44
45uint rcv_intr_count = 16; /* same as qib */
46module_param(rcv_intr_count, uint, S_IRUGO);
47MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
48
49ushort link_crc_mask = SUPPORTED_CRCS;
50module_param(link_crc_mask, ushort, S_IRUGO);
51MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
52
53uint loopback;
54module_param_named(loopback, loopback, uint, S_IRUGO);
55MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
56
57/* Other driver tunables */
58uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
59static ushort crc_14b_sideband = 1;
60static uint use_flr = 1;
61uint quick_linkup; /* skip LNI */
62
63struct flag_table {
64	u64 flag;	/* the flag */
65	char *str;	/* description string */
66	u16 extra;	/* extra information */
67	u16 unused0;
68	u32 unused1;
69};
70
71/* str must be a string constant */
72#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
73#define FLAG_ENTRY0(str, flag) {flag, str, 0}
74
75/* Send Error Consequences */
76#define SEC_WRITE_DROPPED	0x1
77#define SEC_PACKET_DROPPED	0x2
78#define SEC_SC_HALTED		0x4	/* per-context only */
79#define SEC_SPC_FREEZE		0x8	/* per-HFI only */
80
81#define DEFAULT_KRCVQS		  2
82#define MIN_KERNEL_KCTXTS         2
83#define FIRST_KERNEL_KCTXT        1
84
85/*
86 * RSM instance allocation
87 *   0 - User Fecn Handling
88 *   1 - Vnic
89 *   2 - AIP
90 *   3 - Verbs
91 */
92#define RSM_INS_FECN              0
93#define RSM_INS_VNIC              1
94#define RSM_INS_AIP               2
95#define RSM_INS_VERBS             3
96
97/* Bit offset into the GUID which carries HFI id information */
98#define GUID_HFI_INDEX_SHIFT     39
99
100/* extract the emulation revision */
101#define emulator_rev(dd) ((dd)->irev >> 8)
102/* parallel and serial emulation versions are 3 and 4 respectively */
103#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
104#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
105
106/* RSM fields for Verbs */
107/* packet type */
108#define IB_PACKET_TYPE         2ull
109#define QW_SHIFT               6ull
110/* QPN[7..1] */
111#define QPN_WIDTH              7ull
112
113/* LRH.BTH: QW 0, OFFSET 48 - for match */
114#define LRH_BTH_QW             0ull
115#define LRH_BTH_BIT_OFFSET     48ull
116#define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
117#define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
118#define LRH_BTH_SELECT
119#define LRH_BTH_MASK           3ull
120#define LRH_BTH_VALUE          2ull
121
122/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
123#define LRH_SC_QW              0ull
124#define LRH_SC_BIT_OFFSET      56ull
125#define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
126#define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
127#define LRH_SC_MASK            128ull
128#define LRH_SC_VALUE           0ull
129
130/* SC[n..0] QW 0, OFFSET 60 - for select */
131#define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
132
133/* QPN[m+n:1] QW 1, OFFSET 1 */
134#define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
135
136/* RSM fields for AIP */
137/* LRH.BTH above is reused for this rule */
138
139/* BTH.DESTQP: QW 1, OFFSET 16 for match */
140#define BTH_DESTQP_QW           1ull
141#define BTH_DESTQP_BIT_OFFSET   16ull
142#define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
143#define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
144#define BTH_DESTQP_MASK         0xFFull
145#define BTH_DESTQP_VALUE        0x81ull
146
147/* DETH.SQPN: QW 1 Offset 56 for select */
148/* We use 8 most significant Soure QPN bits as entropy fpr AIP */
149#define DETH_AIP_SQPN_QW 3ull
150#define DETH_AIP_SQPN_BIT_OFFSET 56ull
151#define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
152#define DETH_AIP_SQPN_SELECT_OFFSET \
153	DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
154
155/* RSM fields for Vnic */
156/* L2_TYPE: QW 0, OFFSET 61 - for match */
157#define L2_TYPE_QW             0ull
158#define L2_TYPE_BIT_OFFSET     61ull
159#define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
160#define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
161#define L2_TYPE_MASK           3ull
162#define L2_16B_VALUE           2ull
163
164/* L4_TYPE QW 1, OFFSET 0 - for match */
165#define L4_TYPE_QW              1ull
166#define L4_TYPE_BIT_OFFSET      0ull
167#define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
168#define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
169#define L4_16B_TYPE_MASK        0xFFull
170#define L4_16B_ETH_VALUE        0x78ull
171
172/* 16B VESWID - for select */
173#define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
174/* 16B ENTROPY - for select */
175#define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
176
177/* defines to build power on SC2VL table */
178#define SC2VL_VAL( \
179	num, \
180	sc0, sc0val, \
181	sc1, sc1val, \
182	sc2, sc2val, \
183	sc3, sc3val, \
184	sc4, sc4val, \
185	sc5, sc5val, \
186	sc6, sc6val, \
187	sc7, sc7val) \
188( \
189	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
190	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
191	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
192	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
193	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
194	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
195	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
196	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
197)
198
199#define DC_SC_VL_VAL( \
200	range, \
201	e0, e0val, \
202	e1, e1val, \
203	e2, e2val, \
204	e3, e3val, \
205	e4, e4val, \
206	e5, e5val, \
207	e6, e6val, \
208	e7, e7val, \
209	e8, e8val, \
210	e9, e9val, \
211	e10, e10val, \
212	e11, e11val, \
213	e12, e12val, \
214	e13, e13val, \
215	e14, e14val, \
216	e15, e15val) \
217( \
218	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
219	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
220	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
221	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
222	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
223	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
224	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
225	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
226	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
227	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
228	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
229	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
230	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
231	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
232	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
233	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
234)
235
236/* all CceStatus sub-block freeze bits */
237#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
238			| CCE_STATUS_RXE_FROZE_SMASK \
239			| CCE_STATUS_TXE_FROZE_SMASK \
240			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
241/* all CceStatus sub-block TXE pause bits */
242#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
243			| CCE_STATUS_TXE_PAUSED_SMASK \
244			| CCE_STATUS_SDMA_PAUSED_SMASK)
245/* all CceStatus sub-block RXE pause bits */
246#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
247
248#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
249#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
250
251/*
252 * CCE Error flags.
253 */
254static struct flag_table cce_err_status_flags[] = {
255/* 0*/	FLAG_ENTRY0("CceCsrParityErr",
256		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
257/* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
258		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
259/* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
260		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
261/* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
262		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
263/* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
264		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
265/* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
266		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
267/* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
268		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
269/* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
270		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
271/* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
272		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
273/* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
274	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
275/*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
276	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
277/*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
278	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
279/*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
280		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
281/*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
282		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
283/*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
284		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
285/*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
286		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
287/*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
288		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
289/*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
290		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
291/*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
292		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
293/*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
294		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
295/*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
296		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
297/*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
298		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
299/*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
300		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
301/*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
302		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
303/*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
304		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
305/*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
306		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
307/*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
308		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
309/*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
310		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
311/*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
312		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
313/*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
314		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
315/*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
316		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
317/*31*/	FLAG_ENTRY0("LATriggered",
318		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
319/*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
320		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
321/*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
322		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
323/*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
324		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
325/*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
326		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
327/*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
328		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
329/*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
330		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
331/*38*/	FLAG_ENTRY0("CceIntMapCorErr",
332		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
333/*39*/	FLAG_ENTRY0("CceIntMapUncErr",
334		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
335/*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
336		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
337/*41-63 reserved*/
338};
339
340/*
341 * Misc Error flags
342 */
343#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
344static struct flag_table misc_err_status_flags[] = {
345/* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
346/* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
347/* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
348/* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
349/* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
350/* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
351/* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
352/* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
353/* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
354/* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
355/*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
356/*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
357/*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
358};
359
360/*
361 * TXE PIO Error flags and consequences
362 */
363static struct flag_table pio_err_status_flags[] = {
364/* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
365	SEC_WRITE_DROPPED,
366	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
367/* 1*/	FLAG_ENTRY("PioWriteAddrParity",
368	SEC_SPC_FREEZE,
369	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
370/* 2*/	FLAG_ENTRY("PioCsrParity",
371	SEC_SPC_FREEZE,
372	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
373/* 3*/	FLAG_ENTRY("PioSbMemFifo0",
374	SEC_SPC_FREEZE,
375	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
376/* 4*/	FLAG_ENTRY("PioSbMemFifo1",
377	SEC_SPC_FREEZE,
378	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
379/* 5*/	FLAG_ENTRY("PioPccFifoParity",
380	SEC_SPC_FREEZE,
381	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
382/* 6*/	FLAG_ENTRY("PioPecFifoParity",
383	SEC_SPC_FREEZE,
384	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
385/* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
386	SEC_SPC_FREEZE,
387	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
388/* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
389	SEC_SPC_FREEZE,
390	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
391/* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
392	SEC_SPC_FREEZE,
393	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
394/*10*/	FLAG_ENTRY("PioSmPktResetParity",
395	SEC_SPC_FREEZE,
396	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
397/*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
398	SEC_SPC_FREEZE,
399	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
400/*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
401	SEC_SPC_FREEZE,
402	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
403/*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
404	0,
405	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
406/*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
407	0,
408	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
409/*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
410	SEC_SPC_FREEZE,
411	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
412/*16*/	FLAG_ENTRY("PioPpmcPblFifo",
413	SEC_SPC_FREEZE,
414	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
415/*17*/	FLAG_ENTRY("PioInitSmIn",
416	0,
417	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
418/*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
419	SEC_SPC_FREEZE,
420	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
421/*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
422	SEC_SPC_FREEZE,
423	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
424/*20*/	FLAG_ENTRY("PioHostAddrMemCor",
425	0,
426	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
427/*21*/	FLAG_ENTRY("PioWriteDataParity",
428	SEC_SPC_FREEZE,
429	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
430/*22*/	FLAG_ENTRY("PioStateMachine",
431	SEC_SPC_FREEZE,
432	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
433/*23*/	FLAG_ENTRY("PioWriteQwValidParity",
434	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
435	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
436/*24*/	FLAG_ENTRY("PioBlockQwCountParity",
437	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
438	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
439/*25*/	FLAG_ENTRY("PioVlfVlLenParity",
440	SEC_SPC_FREEZE,
441	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
442/*26*/	FLAG_ENTRY("PioVlfSopParity",
443	SEC_SPC_FREEZE,
444	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
445/*27*/	FLAG_ENTRY("PioVlFifoParity",
446	SEC_SPC_FREEZE,
447	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
448/*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
449	SEC_SPC_FREEZE,
450	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
451/*29*/	FLAG_ENTRY("PioPpmcSopLen",
452	SEC_SPC_FREEZE,
453	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
454/*30-31 reserved*/
455/*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
456	SEC_SPC_FREEZE,
457	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
458/*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
459	SEC_SPC_FREEZE,
460	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
461/*34*/	FLAG_ENTRY("PioPccSopHeadParity",
462	SEC_SPC_FREEZE,
463	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
464/*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
465	SEC_SPC_FREEZE,
466	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
467/*36-63 reserved*/
468};
469
470/* TXE PIO errors that cause an SPC freeze */
471#define ALL_PIO_FREEZE_ERR \
472	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
473	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
474	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
475	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
476	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
477	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
478	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
479	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
480	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
481	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
482	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
483	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
484	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
485	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
486	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
487	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
488	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
489	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
490	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
491	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
492	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
493	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
494	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
495	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
496	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
497	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
498	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
499	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
500	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
501
502/*
503 * TXE SDMA Error flags
504 */
505static struct flag_table sdma_err_status_flags[] = {
506/* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
507		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
508/* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
509		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
510/* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
511		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
512/* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
513		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
514/*04-63 reserved*/
515};
516
517/* TXE SDMA errors that cause an SPC freeze */
518#define ALL_SDMA_FREEZE_ERR  \
519		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
520		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
521		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
522
523/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
524#define PORT_DISCARD_EGRESS_ERRS \
525	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
526	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
527	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
528
529/*
530 * TXE Egress Error flags
531 */
532#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
533static struct flag_table egress_err_status_flags[] = {
534/* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
535/* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
536/* 2 reserved */
537/* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
538		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
539/* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
540/* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
541/* 6 reserved */
542/* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
543		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
544/* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
545		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
546/* 9-10 reserved */
547/*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
548		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
549/*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
550/*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
551/*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
552/*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
553/*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
554		SEES(TX_SDMA0_DISALLOWED_PACKET)),
555/*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
556		SEES(TX_SDMA1_DISALLOWED_PACKET)),
557/*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
558		SEES(TX_SDMA2_DISALLOWED_PACKET)),
559/*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
560		SEES(TX_SDMA3_DISALLOWED_PACKET)),
561/*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
562		SEES(TX_SDMA4_DISALLOWED_PACKET)),
563/*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
564		SEES(TX_SDMA5_DISALLOWED_PACKET)),
565/*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
566		SEES(TX_SDMA6_DISALLOWED_PACKET)),
567/*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
568		SEES(TX_SDMA7_DISALLOWED_PACKET)),
569/*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
570		SEES(TX_SDMA8_DISALLOWED_PACKET)),
571/*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
572		SEES(TX_SDMA9_DISALLOWED_PACKET)),
573/*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
574		SEES(TX_SDMA10_DISALLOWED_PACKET)),
575/*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
576		SEES(TX_SDMA11_DISALLOWED_PACKET)),
577/*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
578		SEES(TX_SDMA12_DISALLOWED_PACKET)),
579/*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
580		SEES(TX_SDMA13_DISALLOWED_PACKET)),
581/*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
582		SEES(TX_SDMA14_DISALLOWED_PACKET)),
583/*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
584		SEES(TX_SDMA15_DISALLOWED_PACKET)),
585/*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
586		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
587/*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
588		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
589/*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
590		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
591/*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
592		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
593/*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
594		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
595/*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
596		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
597/*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
598		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
599/*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
600		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
601/*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
602		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
603/*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
604/*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
605/*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
606/*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
607/*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
608/*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
609/*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
610/*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
611/*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
612/*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
613/*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
614/*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
615/*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
616/*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
617/*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
618/*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
619/*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
620/*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
621/*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
622/*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
623/*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
624/*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
625		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
626/*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
627		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
628};
629
630/*
631 * TXE Egress Error Info flags
632 */
633#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
634static struct flag_table egress_err_info_flags[] = {
635/* 0*/	FLAG_ENTRY0("Reserved", 0ull),
636/* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
637/* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
638/* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
639/* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
640/* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
641/* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
642/* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
643/* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
644/* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
645/*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
646/*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
647/*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
648/*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
649/*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
650/*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
651/*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
652/*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
653/*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
654/*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
655/*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
656/*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
657};
658
659/* TXE Egress errors that cause an SPC freeze */
660#define ALL_TXE_EGRESS_FREEZE_ERR \
661	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
662	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
663	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
664	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
665	| SEES(TX_LAUNCH_CSR_PARITY) \
666	| SEES(TX_SBRD_CTL_CSR_PARITY) \
667	| SEES(TX_CONFIG_PARITY) \
668	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
669	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
670	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
671	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
672	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
673	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
674	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
675	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
676	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
677	| SEES(TX_CREDIT_RETURN_PARITY))
678
679/*
680 * TXE Send error flags
681 */
682#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
683static struct flag_table send_err_status_flags[] = {
684/* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
685/* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
686/* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
687};
688
689/*
690 * TXE Send Context Error flags and consequences
691 */
692static struct flag_table sc_err_status_flags[] = {
693/* 0*/	FLAG_ENTRY("InconsistentSop",
694		SEC_PACKET_DROPPED | SEC_SC_HALTED,
695		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
696/* 1*/	FLAG_ENTRY("DisallowedPacket",
697		SEC_PACKET_DROPPED | SEC_SC_HALTED,
698		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
699/* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
700		SEC_WRITE_DROPPED | SEC_SC_HALTED,
701		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
702/* 3*/	FLAG_ENTRY("WriteOverflow",
703		SEC_WRITE_DROPPED | SEC_SC_HALTED,
704		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
705/* 4*/	FLAG_ENTRY("WriteOutOfBounds",
706		SEC_WRITE_DROPPED | SEC_SC_HALTED,
707		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
708/* 5-63 reserved*/
709};
710
711/*
712 * RXE Receive Error flags
713 */
714#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
715static struct flag_table rxe_err_status_flags[] = {
716/* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
717/* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
718/* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
719/* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
720/* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
721/* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
722/* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
723/* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
724/* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
725/* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
726/*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
727/*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
728/*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
729/*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
730/*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
731/*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
732/*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
733		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
734/*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
735/*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
736/*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
737		RXES(RBUF_BLOCK_LIST_READ_UNC)),
738/*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
739		RXES(RBUF_BLOCK_LIST_READ_COR)),
740/*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
741		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
742/*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
743		RXES(RBUF_CSR_QENT_CNT_PARITY)),
744/*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
745		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
746/*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
747		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
748/*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
749/*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
750/*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
751		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
752/*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
753/*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
754/*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
755/*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
756/*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
757/*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
758/*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
759/*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
760		RXES(RBUF_FL_INITDONE_PARITY)),
761/*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
762		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
763/*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
764/*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
765/*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
766/*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
767		RXES(LOOKUP_DES_PART1_UNC_COR)),
768/*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
769		RXES(LOOKUP_DES_PART2_PARITY)),
770/*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
771/*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
772/*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
773/*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
774/*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
775/*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
776/*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
777/*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
778/*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
779/*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
780/*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
781/*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
782/*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
783/*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
784/*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
785/*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
786/*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
787/*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
788/*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
789/*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
790/*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
791/*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
792};
793
794/* RXE errors that will trigger an SPC freeze */
795#define ALL_RXE_FREEZE_ERR  \
796	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
797	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
798	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
799	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
800	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
801	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
802	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
803	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
804	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
805	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
806	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
807	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
808	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
809	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
810	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
811	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
812	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
813	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
814	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
815	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
816	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
817	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
818	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
819	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
820	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
821	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
822	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
823	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
824	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
825	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
826	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
827	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
828	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
829	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
830	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
831	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
832	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
833	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
834	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
835	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
836	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
837	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
838	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
839	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
840
841#define RXE_FREEZE_ABORT_MASK \
842	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
843	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
844	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
845
846/*
847 * DCC Error Flags
848 */
849#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
850static struct flag_table dcc_err_flags[] = {
851	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
852	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
853	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
854	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
855	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
856	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
857	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
858	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
859	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
860	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
861	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
862	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
863	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
864	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
865	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
866	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
867	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
868	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
869	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
870	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
871	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
872	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
873	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
874	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
875	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
876	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
877	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
878	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
879	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
880	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
881	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
882	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
883	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
884	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
885	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
886	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
887	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
888	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
889	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
890	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
891	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
892	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
893	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
894	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
895	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
896	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
897};
898
899/*
900 * LCB error flags
901 */
902#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
903static struct flag_table lcb_err_flags[] = {
904/* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
905/* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
906/* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
907/* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
908		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
909/* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
910/* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
911/* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
912/* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
913/* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
914/* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
915/*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
916/*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
917/*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
918/*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
919		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
920/*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
921/*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
922/*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
923/*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
924/*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
925/*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
926		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
927/*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
928/*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
929/*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
930/*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
931/*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
932/*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
933/*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
934		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
935/*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
936/*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
937		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
938/*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
939		LCBE(REDUNDANT_FLIT_PARITY_ERR))
940};
941
942/*
943 * DC8051 Error Flags
944 */
945#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
946static struct flag_table dc8051_err_flags[] = {
947	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
948	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
949	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
950	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
951	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
952	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
953	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
954	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
955	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
956		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
957	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
958};
959
960/*
961 * DC8051 Information Error flags
962 *
963 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
964 */
965static struct flag_table dc8051_info_err_flags[] = {
966	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
967	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
968	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
969	FLAG_ENTRY0("Serdes internal loopback failure",
970		    FAILED_SERDES_INTERNAL_LOOPBACK),
971	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
972	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
973	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
974	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
975	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
976	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
977	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
978	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
979	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
980	FLAG_ENTRY0("External Device Request Timeout",
981		    EXTERNAL_DEVICE_REQ_TIMEOUT),
982};
983
984/*
985 * DC8051 Information Host Information flags
986 *
987 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
988 */
989static struct flag_table dc8051_info_host_msg_flags[] = {
990	FLAG_ENTRY0("Host request done", 0x0001),
991	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
992	FLAG_ENTRY0("BC SMA message", 0x0004),
993	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
994	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
995	FLAG_ENTRY0("External device config request", 0x0020),
996	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
997	FLAG_ENTRY0("LinkUp achieved", 0x0080),
998	FLAG_ENTRY0("Link going down", 0x0100),
999	FLAG_ENTRY0("Link width downgraded", 0x0200),
1000};
1001
1002static u32 encoded_size(u32 size);
1003static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1004static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1005static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1006			       u8 *continuous);
1007static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1008				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1009static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1010				      u8 *remote_tx_rate, u16 *link_widths);
1011static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1012				    u8 *flag_bits, u16 *link_widths);
1013static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1014				  u8 *device_rev);
1015static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1016static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1017			    u8 *tx_polarity_inversion,
1018			    u8 *rx_polarity_inversion, u8 *max_rate);
1019static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1020				unsigned int context, u64 err_status);
1021static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1022static void handle_dcc_err(struct hfi1_devdata *dd,
1023			   unsigned int context, u64 err_status);
1024static void handle_lcb_err(struct hfi1_devdata *dd,
1025			   unsigned int context, u64 err_status);
1026static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1028static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1029static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1030static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1031static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1032static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1033static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1034static void set_partition_keys(struct hfi1_pportdata *ppd);
1035static const char *link_state_name(u32 state);
1036static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1037					  u32 state);
1038static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1039			   u64 *out_data);
1040static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1041static int thermal_init(struct hfi1_devdata *dd);
1042
1043static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1044static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1045					    int msecs);
1046static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1047				  int msecs);
1048static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1049static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1050static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1051				   int msecs);
1052static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1053					 int msecs);
1054static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1055static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1056static void handle_temp_err(struct hfi1_devdata *dd);
1057static void dc_shutdown(struct hfi1_devdata *dd);
1058static void dc_start(struct hfi1_devdata *dd);
1059static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
1060			   unsigned int *np);
1061static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1062static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1063static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1064static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1065
1066/*
1067 * Error interrupt table entry.  This is used as input to the interrupt
1068 * "clear down" routine used for all second tier error interrupt register.
1069 * Second tier interrupt registers have a single bit representing them
1070 * in the top-level CceIntStatus.
1071 */
1072struct err_reg_info {
1073	u32 status;		/* status CSR offset */
1074	u32 clear;		/* clear CSR offset */
1075	u32 mask;		/* mask CSR offset */
1076	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1077	const char *desc;
1078};
1079
1080#define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1081#define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1082#define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1083
1084/*
1085 * Helpers for building HFI and DC error interrupt table entries.  Different
1086 * helpers are needed because of inconsistent register names.
1087 */
1088#define EE(reg, handler, desc) \
1089	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1090		handler, desc }
1091#define DC_EE1(reg, handler, desc) \
1092	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1093#define DC_EE2(reg, handler, desc) \
1094	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1095
1096/*
1097 * Table of the "misc" grouping of error interrupts.  Each entry refers to
1098 * another register containing more information.
1099 */
1100static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1101/* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1102/* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1103/* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1104/* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1105/* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1106/* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1107/* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1108/* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1109	/* the rest are reserved */
1110};
1111
1112/*
1113 * Index into the Various section of the interrupt sources
1114 * corresponding to the Critical Temperature interrupt.
1115 */
1116#define TCRIT_INT_SOURCE 4
1117
1118/*
1119 * SDMA error interrupt entry - refers to another register containing more
1120 * information.
1121 */
1122static const struct err_reg_info sdma_eng_err =
1123	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1124
1125static const struct err_reg_info various_err[NUM_VARIOUS] = {
1126/* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1127/* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1128/* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1129/* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1130/* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1131	/* rest are reserved */
1132};
1133
1134/*
1135 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1136 * register can not be derived from the MTU value because 10K is not
1137 * a power of 2. Therefore, we need a constant. Everything else can
1138 * be calculated.
1139 */
1140#define DCC_CFG_PORT_MTU_CAP_10240 7
1141
1142/*
1143 * Table of the DC grouping of error interrupts.  Each entry refers to
1144 * another register containing more information.
1145 */
1146static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1147/* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1148/* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1149/* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1150/* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1151	/* the rest are reserved */
1152};
1153
1154struct cntr_entry {
1155	/*
1156	 * counter name
1157	 */
1158	char *name;
1159
1160	/*
1161	 * csr to read for name (if applicable)
1162	 */
1163	u64 csr;
1164
1165	/*
1166	 * offset into dd or ppd to store the counter's value
1167	 */
1168	int offset;
1169
1170	/*
1171	 * flags
1172	 */
1173	u8 flags;
1174
1175	/*
1176	 * accessor for stat element, context either dd or ppd
1177	 */
1178	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1179		       int mode, u64 data);
1180};
1181
1182#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1183#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1184
1185#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1186{ \
1187	name, \
1188	csr, \
1189	offset, \
1190	flags, \
1191	accessor \
1192}
1193
1194/* 32bit RXE */
1195#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1196CNTR_ELEM(#name, \
1197	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1198	  0, flags | CNTR_32BIT, \
1199	  port_access_u32_csr)
1200
1201#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1202CNTR_ELEM(#name, \
1203	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1204	  0, flags | CNTR_32BIT, \
1205	  dev_access_u32_csr)
1206
1207/* 64bit RXE */
1208#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1209CNTR_ELEM(#name, \
1210	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1211	  0, flags, \
1212	  port_access_u64_csr)
1213
1214#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1215CNTR_ELEM(#name, \
1216	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1217	  0, flags, \
1218	  dev_access_u64_csr)
1219
1220#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1221#define OVR_ELM(ctx) \
1222CNTR_ELEM("RcvHdrOvr" #ctx, \
1223	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1224	  0, CNTR_NORMAL, port_access_u64_csr)
1225
1226/* 32bit TXE */
1227#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1228CNTR_ELEM(#name, \
1229	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1230	  0, flags | CNTR_32BIT, \
1231	  port_access_u32_csr)
1232
1233/* 64bit TXE */
1234#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1235CNTR_ELEM(#name, \
1236	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1237	  0, flags, \
1238	  port_access_u64_csr)
1239
1240# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1241CNTR_ELEM(#name,\
1242	  counter * 8 + SEND_COUNTER_ARRAY64, \
1243	  0, \
1244	  flags, \
1245	  dev_access_u64_csr)
1246
1247/* CCE */
1248#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1249CNTR_ELEM(#name, \
1250	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1251	  0, flags | CNTR_32BIT, \
1252	  dev_access_u32_csr)
1253
1254#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1255CNTR_ELEM(#name, \
1256	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1257	  0, flags | CNTR_32BIT, \
1258	  dev_access_u32_csr)
1259
1260/* DC */
1261#define DC_PERF_CNTR(name, counter, flags) \
1262CNTR_ELEM(#name, \
1263	  counter, \
1264	  0, \
1265	  flags, \
1266	  dev_access_u64_csr)
1267
1268#define DC_PERF_CNTR_LCB(name, counter, flags) \
1269CNTR_ELEM(#name, \
1270	  counter, \
1271	  0, \
1272	  flags, \
1273	  dc_access_lcb_cntr)
1274
1275/* ibp counters */
1276#define SW_IBP_CNTR(name, cntr) \
1277CNTR_ELEM(#name, \
1278	  0, \
1279	  0, \
1280	  CNTR_SYNTH, \
1281	  access_ibp_##cntr)
1282
1283/**
1284 * hfi1_addr_from_offset - return addr for readq/writeq
1285 * @dd: the dd device
1286 * @offset: the offset of the CSR within bar0
1287 *
1288 * This routine selects the appropriate base address
1289 * based on the indicated offset.
1290 */
1291static inline void __iomem *hfi1_addr_from_offset(
1292	const struct hfi1_devdata *dd,
1293	u32 offset)
1294{
1295	if (offset >= dd->base2_start)
1296		return dd->kregbase2 + (offset - dd->base2_start);
1297	return dd->kregbase1 + offset;
1298}
1299
1300/**
1301 * read_csr - read CSR at the indicated offset
1302 * @dd: the dd device
1303 * @offset: the offset of the CSR within bar0
1304 *
1305 * Return: the value read or all FF's if there
1306 * is no mapping
1307 */
1308u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1309{
1310	if (dd->flags & HFI1_PRESENT)
1311		return readq(hfi1_addr_from_offset(dd, offset));
1312	return -1;
1313}
1314
1315/**
1316 * write_csr - write CSR at the indicated offset
1317 * @dd: the dd device
1318 * @offset: the offset of the CSR within bar0
1319 * @value: value to write
1320 */
1321void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1322{
1323	if (dd->flags & HFI1_PRESENT) {
1324		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1325
1326		/* avoid write to RcvArray */
1327		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1328			return;
1329		writeq(value, base);
1330	}
1331}
1332
1333/**
1334 * get_csr_addr - return te iomem address for offset
1335 * @dd: the dd device
1336 * @offset: the offset of the CSR within bar0
1337 *
1338 * Return: The iomem address to use in subsequent
1339 * writeq/readq operations.
1340 */
1341void __iomem *get_csr_addr(
1342	const struct hfi1_devdata *dd,
1343	u32 offset)
1344{
1345	if (dd->flags & HFI1_PRESENT)
1346		return hfi1_addr_from_offset(dd, offset);
1347	return NULL;
1348}
1349
1350static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1351				 int mode, u64 value)
1352{
1353	u64 ret;
1354
1355	if (mode == CNTR_MODE_R) {
1356		ret = read_csr(dd, csr);
1357	} else if (mode == CNTR_MODE_W) {
1358		write_csr(dd, csr, value);
1359		ret = value;
1360	} else {
1361		dd_dev_err(dd, "Invalid cntr register access mode");
1362		return 0;
1363	}
1364
1365	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1366	return ret;
1367}
1368
1369/* Dev Access */
1370static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1371			      void *context, int vl, int mode, u64 data)
1372{
1373	struct hfi1_devdata *dd = context;
1374	u64 csr = entry->csr;
1375
1376	if (entry->flags & CNTR_SDMA) {
1377		if (vl == CNTR_INVALID_VL)
1378			return 0;
1379		csr += 0x100 * vl;
1380	} else {
1381		if (vl != CNTR_INVALID_VL)
1382			return 0;
1383	}
1384	return read_write_csr(dd, csr, mode, data);
1385}
1386
1387static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1388			      void *context, int idx, int mode, u64 data)
1389{
1390	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1391
1392	if (dd->per_sdma && idx < dd->num_sdma)
1393		return dd->per_sdma[idx].err_cnt;
1394	return 0;
1395}
1396
1397static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1398			      void *context, int idx, int mode, u64 data)
1399{
1400	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1401
1402	if (dd->per_sdma && idx < dd->num_sdma)
1403		return dd->per_sdma[idx].sdma_int_cnt;
1404	return 0;
1405}
1406
1407static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1408				   void *context, int idx, int mode, u64 data)
1409{
1410	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1411
1412	if (dd->per_sdma && idx < dd->num_sdma)
1413		return dd->per_sdma[idx].idle_int_cnt;
1414	return 0;
1415}
1416
1417static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1418				       void *context, int idx, int mode,
1419				       u64 data)
1420{
1421	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1422
1423	if (dd->per_sdma && idx < dd->num_sdma)
1424		return dd->per_sdma[idx].progress_int_cnt;
1425	return 0;
1426}
1427
1428static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1429			      int vl, int mode, u64 data)
1430{
1431	struct hfi1_devdata *dd = context;
1432
1433	u64 val = 0;
1434	u64 csr = entry->csr;
1435
1436	if (entry->flags & CNTR_VL) {
1437		if (vl == CNTR_INVALID_VL)
1438			return 0;
1439		csr += 8 * vl;
1440	} else {
1441		if (vl != CNTR_INVALID_VL)
1442			return 0;
1443	}
1444
1445	val = read_write_csr(dd, csr, mode, data);
1446	return val;
1447}
1448
1449static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1450			      int vl, int mode, u64 data)
1451{
1452	struct hfi1_devdata *dd = context;
1453	u32 csr = entry->csr;
1454	int ret = 0;
1455
1456	if (vl != CNTR_INVALID_VL)
1457		return 0;
1458	if (mode == CNTR_MODE_R)
1459		ret = read_lcb_csr(dd, csr, &data);
1460	else if (mode == CNTR_MODE_W)
1461		ret = write_lcb_csr(dd, csr, data);
1462
1463	if (ret) {
1464		if (!(dd->flags & HFI1_SHUTDOWN))
1465			dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1466		return 0;
1467	}
1468
1469	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1470	return data;
1471}
1472
1473/* Port Access */
1474static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1475			       int vl, int mode, u64 data)
1476{
1477	struct hfi1_pportdata *ppd = context;
1478
1479	if (vl != CNTR_INVALID_VL)
1480		return 0;
1481	return read_write_csr(ppd->dd, entry->csr, mode, data);
1482}
1483
1484static u64 port_access_u64_csr(const struct cntr_entry *entry,
1485			       void *context, int vl, int mode, u64 data)
1486{
1487	struct hfi1_pportdata *ppd = context;
1488	u64 val;
1489	u64 csr = entry->csr;
1490
1491	if (entry->flags & CNTR_VL) {
1492		if (vl == CNTR_INVALID_VL)
1493			return 0;
1494		csr += 8 * vl;
1495	} else {
1496		if (vl != CNTR_INVALID_VL)
1497			return 0;
1498	}
1499	val = read_write_csr(ppd->dd, csr, mode, data);
1500	return val;
1501}
1502
1503/* Software defined */
1504static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1505				u64 data)
1506{
1507	u64 ret;
1508
1509	if (mode == CNTR_MODE_R) {
1510		ret = *cntr;
1511	} else if (mode == CNTR_MODE_W) {
1512		*cntr = data;
1513		ret = data;
1514	} else {
1515		dd_dev_err(dd, "Invalid cntr sw access mode");
1516		return 0;
1517	}
1518
1519	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1520
1521	return ret;
1522}
1523
1524static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1525				 int vl, int mode, u64 data)
1526{
1527	struct hfi1_pportdata *ppd = context;
1528
1529	if (vl != CNTR_INVALID_VL)
1530		return 0;
1531	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1532}
1533
1534static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1535				 int vl, int mode, u64 data)
1536{
1537	struct hfi1_pportdata *ppd = context;
1538
1539	if (vl != CNTR_INVALID_VL)
1540		return 0;
1541	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1542}
1543
1544static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1545				       void *context, int vl, int mode,
1546				       u64 data)
1547{
1548	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1549
1550	if (vl != CNTR_INVALID_VL)
1551		return 0;
1552	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1553}
1554
1555static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1556				   void *context, int vl, int mode, u64 data)
1557{
1558	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1559	u64 zero = 0;
1560	u64 *counter;
1561
1562	if (vl == CNTR_INVALID_VL)
1563		counter = &ppd->port_xmit_discards;
1564	else if (vl >= 0 && vl < C_VL_COUNT)
1565		counter = &ppd->port_xmit_discards_vl[vl];
1566	else
1567		counter = &zero;
1568
1569	return read_write_sw(ppd->dd, counter, mode, data);
1570}
1571
1572static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1573				       void *context, int vl, int mode,
1574				       u64 data)
1575{
1576	struct hfi1_pportdata *ppd = context;
1577
1578	if (vl != CNTR_INVALID_VL)
1579		return 0;
1580
1581	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1582			     mode, data);
1583}
1584
1585static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1586				      void *context, int vl, int mode, u64 data)
1587{
1588	struct hfi1_pportdata *ppd = context;
1589
1590	if (vl != CNTR_INVALID_VL)
1591		return 0;
1592
1593	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1594			     mode, data);
1595}
1596
1597u64 get_all_cpu_total(u64 __percpu *cntr)
1598{
1599	int cpu;
1600	u64 counter = 0;
1601
1602	for_each_possible_cpu(cpu)
1603		counter += *per_cpu_ptr(cntr, cpu);
1604	return counter;
1605}
1606
1607static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1608			  u64 __percpu *cntr,
1609			  int vl, int mode, u64 data)
1610{
1611	u64 ret = 0;
1612
1613	if (vl != CNTR_INVALID_VL)
1614		return 0;
1615
1616	if (mode == CNTR_MODE_R) {
1617		ret = get_all_cpu_total(cntr) - *z_val;
1618	} else if (mode == CNTR_MODE_W) {
1619		/* A write can only zero the counter */
1620		if (data == 0)
1621			*z_val = get_all_cpu_total(cntr);
1622		else
1623			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1624	} else {
1625		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1626		return 0;
1627	}
1628
1629	return ret;
1630}
1631
1632static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1633			      void *context, int vl, int mode, u64 data)
1634{
1635	struct hfi1_devdata *dd = context;
1636
1637	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1638			      mode, data);
1639}
1640
1641static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1642				   void *context, int vl, int mode, u64 data)
1643{
1644	struct hfi1_devdata *dd = context;
1645
1646	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1647			      mode, data);
1648}
1649
1650static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1651			      void *context, int vl, int mode, u64 data)
1652{
1653	struct hfi1_devdata *dd = context;
1654
1655	return dd->verbs_dev.n_piowait;
1656}
1657
1658static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1659			       void *context, int vl, int mode, u64 data)
1660{
1661	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1662
1663	return dd->verbs_dev.n_piodrain;
1664}
1665
1666static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1667				   void *context, int vl, int mode, u64 data)
1668{
1669	struct hfi1_devdata *dd = context;
1670
1671	return dd->ctx0_seq_drop;
1672}
1673
1674static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1675			      void *context, int vl, int mode, u64 data)
1676{
1677	struct hfi1_devdata *dd = context;
1678
1679	return dd->verbs_dev.n_txwait;
1680}
1681
1682static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1683			       void *context, int vl, int mode, u64 data)
1684{
1685	struct hfi1_devdata *dd = context;
1686
1687	return dd->verbs_dev.n_kmem_wait;
1688}
1689
1690static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1691				   void *context, int vl, int mode, u64 data)
1692{
1693	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694
1695	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1696			      mode, data);
1697}
1698
1699/* Software counters for the error status bits within MISC_ERR_STATUS */
1700static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1701					     void *context, int vl, int mode,
1702					     u64 data)
1703{
1704	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1705
1706	return dd->misc_err_status_cnt[12];
1707}
1708
1709static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1710					  void *context, int vl, int mode,
1711					  u64 data)
1712{
1713	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1714
1715	return dd->misc_err_status_cnt[11];
1716}
1717
1718static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1719					       void *context, int vl, int mode,
1720					       u64 data)
1721{
1722	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1723
1724	return dd->misc_err_status_cnt[10];
1725}
1726
1727static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1728						 void *context, int vl,
1729						 int mode, u64 data)
1730{
1731	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1732
1733	return dd->misc_err_status_cnt[9];
1734}
1735
1736static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1737					   void *context, int vl, int mode,
1738					   u64 data)
1739{
1740	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1741
1742	return dd->misc_err_status_cnt[8];
1743}
1744
1745static u64 access_misc_efuse_read_bad_addr_err_cnt(
1746				const struct cntr_entry *entry,
1747				void *context, int vl, int mode, u64 data)
1748{
1749	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1750
1751	return dd->misc_err_status_cnt[7];
1752}
1753
1754static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1755						void *context, int vl,
1756						int mode, u64 data)
1757{
1758	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1759
1760	return dd->misc_err_status_cnt[6];
1761}
1762
1763static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1764					      void *context, int vl, int mode,
1765					      u64 data)
1766{
1767	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1768
1769	return dd->misc_err_status_cnt[5];
1770}
1771
1772static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1773					    void *context, int vl, int mode,
1774					    u64 data)
1775{
1776	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1777
1778	return dd->misc_err_status_cnt[4];
1779}
1780
1781static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1782						 void *context, int vl,
1783						 int mode, u64 data)
1784{
1785	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1786
1787	return dd->misc_err_status_cnt[3];
1788}
1789
1790static u64 access_misc_csr_write_bad_addr_err_cnt(
1791				const struct cntr_entry *entry,
1792				void *context, int vl, int mode, u64 data)
1793{
1794	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1795
1796	return dd->misc_err_status_cnt[2];
1797}
1798
1799static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1800						 void *context, int vl,
1801						 int mode, u64 data)
1802{
1803	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1804
1805	return dd->misc_err_status_cnt[1];
1806}
1807
1808static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1809					  void *context, int vl, int mode,
1810					  u64 data)
1811{
1812	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1813
1814	return dd->misc_err_status_cnt[0];
1815}
1816
1817/*
1818 * Software counter for the aggregate of
1819 * individual CceErrStatus counters
1820 */
1821static u64 access_sw_cce_err_status_aggregated_cnt(
1822				const struct cntr_entry *entry,
1823				void *context, int vl, int mode, u64 data)
1824{
1825	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826
1827	return dd->sw_cce_err_status_aggregate;
1828}
1829
1830/*
1831 * Software counters corresponding to each of the
1832 * error status bits within CceErrStatus
1833 */
1834static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1835					      void *context, int vl, int mode,
1836					      u64 data)
1837{
1838	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839
1840	return dd->cce_err_status_cnt[40];
1841}
1842
1843static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1844					  void *context, int vl, int mode,
1845					  u64 data)
1846{
1847	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1848
1849	return dd->cce_err_status_cnt[39];
1850}
1851
1852static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1853					  void *context, int vl, int mode,
1854					  u64 data)
1855{
1856	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1857
1858	return dd->cce_err_status_cnt[38];
1859}
1860
1861static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1862					     void *context, int vl, int mode,
1863					     u64 data)
1864{
1865	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1866
1867	return dd->cce_err_status_cnt[37];
1868}
1869
1870static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1871					     void *context, int vl, int mode,
1872					     u64 data)
1873{
1874	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1875
1876	return dd->cce_err_status_cnt[36];
1877}
1878
1879static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1880				const struct cntr_entry *entry,
1881				void *context, int vl, int mode, u64 data)
1882{
1883	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1884
1885	return dd->cce_err_status_cnt[35];
1886}
1887
1888static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1889				const struct cntr_entry *entry,
1890				void *context, int vl, int mode, u64 data)
1891{
1892	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1893
1894	return dd->cce_err_status_cnt[34];
1895}
1896
1897static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1898						 void *context, int vl,
1899						 int mode, u64 data)
1900{
1901	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1902
1903	return dd->cce_err_status_cnt[33];
1904}
1905
1906static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1907						void *context, int vl, int mode,
1908						u64 data)
1909{
1910	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1911
1912	return dd->cce_err_status_cnt[32];
1913}
1914
1915static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1916				   void *context, int vl, int mode, u64 data)
1917{
1918	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1919
1920	return dd->cce_err_status_cnt[31];
1921}
1922
1923static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1924					       void *context, int vl, int mode,
1925					       u64 data)
1926{
1927	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1928
1929	return dd->cce_err_status_cnt[30];
1930}
1931
1932static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1933					      void *context, int vl, int mode,
1934					      u64 data)
1935{
1936	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1937
1938	return dd->cce_err_status_cnt[29];
1939}
1940
1941static u64 access_pcic_transmit_back_parity_err_cnt(
1942				const struct cntr_entry *entry,
1943				void *context, int vl, int mode, u64 data)
1944{
1945	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1946
1947	return dd->cce_err_status_cnt[28];
1948}
1949
1950static u64 access_pcic_transmit_front_parity_err_cnt(
1951				const struct cntr_entry *entry,
1952				void *context, int vl, int mode, u64 data)
1953{
1954	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1955
1956	return dd->cce_err_status_cnt[27];
1957}
1958
1959static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1960					     void *context, int vl, int mode,
1961					     u64 data)
1962{
1963	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1964
1965	return dd->cce_err_status_cnt[26];
1966}
1967
1968static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1969					    void *context, int vl, int mode,
1970					    u64 data)
1971{
1972	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1973
1974	return dd->cce_err_status_cnt[25];
1975}
1976
1977static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1978					      void *context, int vl, int mode,
1979					      u64 data)
1980{
1981	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1982
1983	return dd->cce_err_status_cnt[24];
1984}
1985
1986static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1987					     void *context, int vl, int mode,
1988					     u64 data)
1989{
1990	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1991
1992	return dd->cce_err_status_cnt[23];
1993}
1994
1995static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1996						 void *context, int vl,
1997						 int mode, u64 data)
1998{
1999	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2000
2001	return dd->cce_err_status_cnt[22];
2002}
2003
2004static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2005					 void *context, int vl, int mode,
2006					 u64 data)
2007{
2008	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2009
2010	return dd->cce_err_status_cnt[21];
2011}
2012
2013static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2014				const struct cntr_entry *entry,
2015				void *context, int vl, int mode, u64 data)
2016{
2017	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2018
2019	return dd->cce_err_status_cnt[20];
2020}
2021
2022static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2023						 void *context, int vl,
2024						 int mode, u64 data)
2025{
2026	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2027
2028	return dd->cce_err_status_cnt[19];
2029}
2030
2031static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2032					     void *context, int vl, int mode,
2033					     u64 data)
2034{
2035	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2036
2037	return dd->cce_err_status_cnt[18];
2038}
2039
2040static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2041					    void *context, int vl, int mode,
2042					    u64 data)
2043{
2044	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2045
2046	return dd->cce_err_status_cnt[17];
2047}
2048
2049static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2050					      void *context, int vl, int mode,
2051					      u64 data)
2052{
2053	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2054
2055	return dd->cce_err_status_cnt[16];
2056}
2057
2058static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2059					     void *context, int vl, int mode,
2060					     u64 data)
2061{
2062	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2063
2064	return dd->cce_err_status_cnt[15];
2065}
2066
2067static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2068						 void *context, int vl,
2069						 int mode, u64 data)
2070{
2071	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2072
2073	return dd->cce_err_status_cnt[14];
2074}
2075
2076static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2077					     void *context, int vl, int mode,
2078					     u64 data)
2079{
2080	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2081
2082	return dd->cce_err_status_cnt[13];
2083}
2084
2085static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2086				const struct cntr_entry *entry,
2087				void *context, int vl, int mode, u64 data)
2088{
2089	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2090
2091	return dd->cce_err_status_cnt[12];
2092}
2093
2094static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2095				const struct cntr_entry *entry,
2096				void *context, int vl, int mode, u64 data)
2097{
2098	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2099
2100	return dd->cce_err_status_cnt[11];
2101}
2102
2103static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2104				const struct cntr_entry *entry,
2105				void *context, int vl, int mode, u64 data)
2106{
2107	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2108
2109	return dd->cce_err_status_cnt[10];
2110}
2111
2112static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2113				const struct cntr_entry *entry,
2114				void *context, int vl, int mode, u64 data)
2115{
2116	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2117
2118	return dd->cce_err_status_cnt[9];
2119}
2120
2121static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2122				const struct cntr_entry *entry,
2123				void *context, int vl, int mode, u64 data)
2124{
2125	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2126
2127	return dd->cce_err_status_cnt[8];
2128}
2129
2130static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2131						 void *context, int vl,
2132						 int mode, u64 data)
2133{
2134	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2135
2136	return dd->cce_err_status_cnt[7];
2137}
2138
2139static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2140				const struct cntr_entry *entry,
2141				void *context, int vl, int mode, u64 data)
2142{
2143	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2144
2145	return dd->cce_err_status_cnt[6];
2146}
2147
2148static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2149					       void *context, int vl, int mode,
2150					       u64 data)
2151{
2152	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2153
2154	return dd->cce_err_status_cnt[5];
2155}
2156
2157static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2158					  void *context, int vl, int mode,
2159					  u64 data)
2160{
2161	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2162
2163	return dd->cce_err_status_cnt[4];
2164}
2165
2166static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2167				const struct cntr_entry *entry,
2168				void *context, int vl, int mode, u64 data)
2169{
2170	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2171
2172	return dd->cce_err_status_cnt[3];
2173}
2174
2175static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2176						 void *context, int vl,
2177						 int mode, u64 data)
2178{
2179	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2180
2181	return dd->cce_err_status_cnt[2];
2182}
2183
2184static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2185						void *context, int vl,
2186						int mode, u64 data)
2187{
2188	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2189
2190	return dd->cce_err_status_cnt[1];
2191}
2192
2193static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2194					 void *context, int vl, int mode,
2195					 u64 data)
2196{
2197	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2198
2199	return dd->cce_err_status_cnt[0];
2200}
2201
2202/*
2203 * Software counters corresponding to each of the
2204 * error status bits within RcvErrStatus
2205 */
2206static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2207					void *context, int vl, int mode,
2208					u64 data)
2209{
2210	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211
2212	return dd->rcv_err_status_cnt[63];
2213}
2214
2215static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2216						void *context, int vl,
2217						int mode, u64 data)
2218{
2219	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220
2221	return dd->rcv_err_status_cnt[62];
2222}
2223
2224static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2225					       void *context, int vl, int mode,
2226					       u64 data)
2227{
2228	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229
2230	return dd->rcv_err_status_cnt[61];
2231}
2232
2233static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2234					 void *context, int vl, int mode,
2235					 u64 data)
2236{
2237	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238
2239	return dd->rcv_err_status_cnt[60];
2240}
2241
2242static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2243						 void *context, int vl,
2244						 int mode, u64 data)
2245{
2246	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2247
2248	return dd->rcv_err_status_cnt[59];
2249}
2250
2251static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2252						 void *context, int vl,
2253						 int mode, u64 data)
2254{
2255	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2256
2257	return dd->rcv_err_status_cnt[58];
2258}
2259
2260static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2261					    void *context, int vl, int mode,
2262					    u64 data)
2263{
2264	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2265
2266	return dd->rcv_err_status_cnt[57];
2267}
2268
2269static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2270					   void *context, int vl, int mode,
2271					   u64 data)
2272{
2273	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2274
2275	return dd->rcv_err_status_cnt[56];
2276}
2277
2278static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2279					   void *context, int vl, int mode,
2280					   u64 data)
2281{
2282	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2283
2284	return dd->rcv_err_status_cnt[55];
2285}
2286
2287static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2288				const struct cntr_entry *entry,
2289				void *context, int vl, int mode, u64 data)
2290{
2291	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2292
2293	return dd->rcv_err_status_cnt[54];
2294}
2295
2296static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2297				const struct cntr_entry *entry,
2298				void *context, int vl, int mode, u64 data)
2299{
2300	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2301
2302	return dd->rcv_err_status_cnt[53];
2303}
2304
2305static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2306						 void *context, int vl,
2307						 int mode, u64 data)
2308{
2309	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2310
2311	return dd->rcv_err_status_cnt[52];
2312}
2313
2314static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2315						 void *context, int vl,
2316						 int mode, u64 data)
2317{
2318	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2319
2320	return dd->rcv_err_status_cnt[51];
2321}
2322
2323static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2324						 void *context, int vl,
2325						 int mode, u64 data)
2326{
2327	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2328
2329	return dd->rcv_err_status_cnt[50];
2330}
2331
2332static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2333						 void *context, int vl,
2334						 int mode, u64 data)
2335{
2336	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2337
2338	return dd->rcv_err_status_cnt[49];
2339}
2340
2341static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2342						 void *context, int vl,
2343						 int mode, u64 data)
2344{
2345	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2346
2347	return dd->rcv_err_status_cnt[48];
2348}
2349
2350static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2351						 void *context, int vl,
2352						 int mode, u64 data)
2353{
2354	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2355
2356	return dd->rcv_err_status_cnt[47];
2357}
2358
2359static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2360					 void *context, int vl, int mode,
2361					 u64 data)
2362{
2363	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2364
2365	return dd->rcv_err_status_cnt[46];
2366}
2367
2368static u64 access_rx_hq_intr_csr_parity_err_cnt(
2369				const struct cntr_entry *entry,
2370				void *context, int vl, int mode, u64 data)
2371{
2372	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2373
2374	return dd->rcv_err_status_cnt[45];
2375}
2376
2377static u64 access_rx_lookup_csr_parity_err_cnt(
2378				const struct cntr_entry *entry,
2379				void *context, int vl, int mode, u64 data)
2380{
2381	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2382
2383	return dd->rcv_err_status_cnt[44];
2384}
2385
2386static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2387				const struct cntr_entry *entry,
2388				void *context, int vl, int mode, u64 data)
2389{
2390	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2391
2392	return dd->rcv_err_status_cnt[43];
2393}
2394
2395static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2396				const struct cntr_entry *entry,
2397				void *context, int vl, int mode, u64 data)
2398{
2399	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2400
2401	return dd->rcv_err_status_cnt[42];
2402}
2403
2404static u64 access_rx_lookup_des_part2_parity_err_cnt(
2405				const struct cntr_entry *entry,
2406				void *context, int vl, int mode, u64 data)
2407{
2408	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2409
2410	return dd->rcv_err_status_cnt[41];
2411}
2412
2413static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2414				const struct cntr_entry *entry,
2415				void *context, int vl, int mode, u64 data)
2416{
2417	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2418
2419	return dd->rcv_err_status_cnt[40];
2420}
2421
2422static u64 access_rx_lookup_des_part1_unc_err_cnt(
2423				const struct cntr_entry *entry,
2424				void *context, int vl, int mode, u64 data)
2425{
2426	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2427
2428	return dd->rcv_err_status_cnt[39];
2429}
2430
2431static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2432				const struct cntr_entry *entry,
2433				void *context, int vl, int mode, u64 data)
2434{
2435	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2436
2437	return dd->rcv_err_status_cnt[38];
2438}
2439
2440static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2441				const struct cntr_entry *entry,
2442				void *context, int vl, int mode, u64 data)
2443{
2444	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2445
2446	return dd->rcv_err_status_cnt[37];
2447}
2448
2449static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2450				const struct cntr_entry *entry,
2451				void *context, int vl, int mode, u64 data)
2452{
2453	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2454
2455	return dd->rcv_err_status_cnt[36];
2456}
2457
2458static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2459				const struct cntr_entry *entry,
2460				void *context, int vl, int mode, u64 data)
2461{
2462	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2463
2464	return dd->rcv_err_status_cnt[35];
2465}
2466
2467static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2468				const struct cntr_entry *entry,
2469				void *context, int vl, int mode, u64 data)
2470{
2471	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2472
2473	return dd->rcv_err_status_cnt[34];
2474}
2475
2476static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2477				const struct cntr_entry *entry,
2478				void *context, int vl, int mode, u64 data)
2479{
2480	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2481
2482	return dd->rcv_err_status_cnt[33];
2483}
2484
2485static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2486					void *context, int vl, int mode,
2487					u64 data)
2488{
2489	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2490
2491	return dd->rcv_err_status_cnt[32];
2492}
2493
2494static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2495				       void *context, int vl, int mode,
2496				       u64 data)
2497{
2498	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2499
2500	return dd->rcv_err_status_cnt[31];
2501}
2502
2503static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2504					  void *context, int vl, int mode,
2505					  u64 data)
2506{
2507	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2508
2509	return dd->rcv_err_status_cnt[30];
2510}
2511
2512static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2513					     void *context, int vl, int mode,
2514					     u64 data)
2515{
2516	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2517
2518	return dd->rcv_err_status_cnt[29];
2519}
2520
2521static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2522						 void *context, int vl,
2523						 int mode, u64 data)
2524{
2525	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2526
2527	return dd->rcv_err_status_cnt[28];
2528}
2529
2530static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2531				const struct cntr_entry *entry,
2532				void *context, int vl, int mode, u64 data)
2533{
2534	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2535
2536	return dd->rcv_err_status_cnt[27];
2537}
2538
2539static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2540				const struct cntr_entry *entry,
2541				void *context, int vl, int mode, u64 data)
2542{
2543	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2544
2545	return dd->rcv_err_status_cnt[26];
2546}
2547
2548static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2549				const struct cntr_entry *entry,
2550				void *context, int vl, int mode, u64 data)
2551{
2552	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2553
2554	return dd->rcv_err_status_cnt[25];
2555}
2556
2557static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2558				const struct cntr_entry *entry,
2559				void *context, int vl, int mode, u64 data)
2560{
2561	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2562
2563	return dd->rcv_err_status_cnt[24];
2564}
2565
2566static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2567				const struct cntr_entry *entry,
2568				void *context, int vl, int mode, u64 data)
2569{
2570	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2571
2572	return dd->rcv_err_status_cnt[23];
2573}
2574
2575static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2576				const struct cntr_entry *entry,
2577				void *context, int vl, int mode, u64 data)
2578{
2579	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2580
2581	return dd->rcv_err_status_cnt[22];
2582}
2583
2584static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2585				const struct cntr_entry *entry,
2586				void *context, int vl, int mode, u64 data)
2587{
2588	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2589
2590	return dd->rcv_err_status_cnt[21];
2591}
2592
2593static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2594				const struct cntr_entry *entry,
2595				void *context, int vl, int mode, u64 data)
2596{
2597	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2598
2599	return dd->rcv_err_status_cnt[20];
2600}
2601
2602static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2603				const struct cntr_entry *entry,
2604				void *context, int vl, int mode, u64 data)
2605{
2606	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2607
2608	return dd->rcv_err_status_cnt[19];
2609}
2610
2611static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2612						 void *context, int vl,
2613						 int mode, u64 data)
2614{
2615	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2616
2617	return dd->rcv_err_status_cnt[18];
2618}
2619
2620static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2621						 void *context, int vl,
2622						 int mode, u64 data)
2623{
2624	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2625
2626	return dd->rcv_err_status_cnt[17];
2627}
2628
2629static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2630				const struct cntr_entry *entry,
2631				void *context, int vl, int mode, u64 data)
2632{
2633	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2634
2635	return dd->rcv_err_status_cnt[16];
2636}
2637
2638static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2639				const struct cntr_entry *entry,
2640				void *context, int vl, int mode, u64 data)
2641{
2642	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2643
2644	return dd->rcv_err_status_cnt[15];
2645}
2646
2647static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2648						void *context, int vl,
2649						int mode, u64 data)
2650{
2651	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2652
2653	return dd->rcv_err_status_cnt[14];
2654}
2655
2656static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2657						void *context, int vl,
2658						int mode, u64 data)
2659{
2660	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2661
2662	return dd->rcv_err_status_cnt[13];
2663}
2664
2665static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2666					      void *context, int vl, int mode,
2667					      u64 data)
2668{
2669	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2670
2671	return dd->rcv_err_status_cnt[12];
2672}
2673
2674static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2675					  void *context, int vl, int mode,
2676					  u64 data)
2677{
2678	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2679
2680	return dd->rcv_err_status_cnt[11];
2681}
2682
2683static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2684					  void *context, int vl, int mode,
2685					  u64 data)
2686{
2687	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2688
2689	return dd->rcv_err_status_cnt[10];
2690}
2691
2692static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2693					       void *context, int vl, int mode,
2694					       u64 data)
2695{
2696	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2697
2698	return dd->rcv_err_status_cnt[9];
2699}
2700
2701static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2702					    void *context, int vl, int mode,
2703					    u64 data)
2704{
2705	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2706
2707	return dd->rcv_err_status_cnt[8];
2708}
2709
2710static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2711				const struct cntr_entry *entry,
2712				void *context, int vl, int mode, u64 data)
2713{
2714	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2715
2716	return dd->rcv_err_status_cnt[7];
2717}
2718
2719static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2720				const struct cntr_entry *entry,
2721				void *context, int vl, int mode, u64 data)
2722{
2723	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2724
2725	return dd->rcv_err_status_cnt[6];
2726}
2727
2728static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2729					  void *context, int vl, int mode,
2730					  u64 data)
2731{
2732	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2733
2734	return dd->rcv_err_status_cnt[5];
2735}
2736
2737static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2738					  void *context, int vl, int mode,
2739					  u64 data)
2740{
2741	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2742
2743	return dd->rcv_err_status_cnt[4];
2744}
2745
2746static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2747					 void *context, int vl, int mode,
2748					 u64 data)
2749{
2750	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2751
2752	return dd->rcv_err_status_cnt[3];
2753}
2754
2755static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2756					 void *context, int vl, int mode,
2757					 u64 data)
2758{
2759	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2760
2761	return dd->rcv_err_status_cnt[2];
2762}
2763
2764static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2765					    void *context, int vl, int mode,
2766					    u64 data)
2767{
2768	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2769
2770	return dd->rcv_err_status_cnt[1];
2771}
2772
2773static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2774					 void *context, int vl, int mode,
2775					 u64 data)
2776{
2777	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2778
2779	return dd->rcv_err_status_cnt[0];
2780}
2781
2782/*
2783 * Software counters corresponding to each of the
2784 * error status bits within SendPioErrStatus
2785 */
2786static u64 access_pio_pec_sop_head_parity_err_cnt(
2787				const struct cntr_entry *entry,
2788				void *context, int vl, int mode, u64 data)
2789{
2790	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791
2792	return dd->send_pio_err_status_cnt[35];
2793}
2794
2795static u64 access_pio_pcc_sop_head_parity_err_cnt(
2796				const struct cntr_entry *entry,
2797				void *context, int vl, int mode, u64 data)
2798{
2799	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800
2801	return dd->send_pio_err_status_cnt[34];
2802}
2803
2804static u64 access_pio_last_returned_cnt_parity_err_cnt(
2805				const struct cntr_entry *entry,
2806				void *context, int vl, int mode, u64 data)
2807{
2808	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809
2810	return dd->send_pio_err_status_cnt[33];
2811}
2812
2813static u64 access_pio_current_free_cnt_parity_err_cnt(
2814				const struct cntr_entry *entry,
2815				void *context, int vl, int mode, u64 data)
2816{
2817	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818
2819	return dd->send_pio_err_status_cnt[32];
2820}
2821
2822static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2823					  void *context, int vl, int mode,
2824					  u64 data)
2825{
2826	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2827
2828	return dd->send_pio_err_status_cnt[31];
2829}
2830
2831static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2832					  void *context, int vl, int mode,
2833					  u64 data)
2834{
2835	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2836
2837	return dd->send_pio_err_status_cnt[30];
2838}
2839
2840static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2841					   void *context, int vl, int mode,
2842					   u64 data)
2843{
2844	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2845
2846	return dd->send_pio_err_status_cnt[29];
2847}
2848
2849static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2850				const struct cntr_entry *entry,
2851				void *context, int vl, int mode, u64 data)
2852{
2853	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2854
2855	return dd->send_pio_err_status_cnt[28];
2856}
2857
2858static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2859					     void *context, int vl, int mode,
2860					     u64 data)
2861{
2862	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2863
2864	return dd->send_pio_err_status_cnt[27];
2865}
2866
2867static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2868					     void *context, int vl, int mode,
2869					     u64 data)
2870{
2871	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2872
2873	return dd->send_pio_err_status_cnt[26];
2874}
2875
2876static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2877						void *context, int vl,
2878						int mode, u64 data)
2879{
2880	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2881
2882	return dd->send_pio_err_status_cnt[25];
2883}
2884
2885static u64 access_pio_block_qw_count_parity_err_cnt(
2886				const struct cntr_entry *entry,
2887				void *context, int vl, int mode, u64 data)
2888{
2889	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2890
2891	return dd->send_pio_err_status_cnt[24];
2892}
2893
2894static u64 access_pio_write_qw_valid_parity_err_cnt(
2895				const struct cntr_entry *entry,
2896				void *context, int vl, int mode, u64 data)
2897{
2898	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2899
2900	return dd->send_pio_err_status_cnt[23];
2901}
2902
2903static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2904					    void *context, int vl, int mode,
2905					    u64 data)
2906{
2907	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2908
2909	return dd->send_pio_err_status_cnt[22];
2910}
2911
2912static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2913						void *context, int vl,
2914						int mode, u64 data)
2915{
2916	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2917
2918	return dd->send_pio_err_status_cnt[21];
2919}
2920
2921static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2922						void *context, int vl,
2923						int mode, u64 data)
2924{
2925	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2926
2927	return dd->send_pio_err_status_cnt[20];
2928}
2929
2930static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2931						void *context, int vl,
2932						int mode, u64 data)
2933{
2934	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2935
2936	return dd->send_pio_err_status_cnt[19];
2937}
2938
2939static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2940				const struct cntr_entry *entry,
2941				void *context, int vl, int mode, u64 data)
2942{
2943	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2944
2945	return dd->send_pio_err_status_cnt[18];
2946}
2947
2948static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2949					 void *context, int vl, int mode,
2950					 u64 data)
2951{
2952	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2953
2954	return dd->send_pio_err_status_cnt[17];
2955}
2956
2957static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2958					    void *context, int vl, int mode,
2959					    u64 data)
2960{
2961	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2962
2963	return dd->send_pio_err_status_cnt[16];
2964}
2965
2966static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2967				const struct cntr_entry *entry,
2968				void *context, int vl, int mode, u64 data)
2969{
2970	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2971
2972	return dd->send_pio_err_status_cnt[15];
2973}
2974
2975static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2976				const struct cntr_entry *entry,
2977				void *context, int vl, int mode, u64 data)
2978{
2979	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2980
2981	return dd->send_pio_err_status_cnt[14];
2982}
2983
2984static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2985				const struct cntr_entry *entry,
2986				void *context, int vl, int mode, u64 data)
2987{
2988	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2989
2990	return dd->send_pio_err_status_cnt[13];
2991}
2992
2993static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2994				const struct cntr_entry *entry,
2995				void *context, int vl, int mode, u64 data)
2996{
2997	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2998
2999	return dd->send_pio_err_status_cnt[12];
3000}
3001
3002static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3003				const struct cntr_entry *entry,
3004				void *context, int vl, int mode, u64 data)
3005{
3006	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3007
3008	return dd->send_pio_err_status_cnt[11];
3009}
3010
3011static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3012				const struct cntr_entry *entry,
3013				void *context, int vl, int mode, u64 data)
3014{
3015	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3016
3017	return dd->send_pio_err_status_cnt[10];
3018}
3019
3020static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3021				const struct cntr_entry *entry,
3022				void *context, int vl, int mode, u64 data)
3023{
3024	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3025
3026	return dd->send_pio_err_status_cnt[9];
3027}
3028
3029static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3030				const struct cntr_entry *entry,
3031				void *context, int vl, int mode, u64 data)
3032{
3033	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3034
3035	return dd->send_pio_err_status_cnt[8];
3036}
3037
3038static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3039				const struct cntr_entry *entry,
3040				void *context, int vl, int mode, u64 data)
3041{
3042	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3043
3044	return dd->send_pio_err_status_cnt[7];
3045}
3046
3047static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3048					      void *context, int vl, int mode,
3049					      u64 data)
3050{
3051	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3052
3053	return dd->send_pio_err_status_cnt[6];
3054}
3055
3056static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3057					      void *context, int vl, int mode,
3058					      u64 data)
3059{
3060	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3061
3062	return dd->send_pio_err_status_cnt[5];
3063}
3064
3065static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3066					   void *context, int vl, int mode,
3067					   u64 data)
3068{
3069	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3070
3071	return dd->send_pio_err_status_cnt[4];
3072}
3073
3074static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3075					   void *context, int vl, int mode,
3076					   u64 data)
3077{
3078	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3079
3080	return dd->send_pio_err_status_cnt[3];
3081}
3082
3083static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3084					 void *context, int vl, int mode,
3085					 u64 data)
3086{
3087	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3088
3089	return dd->send_pio_err_status_cnt[2];
3090}
3091
3092static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3093						void *context, int vl,
3094						int mode, u64 data)
3095{
3096	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3097
3098	return dd->send_pio_err_status_cnt[1];
3099}
3100
3101static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3102					     void *context, int vl, int mode,
3103					     u64 data)
3104{
3105	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3106
3107	return dd->send_pio_err_status_cnt[0];
3108}
3109
3110/*
3111 * Software counters corresponding to each of the
3112 * error status bits within SendDmaErrStatus
3113 */
3114static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3115				const struct cntr_entry *entry,
3116				void *context, int vl, int mode, u64 data)
3117{
3118	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119
3120	return dd->send_dma_err_status_cnt[3];
3121}
3122
3123static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3124				const struct cntr_entry *entry,
3125				void *context, int vl, int mode, u64 data)
3126{
3127	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128
3129	return dd->send_dma_err_status_cnt[2];
3130}
3131
3132static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3133					  void *context, int vl, int mode,
3134					  u64 data)
3135{
3136	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3137
3138	return dd->send_dma_err_status_cnt[1];
3139}
3140
3141static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3142				       void *context, int vl, int mode,
3143				       u64 data)
3144{
3145	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3146
3147	return dd->send_dma_err_status_cnt[0];
3148}
3149
3150/*
3151 * Software counters corresponding to each of the
3152 * error status bits within SendEgressErrStatus
3153 */
3154static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3155				const struct cntr_entry *entry,
3156				void *context, int vl, int mode, u64 data)
3157{
3158	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159
3160	return dd->send_egress_err_status_cnt[63];
3161}
3162
3163static u64 access_tx_read_sdma_memory_csr_err_cnt(
3164				const struct cntr_entry *entry,
3165				void *context, int vl, int mode, u64 data)
3166{
3167	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168
3169	return dd->send_egress_err_status_cnt[62];
3170}
3171
3172static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3173					     void *context, int vl, int mode,
3174					     u64 data)
3175{
3176	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177
3178	return dd->send_egress_err_status_cnt[61];
3179}
3180
3181static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3182						 void *context, int vl,
3183						 int mode, u64 data)
3184{
3185	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186
3187	return dd->send_egress_err_status_cnt[60];
3188}
3189
3190static u64 access_tx_read_sdma_memory_cor_err_cnt(
3191				const struct cntr_entry *entry,
3192				void *context, int vl, int mode, u64 data)
3193{
3194	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3195
3196	return dd->send_egress_err_status_cnt[59];
3197}
3198
3199static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3200					void *context, int vl, int mode,
3201					u64 data)
3202{
3203	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3204
3205	return dd->send_egress_err_status_cnt[58];
3206}
3207
3208static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3209					    void *context, int vl, int mode,
3210					    u64 data)
3211{
3212	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3213
3214	return dd->send_egress_err_status_cnt[57];
3215}
3216
3217static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3218					      void *context, int vl, int mode,
3219					      u64 data)
3220{
3221	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3222
3223	return dd->send_egress_err_status_cnt[56];
3224}
3225
3226static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3227					      void *context, int vl, int mode,
3228					      u64 data)
3229{
3230	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3231
3232	return dd->send_egress_err_status_cnt[55];
3233}
3234
3235static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3236					      void *context, int vl, int mode,
3237					      u64 data)
3238{
3239	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3240
3241	return dd->send_egress_err_status_cnt[54];
3242}
3243
3244static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3245					      void *context, int vl, int mode,
3246					      u64 data)
3247{
3248	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3249
3250	return dd->send_egress_err_status_cnt[53];
3251}
3252
3253static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3254					      void *context, int vl, int mode,
3255					      u64 data)
3256{
3257	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3258
3259	return dd->send_egress_err_status_cnt[52];
3260}
3261
3262static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3263					      void *context, int vl, int mode,
3264					      u64 data)
3265{
3266	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3267
3268	return dd->send_egress_err_status_cnt[51];
3269}
3270
3271static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3272					      void *context, int vl, int mode,
3273					      u64 data)
3274{
3275	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3276
3277	return dd->send_egress_err_status_cnt[50];
3278}
3279
3280static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3281					      void *context, int vl, int mode,
3282					      u64 data)
3283{
3284	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3285
3286	return dd->send_egress_err_status_cnt[49];
3287}
3288
3289static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3290					      void *context, int vl, int mode,
3291					      u64 data)
3292{
3293	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3294
3295	return dd->send_egress_err_status_cnt[48];
3296}
3297
3298static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3299					      void *context, int vl, int mode,
3300					      u64 data)
3301{
3302	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3303
3304	return dd->send_egress_err_status_cnt[47];
3305}
3306
3307static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3308					    void *context, int vl, int mode,
3309					    u64 data)
3310{
3311	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3312
3313	return dd->send_egress_err_status_cnt[46];
3314}
3315
3316static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3317					     void *context, int vl, int mode,
3318					     u64 data)
3319{
3320	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3321
3322	return dd->send_egress_err_status_cnt[45];
3323}
3324
3325static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3326						 void *context, int vl,
3327						 int mode, u64 data)
3328{
3329	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3330
3331	return dd->send_egress_err_status_cnt[44];
3332}
3333
3334static u64 access_tx_read_sdma_memory_unc_err_cnt(
3335				const struct cntr_entry *entry,
3336				void *context, int vl, int mode, u64 data)
3337{
3338	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3339
3340	return dd->send_egress_err_status_cnt[43];
3341}
3342
3343static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3344					void *context, int vl, int mode,
3345					u64 data)
3346{
3347	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3348
3349	return dd->send_egress_err_status_cnt[42];
3350}
3351
3352static u64 access_tx_credit_return_partiy_err_cnt(
3353				const struct cntr_entry *entry,
3354				void *context, int vl, int mode, u64 data)
3355{
3356	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3357
3358	return dd->send_egress_err_status_cnt[41];
3359}
3360
3361static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3362				const struct cntr_entry *entry,
3363				void *context, int vl, int mode, u64 data)
3364{
3365	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3366
3367	return dd->send_egress_err_status_cnt[40];
3368}
3369
3370static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3371				const struct cntr_entry *entry,
3372				void *context, int vl, int mode, u64 data)
3373{
3374	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3375
3376	return dd->send_egress_err_status_cnt[39];
3377}
3378
3379static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3380				const struct cntr_entry *entry,
3381				void *context, int vl, int mode, u64 data)
3382{
3383	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3384
3385	return dd->send_egress_err_status_cnt[38];
3386}
3387
3388static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3389				const struct cntr_entry *entry,
3390				void *context, int vl, int mode, u64 data)
3391{
3392	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3393
3394	return dd->send_egress_err_status_cnt[37];
3395}
3396
3397static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3398				const struct cntr_entry *entry,
3399				void *context, int vl, int mode, u64 data)
3400{
3401	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3402
3403	return dd->send_egress_err_status_cnt[36];
3404}
3405
3406static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3407				const struct cntr_entry *entry,
3408				void *context, int vl, int mode, u64 data)
3409{
3410	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3411
3412	return dd->send_egress_err_status_cnt[35];
3413}
3414
3415static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3416				const struct cntr_entry *entry,
3417				void *context, int vl, int mode, u64 data)
3418{
3419	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3420
3421	return dd->send_egress_err_status_cnt[34];
3422}
3423
3424static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3425				const struct cntr_entry *entry,
3426				void *context, int vl, int mode, u64 data)
3427{
3428	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3429
3430	return dd->send_egress_err_status_cnt[33];
3431}
3432
3433static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3434				const struct cntr_entry *entry,
3435				void *context, int vl, int mode, u64 data)
3436{
3437	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3438
3439	return dd->send_egress_err_status_cnt[32];
3440}
3441
3442static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3443				const struct cntr_entry *entry,
3444				void *context, int vl, int mode, u64 data)
3445{
3446	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3447
3448	return dd->send_egress_err_status_cnt[31];
3449}
3450
3451static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3452				const struct cntr_entry *entry,
3453				void *context, int vl, int mode, u64 data)
3454{
3455	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3456
3457	return dd->send_egress_err_status_cnt[30];
3458}
3459
3460static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3461				const struct cntr_entry *entry,
3462				void *context, int vl, int mode, u64 data)
3463{
3464	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3465
3466	return dd->send_egress_err_status_cnt[29];
3467}
3468
3469static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3470				const struct cntr_entry *entry,
3471				void *context, int vl, int mode, u64 data)
3472{
3473	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3474
3475	return dd->send_egress_err_status_cnt[28];
3476}
3477
3478static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3479				const struct cntr_entry *entry,
3480				void *context, int vl, int mode, u64 data)
3481{
3482	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3483
3484	return dd->send_egress_err_status_cnt[27];
3485}
3486
3487static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3488				const struct cntr_entry *entry,
3489				void *context, int vl, int mode, u64 data)
3490{
3491	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3492
3493	return dd->send_egress_err_status_cnt[26];
3494}
3495
3496static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3497				const struct cntr_entry *entry,
3498				void *context, int vl, int mode, u64 data)
3499{
3500	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3501
3502	return dd->send_egress_err_status_cnt[25];
3503}
3504
3505static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3506				const struct cntr_entry *entry,
3507				void *context, int vl, int mode, u64 data)
3508{
3509	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3510
3511	return dd->send_egress_err_status_cnt[24];
3512}
3513
3514static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3515				const struct cntr_entry *entry,
3516				void *context, int vl, int mode, u64 data)
3517{
3518	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3519
3520	return dd->send_egress_err_status_cnt[23];
3521}
3522
3523static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3524				const struct cntr_entry *entry,
3525				void *context, int vl, int mode, u64 data)
3526{
3527	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3528
3529	return dd->send_egress_err_status_cnt[22];
3530}
3531
3532static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3533				const struct cntr_entry *entry,
3534				void *context, int vl, int mode, u64 data)
3535{
3536	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3537
3538	return dd->send_egress_err_status_cnt[21];
3539}
3540
3541static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3542				const struct cntr_entry *entry,
3543				void *context, int vl, int mode, u64 data)
3544{
3545	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3546
3547	return dd->send_egress_err_status_cnt[20];
3548}
3549
3550static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3551				const struct cntr_entry *entry,
3552				void *context, int vl, int mode, u64 data)
3553{
3554	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3555
3556	return dd->send_egress_err_status_cnt[19];
3557}
3558
3559static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3560				const struct cntr_entry *entry,
3561				void *context, int vl, int mode, u64 data)
3562{
3563	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3564
3565	return dd->send_egress_err_status_cnt[18];
3566}
3567
3568static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3569				const struct cntr_entry *entry,
3570				void *context, int vl, int mode, u64 data)
3571{
3572	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3573
3574	return dd->send_egress_err_status_cnt[17];
3575}
3576
3577static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3578				const struct cntr_entry *entry,
3579				void *context, int vl, int mode, u64 data)
3580{
3581	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3582
3583	return dd->send_egress_err_status_cnt[16];
3584}
3585
3586static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3587					   void *context, int vl, int mode,
3588					   u64 data)
3589{
3590	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3591
3592	return dd->send_egress_err_status_cnt[15];
3593}
3594
3595static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3596						 void *context, int vl,
3597						 int mode, u64 data)
3598{
3599	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3600
3601	return dd->send_egress_err_status_cnt[14];
3602}
3603
3604static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3605					       void *context, int vl, int mode,
3606					       u64 data)
3607{
3608	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3609
3610	return dd->send_egress_err_status_cnt[13];
3611}
3612
3613static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3614					void *context, int vl, int mode,
3615					u64 data)
3616{
3617	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3618
3619	return dd->send_egress_err_status_cnt[12];
3620}
3621
3622static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3623				const struct cntr_entry *entry,
3624				void *context, int vl, int mode, u64 data)
3625{
3626	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3627
3628	return dd->send_egress_err_status_cnt[11];
3629}
3630
3631static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3632					     void *context, int vl, int mode,
3633					     u64 data)
3634{
3635	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3636
3637	return dd->send_egress_err_status_cnt[10];
3638}
3639
3640static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3641					    void *context, int vl, int mode,
3642					    u64 data)
3643{
3644	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3645
3646	return dd->send_egress_err_status_cnt[9];
3647}
3648
3649static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3650				const struct cntr_entry *entry,
3651				void *context, int vl, int mode, u64 data)
3652{
3653	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3654
3655	return dd->send_egress_err_status_cnt[8];
3656}
3657
3658static u64 access_tx_pio_launch_intf_parity_err_cnt(
3659				const struct cntr_entry *entry,
3660				void *context, int vl, int mode, u64 data)
3661{
3662	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3663
3664	return dd->send_egress_err_status_cnt[7];
3665}
3666
3667static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3668					    void *context, int vl, int mode,
3669					    u64 data)
3670{
3671	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3672
3673	return dd->send_egress_err_status_cnt[6];
3674}
3675
3676static u64 access_tx_incorrect_link_state_err_cnt(
3677				const struct cntr_entry *entry,
3678				void *context, int vl, int mode, u64 data)
3679{
3680	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3681
3682	return dd->send_egress_err_status_cnt[5];
3683}
3684
3685static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3686				      void *context, int vl, int mode,
3687				      u64 data)
3688{
3689	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3690
3691	return dd->send_egress_err_status_cnt[4];
3692}
3693
3694static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3695				const struct cntr_entry *entry,
3696				void *context, int vl, int mode, u64 data)
3697{
3698	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3699
3700	return dd->send_egress_err_status_cnt[3];
3701}
3702
3703static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3704					    void *context, int vl, int mode,
3705					    u64 data)
3706{
3707	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3708
3709	return dd->send_egress_err_status_cnt[2];
3710}
3711
3712static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3713				const struct cntr_entry *entry,
3714				void *context, int vl, int mode, u64 data)
3715{
3716	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3717
3718	return dd->send_egress_err_status_cnt[1];
3719}
3720
3721static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3722				const struct cntr_entry *entry,
3723				void *context, int vl, int mode, u64 data)
3724{
3725	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3726
3727	return dd->send_egress_err_status_cnt[0];
3728}
3729
3730/*
3731 * Software counters corresponding to each of the
3732 * error status bits within SendErrStatus
3733 */
3734static u64 access_send_csr_write_bad_addr_err_cnt(
3735				const struct cntr_entry *entry,
3736				void *context, int vl, int mode, u64 data)
3737{
3738	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739
3740	return dd->send_err_status_cnt[2];
3741}
3742
3743static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3744						 void *context, int vl,
3745						 int mode, u64 data)
3746{
3747	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748
3749	return dd->send_err_status_cnt[1];
3750}
3751
3752static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3753				      void *context, int vl, int mode,
3754				      u64 data)
3755{
3756	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3757
3758	return dd->send_err_status_cnt[0];
3759}
3760
3761/*
3762 * Software counters corresponding to each of the
3763 * error status bits within SendCtxtErrStatus
3764 */
3765static u64 access_pio_write_out_of_bounds_err_cnt(
3766				const struct cntr_entry *entry,
3767				void *context, int vl, int mode, u64 data)
3768{
3769	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770
3771	return dd->sw_ctxt_err_status_cnt[4];
3772}
3773
3774static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3775					     void *context, int vl, int mode,
3776					     u64 data)
3777{
3778	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779
3780	return dd->sw_ctxt_err_status_cnt[3];
3781}
3782
3783static u64 access_pio_write_crosses_boundary_err_cnt(
3784				const struct cntr_entry *entry,
3785				void *context, int vl, int mode, u64 data)
3786{
3787	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3788
3789	return dd->sw_ctxt_err_status_cnt[2];
3790}
3791
3792static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3793						void *context, int vl,
3794						int mode, u64 data)
3795{
3796	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3797
3798	return dd->sw_ctxt_err_status_cnt[1];
3799}
3800
3801static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3802					       void *context, int vl, int mode,
3803					       u64 data)
3804{
3805	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3806
3807	return dd->sw_ctxt_err_status_cnt[0];
3808}
3809
3810/*
3811 * Software counters corresponding to each of the
3812 * error status bits within SendDmaEngErrStatus
3813 */
3814static u64 access_sdma_header_request_fifo_cor_err_cnt(
3815				const struct cntr_entry *entry,
3816				void *context, int vl, int mode, u64 data)
3817{
3818	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819
3820	return dd->sw_send_dma_eng_err_status_cnt[23];
3821}
3822
3823static u64 access_sdma_header_storage_cor_err_cnt(
3824				const struct cntr_entry *entry,
3825				void *context, int vl, int mode, u64 data)
3826{
3827	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828
3829	return dd->sw_send_dma_eng_err_status_cnt[22];
3830}
3831
3832static u64 access_sdma_packet_tracking_cor_err_cnt(
3833				const struct cntr_entry *entry,
3834				void *context, int vl, int mode, u64 data)
3835{
3836	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837
3838	return dd->sw_send_dma_eng_err_status_cnt[21];
3839}
3840
3841static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3842					    void *context, int vl, int mode,
3843					    u64 data)
3844{
3845	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846
3847	return dd->sw_send_dma_eng_err_status_cnt[20];
3848}
3849
3850static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3851					      void *context, int vl, int mode,
3852					      u64 data)
3853{
3854	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3855
3856	return dd->sw_send_dma_eng_err_status_cnt[19];
3857}
3858
3859static u64 access_sdma_header_request_fifo_unc_err_cnt(
3860				const struct cntr_entry *entry,
3861				void *context, int vl, int mode, u64 data)
3862{
3863	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3864
3865	return dd->sw_send_dma_eng_err_status_cnt[18];
3866}
3867
3868static u64 access_sdma_header_storage_unc_err_cnt(
3869				const struct cntr_entry *entry,
3870				void *context, int vl, int mode, u64 data)
3871{
3872	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3873
3874	return dd->sw_send_dma_eng_err_status_cnt[17];
3875}
3876
3877static u64 access_sdma_packet_tracking_unc_err_cnt(
3878				const struct cntr_entry *entry,
3879				void *context, int vl, int mode, u64 data)
3880{
3881	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3882
3883	return dd->sw_send_dma_eng_err_status_cnt[16];
3884}
3885
3886static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3887					    void *context, int vl, int mode,
3888					    u64 data)
3889{
3890	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3891
3892	return dd->sw_send_dma_eng_err_status_cnt[15];
3893}
3894
3895static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3896					      void *context, int vl, int mode,
3897					      u64 data)
3898{
3899	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3900
3901	return dd->sw_send_dma_eng_err_status_cnt[14];
3902}
3903
3904static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3905				       void *context, int vl, int mode,
3906				       u64 data)
3907{
3908	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3909
3910	return dd->sw_send_dma_eng_err_status_cnt[13];
3911}
3912
3913static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3914					     void *context, int vl, int mode,
3915					     u64 data)
3916{
3917	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3918
3919	return dd->sw_send_dma_eng_err_status_cnt[12];
3920}
3921
3922static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3923					      void *context, int vl, int mode,
3924					      u64 data)
3925{
3926	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3927
3928	return dd->sw_send_dma_eng_err_status_cnt[11];
3929}
3930
3931static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3932					     void *context, int vl, int mode,
3933					     u64 data)
3934{
3935	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3936
3937	return dd->sw_send_dma_eng_err_status_cnt[10];
3938}
3939
3940static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3941					  void *context, int vl, int mode,
3942					  u64 data)
3943{
3944	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3945
3946	return dd->sw_send_dma_eng_err_status_cnt[9];
3947}
3948
3949static u64 access_sdma_packet_desc_overflow_err_cnt(
3950				const struct cntr_entry *entry,
3951				void *context, int vl, int mode, u64 data)
3952{
3953	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3954
3955	return dd->sw_send_dma_eng_err_status_cnt[8];
3956}
3957
3958static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3959					       void *context, int vl,
3960					       int mode, u64 data)
3961{
3962	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3963
3964	return dd->sw_send_dma_eng_err_status_cnt[7];
3965}
3966
3967static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3968				    void *context, int vl, int mode, u64 data)
3969{
3970	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3971
3972	return dd->sw_send_dma_eng_err_status_cnt[6];
3973}
3974
3975static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3976					void *context, int vl, int mode,
3977					u64 data)
3978{
3979	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3980
3981	return dd->sw_send_dma_eng_err_status_cnt[5];
3982}
3983
3984static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3985					  void *context, int vl, int mode,
3986					  u64 data)
3987{
3988	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3989
3990	return dd->sw_send_dma_eng_err_status_cnt[4];
3991}
3992
3993static u64 access_sdma_tail_out_of_bounds_err_cnt(
3994				const struct cntr_entry *entry,
3995				void *context, int vl, int mode, u64 data)
3996{
3997	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3998
3999	return dd->sw_send_dma_eng_err_status_cnt[3];
4000}
4001
4002static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4003					void *context, int vl, int mode,
4004					u64 data)
4005{
4006	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4007
4008	return dd->sw_send_dma_eng_err_status_cnt[2];
4009}
4010
4011static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4012					    void *context, int vl, int mode,
4013					    u64 data)
4014{
4015	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4016
4017	return dd->sw_send_dma_eng_err_status_cnt[1];
4018}
4019
4020static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4021					void *context, int vl, int mode,
4022					u64 data)
4023{
4024	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4025
4026	return dd->sw_send_dma_eng_err_status_cnt[0];
4027}
4028
4029static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4030				 void *context, int vl, int mode,
4031				 u64 data)
4032{
4033	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4034
4035	u64 val = 0;
4036	u64 csr = entry->csr;
4037
4038	val = read_write_csr(dd, csr, mode, data);
4039	if (mode == CNTR_MODE_R) {
4040		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4041			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4042	} else if (mode == CNTR_MODE_W) {
4043		dd->sw_rcv_bypass_packet_errors = 0;
4044	} else {
4045		dd_dev_err(dd, "Invalid cntr register access mode");
4046		return 0;
4047	}
4048	return val;
4049}
4050
4051#define def_access_sw_cpu(cntr) \
4052static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4053			      void *context, int vl, int mode, u64 data)      \
4054{									      \
4055	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4056	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4057			      ppd->ibport_data.rvp.cntr, vl,		      \
4058			      mode, data);				      \
4059}
4060
4061def_access_sw_cpu(rc_acks);
4062def_access_sw_cpu(rc_qacks);
4063def_access_sw_cpu(rc_delayed_comp);
4064
4065#define def_access_ibp_counter(cntr) \
4066static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4067				void *context, int vl, int mode, u64 data)    \
4068{									      \
4069	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4070									      \
4071	if (vl != CNTR_INVALID_VL)					      \
4072		return 0;						      \
4073									      \
4074	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4075			     mode, data);				      \
4076}
4077
4078def_access_ibp_counter(loop_pkts);
4079def_access_ibp_counter(rc_resends);
4080def_access_ibp_counter(rnr_naks);
4081def_access_ibp_counter(other_naks);
4082def_access_ibp_counter(rc_timeouts);
4083def_access_ibp_counter(pkt_drops);
4084def_access_ibp_counter(dmawait);
4085def_access_ibp_counter(rc_seqnak);
4086def_access_ibp_counter(rc_dupreq);
4087def_access_ibp_counter(rdma_seq);
4088def_access_ibp_counter(unaligned);
4089def_access_ibp_counter(seq_naks);
4090def_access_ibp_counter(rc_crwaits);
4091
4092static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4093[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4094[C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4095[C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4096[C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4097[C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4098[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4099			CNTR_NORMAL),
4100[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4101			CNTR_NORMAL),
4102[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4103			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4104			CNTR_NORMAL),
4105[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4106			CNTR_NORMAL),
4107[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4108			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4109[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4110			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4111[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4112			CNTR_NORMAL),
4113[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4114			CNTR_NORMAL),
4115[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4116			CNTR_NORMAL),
4117[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4118			CNTR_NORMAL),
4119[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4120			CNTR_NORMAL),
4121[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4122			CNTR_NORMAL),
4123[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4124			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4125[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4126			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4127[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4128			      CNTR_SYNTH),
4129[C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4130			    access_dc_rcv_err_cnt),
4131[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4132				 CNTR_SYNTH),
4133[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4134				  CNTR_SYNTH),
4135[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4136				  CNTR_SYNTH),
4137[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4138				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4139[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4140				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4141				  CNTR_SYNTH),
4142[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4143				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4144[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4145			       CNTR_SYNTH),
4146[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4147			      CNTR_SYNTH),
4148[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4149			       CNTR_SYNTH),
4150[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4151				 CNTR_SYNTH),
4152[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4153				CNTR_SYNTH),
4154[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4155				CNTR_SYNTH),
4156[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4157			       CNTR_SYNTH),
4158[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4159				 CNTR_SYNTH | CNTR_VL),
4160[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4161				CNTR_SYNTH | CNTR_VL),
4162[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4163[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4164				 CNTR_SYNTH | CNTR_VL),
4165[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4166[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4167				 CNTR_SYNTH | CNTR_VL),
4168[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4169			      CNTR_SYNTH),
4170[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4171				 CNTR_SYNTH | CNTR_VL),
4172[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4173				CNTR_SYNTH),
4174[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4175				   CNTR_SYNTH | CNTR_VL),
4176[C_DC_TOTAL_CRC] =
4177	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4178			 CNTR_SYNTH),
4179[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4180				  CNTR_SYNTH),
4181[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4182				  CNTR_SYNTH),
4183[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4184				  CNTR_SYNTH),
4185[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4186				  CNTR_SYNTH),
4187[C_DC_CRC_MULT_LN] =
4188	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4189			 CNTR_SYNTH),
4190[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4191				    CNTR_SYNTH),
4192[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4193				    CNTR_SYNTH),
4194[C_DC_SEQ_CRC_CNT] =
4195	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4196			 CNTR_SYNTH),
4197[C_DC_ESC0_ONLY_CNT] =
4198	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4199			 CNTR_SYNTH),
4200[C_DC_ESC0_PLUS1_CNT] =
4201	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4202			 CNTR_SYNTH),
4203[C_DC_ESC0_PLUS2_CNT] =
4204	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4205			 CNTR_SYNTH),
4206[C_DC_REINIT_FROM_PEER_CNT] =
4207	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4208			 CNTR_SYNTH),
4209[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4210				  CNTR_SYNTH),
4211[C_DC_MISC_FLG_CNT] =
4212	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4213			 CNTR_SYNTH),
4214[C_DC_PRF_GOOD_LTP_CNT] =
4215	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4216[C_DC_PRF_ACCEPTED_LTP_CNT] =
4217	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4218			 CNTR_SYNTH),
4219[C_DC_PRF_RX_FLIT_CNT] =
4220	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4221[C_DC_PRF_TX_FLIT_CNT] =
4222	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4223[C_DC_PRF_CLK_CNTR] =
4224	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4225[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4226	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4227[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4228	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4229			 CNTR_SYNTH),
4230[C_DC_PG_STS_TX_SBE_CNT] =
4231	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4232[C_DC_PG_STS_TX_MBE_CNT] =
4233	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4234			 CNTR_SYNTH),
4235[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4236			    access_sw_cpu_intr),
4237[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4238			    access_sw_cpu_rcv_limit),
4239[C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4240			    access_sw_ctx0_seq_drop),
4241[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4242			    access_sw_vtx_wait),
4243[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4244			    access_sw_pio_wait),
4245[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4246			    access_sw_pio_drain),
4247[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4248			    access_sw_kmem_wait),
4249[C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4250			    hfi1_access_sw_tid_wait),
4251[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4252			    access_sw_send_schedule),
4253[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4254				      SEND_DMA_DESC_FETCHED_CNT, 0,
4255				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4256				      dev_access_u32_csr),
4257[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4258			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4259			     access_sde_int_cnt),
4260[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4261			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4262			     access_sde_err_cnt),
4263[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4264				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4265				  access_sde_idle_int_cnt),
4266[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4267				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4268				      access_sde_progress_int_cnt),
4269/* MISC_ERR_STATUS */
4270[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4271				CNTR_NORMAL,
4272				access_misc_pll_lock_fail_err_cnt),
4273[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4274				CNTR_NORMAL,
4275				access_misc_mbist_fail_err_cnt),
4276[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4277				CNTR_NORMAL,
4278				access_misc_invalid_eep_cmd_err_cnt),
4279[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4280				CNTR_NORMAL,
4281				access_misc_efuse_done_parity_err_cnt),
4282[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4283				CNTR_NORMAL,
4284				access_misc_efuse_write_err_cnt),
4285[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4286				0, CNTR_NORMAL,
4287				access_misc_efuse_read_bad_addr_err_cnt),
4288[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4289				CNTR_NORMAL,
4290				access_misc_efuse_csr_parity_err_cnt),
4291[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4292				CNTR_NORMAL,
4293				access_misc_fw_auth_failed_err_cnt),
4294[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4295				CNTR_NORMAL,
4296				access_misc_key_mismatch_err_cnt),
4297[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4298				CNTR_NORMAL,
4299				access_misc_sbus_write_failed_err_cnt),
4300[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4301				CNTR_NORMAL,
4302				access_misc_csr_write_bad_addr_err_cnt),
4303[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4304				CNTR_NORMAL,
4305				access_misc_csr_read_bad_addr_err_cnt),
4306[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4307				CNTR_NORMAL,
4308				access_misc_csr_parity_err_cnt),
4309/* CceErrStatus */
4310[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4311				CNTR_NORMAL,
4312				access_sw_cce_err_status_aggregated_cnt),
4313[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4314				CNTR_NORMAL,
4315				access_cce_msix_csr_parity_err_cnt),
4316[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4317				CNTR_NORMAL,
4318				access_cce_int_map_unc_err_cnt),
4319[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4320				CNTR_NORMAL,
4321				access_cce_int_map_cor_err_cnt),
4322[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4323				CNTR_NORMAL,
4324				access_cce_msix_table_unc_err_cnt),
4325[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4326				CNTR_NORMAL,
4327				access_cce_msix_table_cor_err_cnt),
4328[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4329				0, CNTR_NORMAL,
4330				access_cce_rxdma_conv_fifo_parity_err_cnt),
4331[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4332				0, CNTR_NORMAL,
4333				access_cce_rcpl_async_fifo_parity_err_cnt),
4334[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4335				CNTR_NORMAL,
4336				access_cce_seg_write_bad_addr_err_cnt),
4337[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4338				CNTR_NORMAL,
4339				access_cce_seg_read_bad_addr_err_cnt),
4340[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4341				CNTR_NORMAL,
4342				access_la_triggered_cnt),
4343[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4344				CNTR_NORMAL,
4345				access_cce_trgt_cpl_timeout_err_cnt),
4346[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4347				CNTR_NORMAL,
4348				access_pcic_receive_parity_err_cnt),
4349[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4350				CNTR_NORMAL,
4351				access_pcic_transmit_back_parity_err_cnt),
4352[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4353				0, CNTR_NORMAL,
4354				access_pcic_transmit_front_parity_err_cnt),
4355[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4356				CNTR_NORMAL,
4357				access_pcic_cpl_dat_q_unc_err_cnt),
4358[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4359				CNTR_NORMAL,
4360				access_pcic_cpl_hd_q_unc_err_cnt),
4361[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4362				CNTR_NORMAL,
4363				access_pcic_post_dat_q_unc_err_cnt),
4364[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4365				CNTR_NORMAL,
4366				access_pcic_post_hd_q_unc_err_cnt),
4367[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4368				CNTR_NORMAL,
4369				access_pcic_retry_sot_mem_unc_err_cnt),
4370[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4371				CNTR_NORMAL,
4372				access_pcic_retry_mem_unc_err),
4373[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4374				CNTR_NORMAL,
4375				access_pcic_n_post_dat_q_parity_err_cnt),
4376[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4377				CNTR_NORMAL,
4378				access_pcic_n_post_h_q_parity_err_cnt),
4379[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4380				CNTR_NORMAL,
4381				access_pcic_cpl_dat_q_cor_err_cnt),
4382[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4383				CNTR_NORMAL,
4384				access_pcic_cpl_hd_q_cor_err_cnt),
4385[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4386				CNTR_NORMAL,
4387				access_pcic_post_dat_q_cor_err_cnt),
4388[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4389				CNTR_NORMAL,
4390				access_pcic_post_hd_q_cor_err_cnt),
4391[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4392				CNTR_NORMAL,
4393				access_pcic_retry_sot_mem_cor_err_cnt),
4394[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4395				CNTR_NORMAL,
4396				access_pcic_retry_mem_cor_err_cnt),
4397[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4398				"CceCli1AsyncFifoDbgParityError", 0, 0,
4399				CNTR_NORMAL,
4400				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4401[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4402				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4403				CNTR_NORMAL,
4404				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4405				),
4406[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4407			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4408			CNTR_NORMAL,
4409			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4410[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4411			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4412			CNTR_NORMAL,
4413			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4414[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4415			0, CNTR_NORMAL,
4416			access_cce_cli2_async_fifo_parity_err_cnt),
4417[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4418			CNTR_NORMAL,
4419			access_cce_csr_cfg_bus_parity_err_cnt),
4420[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4421			0, CNTR_NORMAL,
4422			access_cce_cli0_async_fifo_parity_err_cnt),
4423[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4424			CNTR_NORMAL,
4425			access_cce_rspd_data_parity_err_cnt),
4426[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4427			CNTR_NORMAL,
4428			access_cce_trgt_access_err_cnt),
4429[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4430			0, CNTR_NORMAL,
4431			access_cce_trgt_async_fifo_parity_err_cnt),
4432[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4433			CNTR_NORMAL,
4434			access_cce_csr_write_bad_addr_err_cnt),
4435[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4436			CNTR_NORMAL,
4437			access_cce_csr_read_bad_addr_err_cnt),
4438[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4439			CNTR_NORMAL,
4440			access_ccs_csr_parity_err_cnt),
4441
4442/* RcvErrStatus */
4443[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4444			CNTR_NORMAL,
4445			access_rx_csr_parity_err_cnt),
4446[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4447			CNTR_NORMAL,
4448			access_rx_csr_write_bad_addr_err_cnt),
4449[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4450			CNTR_NORMAL,
4451			access_rx_csr_read_bad_addr_err_cnt),
4452[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4453			CNTR_NORMAL,
4454			access_rx_dma_csr_unc_err_cnt),
4455[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4456			CNTR_NORMAL,
4457			access_rx_dma_dq_fsm_encoding_err_cnt),
4458[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4459			CNTR_NORMAL,
4460			access_rx_dma_eq_fsm_encoding_err_cnt),
4461[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4462			CNTR_NORMAL,
4463			access_rx_dma_csr_parity_err_cnt),
4464[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4465			CNTR_NORMAL,
4466			access_rx_rbuf_data_cor_err_cnt),
4467[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4468			CNTR_NORMAL,
4469			access_rx_rbuf_data_unc_err_cnt),
4470[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4471			CNTR_NORMAL,
4472			access_rx_dma_data_fifo_rd_cor_err_cnt),
4473[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4474			CNTR_NORMAL,
4475			access_rx_dma_data_fifo_rd_unc_err_cnt),
4476[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4477			CNTR_NORMAL,
4478			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4479[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4480			CNTR_NORMAL,
4481			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4482[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4483			CNTR_NORMAL,
4484			access_rx_rbuf_desc_part2_cor_err_cnt),
4485[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4486			CNTR_NORMAL,
4487			access_rx_rbuf_desc_part2_unc_err_cnt),
4488[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4489			CNTR_NORMAL,
4490			access_rx_rbuf_desc_part1_cor_err_cnt),
4491[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4492			CNTR_NORMAL,
4493			access_rx_rbuf_desc_part1_unc_err_cnt),
4494[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4495			CNTR_NORMAL,
4496			access_rx_hq_intr_fsm_err_cnt),
4497[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4498			CNTR_NORMAL,
4499			access_rx_hq_intr_csr_parity_err_cnt),
4500[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4501			CNTR_NORMAL,
4502			access_rx_lookup_csr_parity_err_cnt),
4503[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4504			CNTR_NORMAL,
4505			access_rx_lookup_rcv_array_cor_err_cnt),
4506[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4507			CNTR_NORMAL,
4508			access_rx_lookup_rcv_array_unc_err_cnt),
4509[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4510			0, CNTR_NORMAL,
4511			access_rx_lookup_des_part2_parity_err_cnt),
4512[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4513			0, CNTR_NORMAL,
4514			access_rx_lookup_des_part1_unc_cor_err_cnt),
4515[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4516			CNTR_NORMAL,
4517			access_rx_lookup_des_part1_unc_err_cnt),
4518[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4519			CNTR_NORMAL,
4520			access_rx_rbuf_next_free_buf_cor_err_cnt),
4521[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4522			CNTR_NORMAL,
4523			access_rx_rbuf_next_free_buf_unc_err_cnt),
4524[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4525			"RxRbufFlInitWrAddrParityErr", 0, 0,
4526			CNTR_NORMAL,
4527			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4528[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4529			0, CNTR_NORMAL,
4530			access_rx_rbuf_fl_initdone_parity_err_cnt),
4531[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4532			0, CNTR_NORMAL,
4533			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4534[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4535			CNTR_NORMAL,
4536			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4537[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4538			CNTR_NORMAL,
4539			access_rx_rbuf_empty_err_cnt),
4540[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4541			CNTR_NORMAL,
4542			access_rx_rbuf_full_err_cnt),
4543[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4544			CNTR_NORMAL,
4545			access_rbuf_bad_lookup_err_cnt),
4546[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4547			CNTR_NORMAL,
4548			access_rbuf_ctx_id_parity_err_cnt),
4549[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4550			CNTR_NORMAL,
4551			access_rbuf_csr_qeopdw_parity_err_cnt),
4552[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4553			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4554			CNTR_NORMAL,
4555			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4556[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4557			"RxRbufCsrQTlPtrParityErr", 0, 0,
4558			CNTR_NORMAL,
4559			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4560[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4561			0, CNTR_NORMAL,
4562			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4563[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4564			0, CNTR_NORMAL,
4565			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4566[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4567			0, 0, CNTR_NORMAL,
4568			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4569[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4570			0, CNTR_NORMAL,
4571			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4572[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4573			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4574			CNTR_NORMAL,
4575			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4576[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4577			0, CNTR_NORMAL,
4578			access_rx_rbuf_block_list_read_cor_err_cnt),
4579[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4580			0, CNTR_NORMAL,
4581			access_rx_rbuf_block_list_read_unc_err_cnt),
4582[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4583			CNTR_NORMAL,
4584			access_rx_rbuf_lookup_des_cor_err_cnt),
4585[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4586			CNTR_NORMAL,
4587			access_rx_rbuf_lookup_des_unc_err_cnt),
4588[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4589			"RxRbufLookupDesRegUncCorErr", 0, 0,
4590			CNTR_NORMAL,
4591			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4592[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4593			CNTR_NORMAL,
4594			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4595[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4596			CNTR_NORMAL,
4597			access_rx_rbuf_free_list_cor_err_cnt),
4598[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4599			CNTR_NORMAL,
4600			access_rx_rbuf_free_list_unc_err_cnt),
4601[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4602			CNTR_NORMAL,
4603			access_rx_rcv_fsm_encoding_err_cnt),
4604[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4605			CNTR_NORMAL,
4606			access_rx_dma_flag_cor_err_cnt),
4607[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4608			CNTR_NORMAL,
4609			access_rx_dma_flag_unc_err_cnt),
4610[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4611			CNTR_NORMAL,
4612			access_rx_dc_sop_eop_parity_err_cnt),
4613[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4614			CNTR_NORMAL,
4615			access_rx_rcv_csr_parity_err_cnt),
4616[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4617			CNTR_NORMAL,
4618			access_rx_rcv_qp_map_table_cor_err_cnt),
4619[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4620			CNTR_NORMAL,
4621			access_rx_rcv_qp_map_table_unc_err_cnt),
4622[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4623			CNTR_NORMAL,
4624			access_rx_rcv_data_cor_err_cnt),
4625[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4626			CNTR_NORMAL,
4627			access_rx_rcv_data_unc_err_cnt),
4628[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4629			CNTR_NORMAL,
4630			access_rx_rcv_hdr_cor_err_cnt),
4631[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4632			CNTR_NORMAL,
4633			access_rx_rcv_hdr_unc_err_cnt),
4634[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4635			CNTR_NORMAL,
4636			access_rx_dc_intf_parity_err_cnt),
4637[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4638			CNTR_NORMAL,
4639			access_rx_dma_csr_cor_err_cnt),
4640/* SendPioErrStatus */
4641[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4642			CNTR_NORMAL,
4643			access_pio_pec_sop_head_parity_err_cnt),
4644[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4645			CNTR_NORMAL,
4646			access_pio_pcc_sop_head_parity_err_cnt),
4647[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4648			0, 0, CNTR_NORMAL,
4649			access_pio_last_returned_cnt_parity_err_cnt),
4650[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4651			0, CNTR_NORMAL,
4652			access_pio_current_free_cnt_parity_err_cnt),
4653[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4654			CNTR_NORMAL,
4655			access_pio_reserved_31_err_cnt),
4656[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4657			CNTR_NORMAL,
4658			access_pio_reserved_30_err_cnt),
4659[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4660			CNTR_NORMAL,
4661			access_pio_ppmc_sop_len_err_cnt),
4662[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4663			CNTR_NORMAL,
4664			access_pio_ppmc_bqc_mem_parity_err_cnt),
4665[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4666			CNTR_NORMAL,
4667			access_pio_vl_fifo_parity_err_cnt),
4668[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4669			CNTR_NORMAL,
4670			access_pio_vlf_sop_parity_err_cnt),
4671[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4672			CNTR_NORMAL,
4673			access_pio_vlf_v1_len_parity_err_cnt),
4674[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4675			CNTR_NORMAL,
4676			access_pio_block_qw_count_parity_err_cnt),
4677[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4678			CNTR_NORMAL,
4679			access_pio_write_qw_valid_parity_err_cnt),
4680[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4681			CNTR_NORMAL,
4682			access_pio_state_machine_err_cnt),
4683[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4684			CNTR_NORMAL,
4685			access_pio_write_data_parity_err_cnt),
4686[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4687			CNTR_NORMAL,
4688			access_pio_host_addr_mem_cor_err_cnt),
4689[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4690			CNTR_NORMAL,
4691			access_pio_host_addr_mem_unc_err_cnt),
4692[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4693			CNTR_NORMAL,
4694			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4695[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4696			CNTR_NORMAL,
4697			access_pio_init_sm_in_err_cnt),
4698[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4699			CNTR_NORMAL,
4700			access_pio_ppmc_pbl_fifo_err_cnt),
4701[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4702			0, CNTR_NORMAL,
4703			access_pio_credit_ret_fifo_parity_err_cnt),
4704[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4705			CNTR_NORMAL,
4706			access_pio_v1_len_mem_bank1_cor_err_cnt),
4707[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4708			CNTR_NORMAL,
4709			access_pio_v1_len_mem_bank0_cor_err_cnt),
4710[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4711			CNTR_NORMAL,
4712			access_pio_v1_len_mem_bank1_unc_err_cnt),
4713[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4714			CNTR_NORMAL,
4715			access_pio_v1_len_mem_bank0_unc_err_cnt),
4716[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4717			CNTR_NORMAL,
4718			access_pio_sm_pkt_reset_parity_err_cnt),
4719[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4720			CNTR_NORMAL,
4721			access_pio_pkt_evict_fifo_parity_err_cnt),
4722[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4723			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4724			CNTR_NORMAL,
4725			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4726[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4727			CNTR_NORMAL,
4728			access_pio_sbrdctl_crrel_parity_err_cnt),
4729[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4730			CNTR_NORMAL,
4731			access_pio_pec_fifo_parity_err_cnt),
4732[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4733			CNTR_NORMAL,
4734			access_pio_pcc_fifo_parity_err_cnt),
4735[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4736			CNTR_NORMAL,
4737			access_pio_sb_mem_fifo1_err_cnt),
4738[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4739			CNTR_NORMAL,
4740			access_pio_sb_mem_fifo0_err_cnt),
4741[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4742			CNTR_NORMAL,
4743			access_pio_csr_parity_err_cnt),
4744[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4745			CNTR_NORMAL,
4746			access_pio_write_addr_parity_err_cnt),
4747[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4748			CNTR_NORMAL,
4749			access_pio_write_bad_ctxt_err_cnt),
4750/* SendDmaErrStatus */
4751[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4752			0, CNTR_NORMAL,
4753			access_sdma_pcie_req_tracking_cor_err_cnt),
4754[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4755			0, CNTR_NORMAL,
4756			access_sdma_pcie_req_tracking_unc_err_cnt),
4757[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4758			CNTR_NORMAL,
4759			access_sdma_csr_parity_err_cnt),
4760[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4761			CNTR_NORMAL,
4762			access_sdma_rpy_tag_err_cnt),
4763/* SendEgressErrStatus */
4764[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4765			CNTR_NORMAL,
4766			access_tx_read_pio_memory_csr_unc_err_cnt),
4767[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4768			0, CNTR_NORMAL,
4769			access_tx_read_sdma_memory_csr_err_cnt),
4770[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4771			CNTR_NORMAL,
4772			access_tx_egress_fifo_cor_err_cnt),
4773[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4774			CNTR_NORMAL,
4775			access_tx_read_pio_memory_cor_err_cnt),
4776[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4777			CNTR_NORMAL,
4778			access_tx_read_sdma_memory_cor_err_cnt),
4779[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4780			CNTR_NORMAL,
4781			access_tx_sb_hdr_cor_err_cnt),
4782[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4783			CNTR_NORMAL,
4784			access_tx_credit_overrun_err_cnt),
4785[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4786			CNTR_NORMAL,
4787			access_tx_launch_fifo8_cor_err_cnt),
4788[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4789			CNTR_NORMAL,
4790			access_tx_launch_fifo7_cor_err_cnt),
4791[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4792			CNTR_NORMAL,
4793			access_tx_launch_fifo6_cor_err_cnt),
4794[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4795			CNTR_NORMAL,
4796			access_tx_launch_fifo5_cor_err_cnt),
4797[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4798			CNTR_NORMAL,
4799			access_tx_launch_fifo4_cor_err_cnt),
4800[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4801			CNTR_NORMAL,
4802			access_tx_launch_fifo3_cor_err_cnt),
4803[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4804			CNTR_NORMAL,
4805			access_tx_launch_fifo2_cor_err_cnt),
4806[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4807			CNTR_NORMAL,
4808			access_tx_launch_fifo1_cor_err_cnt),
4809[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4810			CNTR_NORMAL,
4811			access_tx_launch_fifo0_cor_err_cnt),
4812[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4813			CNTR_NORMAL,
4814			access_tx_credit_return_vl_err_cnt),
4815[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4816			CNTR_NORMAL,
4817			access_tx_hcrc_insertion_err_cnt),
4818[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4819			CNTR_NORMAL,
4820			access_tx_egress_fifo_unc_err_cnt),
4821[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4822			CNTR_NORMAL,
4823			access_tx_read_pio_memory_unc_err_cnt),
4824[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4825			CNTR_NORMAL,
4826			access_tx_read_sdma_memory_unc_err_cnt),
4827[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4828			CNTR_NORMAL,
4829			access_tx_sb_hdr_unc_err_cnt),
4830[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4831			CNTR_NORMAL,
4832			access_tx_credit_return_partiy_err_cnt),
4833[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4834			0, 0, CNTR_NORMAL,
4835			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4836[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4837			0, 0, CNTR_NORMAL,
4838			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4839[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4840			0, 0, CNTR_NORMAL,
4841			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4842[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4843			0, 0, CNTR_NORMAL,
4844			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4845[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4846			0, 0, CNTR_NORMAL,
4847			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4848[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4849			0, 0, CNTR_NORMAL,
4850			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4851[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4852			0, 0, CNTR_NORMAL,
4853			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4854[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4855			0, 0, CNTR_NORMAL,
4856			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4857[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4858			0, 0, CNTR_NORMAL,
4859			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4860[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4861			0, 0, CNTR_NORMAL,
4862			access_tx_sdma15_disallowed_packet_err_cnt),
4863[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4864			0, 0, CNTR_NORMAL,
4865			access_tx_sdma14_disallowed_packet_err_cnt),
4866[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4867			0, 0, CNTR_NORMAL,
4868			access_tx_sdma13_disallowed_packet_err_cnt),
4869[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4870			0, 0, CNTR_NORMAL,
4871			access_tx_sdma12_disallowed_packet_err_cnt),
4872[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4873			0, 0, CNTR_NORMAL,
4874			access_tx_sdma11_disallowed_packet_err_cnt),
4875[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4876			0, 0, CNTR_NORMAL,
4877			access_tx_sdma10_disallowed_packet_err_cnt),
4878[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4879			0, 0, CNTR_NORMAL,
4880			access_tx_sdma9_disallowed_packet_err_cnt),
4881[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4882			0, 0, CNTR_NORMAL,
4883			access_tx_sdma8_disallowed_packet_err_cnt),
4884[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4885			0, 0, CNTR_NORMAL,
4886			access_tx_sdma7_disallowed_packet_err_cnt),
4887[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4888			0, 0, CNTR_NORMAL,
4889			access_tx_sdma6_disallowed_packet_err_cnt),
4890[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4891			0, 0, CNTR_NORMAL,
4892			access_tx_sdma5_disallowed_packet_err_cnt),
4893[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4894			0, 0, CNTR_NORMAL,
4895			access_tx_sdma4_disallowed_packet_err_cnt),
4896[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4897			0, 0, CNTR_NORMAL,
4898			access_tx_sdma3_disallowed_packet_err_cnt),
4899[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4900			0, 0, CNTR_NORMAL,
4901			access_tx_sdma2_disallowed_packet_err_cnt),
4902[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4903			0, 0, CNTR_NORMAL,
4904			access_tx_sdma1_disallowed_packet_err_cnt),
4905[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4906			0, 0, CNTR_NORMAL,
4907			access_tx_sdma0_disallowed_packet_err_cnt),
4908[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4909			CNTR_NORMAL,
4910			access_tx_config_parity_err_cnt),
4911[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4912			CNTR_NORMAL,
4913			access_tx_sbrd_ctl_csr_parity_err_cnt),
4914[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4915			CNTR_NORMAL,
4916			access_tx_launch_csr_parity_err_cnt),
4917[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4918			CNTR_NORMAL,
4919			access_tx_illegal_vl_err_cnt),
4920[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4921			"TxSbrdCtlStateMachineParityErr", 0, 0,
4922			CNTR_NORMAL,
4923			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4924[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4925			CNTR_NORMAL,
4926			access_egress_reserved_10_err_cnt),
4927[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4928			CNTR_NORMAL,
4929			access_egress_reserved_9_err_cnt),
4930[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4931			0, 0, CNTR_NORMAL,
4932			access_tx_sdma_launch_intf_parity_err_cnt),
4933[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4934			CNTR_NORMAL,
4935			access_tx_pio_launch_intf_parity_err_cnt),
4936[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4937			CNTR_NORMAL,
4938			access_egress_reserved_6_err_cnt),
4939[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4940			CNTR_NORMAL,
4941			access_tx_incorrect_link_state_err_cnt),
4942[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4943			CNTR_NORMAL,
4944			access_tx_linkdown_err_cnt),
4945[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4946			"EgressFifoUnderrunOrParityErr", 0, 0,
4947			CNTR_NORMAL,
4948			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4949[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4950			CNTR_NORMAL,
4951			access_egress_reserved_2_err_cnt),
4952[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4953			CNTR_NORMAL,
4954			access_tx_pkt_integrity_mem_unc_err_cnt),
4955[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4956			CNTR_NORMAL,
4957			access_tx_pkt_integrity_mem_cor_err_cnt),
4958/* SendErrStatus */
4959[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4960			CNTR_NORMAL,
4961			access_send_csr_write_bad_addr_err_cnt),
4962[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4963			CNTR_NORMAL,
4964			access_send_csr_read_bad_addr_err_cnt),
4965[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4966			CNTR_NORMAL,
4967			access_send_csr_parity_cnt),
4968/* SendCtxtErrStatus */
4969[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4970			CNTR_NORMAL,
4971			access_pio_write_out_of_bounds_err_cnt),
4972[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4973			CNTR_NORMAL,
4974			access_pio_write_overflow_err_cnt),
4975[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4976			0, 0, CNTR_NORMAL,
4977			access_pio_write_crosses_boundary_err_cnt),
4978[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4979			CNTR_NORMAL,
4980			access_pio_disallowed_packet_err_cnt),
4981[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4982			CNTR_NORMAL,
4983			access_pio_inconsistent_sop_err_cnt),
4984/* SendDmaEngErrStatus */
4985[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4986			0, 0, CNTR_NORMAL,
4987			access_sdma_header_request_fifo_cor_err_cnt),
4988[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4989			CNTR_NORMAL,
4990			access_sdma_header_storage_cor_err_cnt),
4991[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4992			CNTR_NORMAL,
4993			access_sdma_packet_tracking_cor_err_cnt),
4994[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4995			CNTR_NORMAL,
4996			access_sdma_assembly_cor_err_cnt),
4997[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4998			CNTR_NORMAL,
4999			access_sdma_desc_table_cor_err_cnt),
5000[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5001			0, 0, CNTR_NORMAL,
5002			access_sdma_header_request_fifo_unc_err_cnt),
5003[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5004			CNTR_NORMAL,
5005			access_sdma_header_storage_unc_err_cnt),
5006[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5007			CNTR_NORMAL,
5008			access_sdma_packet_tracking_unc_err_cnt),
5009[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5010			CNTR_NORMAL,
5011			access_sdma_assembly_unc_err_cnt),
5012[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5013			CNTR_NORMAL,
5014			access_sdma_desc_table_unc_err_cnt),
5015[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5016			CNTR_NORMAL,
5017			access_sdma_timeout_err_cnt),
5018[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5019			CNTR_NORMAL,
5020			access_sdma_header_length_err_cnt),
5021[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5022			CNTR_NORMAL,
5023			access_sdma_header_address_err_cnt),
5024[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5025			CNTR_NORMAL,
5026			access_sdma_header_select_err_cnt),
5027[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5028			CNTR_NORMAL,
5029			access_sdma_reserved_9_err_cnt),
5030[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5031			CNTR_NORMAL,
5032			access_sdma_packet_desc_overflow_err_cnt),
5033[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5034			CNTR_NORMAL,
5035			access_sdma_length_mismatch_err_cnt),
5036[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5037			CNTR_NORMAL,
5038			access_sdma_halt_err_cnt),
5039[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5040			CNTR_NORMAL,
5041			access_sdma_mem_read_err_cnt),
5042[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5043			CNTR_NORMAL,
5044			access_sdma_first_desc_err_cnt),
5045[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5046			CNTR_NORMAL,
5047			access_sdma_tail_out_of_bounds_err_cnt),
5048[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5049			CNTR_NORMAL,
5050			access_sdma_too_long_err_cnt),
5051[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5052			CNTR_NORMAL,
5053			access_sdma_gen_mismatch_err_cnt),
5054[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5055			CNTR_NORMAL,
5056			access_sdma_wrong_dw_err_cnt),
5057};
5058
5059static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5060[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5061			CNTR_NORMAL),
5062[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5063			CNTR_NORMAL),
5064[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5065			CNTR_NORMAL),
5066[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5067			CNTR_NORMAL),
5068[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5069			CNTR_NORMAL),
5070[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5071			CNTR_NORMAL),
5072[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5073			CNTR_NORMAL),
5074[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5075[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5076[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5077[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5078				      CNTR_SYNTH | CNTR_VL),
5079[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5080				     CNTR_SYNTH | CNTR_VL),
5081[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5082				      CNTR_SYNTH | CNTR_VL),
5083[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5084[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5085[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5086			     access_sw_link_dn_cnt),
5087[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5088			   access_sw_link_up_cnt),
5089[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5090				 access_sw_unknown_frame_cnt),
5091[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5092			     access_sw_xmit_discards),
5093[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5094				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5095				access_sw_xmit_discards),
5096[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5097				 access_xmit_constraint_errs),
5098[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5099				access_rcv_constraint_errs),
5100[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5101[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5102[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5103[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5104[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5105[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5106[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5107[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5108[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5109[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5110[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5111[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5112[C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5113[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5114			       access_sw_cpu_rc_acks),
5115[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5116				access_sw_cpu_rc_qacks),
5117[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5118				       access_sw_cpu_rc_delayed_comp),
5119[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5120[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5121[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5122[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5123[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5124[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5125[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5126[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5127[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5128[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5129[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5130[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5131[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5132[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5133[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5134[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5135[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5136[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5137[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5138[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5139[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5140[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5141[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5142[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5143[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5144[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5145[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5146[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5147[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5148[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5149[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5150[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5151[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5152[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5153[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5154[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5155[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5156[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5157[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5158[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5159[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5160[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5161[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5162[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5163[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5164[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5165[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5166[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5167[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5168[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5169[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5170[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5171[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5172[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5173[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5174[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5175[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5176[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5177[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5178[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5179[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5180[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5181[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5182[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5183[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5184[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5185[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5186[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5187[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5188[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5189[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5190[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5191[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5192[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5193[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5194[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5195[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5196[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5197[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5198[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5199};
5200
5201/* ======================================================================== */
5202
5203/* return true if this is chip revision revision a */
5204int is_ax(struct hfi1_devdata *dd)
5205{
5206	u8 chip_rev_minor =
5207		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5208			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5209	return (chip_rev_minor & 0xf0) == 0;
5210}
5211
5212/* return true if this is chip revision revision b */
5213int is_bx(struct hfi1_devdata *dd)
5214{
5215	u8 chip_rev_minor =
5216		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5217			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5218	return (chip_rev_minor & 0xF0) == 0x10;
5219}
5220
5221/* return true is kernel urg disabled for rcd */
5222bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5223{
5224	u64 mask;
5225	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5226	u8 bit = is % 64;
5227
5228	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5229	return !(mask & BIT_ULL(bit));
5230}
5231
5232/*
5233 * Append string s to buffer buf.  Arguments curp and len are the current
5234 * position and remaining length, respectively.
5235 *
5236 * return 0 on success, 1 on out of room
5237 */
5238static int append_str(char *buf, char **curp, int *lenp, const char *s)
5239{
5240	char *p = *curp;
5241	int len = *lenp;
5242	int result = 0; /* success */
5243	char c;
5244
5245	/* add a comma, if first in the buffer */
5246	if (p != buf) {
5247		if (len == 0) {
5248			result = 1; /* out of room */
5249			goto done;
5250		}
5251		*p++ = ',';
5252		len--;
5253	}
5254
5255	/* copy the string */
5256	while ((c = *s++) != 0) {
5257		if (len == 0) {
5258			result = 1; /* out of room */
5259			goto done;
5260		}
5261		*p++ = c;
5262		len--;
5263	}
5264
5265done:
5266	/* write return values */
5267	*curp = p;
5268	*lenp = len;
5269
5270	return result;
5271}
5272
5273/*
5274 * Using the given flag table, print a comma separated string into
5275 * the buffer.  End in '*' if the buffer is too short.
5276 */
5277static char *flag_string(char *buf, int buf_len, u64 flags,
5278			 struct flag_table *table, int table_size)
5279{
5280	char extra[32];
5281	char *p = buf;
5282	int len = buf_len;
5283	int no_room = 0;
5284	int i;
5285
5286	/* make sure there is at least 2 so we can form "*" */
5287	if (len < 2)
5288		return "";
5289
5290	len--;	/* leave room for a nul */
5291	for (i = 0; i < table_size; i++) {
5292		if (flags & table[i].flag) {
5293			no_room = append_str(buf, &p, &len, table[i].str);
5294			if (no_room)
5295				break;
5296			flags &= ~table[i].flag;
5297		}
5298	}
5299
5300	/* any undocumented bits left? */
5301	if (!no_room && flags) {
5302		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5303		no_room = append_str(buf, &p, &len, extra);
5304	}
5305
5306	/* add * if ran out of room */
5307	if (no_room) {
5308		/* may need to back up to add space for a '*' */
5309		if (len == 0)
5310			--p;
5311		*p++ = '*';
5312	}
5313
5314	/* add final nul - space already allocated above */
5315	*p = 0;
5316	return buf;
5317}
5318
5319/* first 8 CCE error interrupt source names */
5320static const char * const cce_misc_names[] = {
5321	"CceErrInt",		/* 0 */
5322	"RxeErrInt",		/* 1 */
5323	"MiscErrInt",		/* 2 */
5324	"Reserved3",		/* 3 */
5325	"PioErrInt",		/* 4 */
5326	"SDmaErrInt",		/* 5 */
5327	"EgressErrInt",		/* 6 */
5328	"TxeErrInt"		/* 7 */
5329};
5330
5331/*
5332 * Return the miscellaneous error interrupt name.
5333 */
5334static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5335{
5336	if (source < ARRAY_SIZE(cce_misc_names))
5337		strscpy_pad(buf, cce_misc_names[source], bsize);
5338	else
5339		snprintf(buf, bsize, "Reserved%u",
5340			 source + IS_GENERAL_ERR_START);
5341
5342	return buf;
5343}
5344
5345/*
5346 * Return the SDMA engine error interrupt name.
5347 */
5348static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5349{
5350	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5351	return buf;
5352}
5353
5354/*
5355 * Return the send context error interrupt name.
5356 */
5357static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5358{
5359	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5360	return buf;
5361}
5362
5363static const char * const various_names[] = {
5364	"PbcInt",
5365	"GpioAssertInt",
5366	"Qsfp1Int",
5367	"Qsfp2Int",
5368	"TCritInt"
5369};
5370
5371/*
5372 * Return the various interrupt name.
5373 */
5374static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5375{
5376	if (source < ARRAY_SIZE(various_names))
5377		strscpy_pad(buf, various_names[source], bsize);
5378	else
5379		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5380	return buf;
5381}
5382
5383/*
5384 * Return the DC interrupt name.
5385 */
5386static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5387{
5388	static const char * const dc_int_names[] = {
5389		"common",
5390		"lcb",
5391		"8051",
5392		"lbm"	/* local block merge */
5393	};
5394
5395	if (source < ARRAY_SIZE(dc_int_names))
5396		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5397	else
5398		snprintf(buf, bsize, "DCInt%u", source);
5399	return buf;
5400}
5401
5402static const char * const sdma_int_names[] = {
5403	"SDmaInt",
5404	"SdmaIdleInt",
5405	"SdmaProgressInt",
5406};
5407
5408/*
5409 * Return the SDMA engine interrupt name.
5410 */
5411static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5412{
5413	/* what interrupt */
5414	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5415	/* which engine */
5416	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5417
5418	if (likely(what < 3))
5419		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5420	else
5421		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5422	return buf;
5423}
5424
5425/*
5426 * Return the receive available interrupt name.
5427 */
5428static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5429{
5430	snprintf(buf, bsize, "RcvAvailInt%u", source);
5431	return buf;
5432}
5433
5434/*
5435 * Return the receive urgent interrupt name.
5436 */
5437static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5438{
5439	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5440	return buf;
5441}
5442
5443/*
5444 * Return the send credit interrupt name.
5445 */
5446static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5447{
5448	snprintf(buf, bsize, "SendCreditInt%u", source);
5449	return buf;
5450}
5451
5452/*
5453 * Return the reserved interrupt name.
5454 */
5455static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5456{
5457	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5458	return buf;
5459}
5460
5461static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5462{
5463	return flag_string(buf, buf_len, flags,
5464			   cce_err_status_flags,
5465			   ARRAY_SIZE(cce_err_status_flags));
5466}
5467
5468static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5469{
5470	return flag_string(buf, buf_len, flags,
5471			   rxe_err_status_flags,
5472			   ARRAY_SIZE(rxe_err_status_flags));
5473}
5474
5475static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5476{
5477	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5478			   ARRAY_SIZE(misc_err_status_flags));
5479}
5480
5481static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5482{
5483	return flag_string(buf, buf_len, flags,
5484			   pio_err_status_flags,
5485			   ARRAY_SIZE(pio_err_status_flags));
5486}
5487
5488static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5489{
5490	return flag_string(buf, buf_len, flags,
5491			   sdma_err_status_flags,
5492			   ARRAY_SIZE(sdma_err_status_flags));
5493}
5494
5495static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5496{
5497	return flag_string(buf, buf_len, flags,
5498			   egress_err_status_flags,
5499			   ARRAY_SIZE(egress_err_status_flags));
5500}
5501
5502static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5503{
5504	return flag_string(buf, buf_len, flags,
5505			   egress_err_info_flags,
5506			   ARRAY_SIZE(egress_err_info_flags));
5507}
5508
5509static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5510{
5511	return flag_string(buf, buf_len, flags,
5512			   send_err_status_flags,
5513			   ARRAY_SIZE(send_err_status_flags));
5514}
5515
5516static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5517{
5518	char buf[96];
5519	int i = 0;
5520
5521	/*
5522	 * For most these errors, there is nothing that can be done except
5523	 * report or record it.
5524	 */
5525	dd_dev_info(dd, "CCE Error: %s\n",
5526		    cce_err_status_string(buf, sizeof(buf), reg));
5527
5528	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5529	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5530		/* this error requires a manual drop into SPC freeze mode */
5531		/* then a fix up */
5532		start_freeze_handling(dd->pport, FREEZE_SELF);
5533	}
5534
5535	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5536		if (reg & (1ull << i)) {
5537			incr_cntr64(&dd->cce_err_status_cnt[i]);
5538			/* maintain a counter over all cce_err_status errors */
5539			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5540		}
5541	}
5542}
5543
5544/*
5545 * Check counters for receive errors that do not have an interrupt
5546 * associated with them.
5547 */
5548#define RCVERR_CHECK_TIME 10
5549static void update_rcverr_timer(struct timer_list *t)
5550{
5551	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5552	struct hfi1_pportdata *ppd = dd->pport;
5553	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5554
5555	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5556	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5557		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5558		set_link_down_reason(
5559		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5560		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5561		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5562	}
5563	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5564
5565	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5566}
5567
5568static int init_rcverr(struct hfi1_devdata *dd)
5569{
5570	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5571	/* Assume the hardware counter has been reset */
5572	dd->rcv_ovfl_cnt = 0;
5573	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5574}
5575
5576static void free_rcverr(struct hfi1_devdata *dd)
5577{
5578	if (dd->rcverr_timer.function)
5579		del_timer_sync(&dd->rcverr_timer);
5580}
5581
5582static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5583{
5584	char buf[96];
5585	int i = 0;
5586
5587	dd_dev_info(dd, "Receive Error: %s\n",
5588		    rxe_err_status_string(buf, sizeof(buf), reg));
5589
5590	if (reg & ALL_RXE_FREEZE_ERR) {
5591		int flags = 0;
5592
5593		/*
5594		 * Freeze mode recovery is disabled for the errors
5595		 * in RXE_FREEZE_ABORT_MASK
5596		 */
5597		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5598			flags = FREEZE_ABORT;
5599
5600		start_freeze_handling(dd->pport, flags);
5601	}
5602
5603	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5604		if (reg & (1ull << i))
5605			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5606	}
5607}
5608
5609static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5610{
5611	char buf[96];
5612	int i = 0;
5613
5614	dd_dev_info(dd, "Misc Error: %s",
5615		    misc_err_status_string(buf, sizeof(buf), reg));
5616	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5617		if (reg & (1ull << i))
5618			incr_cntr64(&dd->misc_err_status_cnt[i]);
5619	}
5620}
5621
5622static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5623{
5624	char buf[96];
5625	int i = 0;
5626
5627	dd_dev_info(dd, "PIO Error: %s\n",
5628		    pio_err_status_string(buf, sizeof(buf), reg));
5629
5630	if (reg & ALL_PIO_FREEZE_ERR)
5631		start_freeze_handling(dd->pport, 0);
5632
5633	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5634		if (reg & (1ull << i))
5635			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5636	}
5637}
5638
5639static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5640{
5641	char buf[96];
5642	int i = 0;
5643
5644	dd_dev_info(dd, "SDMA Error: %s\n",
5645		    sdma_err_status_string(buf, sizeof(buf), reg));
5646
5647	if (reg & ALL_SDMA_FREEZE_ERR)
5648		start_freeze_handling(dd->pport, 0);
5649
5650	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5651		if (reg & (1ull << i))
5652			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5653	}
5654}
5655
5656static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5657{
5658	incr_cntr64(&ppd->port_xmit_discards);
5659}
5660
5661static void count_port_inactive(struct hfi1_devdata *dd)
5662{
5663	__count_port_discards(dd->pport);
5664}
5665
5666/*
5667 * We have had a "disallowed packet" error during egress. Determine the
5668 * integrity check which failed, and update relevant error counter, etc.
5669 *
5670 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5671 * bit of state per integrity check, and so we can miss the reason for an
5672 * egress error if more than one packet fails the same integrity check
5673 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5674 */
5675static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5676					int vl)
5677{
5678	struct hfi1_pportdata *ppd = dd->pport;
5679	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5680	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5681	char buf[96];
5682
5683	/* clear down all observed info as quickly as possible after read */
5684	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5685
5686	dd_dev_info(dd,
5687		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5688		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5689
5690	/* Eventually add other counters for each bit */
5691	if (info & PORT_DISCARD_EGRESS_ERRS) {
5692		int weight, i;
5693
5694		/*
5695		 * Count all applicable bits as individual errors and
5696		 * attribute them to the packet that triggered this handler.
5697		 * This may not be completely accurate due to limitations
5698		 * on the available hardware error information.  There is
5699		 * a single information register and any number of error
5700		 * packets may have occurred and contributed to it before
5701		 * this routine is called.  This means that:
5702		 * a) If multiple packets with the same error occur before
5703		 *    this routine is called, earlier packets are missed.
5704		 *    There is only a single bit for each error type.
5705		 * b) Errors may not be attributed to the correct VL.
5706		 *    The driver is attributing all bits in the info register
5707		 *    to the packet that triggered this call, but bits
5708		 *    could be an accumulation of different packets with
5709		 *    different VLs.
5710		 * c) A single error packet may have multiple counts attached
5711		 *    to it.  There is no way for the driver to know if
5712		 *    multiple bits set in the info register are due to a
5713		 *    single packet or multiple packets.  The driver assumes
5714		 *    multiple packets.
5715		 */
5716		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5717		for (i = 0; i < weight; i++) {
5718			__count_port_discards(ppd);
5719			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5720				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5721			else if (vl == 15)
5722				incr_cntr64(&ppd->port_xmit_discards_vl
5723					    [C_VL_15]);
5724		}
5725	}
5726}
5727
5728/*
5729 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5730 * register. Does it represent a 'port inactive' error?
5731 */
5732static inline int port_inactive_err(u64 posn)
5733{
5734	return (posn >= SEES(TX_LINKDOWN) &&
5735		posn <= SEES(TX_INCORRECT_LINK_STATE));
5736}
5737
5738/*
5739 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5740 * register. Does it represent a 'disallowed packet' error?
5741 */
5742static inline int disallowed_pkt_err(int posn)
5743{
5744	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5745		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5746}
5747
5748/*
5749 * Input value is a bit position of one of the SDMA engine disallowed
5750 * packet errors.  Return which engine.  Use of this must be guarded by
5751 * disallowed_pkt_err().
5752 */
5753static inline int disallowed_pkt_engine(int posn)
5754{
5755	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5756}
5757
5758/*
5759 * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5760 * be done.
5761 */
5762static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5763{
5764	struct sdma_vl_map *m;
5765	int vl;
5766
5767	/* range check */
5768	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5769		return -1;
5770
5771	rcu_read_lock();
5772	m = rcu_dereference(dd->sdma_map);
5773	vl = m->engine_to_vl[engine];
5774	rcu_read_unlock();
5775
5776	return vl;
5777}
5778
5779/*
5780 * Translate the send context (sofware index) into a VL.  Return -1 if the
5781 * translation cannot be done.
5782 */
5783static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5784{
5785	struct send_context_info *sci;
5786	struct send_context *sc;
5787	int i;
5788
5789	sci = &dd->send_contexts[sw_index];
5790
5791	/* there is no information for user (PSM) and ack contexts */
5792	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5793		return -1;
5794
5795	sc = sci->sc;
5796	if (!sc)
5797		return -1;
5798	if (dd->vld[15].sc == sc)
5799		return 15;
5800	for (i = 0; i < num_vls; i++)
5801		if (dd->vld[i].sc == sc)
5802			return i;
5803
5804	return -1;
5805}
5806
5807static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5808{
5809	u64 reg_copy = reg, handled = 0;
5810	char buf[96];
5811	int i = 0;
5812
5813	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5814		start_freeze_handling(dd->pport, 0);
5815	else if (is_ax(dd) &&
5816		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5817		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5818		start_freeze_handling(dd->pport, 0);
5819
5820	while (reg_copy) {
5821		int posn = fls64(reg_copy);
5822		/* fls64() returns a 1-based offset, we want it zero based */
5823		int shift = posn - 1;
5824		u64 mask = 1ULL << shift;
5825
5826		if (port_inactive_err(shift)) {
5827			count_port_inactive(dd);
5828			handled |= mask;
5829		} else if (disallowed_pkt_err(shift)) {
5830			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5831
5832			handle_send_egress_err_info(dd, vl);
5833			handled |= mask;
5834		}
5835		reg_copy &= ~mask;
5836	}
5837
5838	reg &= ~handled;
5839
5840	if (reg)
5841		dd_dev_info(dd, "Egress Error: %s\n",
5842			    egress_err_status_string(buf, sizeof(buf), reg));
5843
5844	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5845		if (reg & (1ull << i))
5846			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5847	}
5848}
5849
5850static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5851{
5852	char buf[96];
5853	int i = 0;
5854
5855	dd_dev_info(dd, "Send Error: %s\n",
5856		    send_err_status_string(buf, sizeof(buf), reg));
5857
5858	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5859		if (reg & (1ull << i))
5860			incr_cntr64(&dd->send_err_status_cnt[i]);
5861	}
5862}
5863
5864/*
5865 * The maximum number of times the error clear down will loop before
5866 * blocking a repeating error.  This value is arbitrary.
5867 */
5868#define MAX_CLEAR_COUNT 20
5869
5870/*
5871 * Clear and handle an error register.  All error interrupts are funneled
5872 * through here to have a central location to correctly handle single-
5873 * or multi-shot errors.
5874 *
5875 * For non per-context registers, call this routine with a context value
5876 * of 0 so the per-context offset is zero.
5877 *
5878 * If the handler loops too many times, assume that something is wrong
5879 * and can't be fixed, so mask the error bits.
5880 */
5881static void interrupt_clear_down(struct hfi1_devdata *dd,
5882				 u32 context,
5883				 const struct err_reg_info *eri)
5884{
5885	u64 reg;
5886	u32 count;
5887
5888	/* read in a loop until no more errors are seen */
5889	count = 0;
5890	while (1) {
5891		reg = read_kctxt_csr(dd, context, eri->status);
5892		if (reg == 0)
5893			break;
5894		write_kctxt_csr(dd, context, eri->clear, reg);
5895		if (likely(eri->handler))
5896			eri->handler(dd, context, reg);
5897		count++;
5898		if (count > MAX_CLEAR_COUNT) {
5899			u64 mask;
5900
5901			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5902				   eri->desc, reg);
5903			/*
5904			 * Read-modify-write so any other masked bits
5905			 * remain masked.
5906			 */
5907			mask = read_kctxt_csr(dd, context, eri->mask);
5908			mask &= ~reg;
5909			write_kctxt_csr(dd, context, eri->mask, mask);
5910			break;
5911		}
5912	}
5913}
5914
5915/*
5916 * CCE block "misc" interrupt.  Source is < 16.
5917 */
5918static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5919{
5920	const struct err_reg_info *eri = &misc_errs[source];
5921
5922	if (eri->handler) {
5923		interrupt_clear_down(dd, 0, eri);
5924	} else {
5925		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5926			   source);
5927	}
5928}
5929
5930static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5931{
5932	return flag_string(buf, buf_len, flags,
5933			   sc_err_status_flags,
5934			   ARRAY_SIZE(sc_err_status_flags));
5935}
5936
5937/*
5938 * Send context error interrupt.  Source (hw_context) is < 160.
5939 *
5940 * All send context errors cause the send context to halt.  The normal
5941 * clear-down mechanism cannot be used because we cannot clear the
5942 * error bits until several other long-running items are done first.
5943 * This is OK because with the context halted, nothing else is going
5944 * to happen on it anyway.
5945 */
5946static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5947				unsigned int hw_context)
5948{
5949	struct send_context_info *sci;
5950	struct send_context *sc;
5951	char flags[96];
5952	u64 status;
5953	u32 sw_index;
5954	int i = 0;
5955	unsigned long irq_flags;
5956
5957	sw_index = dd->hw_to_sw[hw_context];
5958	if (sw_index >= dd->num_send_contexts) {
5959		dd_dev_err(dd,
5960			   "out of range sw index %u for send context %u\n",
5961			   sw_index, hw_context);
5962		return;
5963	}
5964	sci = &dd->send_contexts[sw_index];
5965	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5966	sc = sci->sc;
5967	if (!sc) {
5968		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5969			   sw_index, hw_context);
5970		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5971		return;
5972	}
5973
5974	/* tell the software that a halt has begun */
5975	sc_stop(sc, SCF_HALTED);
5976
5977	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5978
5979	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5980		    send_context_err_status_string(flags, sizeof(flags),
5981						   status));
5982
5983	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5984		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5985
5986	/*
5987	 * Automatically restart halted kernel contexts out of interrupt
5988	 * context.  User contexts must ask the driver to restart the context.
5989	 */
5990	if (sc->type != SC_USER)
5991		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5992	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5993
5994	/*
5995	 * Update the counters for the corresponding status bits.
5996	 * Note that these particular counters are aggregated over all
5997	 * 160 contexts.
5998	 */
5999	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6000		if (status & (1ull << i))
6001			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6002	}
6003}
6004
6005static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6006				unsigned int source, u64 status)
6007{
6008	struct sdma_engine *sde;
6009	int i = 0;
6010
6011	sde = &dd->per_sdma[source];
6012#ifdef CONFIG_SDMA_VERBOSITY
6013	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6014		   slashstrip(__FILE__), __LINE__, __func__);
6015	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6016		   sde->this_idx, source, (unsigned long long)status);
6017#endif
6018	sde->err_cnt++;
6019	sdma_engine_error(sde, status);
6020
6021	/*
6022	* Update the counters for the corresponding status bits.
6023	* Note that these particular counters are aggregated over
6024	* all 16 DMA engines.
6025	*/
6026	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6027		if (status & (1ull << i))
6028			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6029	}
6030}
6031
6032/*
6033 * CCE block SDMA error interrupt.  Source is < 16.
6034 */
6035static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6036{
6037#ifdef CONFIG_SDMA_VERBOSITY
6038	struct sdma_engine *sde = &dd->per_sdma[source];
6039
6040	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6041		   slashstrip(__FILE__), __LINE__, __func__);
6042	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6043		   source);
6044	sdma_dumpstate(sde);
6045#endif
6046	interrupt_clear_down(dd, source, &sdma_eng_err);
6047}
6048
6049/*
6050 * CCE block "various" interrupt.  Source is < 8.
6051 */
6052static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6053{
6054	const struct err_reg_info *eri = &various_err[source];
6055
6056	/*
6057	 * TCritInt cannot go through interrupt_clear_down()
6058	 * because it is not a second tier interrupt. The handler
6059	 * should be called directly.
6060	 */
6061	if (source == TCRIT_INT_SOURCE)
6062		handle_temp_err(dd);
6063	else if (eri->handler)
6064		interrupt_clear_down(dd, 0, eri);
6065	else
6066		dd_dev_info(dd,
6067			    "%s: Unimplemented/reserved interrupt %d\n",
6068			    __func__, source);
6069}
6070
6071static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6072{
6073	/* src_ctx is always zero */
6074	struct hfi1_pportdata *ppd = dd->pport;
6075	unsigned long flags;
6076	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6077
6078	if (reg & QSFP_HFI0_MODPRST_N) {
6079		if (!qsfp_mod_present(ppd)) {
6080			dd_dev_info(dd, "%s: QSFP module removed\n",
6081				    __func__);
6082
6083			ppd->driver_link_ready = 0;
6084			/*
6085			 * Cable removed, reset all our information about the
6086			 * cache and cable capabilities
6087			 */
6088
6089			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6090			/*
6091			 * We don't set cache_refresh_required here as we expect
6092			 * an interrupt when a cable is inserted
6093			 */
6094			ppd->qsfp_info.cache_valid = 0;
6095			ppd->qsfp_info.reset_needed = 0;
6096			ppd->qsfp_info.limiting_active = 0;
6097			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6098					       flags);
6099			/* Invert the ModPresent pin now to detect plug-in */
6100			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6101				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6102
6103			if ((ppd->offline_disabled_reason >
6104			  HFI1_ODR_MASK(
6105			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6106			  (ppd->offline_disabled_reason ==
6107			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6108				ppd->offline_disabled_reason =
6109				HFI1_ODR_MASK(
6110				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6111
6112			if (ppd->host_link_state == HLS_DN_POLL) {
6113				/*
6114				 * The link is still in POLL. This means
6115				 * that the normal link down processing
6116				 * will not happen. We have to do it here
6117				 * before turning the DC off.
6118				 */
6119				queue_work(ppd->link_wq, &ppd->link_down_work);
6120			}
6121		} else {
6122			dd_dev_info(dd, "%s: QSFP module inserted\n",
6123				    __func__);
6124
6125			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6126			ppd->qsfp_info.cache_valid = 0;
6127			ppd->qsfp_info.cache_refresh_required = 1;
6128			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6129					       flags);
6130
6131			/*
6132			 * Stop inversion of ModPresent pin to detect
6133			 * removal of the cable
6134			 */
6135			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6136			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6137				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6138
6139			ppd->offline_disabled_reason =
6140				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6141		}
6142	}
6143
6144	if (reg & QSFP_HFI0_INT_N) {
6145		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6146			    __func__);
6147		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6148		ppd->qsfp_info.check_interrupt_flags = 1;
6149		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6150	}
6151
6152	/* Schedule the QSFP work only if there is a cable attached. */
6153	if (qsfp_mod_present(ppd))
6154		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6155}
6156
6157static int request_host_lcb_access(struct hfi1_devdata *dd)
6158{
6159	int ret;
6160
6161	ret = do_8051_command(dd, HCMD_MISC,
6162			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6163			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6164	if (ret != HCMD_SUCCESS && !(dd->flags & HFI1_SHUTDOWN)) {
6165		dd_dev_err(dd, "%s: command failed with error %d\n",
6166			   __func__, ret);
6167	}
6168	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6169}
6170
6171static int request_8051_lcb_access(struct hfi1_devdata *dd)
6172{
6173	int ret;
6174
6175	ret = do_8051_command(dd, HCMD_MISC,
6176			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6177			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6178	if (ret != HCMD_SUCCESS) {
6179		dd_dev_err(dd, "%s: command failed with error %d\n",
6180			   __func__, ret);
6181	}
6182	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6183}
6184
6185/*
6186 * Set the LCB selector - allow host access.  The DCC selector always
6187 * points to the host.
6188 */
6189static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6190{
6191	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6192		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6193		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6194}
6195
6196/*
6197 * Clear the LCB selector - allow 8051 access.  The DCC selector always
6198 * points to the host.
6199 */
6200static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6201{
6202	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6203		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6204}
6205
6206/*
6207 * Acquire LCB access from the 8051.  If the host already has access,
6208 * just increment a counter.  Otherwise, inform the 8051 that the
6209 * host is taking access.
6210 *
6211 * Returns:
6212 *	0 on success
6213 *	-EBUSY if the 8051 has control and cannot be disturbed
6214 *	-errno if unable to acquire access from the 8051
6215 */
6216int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6217{
6218	struct hfi1_pportdata *ppd = dd->pport;
6219	int ret = 0;
6220
6221	/*
6222	 * Use the host link state lock so the operation of this routine
6223	 * { link state check, selector change, count increment } can occur
6224	 * as a unit against a link state change.  Otherwise there is a
6225	 * race between the state change and the count increment.
6226	 */
6227	if (sleep_ok) {
6228		mutex_lock(&ppd->hls_lock);
6229	} else {
6230		while (!mutex_trylock(&ppd->hls_lock))
6231			udelay(1);
6232	}
6233
6234	/* this access is valid only when the link is up */
6235	if (ppd->host_link_state & HLS_DOWN) {
6236		dd_dev_info(dd, "%s: link state %s not up\n",
6237			    __func__, link_state_name(ppd->host_link_state));
6238		ret = -EBUSY;
6239		goto done;
6240	}
6241
6242	if (dd->lcb_access_count == 0) {
6243		ret = request_host_lcb_access(dd);
6244		if (ret) {
6245			if (!(dd->flags & HFI1_SHUTDOWN))
6246				dd_dev_err(dd,
6247				   "%s: unable to acquire LCB access, err %d\n",
6248				   __func__, ret);
6249			goto done;
6250		}
6251		set_host_lcb_access(dd);
6252	}
6253	dd->lcb_access_count++;
6254done:
6255	mutex_unlock(&ppd->hls_lock);
6256	return ret;
6257}
6258
6259/*
6260 * Release LCB access by decrementing the use count.  If the count is moving
6261 * from 1 to 0, inform 8051 that it has control back.
6262 *
6263 * Returns:
6264 *	0 on success
6265 *	-errno if unable to release access to the 8051
6266 */
6267int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6268{
6269	int ret = 0;
6270
6271	/*
6272	 * Use the host link state lock because the acquire needed it.
6273	 * Here, we only need to keep { selector change, count decrement }
6274	 * as a unit.
6275	 */
6276	if (sleep_ok) {
6277		mutex_lock(&dd->pport->hls_lock);
6278	} else {
6279		while (!mutex_trylock(&dd->pport->hls_lock))
6280			udelay(1);
6281	}
6282
6283	if (dd->lcb_access_count == 0) {
6284		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6285			   __func__);
6286		goto done;
6287	}
6288
6289	if (dd->lcb_access_count == 1) {
6290		set_8051_lcb_access(dd);
6291		ret = request_8051_lcb_access(dd);
6292		if (ret) {
6293			dd_dev_err(dd,
6294				   "%s: unable to release LCB access, err %d\n",
6295				   __func__, ret);
6296			/* restore host access if the grant didn't work */
6297			set_host_lcb_access(dd);
6298			goto done;
6299		}
6300	}
6301	dd->lcb_access_count--;
6302done:
6303	mutex_unlock(&dd->pport->hls_lock);
6304	return ret;
6305}
6306
6307/*
6308 * Initialize LCB access variables and state.  Called during driver load,
6309 * after most of the initialization is finished.
6310 *
6311 * The DC default is LCB access on for the host.  The driver defaults to
6312 * leaving access to the 8051.  Assign access now - this constrains the call
6313 * to this routine to be after all LCB set-up is done.  In particular, after
6314 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6315 */
6316static void init_lcb_access(struct hfi1_devdata *dd)
6317{
6318	dd->lcb_access_count = 0;
6319}
6320
6321/*
6322 * Write a response back to a 8051 request.
6323 */
6324static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6325{
6326	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6327		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6328		  (u64)return_code <<
6329		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6330		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6331}
6332
6333/*
6334 * Handle host requests from the 8051.
6335 */
6336static void handle_8051_request(struct hfi1_pportdata *ppd)
6337{
6338	struct hfi1_devdata *dd = ppd->dd;
6339	u64 reg;
6340	u16 data = 0;
6341	u8 type;
6342
6343	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6344	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6345		return;	/* no request */
6346
6347	/* zero out COMPLETED so the response is seen */
6348	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6349
6350	/* extract request details */
6351	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6352			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6353	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6354			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6355
6356	switch (type) {
6357	case HREQ_LOAD_CONFIG:
6358	case HREQ_SAVE_CONFIG:
6359	case HREQ_READ_CONFIG:
6360	case HREQ_SET_TX_EQ_ABS:
6361	case HREQ_SET_TX_EQ_REL:
6362	case HREQ_ENABLE:
6363		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6364			    type);
6365		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6366		break;
6367	case HREQ_LCB_RESET:
6368		/* Put the LCB, RX FPE and TX FPE into reset */
6369		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6370		/* Make sure the write completed */
6371		(void)read_csr(dd, DCC_CFG_RESET);
6372		/* Hold the reset long enough to take effect */
6373		udelay(1);
6374		/* Take the LCB, RX FPE and TX FPE out of reset */
6375		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6376		hreq_response(dd, HREQ_SUCCESS, 0);
6377
6378		break;
6379	case HREQ_CONFIG_DONE:
6380		hreq_response(dd, HREQ_SUCCESS, 0);
6381		break;
6382
6383	case HREQ_INTERFACE_TEST:
6384		hreq_response(dd, HREQ_SUCCESS, data);
6385		break;
6386	default:
6387		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6388		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6389		break;
6390	}
6391}
6392
6393/*
6394 * Set up allocation unit vaulue.
6395 */
6396void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6397{
6398	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6399
6400	/* do not modify other values in the register */
6401	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6402	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6403	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6404}
6405
6406/*
6407 * Set up initial VL15 credits of the remote.  Assumes the rest of
6408 * the CM credit registers are zero from a previous global or credit reset.
6409 * Shared limit for VL15 will always be 0.
6410 */
6411void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6412{
6413	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6414
6415	/* set initial values for total and shared credit limit */
6416	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6417		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6418
6419	/*
6420	 * Set total limit to be equal to VL15 credits.
6421	 * Leave shared limit at 0.
6422	 */
6423	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6424	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6425
6426	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6427		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6428}
6429
6430/*
6431 * Zero all credit details from the previous connection and
6432 * reset the CM manager's internal counters.
6433 */
6434void reset_link_credits(struct hfi1_devdata *dd)
6435{
6436	int i;
6437
6438	/* remove all previous VL credit limits */
6439	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6440		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6441	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6442	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6443	/* reset the CM block */
6444	pio_send_control(dd, PSC_CM_RESET);
6445	/* reset cached value */
6446	dd->vl15buf_cached = 0;
6447}
6448
6449/* convert a vCU to a CU */
6450static u32 vcu_to_cu(u8 vcu)
6451{
6452	return 1 << vcu;
6453}
6454
6455/* convert a CU to a vCU */
6456static u8 cu_to_vcu(u32 cu)
6457{
6458	return ilog2(cu);
6459}
6460
6461/* convert a vAU to an AU */
6462static u32 vau_to_au(u8 vau)
6463{
6464	return 8 * (1 << vau);
6465}
6466
6467static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6468{
6469	ppd->sm_trap_qp = 0x0;
6470	ppd->sa_qp = 0x1;
6471}
6472
6473/*
6474 * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6475 */
6476static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6477{
6478	u64 reg;
6479
6480	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6481	write_csr(dd, DC_LCB_CFG_RUN, 0);
6482	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6483	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6484		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6485	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6486	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6487	reg = read_csr(dd, DCC_CFG_RESET);
6488	write_csr(dd, DCC_CFG_RESET, reg |
6489		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6490	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6491	if (!abort) {
6492		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6493		write_csr(dd, DCC_CFG_RESET, reg);
6494		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6495	}
6496}
6497
6498/*
6499 * This routine should be called after the link has been transitioned to
6500 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6501 * reset).
6502 *
6503 * The expectation is that the caller of this routine would have taken
6504 * care of properly transitioning the link into the correct state.
6505 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6506 *       before calling this function.
6507 */
6508static void _dc_shutdown(struct hfi1_devdata *dd)
6509{
6510	lockdep_assert_held(&dd->dc8051_lock);
6511
6512	if (dd->dc_shutdown)
6513		return;
6514
6515	dd->dc_shutdown = 1;
6516	/* Shutdown the LCB */
6517	lcb_shutdown(dd, 1);
6518	/*
6519	 * Going to OFFLINE would have causes the 8051 to put the
6520	 * SerDes into reset already. Just need to shut down the 8051,
6521	 * itself.
6522	 */
6523	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6524}
6525
6526static void dc_shutdown(struct hfi1_devdata *dd)
6527{
6528	mutex_lock(&dd->dc8051_lock);
6529	_dc_shutdown(dd);
6530	mutex_unlock(&dd->dc8051_lock);
6531}
6532
6533/*
6534 * Calling this after the DC has been brought out of reset should not
6535 * do any damage.
6536 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6537 *       before calling this function.
6538 */
6539static void _dc_start(struct hfi1_devdata *dd)
6540{
6541	lockdep_assert_held(&dd->dc8051_lock);
6542
6543	if (!dd->dc_shutdown)
6544		return;
6545
6546	/* Take the 8051 out of reset */
6547	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6548	/* Wait until 8051 is ready */
6549	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6550		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6551			   __func__);
6552
6553	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6554	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6555	/* lcb_shutdown() with abort=1 does not restore these */
6556	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6557	dd->dc_shutdown = 0;
6558}
6559
6560static void dc_start(struct hfi1_devdata *dd)
6561{
6562	mutex_lock(&dd->dc8051_lock);
6563	_dc_start(dd);
6564	mutex_unlock(&dd->dc8051_lock);
6565}
6566
6567/*
6568 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6569 */
6570static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6571{
6572	u64 rx_radr, tx_radr;
6573	u32 version;
6574
6575	if (dd->icode != ICODE_FPGA_EMULATION)
6576		return;
6577
6578	/*
6579	 * These LCB defaults on emulator _s are good, nothing to do here:
6580	 *	LCB_CFG_TX_FIFOS_RADR
6581	 *	LCB_CFG_RX_FIFOS_RADR
6582	 *	LCB_CFG_LN_DCLK
6583	 *	LCB_CFG_IGNORE_LOST_RCLK
6584	 */
6585	if (is_emulator_s(dd))
6586		return;
6587	/* else this is _p */
6588
6589	version = emulator_rev(dd);
6590	if (!is_ax(dd))
6591		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6592
6593	if (version <= 0x12) {
6594		/* release 0x12 and below */
6595
6596		/*
6597		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6598		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6599		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6600		 */
6601		rx_radr =
6602		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6603		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6604		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6605		/*
6606		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6607		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6608		 */
6609		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6610	} else if (version <= 0x18) {
6611		/* release 0x13 up to 0x18 */
6612		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6613		rx_radr =
6614		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618	} else if (version == 0x19) {
6619		/* release 0x19 */
6620		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6621		rx_radr =
6622		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6623		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6624		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6625		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6626	} else if (version == 0x1a) {
6627		/* release 0x1a */
6628		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6629		rx_radr =
6630		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6631		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6632		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6633		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6634		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6635	} else {
6636		/* release 0x1b and higher */
6637		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6638		rx_radr =
6639		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6640		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6641		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6642		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6643	}
6644
6645	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6646	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6647	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6648		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6649	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6650}
6651
6652/*
6653 * Handle a SMA idle message
6654 *
6655 * This is a work-queue function outside of the interrupt.
6656 */
6657void handle_sma_message(struct work_struct *work)
6658{
6659	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6660							sma_message_work);
6661	struct hfi1_devdata *dd = ppd->dd;
6662	u64 msg;
6663	int ret;
6664
6665	/*
6666	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6667	 * is stripped off
6668	 */
6669	ret = read_idle_sma(dd, &msg);
6670	if (ret)
6671		return;
6672	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6673	/*
6674	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6675	 */
6676	switch (msg & 0xff) {
6677	case SMA_IDLE_ARM:
6678		/*
6679		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6680		 * State Transitions
6681		 *
6682		 * Only expected in INIT or ARMED, discard otherwise.
6683		 */
6684		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6685			ppd->neighbor_normal = 1;
6686		break;
6687	case SMA_IDLE_ACTIVE:
6688		/*
6689		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6690		 * State Transitions
6691		 *
6692		 * Can activate the node.  Discard otherwise.
6693		 */
6694		if (ppd->host_link_state == HLS_UP_ARMED &&
6695		    ppd->is_active_optimize_enabled) {
6696			ppd->neighbor_normal = 1;
6697			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6698			if (ret)
6699				dd_dev_err(
6700					dd,
6701					"%s: received Active SMA idle message, couldn't set link to Active\n",
6702					__func__);
6703		}
6704		break;
6705	default:
6706		dd_dev_err(dd,
6707			   "%s: received unexpected SMA idle message 0x%llx\n",
6708			   __func__, msg);
6709		break;
6710	}
6711}
6712
6713static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6714{
6715	u64 rcvctrl;
6716	unsigned long flags;
6717
6718	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6719	rcvctrl = read_csr(dd, RCV_CTRL);
6720	rcvctrl |= add;
6721	rcvctrl &= ~clear;
6722	write_csr(dd, RCV_CTRL, rcvctrl);
6723	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6724}
6725
6726static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6727{
6728	adjust_rcvctrl(dd, add, 0);
6729}
6730
6731static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6732{
6733	adjust_rcvctrl(dd, 0, clear);
6734}
6735
6736/*
6737 * Called from all interrupt handlers to start handling an SPC freeze.
6738 */
6739void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6740{
6741	struct hfi1_devdata *dd = ppd->dd;
6742	struct send_context *sc;
6743	int i;
6744	int sc_flags;
6745
6746	if (flags & FREEZE_SELF)
6747		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6748
6749	/* enter frozen mode */
6750	dd->flags |= HFI1_FROZEN;
6751
6752	/* notify all SDMA engines that they are going into a freeze */
6753	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6754
6755	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6756					      SCF_LINK_DOWN : 0);
6757	/* do halt pre-handling on all enabled send contexts */
6758	for (i = 0; i < dd->num_send_contexts; i++) {
6759		sc = dd->send_contexts[i].sc;
6760		if (sc && (sc->flags & SCF_ENABLED))
6761			sc_stop(sc, sc_flags);
6762	}
6763
6764	/* Send context are frozen. Notify user space */
6765	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6766
6767	if (flags & FREEZE_ABORT) {
6768		dd_dev_err(dd,
6769			   "Aborted freeze recovery. Please REBOOT system\n");
6770		return;
6771	}
6772	/* queue non-interrupt handler */
6773	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6774}
6775
6776/*
6777 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6778 * depending on the "freeze" parameter.
6779 *
6780 * No need to return an error if it times out, our only option
6781 * is to proceed anyway.
6782 */
6783static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6784{
6785	unsigned long timeout;
6786	u64 reg;
6787
6788	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6789	while (1) {
6790		reg = read_csr(dd, CCE_STATUS);
6791		if (freeze) {
6792			/* waiting until all indicators are set */
6793			if ((reg & ALL_FROZE) == ALL_FROZE)
6794				return;	/* all done */
6795		} else {
6796			/* waiting until all indicators are clear */
6797			if ((reg & ALL_FROZE) == 0)
6798				return; /* all done */
6799		}
6800
6801		if (time_after(jiffies, timeout)) {
6802			dd_dev_err(dd,
6803				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6804				   freeze ? "" : "un", reg & ALL_FROZE,
6805				   freeze ? ALL_FROZE : 0ull);
6806			return;
6807		}
6808		usleep_range(80, 120);
6809	}
6810}
6811
6812/*
6813 * Do all freeze handling for the RXE block.
6814 */
6815static void rxe_freeze(struct hfi1_devdata *dd)
6816{
6817	int i;
6818	struct hfi1_ctxtdata *rcd;
6819
6820	/* disable port */
6821	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6822
6823	/* disable all receive contexts */
6824	for (i = 0; i < dd->num_rcv_contexts; i++) {
6825		rcd = hfi1_rcd_get_by_index(dd, i);
6826		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6827		hfi1_rcd_put(rcd);
6828	}
6829}
6830
6831/*
6832 * Unfreeze handling for the RXE block - kernel contexts only.
6833 * This will also enable the port.  User contexts will do unfreeze
6834 * handling on a per-context basis as they call into the driver.
6835 *
6836 */
6837static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6838{
6839	u32 rcvmask;
6840	u16 i;
6841	struct hfi1_ctxtdata *rcd;
6842
6843	/* enable all kernel contexts */
6844	for (i = 0; i < dd->num_rcv_contexts; i++) {
6845		rcd = hfi1_rcd_get_by_index(dd, i);
6846
6847		/* Ensure all non-user contexts(including vnic) are enabled */
6848		if (!rcd ||
6849		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6850			hfi1_rcd_put(rcd);
6851			continue;
6852		}
6853		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6854		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6855		rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6856			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6857		hfi1_rcvctrl(dd, rcvmask, rcd);
6858		hfi1_rcd_put(rcd);
6859	}
6860
6861	/* enable port */
6862	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6863}
6864
6865/*
6866 * Non-interrupt SPC freeze handling.
6867 *
6868 * This is a work-queue function outside of the triggering interrupt.
6869 */
6870void handle_freeze(struct work_struct *work)
6871{
6872	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6873								freeze_work);
6874	struct hfi1_devdata *dd = ppd->dd;
6875
6876	/* wait for freeze indicators on all affected blocks */
6877	wait_for_freeze_status(dd, 1);
6878
6879	/* SPC is now frozen */
6880
6881	/* do send PIO freeze steps */
6882	pio_freeze(dd);
6883
6884	/* do send DMA freeze steps */
6885	sdma_freeze(dd);
6886
6887	/* do send egress freeze steps - nothing to do */
6888
6889	/* do receive freeze steps */
6890	rxe_freeze(dd);
6891
6892	/*
6893	 * Unfreeze the hardware - clear the freeze, wait for each
6894	 * block's frozen bit to clear, then clear the frozen flag.
6895	 */
6896	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6897	wait_for_freeze_status(dd, 0);
6898
6899	if (is_ax(dd)) {
6900		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6901		wait_for_freeze_status(dd, 1);
6902		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6903		wait_for_freeze_status(dd, 0);
6904	}
6905
6906	/* do send PIO unfreeze steps for kernel contexts */
6907	pio_kernel_unfreeze(dd);
6908
6909	/* do send DMA unfreeze steps */
6910	sdma_unfreeze(dd);
6911
6912	/* do send egress unfreeze steps - nothing to do */
6913
6914	/* do receive unfreeze steps for kernel contexts */
6915	rxe_kernel_unfreeze(dd);
6916
6917	/*
6918	 * The unfreeze procedure touches global device registers when
6919	 * it disables and re-enables RXE. Mark the device unfrozen
6920	 * after all that is done so other parts of the driver waiting
6921	 * for the device to unfreeze don't do things out of order.
6922	 *
6923	 * The above implies that the meaning of HFI1_FROZEN flag is
6924	 * "Device has gone into freeze mode and freeze mode handling
6925	 * is still in progress."
6926	 *
6927	 * The flag will be removed when freeze mode processing has
6928	 * completed.
6929	 */
6930	dd->flags &= ~HFI1_FROZEN;
6931	wake_up(&dd->event_queue);
6932
6933	/* no longer frozen */
6934}
6935
6936/**
6937 * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6938 * counters.
6939 * @ppd: info of physical Hfi port
6940 * @link_width: new link width after link up or downgrade
6941 *
6942 * Update the PortXmitWait and PortVlXmitWait counters after
6943 * a link up or downgrade event to reflect a link width change.
6944 */
6945static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6946{
6947	int i;
6948	u16 tx_width;
6949	u16 link_speed;
6950
6951	tx_width = tx_link_width(link_width);
6952	link_speed = get_link_speed(ppd->link_speed_active);
6953
6954	/*
6955	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6956	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6957	 */
6958	for (i = 0; i < C_VL_COUNT + 1; i++)
6959		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6960}
6961
6962/*
6963 * Handle a link up interrupt from the 8051.
6964 *
6965 * This is a work-queue function outside of the interrupt.
6966 */
6967void handle_link_up(struct work_struct *work)
6968{
6969	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6970						  link_up_work);
6971	struct hfi1_devdata *dd = ppd->dd;
6972
6973	set_link_state(ppd, HLS_UP_INIT);
6974
6975	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6976	read_ltp_rtt(dd);
6977	/*
6978	 * OPA specifies that certain counters are cleared on a transition
6979	 * to link up, so do that.
6980	 */
6981	clear_linkup_counters(dd);
6982	/*
6983	 * And (re)set link up default values.
6984	 */
6985	set_linkup_defaults(ppd);
6986
6987	/*
6988	 * Set VL15 credits. Use cached value from verify cap interrupt.
6989	 * In case of quick linkup or simulator, vl15 value will be set by
6990	 * handle_linkup_change. VerifyCap interrupt handler will not be
6991	 * called in those scenarios.
6992	 */
6993	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6994		set_up_vl15(dd, dd->vl15buf_cached);
6995
6996	/* enforce link speed enabled */
6997	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6998		/* oops - current speed is not enabled, bounce */
6999		dd_dev_err(dd,
7000			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7001			   ppd->link_speed_active, ppd->link_speed_enabled);
7002		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7003				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7004		set_link_state(ppd, HLS_DN_OFFLINE);
7005		start_link(ppd);
7006	}
7007}
7008
7009/*
7010 * Several pieces of LNI information were cached for SMA in ppd.
7011 * Reset these on link down
7012 */
7013static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7014{
7015	ppd->neighbor_guid = 0;
7016	ppd->neighbor_port_number = 0;
7017	ppd->neighbor_type = 0;
7018	ppd->neighbor_fm_security = 0;
7019}
7020
7021static const char * const link_down_reason_strs[] = {
7022	[OPA_LINKDOWN_REASON_NONE] = "None",
7023	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7024	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7025	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7026	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7027	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7028	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7029	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7030	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7031	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7032	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7033	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7034	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7035	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7036	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7037	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7038	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7039	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7040	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7041	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7042	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7043	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7044	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7045	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7046	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7047	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7048	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7049	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7050	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7051	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7052	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7053	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7054	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7055					"Excessive buffer overrun",
7056	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7057	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7058	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7059	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7060	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7061	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7062	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7063	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7064					"Local media not installed",
7065	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7066	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7067	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7068					"End to end not installed",
7069	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7070	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7071	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7072	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7073	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7074	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7075};
7076
7077/* return the neighbor link down reason string */
7078static const char *link_down_reason_str(u8 reason)
7079{
7080	const char *str = NULL;
7081
7082	if (reason < ARRAY_SIZE(link_down_reason_strs))
7083		str = link_down_reason_strs[reason];
7084	if (!str)
7085		str = "(invalid)";
7086
7087	return str;
7088}
7089
7090/*
7091 * Handle a link down interrupt from the 8051.
7092 *
7093 * This is a work-queue function outside of the interrupt.
7094 */
7095void handle_link_down(struct work_struct *work)
7096{
7097	u8 lcl_reason, neigh_reason = 0;
7098	u8 link_down_reason;
7099	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7100						  link_down_work);
7101	int was_up;
7102	static const char ldr_str[] = "Link down reason: ";
7103
7104	if ((ppd->host_link_state &
7105	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7106	     ppd->port_type == PORT_TYPE_FIXED)
7107		ppd->offline_disabled_reason =
7108			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7109
7110	/* Go offline first, then deal with reading/writing through 8051 */
7111	was_up = !!(ppd->host_link_state & HLS_UP);
7112	set_link_state(ppd, HLS_DN_OFFLINE);
7113	xchg(&ppd->is_link_down_queued, 0);
7114
7115	if (was_up) {
7116		lcl_reason = 0;
7117		/* link down reason is only valid if the link was up */
7118		read_link_down_reason(ppd->dd, &link_down_reason);
7119		switch (link_down_reason) {
7120		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7121			/* the link went down, no idle message reason */
7122			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7123				    ldr_str);
7124			break;
7125		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7126			/*
7127			 * The neighbor reason is only valid if an idle message
7128			 * was received for it.
7129			 */
7130			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7131			dd_dev_info(ppd->dd,
7132				    "%sNeighbor link down message %d, %s\n",
7133				    ldr_str, neigh_reason,
7134				    link_down_reason_str(neigh_reason));
7135			break;
7136		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7137			dd_dev_info(ppd->dd,
7138				    "%sHost requested link to go offline\n",
7139				    ldr_str);
7140			break;
7141		default:
7142			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7143				    ldr_str, link_down_reason);
7144			break;
7145		}
7146
7147		/*
7148		 * If no reason, assume peer-initiated but missed
7149		 * LinkGoingDown idle flits.
7150		 */
7151		if (neigh_reason == 0)
7152			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7153	} else {
7154		/* went down while polling or going up */
7155		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7156	}
7157
7158	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7159
7160	/* inform the SMA when the link transitions from up to down */
7161	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7162	    ppd->neigh_link_down_reason.sma == 0) {
7163		ppd->local_link_down_reason.sma =
7164					ppd->local_link_down_reason.latest;
7165		ppd->neigh_link_down_reason.sma =
7166					ppd->neigh_link_down_reason.latest;
7167	}
7168
7169	reset_neighbor_info(ppd);
7170
7171	/* disable the port */
7172	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7173
7174	/*
7175	 * If there is no cable attached, turn the DC off. Otherwise,
7176	 * start the link bring up.
7177	 */
7178	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7179		dc_shutdown(ppd->dd);
7180	else
7181		start_link(ppd);
7182}
7183
7184void handle_link_bounce(struct work_struct *work)
7185{
7186	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7187							link_bounce_work);
7188
7189	/*
7190	 * Only do something if the link is currently up.
7191	 */
7192	if (ppd->host_link_state & HLS_UP) {
7193		set_link_state(ppd, HLS_DN_OFFLINE);
7194		start_link(ppd);
7195	} else {
7196		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7197			    __func__, link_state_name(ppd->host_link_state));
7198	}
7199}
7200
7201/*
7202 * Mask conversion: Capability exchange to Port LTP.  The capability
7203 * exchange has an implicit 16b CRC that is mandatory.
7204 */
7205static int cap_to_port_ltp(int cap)
7206{
7207	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7208
7209	if (cap & CAP_CRC_14B)
7210		port_ltp |= PORT_LTP_CRC_MODE_14;
7211	if (cap & CAP_CRC_48B)
7212		port_ltp |= PORT_LTP_CRC_MODE_48;
7213	if (cap & CAP_CRC_12B_16B_PER_LANE)
7214		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7215
7216	return port_ltp;
7217}
7218
7219/*
7220 * Convert an OPA Port LTP mask to capability mask
7221 */
7222int port_ltp_to_cap(int port_ltp)
7223{
7224	int cap_mask = 0;
7225
7226	if (port_ltp & PORT_LTP_CRC_MODE_14)
7227		cap_mask |= CAP_CRC_14B;
7228	if (port_ltp & PORT_LTP_CRC_MODE_48)
7229		cap_mask |= CAP_CRC_48B;
7230	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7231		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7232
7233	return cap_mask;
7234}
7235
7236/*
7237 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7238 */
7239static int lcb_to_port_ltp(int lcb_crc)
7240{
7241	int port_ltp = 0;
7242
7243	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7244		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7245	else if (lcb_crc == LCB_CRC_48B)
7246		port_ltp = PORT_LTP_CRC_MODE_48;
7247	else if (lcb_crc == LCB_CRC_14B)
7248		port_ltp = PORT_LTP_CRC_MODE_14;
7249	else
7250		port_ltp = PORT_LTP_CRC_MODE_16;
7251
7252	return port_ltp;
7253}
7254
7255static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7256{
7257	if (ppd->pkeys[2] != 0) {
7258		ppd->pkeys[2] = 0;
7259		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7260		hfi1_event_pkey_change(ppd->dd, ppd->port);
7261	}
7262}
7263
7264/*
7265 * Convert the given link width to the OPA link width bitmask.
7266 */
7267static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7268{
7269	switch (width) {
7270	case 0:
7271		/*
7272		 * Simulator and quick linkup do not set the width.
7273		 * Just set it to 4x without complaint.
7274		 */
7275		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7276			return OPA_LINK_WIDTH_4X;
7277		return 0; /* no lanes up */
7278	case 1: return OPA_LINK_WIDTH_1X;
7279	case 2: return OPA_LINK_WIDTH_2X;
7280	case 3: return OPA_LINK_WIDTH_3X;
7281	case 4: return OPA_LINK_WIDTH_4X;
7282	default:
7283		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7284			    __func__, width);
7285		return OPA_LINK_WIDTH_4X;
7286	}
7287}
7288
7289/*
7290 * Do a population count on the bottom nibble.
7291 */
7292static const u8 bit_counts[16] = {
7293	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7294};
7295
7296static inline u8 nibble_to_count(u8 nibble)
7297{
7298	return bit_counts[nibble & 0xf];
7299}
7300
7301/*
7302 * Read the active lane information from the 8051 registers and return
7303 * their widths.
7304 *
7305 * Active lane information is found in these 8051 registers:
7306 *	enable_lane_tx
7307 *	enable_lane_rx
7308 */
7309static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7310			    u16 *rx_width)
7311{
7312	u16 tx, rx;
7313	u8 enable_lane_rx;
7314	u8 enable_lane_tx;
7315	u8 tx_polarity_inversion;
7316	u8 rx_polarity_inversion;
7317	u8 max_rate;
7318
7319	/* read the active lanes */
7320	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7321			 &rx_polarity_inversion, &max_rate);
7322	read_local_lni(dd, &enable_lane_rx);
7323
7324	/* convert to counts */
7325	tx = nibble_to_count(enable_lane_tx);
7326	rx = nibble_to_count(enable_lane_rx);
7327
7328	/*
7329	 * Set link_speed_active here, overriding what was set in
7330	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7331	 * set the max_rate field in handle_verify_cap until v0.19.
7332	 */
7333	if ((dd->icode == ICODE_RTL_SILICON) &&
7334	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7335		/* max_rate: 0 = 12.5G, 1 = 25G */
7336		switch (max_rate) {
7337		case 0:
7338			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7339			break;
7340		case 1:
7341			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7342			break;
7343		default:
7344			dd_dev_err(dd,
7345				   "%s: unexpected max rate %d, using 25Gb\n",
7346				   __func__, (int)max_rate);
7347			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7348			break;
7349		}
7350	}
7351
7352	dd_dev_info(dd,
7353		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7354		    enable_lane_tx, tx, enable_lane_rx, rx);
7355	*tx_width = link_width_to_bits(dd, tx);
7356	*rx_width = link_width_to_bits(dd, rx);
7357}
7358
7359/*
7360 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7361 * Valid after the end of VerifyCap and during LinkUp.  Does not change
7362 * after link up.  I.e. look elsewhere for downgrade information.
7363 *
7364 * Bits are:
7365 *	+ bits [7:4] contain the number of active transmitters
7366 *	+ bits [3:0] contain the number of active receivers
7367 * These are numbers 1 through 4 and can be different values if the
7368 * link is asymmetric.
7369 *
7370 * verify_cap_local_fm_link_width[0] retains its original value.
7371 */
7372static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7373			      u16 *rx_width)
7374{
7375	u16 widths, tx, rx;
7376	u8 misc_bits, local_flags;
7377	u16 active_tx, active_rx;
7378
7379	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7380	tx = widths >> 12;
7381	rx = (widths >> 8) & 0xf;
7382
7383	*tx_width = link_width_to_bits(dd, tx);
7384	*rx_width = link_width_to_bits(dd, rx);
7385
7386	/* print the active widths */
7387	get_link_widths(dd, &active_tx, &active_rx);
7388}
7389
7390/*
7391 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7392 * hardware information when the link first comes up.
7393 *
7394 * The link width is not available until after VerifyCap.AllFramesReceived
7395 * (the trigger for handle_verify_cap), so this is outside that routine
7396 * and should be called when the 8051 signals linkup.
7397 */
7398void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7399{
7400	u16 tx_width, rx_width;
7401
7402	/* get end-of-LNI link widths */
7403	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7404
7405	/* use tx_width as the link is supposed to be symmetric on link up */
7406	ppd->link_width_active = tx_width;
7407	/* link width downgrade active (LWD.A) starts out matching LW.A */
7408	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7409	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7410	/* per OPA spec, on link up LWD.E resets to LWD.S */
7411	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7412	/* cache the active egress rate (units {10^6 bits/sec]) */
7413	ppd->current_egress_rate = active_egress_rate(ppd);
7414}
7415
7416/*
7417 * Handle a verify capabilities interrupt from the 8051.
7418 *
7419 * This is a work-queue function outside of the interrupt.
7420 */
7421void handle_verify_cap(struct work_struct *work)
7422{
7423	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7424								link_vc_work);
7425	struct hfi1_devdata *dd = ppd->dd;
7426	u64 reg;
7427	u8 power_management;
7428	u8 continuous;
7429	u8 vcu;
7430	u8 vau;
7431	u8 z;
7432	u16 vl15buf;
7433	u16 link_widths;
7434	u16 crc_mask;
7435	u16 crc_val;
7436	u16 device_id;
7437	u16 active_tx, active_rx;
7438	u8 partner_supported_crc;
7439	u8 remote_tx_rate;
7440	u8 device_rev;
7441
7442	set_link_state(ppd, HLS_VERIFY_CAP);
7443
7444	lcb_shutdown(dd, 0);
7445	adjust_lcb_for_fpga_serdes(dd);
7446
7447	read_vc_remote_phy(dd, &power_management, &continuous);
7448	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7449			      &partner_supported_crc);
7450	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7451	read_remote_device_id(dd, &device_id, &device_rev);
7452
7453	/* print the active widths */
7454	get_link_widths(dd, &active_tx, &active_rx);
7455	dd_dev_info(dd,
7456		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7457		    (int)power_management, (int)continuous);
7458	dd_dev_info(dd,
7459		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7460		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7461		    (int)partner_supported_crc);
7462	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7463		    (u32)remote_tx_rate, (u32)link_widths);
7464	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7465		    (u32)device_id, (u32)device_rev);
7466	/*
7467	 * The peer vAU value just read is the peer receiver value.  HFI does
7468	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7469	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7470	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7471	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7472	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7473	 * subject to the Z value exception.
7474	 */
7475	if (vau == 0)
7476		vau = 1;
7477	set_up_vau(dd, vau);
7478
7479	/*
7480	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7481	 * credits value and wait for link-up interrupt ot set it.
7482	 */
7483	set_up_vl15(dd, 0);
7484	dd->vl15buf_cached = vl15buf;
7485
7486	/* set up the LCB CRC mode */
7487	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7488
7489	/* order is important: use the lowest bit in common */
7490	if (crc_mask & CAP_CRC_14B)
7491		crc_val = LCB_CRC_14B;
7492	else if (crc_mask & CAP_CRC_48B)
7493		crc_val = LCB_CRC_48B;
7494	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7495		crc_val = LCB_CRC_12B_16B_PER_LANE;
7496	else
7497		crc_val = LCB_CRC_16B;
7498
7499	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7500	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7501		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7502
7503	/* set (14b only) or clear sideband credit */
7504	reg = read_csr(dd, SEND_CM_CTRL);
7505	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7506		write_csr(dd, SEND_CM_CTRL,
7507			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7508	} else {
7509		write_csr(dd, SEND_CM_CTRL,
7510			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7511	}
7512
7513	ppd->link_speed_active = 0;	/* invalid value */
7514	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7515		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7516		switch (remote_tx_rate) {
7517		case 0:
7518			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7519			break;
7520		case 1:
7521			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7522			break;
7523		}
7524	} else {
7525		/* actual rate is highest bit of the ANDed rates */
7526		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7527
7528		if (rate & 2)
7529			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7530		else if (rate & 1)
7531			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7532	}
7533	if (ppd->link_speed_active == 0) {
7534		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7535			   __func__, (int)remote_tx_rate);
7536		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7537	}
7538
7539	/*
7540	 * Cache the values of the supported, enabled, and active
7541	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7542	 * flags that are returned in the portinfo query differ from
7543	 * what's in the link_crc_mask, crc_sizes, and crc_val
7544	 * variables. Convert these here.
7545	 */
7546	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7547		/* supported crc modes */
7548	ppd->port_ltp_crc_mode |=
7549		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7550		/* enabled crc modes */
7551	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7552		/* active crc mode */
7553
7554	/* set up the remote credit return table */
7555	assign_remote_cm_au_table(dd, vcu);
7556
7557	/*
7558	 * The LCB is reset on entry to handle_verify_cap(), so this must
7559	 * be applied on every link up.
7560	 *
7561	 * Adjust LCB error kill enable to kill the link if
7562	 * these RBUF errors are seen:
7563	 *	REPLAY_BUF_MBE_SMASK
7564	 *	FLIT_INPUT_BUF_MBE_SMASK
7565	 */
7566	if (is_ax(dd)) {			/* fixed in B0 */
7567		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7568		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7569			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7570		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7571	}
7572
7573	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7574	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7575
7576	/* give 8051 access to the LCB CSRs */
7577	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7578	set_8051_lcb_access(dd);
7579
7580	/* tell the 8051 to go to LinkUp */
7581	set_link_state(ppd, HLS_GOING_UP);
7582}
7583
7584/**
7585 * apply_link_downgrade_policy - Apply the link width downgrade enabled
7586 * policy against the current active link widths.
7587 * @ppd: info of physical Hfi port
7588 * @refresh_widths: True indicates link downgrade event
7589 * @return: True indicates a successful link downgrade. False indicates
7590 *	    link downgrade event failed and the link will bounce back to
7591 *	    default link width.
7592 *
7593 * Called when the enabled policy changes or the active link widths
7594 * change.
7595 * Refresh_widths indicates that a link downgrade occurred. The
7596 * link_downgraded variable is set by refresh_widths and
7597 * determines the success/failure of the policy application.
7598 */
7599bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7600				 bool refresh_widths)
7601{
7602	int do_bounce = 0;
7603	int tries;
7604	u16 lwde;
7605	u16 tx, rx;
7606	bool link_downgraded = refresh_widths;
7607
7608	/* use the hls lock to avoid a race with actual link up */
7609	tries = 0;
7610retry:
7611	mutex_lock(&ppd->hls_lock);
7612	/* only apply if the link is up */
7613	if (ppd->host_link_state & HLS_DOWN) {
7614		/* still going up..wait and retry */
7615		if (ppd->host_link_state & HLS_GOING_UP) {
7616			if (++tries < 1000) {
7617				mutex_unlock(&ppd->hls_lock);
7618				usleep_range(100, 120); /* arbitrary */
7619				goto retry;
7620			}
7621			dd_dev_err(ppd->dd,
7622				   "%s: giving up waiting for link state change\n",
7623				   __func__);
7624		}
7625		goto done;
7626	}
7627
7628	lwde = ppd->link_width_downgrade_enabled;
7629
7630	if (refresh_widths) {
7631		get_link_widths(ppd->dd, &tx, &rx);
7632		ppd->link_width_downgrade_tx_active = tx;
7633		ppd->link_width_downgrade_rx_active = rx;
7634	}
7635
7636	if (ppd->link_width_downgrade_tx_active == 0 ||
7637	    ppd->link_width_downgrade_rx_active == 0) {
7638		/* the 8051 reported a dead link as a downgrade */
7639		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7640		link_downgraded = false;
7641	} else if (lwde == 0) {
7642		/* downgrade is disabled */
7643
7644		/* bounce if not at starting active width */
7645		if ((ppd->link_width_active !=
7646		     ppd->link_width_downgrade_tx_active) ||
7647		    (ppd->link_width_active !=
7648		     ppd->link_width_downgrade_rx_active)) {
7649			dd_dev_err(ppd->dd,
7650				   "Link downgrade is disabled and link has downgraded, downing link\n");
7651			dd_dev_err(ppd->dd,
7652				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7653				   ppd->link_width_active,
7654				   ppd->link_width_downgrade_tx_active,
7655				   ppd->link_width_downgrade_rx_active);
7656			do_bounce = 1;
7657			link_downgraded = false;
7658		}
7659	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7660		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7661		/* Tx or Rx is outside the enabled policy */
7662		dd_dev_err(ppd->dd,
7663			   "Link is outside of downgrade allowed, downing link\n");
7664		dd_dev_err(ppd->dd,
7665			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7666			   lwde, ppd->link_width_downgrade_tx_active,
7667			   ppd->link_width_downgrade_rx_active);
7668		do_bounce = 1;
7669		link_downgraded = false;
7670	}
7671
7672done:
7673	mutex_unlock(&ppd->hls_lock);
7674
7675	if (do_bounce) {
7676		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7677				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7678		set_link_state(ppd, HLS_DN_OFFLINE);
7679		start_link(ppd);
7680	}
7681
7682	return link_downgraded;
7683}
7684
7685/*
7686 * Handle a link downgrade interrupt from the 8051.
7687 *
7688 * This is a work-queue function outside of the interrupt.
7689 */
7690void handle_link_downgrade(struct work_struct *work)
7691{
7692	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7693							link_downgrade_work);
7694
7695	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7696	if (apply_link_downgrade_policy(ppd, true))
7697		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7698}
7699
7700static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7701{
7702	return flag_string(buf, buf_len, flags, dcc_err_flags,
7703		ARRAY_SIZE(dcc_err_flags));
7704}
7705
7706static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7707{
7708	return flag_string(buf, buf_len, flags, lcb_err_flags,
7709		ARRAY_SIZE(lcb_err_flags));
7710}
7711
7712static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7713{
7714	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7715		ARRAY_SIZE(dc8051_err_flags));
7716}
7717
7718static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7719{
7720	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7721		ARRAY_SIZE(dc8051_info_err_flags));
7722}
7723
7724static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7725{
7726	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7727		ARRAY_SIZE(dc8051_info_host_msg_flags));
7728}
7729
7730static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7731{
7732	struct hfi1_pportdata *ppd = dd->pport;
7733	u64 info, err, host_msg;
7734	int queue_link_down = 0;
7735	char buf[96];
7736
7737	/* look at the flags */
7738	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7739		/* 8051 information set by firmware */
7740		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7741		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7742		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7743			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7744		host_msg = (info >>
7745			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7746			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7747
7748		/*
7749		 * Handle error flags.
7750		 */
7751		if (err & FAILED_LNI) {
7752			/*
7753			 * LNI error indications are cleared by the 8051
7754			 * only when starting polling.  Only pay attention
7755			 * to them when in the states that occur during
7756			 * LNI.
7757			 */
7758			if (ppd->host_link_state
7759			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7760				queue_link_down = 1;
7761				dd_dev_info(dd, "Link error: %s\n",
7762					    dc8051_info_err_string(buf,
7763								   sizeof(buf),
7764								   err &
7765								   FAILED_LNI));
7766			}
7767			err &= ~(u64)FAILED_LNI;
7768		}
7769		/* unknown frames can happen durning LNI, just count */
7770		if (err & UNKNOWN_FRAME) {
7771			ppd->unknown_frame_count++;
7772			err &= ~(u64)UNKNOWN_FRAME;
7773		}
7774		if (err) {
7775			/* report remaining errors, but do not do anything */
7776			dd_dev_err(dd, "8051 info error: %s\n",
7777				   dc8051_info_err_string(buf, sizeof(buf),
7778							  err));
7779		}
7780
7781		/*
7782		 * Handle host message flags.
7783		 */
7784		if (host_msg & HOST_REQ_DONE) {
7785			/*
7786			 * Presently, the driver does a busy wait for
7787			 * host requests to complete.  This is only an
7788			 * informational message.
7789			 * NOTE: The 8051 clears the host message
7790			 * information *on the next 8051 command*.
7791			 * Therefore, when linkup is achieved,
7792			 * this flag will still be set.
7793			 */
7794			host_msg &= ~(u64)HOST_REQ_DONE;
7795		}
7796		if (host_msg & BC_SMA_MSG) {
7797			queue_work(ppd->link_wq, &ppd->sma_message_work);
7798			host_msg &= ~(u64)BC_SMA_MSG;
7799		}
7800		if (host_msg & LINKUP_ACHIEVED) {
7801			dd_dev_info(dd, "8051: Link up\n");
7802			queue_work(ppd->link_wq, &ppd->link_up_work);
7803			host_msg &= ~(u64)LINKUP_ACHIEVED;
7804		}
7805		if (host_msg & EXT_DEVICE_CFG_REQ) {
7806			handle_8051_request(ppd);
7807			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7808		}
7809		if (host_msg & VERIFY_CAP_FRAME) {
7810			queue_work(ppd->link_wq, &ppd->link_vc_work);
7811			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7812		}
7813		if (host_msg & LINK_GOING_DOWN) {
7814			const char *extra = "";
7815			/* no downgrade action needed if going down */
7816			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7817				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7818				extra = " (ignoring downgrade)";
7819			}
7820			dd_dev_info(dd, "8051: Link down%s\n", extra);
7821			queue_link_down = 1;
7822			host_msg &= ~(u64)LINK_GOING_DOWN;
7823		}
7824		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7825			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7826			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7827		}
7828		if (host_msg) {
7829			/* report remaining messages, but do not do anything */
7830			dd_dev_info(dd, "8051 info host message: %s\n",
7831				    dc8051_info_host_msg_string(buf,
7832								sizeof(buf),
7833								host_msg));
7834		}
7835
7836		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7837	}
7838	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7839		/*
7840		 * Lost the 8051 heartbeat.  If this happens, we
7841		 * receive constant interrupts about it.  Disable
7842		 * the interrupt after the first.
7843		 */
7844		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7845		write_csr(dd, DC_DC8051_ERR_EN,
7846			  read_csr(dd, DC_DC8051_ERR_EN) &
7847			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7848
7849		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7850	}
7851	if (reg) {
7852		/* report the error, but do not do anything */
7853		dd_dev_err(dd, "8051 error: %s\n",
7854			   dc8051_err_string(buf, sizeof(buf), reg));
7855	}
7856
7857	if (queue_link_down) {
7858		/*
7859		 * if the link is already going down or disabled, do not
7860		 * queue another. If there's a link down entry already
7861		 * queued, don't queue another one.
7862		 */
7863		if ((ppd->host_link_state &
7864		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7865		    ppd->link_enabled == 0) {
7866			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7867				    __func__, ppd->host_link_state,
7868				    ppd->link_enabled);
7869		} else {
7870			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7871				dd_dev_info(dd,
7872					    "%s: link down request already queued\n",
7873					    __func__);
7874			else
7875				queue_work(ppd->link_wq, &ppd->link_down_work);
7876		}
7877	}
7878}
7879
7880static const char * const fm_config_txt[] = {
7881[0] =
7882	"BadHeadDist: Distance violation between two head flits",
7883[1] =
7884	"BadTailDist: Distance violation between two tail flits",
7885[2] =
7886	"BadCtrlDist: Distance violation between two credit control flits",
7887[3] =
7888	"BadCrdAck: Credits return for unsupported VL",
7889[4] =
7890	"UnsupportedVLMarker: Received VL Marker",
7891[5] =
7892	"BadPreempt: Exceeded the preemption nesting level",
7893[6] =
7894	"BadControlFlit: Received unsupported control flit",
7895/* no 7 */
7896[8] =
7897	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7898};
7899
7900static const char * const port_rcv_txt[] = {
7901[1] =
7902	"BadPktLen: Illegal PktLen",
7903[2] =
7904	"PktLenTooLong: Packet longer than PktLen",
7905[3] =
7906	"PktLenTooShort: Packet shorter than PktLen",
7907[4] =
7908	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7909[5] =
7910	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7911[6] =
7912	"BadL2: Illegal L2 opcode",
7913[7] =
7914	"BadSC: Unsupported SC",
7915[9] =
7916	"BadRC: Illegal RC",
7917[11] =
7918	"PreemptError: Preempting with same VL",
7919[12] =
7920	"PreemptVL15: Preempting a VL15 packet",
7921};
7922
7923#define OPA_LDR_FMCONFIG_OFFSET 16
7924#define OPA_LDR_PORTRCV_OFFSET 0
7925static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7926{
7927	u64 info, hdr0, hdr1;
7928	const char *extra;
7929	char buf[96];
7930	struct hfi1_pportdata *ppd = dd->pport;
7931	u8 lcl_reason = 0;
7932	int do_bounce = 0;
7933
7934	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7935		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7936			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7937			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7938			/* set status bit */
7939			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7940		}
7941		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7942	}
7943
7944	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7945		struct hfi1_pportdata *ppd = dd->pport;
7946		/* this counter saturates at (2^32) - 1 */
7947		if (ppd->link_downed < (u32)UINT_MAX)
7948			ppd->link_downed++;
7949		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7950	}
7951
7952	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7953		u8 reason_valid = 1;
7954
7955		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7956		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7957			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7958			/* set status bit */
7959			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7960		}
7961		switch (info) {
7962		case 0:
7963		case 1:
7964		case 2:
7965		case 3:
7966		case 4:
7967		case 5:
7968		case 6:
7969			extra = fm_config_txt[info];
7970			break;
7971		case 8:
7972			extra = fm_config_txt[info];
7973			if (ppd->port_error_action &
7974			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7975				do_bounce = 1;
7976				/*
7977				 * lcl_reason cannot be derived from info
7978				 * for this error
7979				 */
7980				lcl_reason =
7981				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7982			}
7983			break;
7984		default:
7985			reason_valid = 0;
7986			snprintf(buf, sizeof(buf), "reserved%lld", info);
7987			extra = buf;
7988			break;
7989		}
7990
7991		if (reason_valid && !do_bounce) {
7992			do_bounce = ppd->port_error_action &
7993					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7994			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7995		}
7996
7997		/* just report this */
7998		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7999					extra);
8000		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8001	}
8002
8003	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8004		u8 reason_valid = 1;
8005
8006		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8007		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8008		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8009		if (!(dd->err_info_rcvport.status_and_code &
8010		      OPA_EI_STATUS_SMASK)) {
8011			dd->err_info_rcvport.status_and_code =
8012				info & OPA_EI_CODE_SMASK;
8013			/* set status bit */
8014			dd->err_info_rcvport.status_and_code |=
8015				OPA_EI_STATUS_SMASK;
8016			/*
8017			 * save first 2 flits in the packet that caused
8018			 * the error
8019			 */
8020			dd->err_info_rcvport.packet_flit1 = hdr0;
8021			dd->err_info_rcvport.packet_flit2 = hdr1;
8022		}
8023		switch (info) {
8024		case 1:
8025		case 2:
8026		case 3:
8027		case 4:
8028		case 5:
8029		case 6:
8030		case 7:
8031		case 9:
8032		case 11:
8033		case 12:
8034			extra = port_rcv_txt[info];
8035			break;
8036		default:
8037			reason_valid = 0;
8038			snprintf(buf, sizeof(buf), "reserved%lld", info);
8039			extra = buf;
8040			break;
8041		}
8042
8043		if (reason_valid && !do_bounce) {
8044			do_bounce = ppd->port_error_action &
8045					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8046			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8047		}
8048
8049		/* just report this */
8050		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8051					"               hdr0 0x%llx, hdr1 0x%llx\n",
8052					extra, hdr0, hdr1);
8053
8054		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8055	}
8056
8057	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8058		/* informative only */
8059		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8060		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8061	}
8062	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8063		/* informative only */
8064		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8065		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8066	}
8067
8068	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8069		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8070
8071	/* report any remaining errors */
8072	if (reg)
8073		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8074					dcc_err_string(buf, sizeof(buf), reg));
8075
8076	if (lcl_reason == 0)
8077		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8078
8079	if (do_bounce) {
8080		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8081					__func__);
8082		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8083		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8084	}
8085}
8086
8087static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8088{
8089	char buf[96];
8090
8091	dd_dev_info(dd, "LCB Error: %s\n",
8092		    lcb_err_string(buf, sizeof(buf), reg));
8093}
8094
8095/*
8096 * CCE block DC interrupt.  Source is < 8.
8097 */
8098static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8099{
8100	const struct err_reg_info *eri = &dc_errs[source];
8101
8102	if (eri->handler) {
8103		interrupt_clear_down(dd, 0, eri);
8104	} else if (source == 3 /* dc_lbm_int */) {
8105		/*
8106		 * This indicates that a parity error has occurred on the
8107		 * address/control lines presented to the LBM.  The error
8108		 * is a single pulse, there is no associated error flag,
8109		 * and it is non-maskable.  This is because if a parity
8110		 * error occurs on the request the request is dropped.
8111		 * This should never occur, but it is nice to know if it
8112		 * ever does.
8113		 */
8114		dd_dev_err(dd, "Parity error in DC LBM block\n");
8115	} else {
8116		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8117	}
8118}
8119
8120/*
8121 * TX block send credit interrupt.  Source is < 160.
8122 */
8123static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8124{
8125	sc_group_release_update(dd, source);
8126}
8127
8128/*
8129 * TX block SDMA interrupt.  Source is < 48.
8130 *
8131 * SDMA interrupts are grouped by type:
8132 *
8133 *	 0 -  N-1 = SDma
8134 *	 N - 2N-1 = SDmaProgress
8135 *	2N - 3N-1 = SDmaIdle
8136 */
8137static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8138{
8139	/* what interrupt */
8140	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8141	/* which engine */
8142	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8143
8144#ifdef CONFIG_SDMA_VERBOSITY
8145	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8146		   slashstrip(__FILE__), __LINE__, __func__);
8147	sdma_dumpstate(&dd->per_sdma[which]);
8148#endif
8149
8150	if (likely(what < 3 && which < dd->num_sdma)) {
8151		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8152	} else {
8153		/* should not happen */
8154		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8155	}
8156}
8157
8158/**
8159 * is_rcv_avail_int() - User receive context available IRQ handler
8160 * @dd: valid dd
8161 * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8162 *
8163 * RX block receive available interrupt.  Source is < 160.
8164 *
8165 * This is the general interrupt handler for user (PSM) receive contexts,
8166 * and can only be used for non-threaded IRQs.
8167 */
8168static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8169{
8170	struct hfi1_ctxtdata *rcd;
8171	char *err_detail;
8172
8173	if (likely(source < dd->num_rcv_contexts)) {
8174		rcd = hfi1_rcd_get_by_index(dd, source);
8175		if (rcd) {
8176			handle_user_interrupt(rcd);
8177			hfi1_rcd_put(rcd);
8178			return;	/* OK */
8179		}
8180		/* received an interrupt, but no rcd */
8181		err_detail = "dataless";
8182	} else {
8183		/* received an interrupt, but are not using that context */
8184		err_detail = "out of range";
8185	}
8186	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8187		   err_detail, source);
8188}
8189
8190/**
8191 * is_rcv_urgent_int() - User receive context urgent IRQ handler
8192 * @dd: valid dd
8193 * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8194 *
8195 * RX block receive urgent interrupt.  Source is < 160.
8196 *
8197 * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8198 */
8199static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8200{
8201	struct hfi1_ctxtdata *rcd;
8202	char *err_detail;
8203
8204	if (likely(source < dd->num_rcv_contexts)) {
8205		rcd = hfi1_rcd_get_by_index(dd, source);
8206		if (rcd) {
8207			handle_user_interrupt(rcd);
8208			hfi1_rcd_put(rcd);
8209			return;	/* OK */
8210		}
8211		/* received an interrupt, but no rcd */
8212		err_detail = "dataless";
8213	} else {
8214		/* received an interrupt, but are not using that context */
8215		err_detail = "out of range";
8216	}
8217	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8218		   err_detail, source);
8219}
8220
8221/*
8222 * Reserved range interrupt.  Should not be called in normal operation.
8223 */
8224static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8225{
8226	char name[64];
8227
8228	dd_dev_err(dd, "unexpected %s interrupt\n",
8229		   is_reserved_name(name, sizeof(name), source));
8230}
8231
8232static const struct is_table is_table[] = {
8233/*
8234 * start		 end
8235 *				name func		interrupt func
8236 */
8237{ IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8238				is_misc_err_name,	is_misc_err_int },
8239{ IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8240				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8241{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8242				is_sendctxt_err_name,	is_sendctxt_err_int },
8243{ IS_SDMA_START,	     IS_SDMA_IDLE_END,
8244				is_sdma_eng_name,	is_sdma_eng_int },
8245{ IS_VARIOUS_START,	     IS_VARIOUS_END,
8246				is_various_name,	is_various_int },
8247{ IS_DC_START,	     IS_DC_END,
8248				is_dc_name,		is_dc_int },
8249{ IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8250				is_rcv_avail_name,	is_rcv_avail_int },
8251{ IS_RCVURGENT_START,    IS_RCVURGENT_END,
8252				is_rcv_urgent_name,	is_rcv_urgent_int },
8253{ IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8254				is_send_credit_name,	is_send_credit_int},
8255{ IS_RESERVED_START,     IS_RESERVED_END,
8256				is_reserved_name,	is_reserved_int},
8257};
8258
8259/*
8260 * Interrupt source interrupt - called when the given source has an interrupt.
8261 * Source is a bit index into an array of 64-bit integers.
8262 */
8263static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8264{
8265	const struct is_table *entry;
8266
8267	/* avoids a double compare by walking the table in-order */
8268	for (entry = &is_table[0]; entry->is_name; entry++) {
8269		if (source <= entry->end) {
8270			trace_hfi1_interrupt(dd, entry, source);
8271			entry->is_int(dd, source - entry->start);
8272			return;
8273		}
8274	}
8275	/* fell off the end */
8276	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8277}
8278
8279/**
8280 * general_interrupt -  General interrupt handler
8281 * @irq: MSIx IRQ vector
8282 * @data: hfi1 devdata
8283 *
8284 * This is able to correctly handle all non-threaded interrupts.  Receive
8285 * context DATA IRQs are threaded and are not supported by this handler.
8286 *
8287 */
8288irqreturn_t general_interrupt(int irq, void *data)
8289{
8290	struct hfi1_devdata *dd = data;
8291	u64 regs[CCE_NUM_INT_CSRS];
8292	u32 bit;
8293	int i;
8294	irqreturn_t handled = IRQ_NONE;
8295
8296	this_cpu_inc(*dd->int_counter);
8297
8298	/* phase 1: scan and clear all handled interrupts */
8299	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8300		if (dd->gi_mask[i] == 0) {
8301			regs[i] = 0;	/* used later */
8302			continue;
8303		}
8304		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8305				dd->gi_mask[i];
8306		/* only clear if anything is set */
8307		if (regs[i])
8308			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8309	}
8310
8311	/* phase 2: call the appropriate handler */
8312	for_each_set_bit(bit, (unsigned long *)&regs[0],
8313			 CCE_NUM_INT_CSRS * 64) {
8314		is_interrupt(dd, bit);
8315		handled = IRQ_HANDLED;
8316	}
8317
8318	return handled;
8319}
8320
8321irqreturn_t sdma_interrupt(int irq, void *data)
8322{
8323	struct sdma_engine *sde = data;
8324	struct hfi1_devdata *dd = sde->dd;
8325	u64 status;
8326
8327#ifdef CONFIG_SDMA_VERBOSITY
8328	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8329		   slashstrip(__FILE__), __LINE__, __func__);
8330	sdma_dumpstate(sde);
8331#endif
8332
8333	this_cpu_inc(*dd->int_counter);
8334
8335	/* This read_csr is really bad in the hot path */
8336	status = read_csr(dd,
8337			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8338			  & sde->imask;
8339	if (likely(status)) {
8340		/* clear the interrupt(s) */
8341		write_csr(dd,
8342			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8343			  status);
8344
8345		/* handle the interrupt(s) */
8346		sdma_engine_interrupt(sde, status);
8347	} else {
8348		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8349					sde->this_idx);
8350	}
8351	return IRQ_HANDLED;
8352}
8353
8354/*
8355 * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8356 * to insure that the write completed.  This does NOT guarantee that
8357 * queued DMA writes to memory from the chip are pushed.
8358 */
8359static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8360{
8361	struct hfi1_devdata *dd = rcd->dd;
8362	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8363
8364	write_csr(dd, addr, rcd->imask);
8365	/* force the above write on the chip and get a value back */
8366	(void)read_csr(dd, addr);
8367}
8368
8369/* force the receive interrupt */
8370void force_recv_intr(struct hfi1_ctxtdata *rcd)
8371{
8372	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8373}
8374
8375/*
8376 * Return non-zero if a packet is present.
8377 *
8378 * This routine is called when rechecking for packets after the RcvAvail
8379 * interrupt has been cleared down.  First, do a quick check of memory for
8380 * a packet present.  If not found, use an expensive CSR read of the context
8381 * tail to determine the actual tail.  The CSR read is necessary because there
8382 * is no method to push pending DMAs to memory other than an interrupt and we
8383 * are trying to determine if we need to force an interrupt.
8384 */
8385static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8386{
8387	u32 tail;
8388
8389	if (hfi1_packet_present(rcd))
8390		return 1;
8391
8392	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8393	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8394	return hfi1_rcd_head(rcd) != tail;
8395}
8396
8397/*
8398 * Common code for receive contexts interrupt handlers.
8399 * Update traces, increment kernel IRQ counter and
8400 * setup ASPM when needed.
8401 */
8402static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8403{
8404	struct hfi1_devdata *dd = rcd->dd;
8405
8406	trace_hfi1_receive_interrupt(dd, rcd);
8407	this_cpu_inc(*dd->int_counter);
8408	aspm_ctx_disable(rcd);
8409}
8410
8411/*
8412 * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8413 * when there are packets present in the queue. When calling
8414 * with interrupts enabled please use hfi1_rcd_eoi_intr.
8415 *
8416 * @rcd: valid receive context
8417 */
8418static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8419{
8420	if (!rcd->rcvhdrq)
8421		return;
8422	clear_recv_intr(rcd);
8423	if (check_packet_present(rcd))
8424		force_recv_intr(rcd);
8425}
8426
8427/**
8428 * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8429 *
8430 * @rcd: Ptr to hfi1_ctxtdata of receive context
8431 *
8432 *  Hold IRQs so we can safely clear the interrupt and
8433 *  recheck for a packet that may have arrived after the previous
8434 *  check and the interrupt clear.  If a packet arrived, force another
8435 *  interrupt. This routine can be called at the end of receive packet
8436 *  processing in interrupt service routines, interrupt service thread
8437 *  and softirqs
8438 */
8439static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8440{
8441	unsigned long flags;
8442
8443	local_irq_save(flags);
8444	__hfi1_rcd_eoi_intr(rcd);
8445	local_irq_restore(flags);
8446}
8447
8448/**
8449 * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8450 * @napi: pointer to napi object
8451 * @budget: netdev budget
8452 */
8453int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8454{
8455	struct hfi1_netdev_rxq *rxq = container_of(napi,
8456			struct hfi1_netdev_rxq, napi);
8457	struct hfi1_ctxtdata *rcd = rxq->rcd;
8458	int work_done = 0;
8459
8460	work_done = rcd->do_interrupt(rcd, budget);
8461
8462	if (work_done < budget) {
8463		napi_complete_done(napi, work_done);
8464		hfi1_rcd_eoi_intr(rcd);
8465	}
8466
8467	return work_done;
8468}
8469
8470/* Receive packet napi handler for netdevs VNIC and AIP  */
8471irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8472{
8473	struct hfi1_ctxtdata *rcd = data;
8474
8475	receive_interrupt_common(rcd);
8476
8477	if (likely(rcd->napi)) {
8478		if (likely(napi_schedule_prep(rcd->napi)))
8479			__napi_schedule_irqoff(rcd->napi);
8480		else
8481			__hfi1_rcd_eoi_intr(rcd);
8482	} else {
8483		WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8484			  rcd->ctxt);
8485		__hfi1_rcd_eoi_intr(rcd);
8486	}
8487
8488	return IRQ_HANDLED;
8489}
8490
8491/*
8492 * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8493 * This routine will try to handle packets immediately (latency), but if
8494 * it finds too many, it will invoke the thread handler (bandwitdh).  The
8495 * chip receive interrupt is *not* cleared down until this or the thread (if
8496 * invoked) is finished.  The intent is to avoid extra interrupts while we
8497 * are processing packets anyway.
8498 */
8499irqreturn_t receive_context_interrupt(int irq, void *data)
8500{
8501	struct hfi1_ctxtdata *rcd = data;
8502	int disposition;
8503
8504	receive_interrupt_common(rcd);
8505
8506	/* receive interrupt remains blocked while processing packets */
8507	disposition = rcd->do_interrupt(rcd, 0);
8508
8509	/*
8510	 * Too many packets were seen while processing packets in this
8511	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8512	 * remains blocked.
8513	 */
8514	if (disposition == RCV_PKT_LIMIT)
8515		return IRQ_WAKE_THREAD;
8516
8517	__hfi1_rcd_eoi_intr(rcd);
8518	return IRQ_HANDLED;
8519}
8520
8521/*
8522 * Receive packet thread handler.  This expects to be invoked with the
8523 * receive interrupt still blocked.
8524 */
8525irqreturn_t receive_context_thread(int irq, void *data)
8526{
8527	struct hfi1_ctxtdata *rcd = data;
8528
8529	/* receive interrupt is still blocked from the IRQ handler */
8530	(void)rcd->do_interrupt(rcd, 1);
8531
8532	hfi1_rcd_eoi_intr(rcd);
8533
8534	return IRQ_HANDLED;
8535}
8536
8537/* ========================================================================= */
8538
8539u32 read_physical_state(struct hfi1_devdata *dd)
8540{
8541	u64 reg;
8542
8543	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8544	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8545				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8546}
8547
8548u32 read_logical_state(struct hfi1_devdata *dd)
8549{
8550	u64 reg;
8551
8552	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8553	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8554				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8555}
8556
8557static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8558{
8559	u64 reg;
8560
8561	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8562	/* clear current state, set new state */
8563	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8564	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8565	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8566}
8567
8568/*
8569 * Use the 8051 to read a LCB CSR.
8570 */
8571static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8572{
8573	u32 regno;
8574	int ret;
8575
8576	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8577		if (acquire_lcb_access(dd, 0) == 0) {
8578			*data = read_csr(dd, addr);
8579			release_lcb_access(dd, 0);
8580			return 0;
8581		}
8582		return -EBUSY;
8583	}
8584
8585	/* register is an index of LCB registers: (offset - base) / 8 */
8586	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8587	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8588	if (ret != HCMD_SUCCESS)
8589		return -EBUSY;
8590	return 0;
8591}
8592
8593/*
8594 * Provide a cache for some of the LCB registers in case the LCB is
8595 * unavailable.
8596 * (The LCB is unavailable in certain link states, for example.)
8597 */
8598struct lcb_datum {
8599	u32 off;
8600	u64 val;
8601};
8602
8603static struct lcb_datum lcb_cache[] = {
8604	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8605	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8606	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8607};
8608
8609static void update_lcb_cache(struct hfi1_devdata *dd)
8610{
8611	int i;
8612	int ret;
8613	u64 val;
8614
8615	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8616		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8617
8618		/* Update if we get good data */
8619		if (likely(ret != -EBUSY))
8620			lcb_cache[i].val = val;
8621	}
8622}
8623
8624static int read_lcb_cache(u32 off, u64 *val)
8625{
8626	int i;
8627
8628	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8629		if (lcb_cache[i].off == off) {
8630			*val = lcb_cache[i].val;
8631			return 0;
8632		}
8633	}
8634
8635	pr_warn("%s bad offset 0x%x\n", __func__, off);
8636	return -1;
8637}
8638
8639/*
8640 * Read an LCB CSR.  Access may not be in host control, so check.
8641 * Return 0 on success, -EBUSY on failure.
8642 */
8643int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8644{
8645	struct hfi1_pportdata *ppd = dd->pport;
8646
8647	/* if up, go through the 8051 for the value */
8648	if (ppd->host_link_state & HLS_UP)
8649		return read_lcb_via_8051(dd, addr, data);
8650	/* if going up or down, check the cache, otherwise, no access */
8651	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8652		if (read_lcb_cache(addr, data))
8653			return -EBUSY;
8654		return 0;
8655	}
8656
8657	/* otherwise, host has access */
8658	*data = read_csr(dd, addr);
8659	return 0;
8660}
8661
8662/*
8663 * Use the 8051 to write a LCB CSR.
8664 */
8665static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8666{
8667	u32 regno;
8668	int ret;
8669
8670	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8671	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8672		if (acquire_lcb_access(dd, 0) == 0) {
8673			write_csr(dd, addr, data);
8674			release_lcb_access(dd, 0);
8675			return 0;
8676		}
8677		return -EBUSY;
8678	}
8679
8680	/* register is an index of LCB registers: (offset - base) / 8 */
8681	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8682	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8683	if (ret != HCMD_SUCCESS)
8684		return -EBUSY;
8685	return 0;
8686}
8687
8688/*
8689 * Write an LCB CSR.  Access may not be in host control, so check.
8690 * Return 0 on success, -EBUSY on failure.
8691 */
8692int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8693{
8694	struct hfi1_pportdata *ppd = dd->pport;
8695
8696	/* if up, go through the 8051 for the value */
8697	if (ppd->host_link_state & HLS_UP)
8698		return write_lcb_via_8051(dd, addr, data);
8699	/* if going up or down, no access */
8700	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8701		return -EBUSY;
8702	/* otherwise, host has access */
8703	write_csr(dd, addr, data);
8704	return 0;
8705}
8706
8707/*
8708 * Returns:
8709 *	< 0 = Linux error, not able to get access
8710 *	> 0 = 8051 command RETURN_CODE
8711 */
8712static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8713			   u64 *out_data)
8714{
8715	u64 reg, completed;
8716	int return_code;
8717	unsigned long timeout;
8718
8719	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8720
8721	mutex_lock(&dd->dc8051_lock);
8722
8723	/* We can't send any commands to the 8051 if it's in reset */
8724	if (dd->dc_shutdown) {
8725		return_code = -ENODEV;
8726		goto fail;
8727	}
8728
8729	/*
8730	 * If an 8051 host command timed out previously, then the 8051 is
8731	 * stuck.
8732	 *
8733	 * On first timeout, attempt to reset and restart the entire DC
8734	 * block (including 8051). (Is this too big of a hammer?)
8735	 *
8736	 * If the 8051 times out a second time, the reset did not bring it
8737	 * back to healthy life. In that case, fail any subsequent commands.
8738	 */
8739	if (dd->dc8051_timed_out) {
8740		if (dd->dc8051_timed_out > 1) {
8741			dd_dev_err(dd,
8742				   "Previous 8051 host command timed out, skipping command %u\n",
8743				   type);
8744			return_code = -ENXIO;
8745			goto fail;
8746		}
8747		_dc_shutdown(dd);
8748		_dc_start(dd);
8749	}
8750
8751	/*
8752	 * If there is no timeout, then the 8051 command interface is
8753	 * waiting for a command.
8754	 */
8755
8756	/*
8757	 * When writing a LCB CSR, out_data contains the full value to
8758	 * be written, while in_data contains the relative LCB
8759	 * address in 7:0.  Do the work here, rather than the caller,
8760	 * of distrubting the write data to where it needs to go:
8761	 *
8762	 * Write data
8763	 *   39:00 -> in_data[47:8]
8764	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8765	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8766	 */
8767	if (type == HCMD_WRITE_LCB_CSR) {
8768		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8769		/* must preserve COMPLETED - it is tied to hardware */
8770		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8771		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8772		reg |= ((((*out_data) >> 40) & 0xff) <<
8773				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8774		      | ((((*out_data) >> 48) & 0xffff) <<
8775				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8776		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8777	}
8778
8779	/*
8780	 * Do two writes: the first to stabilize the type and req_data, the
8781	 * second to activate.
8782	 */
8783	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8784			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8785		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8786			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8787	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8788	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8789	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8790
8791	/* wait for completion, alternate: interrupt */
8792	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8793	while (1) {
8794		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8795		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8796		if (completed)
8797			break;
8798		if (time_after(jiffies, timeout)) {
8799			dd->dc8051_timed_out++;
8800			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8801			if (out_data)
8802				*out_data = 0;
8803			return_code = -ETIMEDOUT;
8804			goto fail;
8805		}
8806		udelay(2);
8807	}
8808
8809	if (out_data) {
8810		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8811				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8812		if (type == HCMD_READ_LCB_CSR) {
8813			/* top 16 bits are in a different register */
8814			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8815				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8816				<< (48
8817				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8818		}
8819	}
8820	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8821				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8822	dd->dc8051_timed_out = 0;
8823	/*
8824	 * Clear command for next user.
8825	 */
8826	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8827
8828fail:
8829	mutex_unlock(&dd->dc8051_lock);
8830	return return_code;
8831}
8832
8833static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8834{
8835	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8836}
8837
8838int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8839		     u8 lane_id, u32 config_data)
8840{
8841	u64 data;
8842	int ret;
8843
8844	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8845		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8846		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8847	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8848	if (ret != HCMD_SUCCESS) {
8849		dd_dev_err(dd,
8850			   "load 8051 config: field id %d, lane %d, err %d\n",
8851			   (int)field_id, (int)lane_id, ret);
8852	}
8853	return ret;
8854}
8855
8856/*
8857 * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8858 * set the result, even on error.
8859 * Return 0 on success, -errno on failure
8860 */
8861int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8862		     u32 *result)
8863{
8864	u64 big_data;
8865	u32 addr;
8866	int ret;
8867
8868	/* address start depends on the lane_id */
8869	if (lane_id < 4)
8870		addr = (4 * NUM_GENERAL_FIELDS)
8871			+ (lane_id * 4 * NUM_LANE_FIELDS);
8872	else
8873		addr = 0;
8874	addr += field_id * 4;
8875
8876	/* read is in 8-byte chunks, hardware will truncate the address down */
8877	ret = read_8051_data(dd, addr, 8, &big_data);
8878
8879	if (ret == 0) {
8880		/* extract the 4 bytes we want */
8881		if (addr & 0x4)
8882			*result = (u32)(big_data >> 32);
8883		else
8884			*result = (u32)big_data;
8885	} else {
8886		*result = 0;
8887		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8888			   __func__, lane_id, field_id);
8889	}
8890
8891	return ret;
8892}
8893
8894static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8895			      u8 continuous)
8896{
8897	u32 frame;
8898
8899	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8900		| power_management << POWER_MANAGEMENT_SHIFT;
8901	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8902				GENERAL_CONFIG, frame);
8903}
8904
8905static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8906				 u16 vl15buf, u8 crc_sizes)
8907{
8908	u32 frame;
8909
8910	frame = (u32)vau << VAU_SHIFT
8911		| (u32)z << Z_SHIFT
8912		| (u32)vcu << VCU_SHIFT
8913		| (u32)vl15buf << VL15BUF_SHIFT
8914		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8915	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8916				GENERAL_CONFIG, frame);
8917}
8918
8919static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8920				    u8 *flag_bits, u16 *link_widths)
8921{
8922	u32 frame;
8923
8924	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8925			 &frame);
8926	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8927	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8928	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8929}
8930
8931static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8932				    u8 misc_bits,
8933				    u8 flag_bits,
8934				    u16 link_widths)
8935{
8936	u32 frame;
8937
8938	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8939		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8940		| (u32)link_widths << LINK_WIDTH_SHIFT;
8941	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8942		     frame);
8943}
8944
8945static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8946				 u8 device_rev)
8947{
8948	u32 frame;
8949
8950	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8951		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8952	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8953}
8954
8955static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8956				  u8 *device_rev)
8957{
8958	u32 frame;
8959
8960	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8961	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8962	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8963			& REMOTE_DEVICE_REV_MASK;
8964}
8965
8966int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8967{
8968	u32 frame;
8969	u32 mask;
8970
8971	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8972	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8973	/* Clear, then set field */
8974	frame &= ~mask;
8975	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8976	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8977				frame);
8978}
8979
8980void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8981		      u8 *ver_patch)
8982{
8983	u32 frame;
8984
8985	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8986	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8987		STS_FM_VERSION_MAJOR_MASK;
8988	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8989		STS_FM_VERSION_MINOR_MASK;
8990
8991	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8992	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8993		STS_FM_VERSION_PATCH_MASK;
8994}
8995
8996static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8997			       u8 *continuous)
8998{
8999	u32 frame;
9000
9001	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
9002	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
9003					& POWER_MANAGEMENT_MASK;
9004	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9005					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9006}
9007
9008static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9009				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9010{
9011	u32 frame;
9012
9013	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9014	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
9015	*z = (frame >> Z_SHIFT) & Z_MASK;
9016	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9017	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9018	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9019}
9020
9021static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9022				      u8 *remote_tx_rate,
9023				      u16 *link_widths)
9024{
9025	u32 frame;
9026
9027	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9028			 &frame);
9029	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9030				& REMOTE_TX_RATE_MASK;
9031	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9032}
9033
9034static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9035{
9036	u32 frame;
9037
9038	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9039	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9040}
9041
9042static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9043{
9044	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9045}
9046
9047static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9048{
9049	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9050}
9051
9052void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9053{
9054	u32 frame;
9055	int ret;
9056
9057	*link_quality = 0;
9058	if (dd->pport->host_link_state & HLS_UP) {
9059		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9060				       &frame);
9061		if (ret == 0)
9062			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9063						& LINK_QUALITY_MASK;
9064	}
9065}
9066
9067static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9068{
9069	u32 frame;
9070
9071	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9072	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9073}
9074
9075static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9076{
9077	u32 frame;
9078
9079	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9080	*ldr = (frame & 0xff);
9081}
9082
9083static int read_tx_settings(struct hfi1_devdata *dd,
9084			    u8 *enable_lane_tx,
9085			    u8 *tx_polarity_inversion,
9086			    u8 *rx_polarity_inversion,
9087			    u8 *max_rate)
9088{
9089	u32 frame;
9090	int ret;
9091
9092	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9093	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9094				& ENABLE_LANE_TX_MASK;
9095	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9096				& TX_POLARITY_INVERSION_MASK;
9097	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9098				& RX_POLARITY_INVERSION_MASK;
9099	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9100	return ret;
9101}
9102
9103static int write_tx_settings(struct hfi1_devdata *dd,
9104			     u8 enable_lane_tx,
9105			     u8 tx_polarity_inversion,
9106			     u8 rx_polarity_inversion,
9107			     u8 max_rate)
9108{
9109	u32 frame;
9110
9111	/* no need to mask, all variable sizes match field widths */
9112	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9113		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9114		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9115		| max_rate << MAX_RATE_SHIFT;
9116	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9117}
9118
9119/*
9120 * Read an idle LCB message.
9121 *
9122 * Returns 0 on success, -EINVAL on error
9123 */
9124static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9125{
9126	int ret;
9127
9128	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9129	if (ret != HCMD_SUCCESS) {
9130		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9131			   (u32)type, ret);
9132		return -EINVAL;
9133	}
9134	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9135	/* return only the payload as we already know the type */
9136	*data_out >>= IDLE_PAYLOAD_SHIFT;
9137	return 0;
9138}
9139
9140/*
9141 * Read an idle SMA message.  To be done in response to a notification from
9142 * the 8051.
9143 *
9144 * Returns 0 on success, -EINVAL on error
9145 */
9146static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9147{
9148	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9149				 data);
9150}
9151
9152/*
9153 * Send an idle LCB message.
9154 *
9155 * Returns 0 on success, -EINVAL on error
9156 */
9157static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9158{
9159	int ret;
9160
9161	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9162	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9163	if (ret != HCMD_SUCCESS) {
9164		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9165			   data, ret);
9166		return -EINVAL;
9167	}
9168	return 0;
9169}
9170
9171/*
9172 * Send an idle SMA message.
9173 *
9174 * Returns 0 on success, -EINVAL on error
9175 */
9176int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9177{
9178	u64 data;
9179
9180	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9181		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9182	return send_idle_message(dd, data);
9183}
9184
9185/*
9186 * Initialize the LCB then do a quick link up.  This may or may not be
9187 * in loopback.
9188 *
9189 * return 0 on success, -errno on error
9190 */
9191static int do_quick_linkup(struct hfi1_devdata *dd)
9192{
9193	int ret;
9194
9195	lcb_shutdown(dd, 0);
9196
9197	if (loopback) {
9198		/* LCB_CFG_LOOPBACK.VAL = 2 */
9199		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9200		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9201			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9202		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9203	}
9204
9205	/* start the LCBs */
9206	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9207	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9208
9209	/* simulator only loopback steps */
9210	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9211		/* LCB_CFG_RUN.EN = 1 */
9212		write_csr(dd, DC_LCB_CFG_RUN,
9213			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9214
9215		ret = wait_link_transfer_active(dd, 10);
9216		if (ret)
9217			return ret;
9218
9219		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9220			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9221	}
9222
9223	if (!loopback) {
9224		/*
9225		 * When doing quick linkup and not in loopback, both
9226		 * sides must be done with LCB set-up before either
9227		 * starts the quick linkup.  Put a delay here so that
9228		 * both sides can be started and have a chance to be
9229		 * done with LCB set up before resuming.
9230		 */
9231		dd_dev_err(dd,
9232			   "Pausing for peer to be finished with LCB set up\n");
9233		msleep(5000);
9234		dd_dev_err(dd, "Continuing with quick linkup\n");
9235	}
9236
9237	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9238	set_8051_lcb_access(dd);
9239
9240	/*
9241	 * State "quick" LinkUp request sets the physical link state to
9242	 * LinkUp without a verify capability sequence.
9243	 * This state is in simulator v37 and later.
9244	 */
9245	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9246	if (ret != HCMD_SUCCESS) {
9247		dd_dev_err(dd,
9248			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9249			   __func__, ret);
9250
9251		set_host_lcb_access(dd);
9252		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9253
9254		if (ret >= 0)
9255			ret = -EINVAL;
9256		return ret;
9257	}
9258
9259	return 0; /* success */
9260}
9261
9262/*
9263 * Do all special steps to set up loopback.
9264 */
9265static int init_loopback(struct hfi1_devdata *dd)
9266{
9267	dd_dev_info(dd, "Entering loopback mode\n");
9268
9269	/* all loopbacks should disable self GUID check */
9270	write_csr(dd, DC_DC8051_CFG_MODE,
9271		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9272
9273	/*
9274	 * The simulator has only one loopback option - LCB.  Switch
9275	 * to that option, which includes quick link up.
9276	 *
9277	 * Accept all valid loopback values.
9278	 */
9279	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9280	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9281	     loopback == LOOPBACK_CABLE)) {
9282		loopback = LOOPBACK_LCB;
9283		quick_linkup = 1;
9284		return 0;
9285	}
9286
9287	/*
9288	 * SerDes loopback init sequence is handled in set_local_link_attributes
9289	 */
9290	if (loopback == LOOPBACK_SERDES)
9291		return 0;
9292
9293	/* LCB loopback - handled at poll time */
9294	if (loopback == LOOPBACK_LCB) {
9295		quick_linkup = 1; /* LCB is always quick linkup */
9296
9297		/* not supported in emulation due to emulation RTL changes */
9298		if (dd->icode == ICODE_FPGA_EMULATION) {
9299			dd_dev_err(dd,
9300				   "LCB loopback not supported in emulation\n");
9301			return -EINVAL;
9302		}
9303		return 0;
9304	}
9305
9306	/* external cable loopback requires no extra steps */
9307	if (loopback == LOOPBACK_CABLE)
9308		return 0;
9309
9310	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9311	return -EINVAL;
9312}
9313
9314/*
9315 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9316 * used in the Verify Capability link width attribute.
9317 */
9318static u16 opa_to_vc_link_widths(u16 opa_widths)
9319{
9320	int i;
9321	u16 result = 0;
9322
9323	static const struct link_bits {
9324		u16 from;
9325		u16 to;
9326	} opa_link_xlate[] = {
9327		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9328		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9329		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9330		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9331	};
9332
9333	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9334		if (opa_widths & opa_link_xlate[i].from)
9335			result |= opa_link_xlate[i].to;
9336	}
9337	return result;
9338}
9339
9340/*
9341 * Set link attributes before moving to polling.
9342 */
9343static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9344{
9345	struct hfi1_devdata *dd = ppd->dd;
9346	u8 enable_lane_tx;
9347	u8 tx_polarity_inversion;
9348	u8 rx_polarity_inversion;
9349	int ret;
9350	u32 misc_bits = 0;
9351	/* reset our fabric serdes to clear any lingering problems */
9352	fabric_serdes_reset(dd);
9353
9354	/* set the local tx rate - need to read-modify-write */
9355	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9356			       &rx_polarity_inversion, &ppd->local_tx_rate);
9357	if (ret)
9358		goto set_local_link_attributes_fail;
9359
9360	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9361		/* set the tx rate to the fastest enabled */
9362		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9363			ppd->local_tx_rate = 1;
9364		else
9365			ppd->local_tx_rate = 0;
9366	} else {
9367		/* set the tx rate to all enabled */
9368		ppd->local_tx_rate = 0;
9369		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9370			ppd->local_tx_rate |= 2;
9371		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9372			ppd->local_tx_rate |= 1;
9373	}
9374
9375	enable_lane_tx = 0xF; /* enable all four lanes */
9376	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9377				rx_polarity_inversion, ppd->local_tx_rate);
9378	if (ret != HCMD_SUCCESS)
9379		goto set_local_link_attributes_fail;
9380
9381	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9382	if (ret != HCMD_SUCCESS) {
9383		dd_dev_err(dd,
9384			   "Failed to set host interface version, return 0x%x\n",
9385			   ret);
9386		goto set_local_link_attributes_fail;
9387	}
9388
9389	/*
9390	 * DC supports continuous updates.
9391	 */
9392	ret = write_vc_local_phy(dd,
9393				 0 /* no power management */,
9394				 1 /* continuous updates */);
9395	if (ret != HCMD_SUCCESS)
9396		goto set_local_link_attributes_fail;
9397
9398	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9399	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9400				    ppd->port_crc_mode_enabled);
9401	if (ret != HCMD_SUCCESS)
9402		goto set_local_link_attributes_fail;
9403
9404	/*
9405	 * SerDes loopback init sequence requires
9406	 * setting bit 0 of MISC_CONFIG_BITS
9407	 */
9408	if (loopback == LOOPBACK_SERDES)
9409		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9410
9411	/*
9412	 * An external device configuration request is used to reset the LCB
9413	 * to retry to obtain operational lanes when the first attempt is
9414	 * unsuccesful.
9415	 */
9416	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9417		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9418
9419	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9420				       opa_to_vc_link_widths(
9421						ppd->link_width_enabled));
9422	if (ret != HCMD_SUCCESS)
9423		goto set_local_link_attributes_fail;
9424
9425	/* let peer know who we are */
9426	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9427	if (ret == HCMD_SUCCESS)
9428		return 0;
9429
9430set_local_link_attributes_fail:
9431	dd_dev_err(dd,
9432		   "Failed to set local link attributes, return 0x%x\n",
9433		   ret);
9434	return ret;
9435}
9436
9437/*
9438 * Call this to start the link.
9439 * Do not do anything if the link is disabled.
9440 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9441 */
9442int start_link(struct hfi1_pportdata *ppd)
9443{
9444	/*
9445	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9446	 * error rate.  Needs to be done before starting the link.
9447	 */
9448	tune_serdes(ppd);
9449
9450	if (!ppd->driver_link_ready) {
9451		dd_dev_info(ppd->dd,
9452			    "%s: stopping link start because driver is not ready\n",
9453			    __func__);
9454		return 0;
9455	}
9456
9457	/*
9458	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9459	 * pkey table can be configured properly if the HFI unit is connected
9460	 * to switch port with MgmtAllowed=NO
9461	 */
9462	clear_full_mgmt_pkey(ppd);
9463
9464	return set_link_state(ppd, HLS_DN_POLL);
9465}
9466
9467static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9468{
9469	struct hfi1_devdata *dd = ppd->dd;
9470	u64 mask;
9471	unsigned long timeout;
9472
9473	/*
9474	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9475	 * effect of power up on plug-in. We ignore this false positive
9476	 * interrupt until the module has finished powering up by waiting for
9477	 * a minimum timeout of the module inrush initialization time of
9478	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9479	 * module have stabilized.
9480	 */
9481	msleep(500);
9482
9483	/*
9484	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9485	 */
9486	timeout = jiffies + msecs_to_jiffies(2000);
9487	while (1) {
9488		mask = read_csr(dd, dd->hfi1_id ?
9489				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9490		if (!(mask & QSFP_HFI0_INT_N))
9491			break;
9492		if (time_after(jiffies, timeout)) {
9493			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9494				    __func__);
9495			break;
9496		}
9497		udelay(2);
9498	}
9499}
9500
9501static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9502{
9503	struct hfi1_devdata *dd = ppd->dd;
9504	u64 mask;
9505
9506	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9507	if (enable) {
9508		/*
9509		 * Clear the status register to avoid an immediate interrupt
9510		 * when we re-enable the IntN pin
9511		 */
9512		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9513			  QSFP_HFI0_INT_N);
9514		mask |= (u64)QSFP_HFI0_INT_N;
9515	} else {
9516		mask &= ~(u64)QSFP_HFI0_INT_N;
9517	}
9518	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9519}
9520
9521int reset_qsfp(struct hfi1_pportdata *ppd)
9522{
9523	struct hfi1_devdata *dd = ppd->dd;
9524	u64 mask, qsfp_mask;
9525
9526	/* Disable INT_N from triggering QSFP interrupts */
9527	set_qsfp_int_n(ppd, 0);
9528
9529	/* Reset the QSFP */
9530	mask = (u64)QSFP_HFI0_RESET_N;
9531
9532	qsfp_mask = read_csr(dd,
9533			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9534	qsfp_mask &= ~mask;
9535	write_csr(dd,
9536		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9537
9538	udelay(10);
9539
9540	qsfp_mask |= mask;
9541	write_csr(dd,
9542		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9543
9544	wait_for_qsfp_init(ppd);
9545
9546	/*
9547	 * Allow INT_N to trigger the QSFP interrupt to watch
9548	 * for alarms and warnings
9549	 */
9550	set_qsfp_int_n(ppd, 1);
9551
9552	/*
9553	 * After the reset, AOC transmitters are enabled by default. They need
9554	 * to be turned off to complete the QSFP setup before they can be
9555	 * enabled again.
9556	 */
9557	return set_qsfp_tx(ppd, 0);
9558}
9559
9560static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9561					u8 *qsfp_interrupt_status)
9562{
9563	struct hfi1_devdata *dd = ppd->dd;
9564
9565	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9566	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9567		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9568			   __func__);
9569
9570	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9571	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9572		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9573			   __func__);
9574
9575	/*
9576	 * The remaining alarms/warnings don't matter if the link is down.
9577	 */
9578	if (ppd->host_link_state & HLS_DOWN)
9579		return 0;
9580
9581	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9582	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9583		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9584			   __func__);
9585
9586	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9587	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9588		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9589			   __func__);
9590
9591	/* Byte 2 is vendor specific */
9592
9593	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9594	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9595		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9596			   __func__);
9597
9598	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9599	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9600		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9601			   __func__);
9602
9603	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9604	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9605		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9606			   __func__);
9607
9608	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9609	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9610		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9611			   __func__);
9612
9613	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9614	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9615		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9616			   __func__);
9617
9618	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9619	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9620		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9621			   __func__);
9622
9623	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9624	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9625		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9626			   __func__);
9627
9628	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9629	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9630		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9631			   __func__);
9632
9633	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9634	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9635		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9636			   __func__);
9637
9638	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9639	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9640		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9641			   __func__);
9642
9643	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9644	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9645		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9646			   __func__);
9647
9648	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9649	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9650		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9651			   __func__);
9652
9653	/* Bytes 9-10 and 11-12 are reserved */
9654	/* Bytes 13-15 are vendor specific */
9655
9656	return 0;
9657}
9658
9659/* This routine will only be scheduled if the QSFP module present is asserted */
9660void qsfp_event(struct work_struct *work)
9661{
9662	struct qsfp_data *qd;
9663	struct hfi1_pportdata *ppd;
9664	struct hfi1_devdata *dd;
9665
9666	qd = container_of(work, struct qsfp_data, qsfp_work);
9667	ppd = qd->ppd;
9668	dd = ppd->dd;
9669
9670	/* Sanity check */
9671	if (!qsfp_mod_present(ppd))
9672		return;
9673
9674	if (ppd->host_link_state == HLS_DN_DISABLE) {
9675		dd_dev_info(ppd->dd,
9676			    "%s: stopping link start because link is disabled\n",
9677			    __func__);
9678		return;
9679	}
9680
9681	/*
9682	 * Turn DC back on after cable has been re-inserted. Up until
9683	 * now, the DC has been in reset to save power.
9684	 */
9685	dc_start(dd);
9686
9687	if (qd->cache_refresh_required) {
9688		set_qsfp_int_n(ppd, 0);
9689
9690		wait_for_qsfp_init(ppd);
9691
9692		/*
9693		 * Allow INT_N to trigger the QSFP interrupt to watch
9694		 * for alarms and warnings
9695		 */
9696		set_qsfp_int_n(ppd, 1);
9697
9698		start_link(ppd);
9699	}
9700
9701	if (qd->check_interrupt_flags) {
9702		u8 qsfp_interrupt_status[16] = {0,};
9703
9704		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9705				  &qsfp_interrupt_status[0], 16) != 16) {
9706			dd_dev_info(dd,
9707				    "%s: Failed to read status of QSFP module\n",
9708				    __func__);
9709		} else {
9710			unsigned long flags;
9711
9712			handle_qsfp_error_conditions(
9713					ppd, qsfp_interrupt_status);
9714			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9715			ppd->qsfp_info.check_interrupt_flags = 0;
9716			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9717					       flags);
9718		}
9719	}
9720}
9721
9722void init_qsfp_int(struct hfi1_devdata *dd)
9723{
9724	struct hfi1_pportdata *ppd = dd->pport;
9725	u64 qsfp_mask;
9726
9727	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9728	/* Clear current status to avoid spurious interrupts */
9729	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9730		  qsfp_mask);
9731	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9732		  qsfp_mask);
9733
9734	set_qsfp_int_n(ppd, 0);
9735
9736	/* Handle active low nature of INT_N and MODPRST_N pins */
9737	if (qsfp_mod_present(ppd))
9738		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9739	write_csr(dd,
9740		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9741		  qsfp_mask);
9742
9743	/* Enable the appropriate QSFP IRQ source */
9744	if (!dd->hfi1_id)
9745		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9746	else
9747		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9748}
9749
9750/*
9751 * Do a one-time initialize of the LCB block.
9752 */
9753static void init_lcb(struct hfi1_devdata *dd)
9754{
9755	/* simulator does not correctly handle LCB cclk loopback, skip */
9756	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9757		return;
9758
9759	/* the DC has been reset earlier in the driver load */
9760
9761	/* set LCB for cclk loopback on the port */
9762	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9763	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9764	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9765	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9766	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9767	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9768	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9769}
9770
9771/*
9772 * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9773 * on error.
9774 */
9775static int test_qsfp_read(struct hfi1_pportdata *ppd)
9776{
9777	int ret;
9778	u8 status;
9779
9780	/*
9781	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9782	 * not present
9783	 */
9784	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9785		return 0;
9786
9787	/* read byte 2, the status byte */
9788	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9789	if (ret < 0)
9790		return ret;
9791	if (ret != 1)
9792		return -EIO;
9793
9794	return 0; /* success */
9795}
9796
9797/*
9798 * Values for QSFP retry.
9799 *
9800 * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9801 * arrived at from experience on a large cluster.
9802 */
9803#define MAX_QSFP_RETRIES 20
9804#define QSFP_RETRY_WAIT 500 /* msec */
9805
9806/*
9807 * Try a QSFP read.  If it fails, schedule a retry for later.
9808 * Called on first link activation after driver load.
9809 */
9810static void try_start_link(struct hfi1_pportdata *ppd)
9811{
9812	if (test_qsfp_read(ppd)) {
9813		/* read failed */
9814		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9815			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9816			return;
9817		}
9818		dd_dev_info(ppd->dd,
9819			    "QSFP not responding, waiting and retrying %d\n",
9820			    (int)ppd->qsfp_retry_count);
9821		ppd->qsfp_retry_count++;
9822		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9823				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9824		return;
9825	}
9826	ppd->qsfp_retry_count = 0;
9827
9828	start_link(ppd);
9829}
9830
9831/*
9832 * Workqueue function to start the link after a delay.
9833 */
9834void handle_start_link(struct work_struct *work)
9835{
9836	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9837						  start_link_work.work);
9838	try_start_link(ppd);
9839}
9840
9841int bringup_serdes(struct hfi1_pportdata *ppd)
9842{
9843	struct hfi1_devdata *dd = ppd->dd;
9844	u64 guid;
9845	int ret;
9846
9847	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9848		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9849
9850	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9851	if (!guid) {
9852		if (dd->base_guid)
9853			guid = dd->base_guid + ppd->port - 1;
9854		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9855	}
9856
9857	/* Set linkinit_reason on power up per OPA spec */
9858	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9859
9860	/* one-time init of the LCB */
9861	init_lcb(dd);
9862
9863	if (loopback) {
9864		ret = init_loopback(dd);
9865		if (ret < 0)
9866			return ret;
9867	}
9868
9869	get_port_type(ppd);
9870	if (ppd->port_type == PORT_TYPE_QSFP) {
9871		set_qsfp_int_n(ppd, 0);
9872		wait_for_qsfp_init(ppd);
9873		set_qsfp_int_n(ppd, 1);
9874	}
9875
9876	try_start_link(ppd);
9877	return 0;
9878}
9879
9880void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9881{
9882	struct hfi1_devdata *dd = ppd->dd;
9883
9884	/*
9885	 * Shut down the link and keep it down.   First turn off that the
9886	 * driver wants to allow the link to be up (driver_link_ready).
9887	 * Then make sure the link is not automatically restarted
9888	 * (link_enabled).  Cancel any pending restart.  And finally
9889	 * go offline.
9890	 */
9891	ppd->driver_link_ready = 0;
9892	ppd->link_enabled = 0;
9893
9894	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9895	flush_delayed_work(&ppd->start_link_work);
9896	cancel_delayed_work_sync(&ppd->start_link_work);
9897
9898	ppd->offline_disabled_reason =
9899			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9900	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9901			     OPA_LINKDOWN_REASON_REBOOT);
9902	set_link_state(ppd, HLS_DN_OFFLINE);
9903
9904	/* disable the port */
9905	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9906	cancel_work_sync(&ppd->freeze_work);
9907}
9908
9909static inline int init_cpu_counters(struct hfi1_devdata *dd)
9910{
9911	struct hfi1_pportdata *ppd;
9912	int i;
9913
9914	ppd = (struct hfi1_pportdata *)(dd + 1);
9915	for (i = 0; i < dd->num_pports; i++, ppd++) {
9916		ppd->ibport_data.rvp.rc_acks = NULL;
9917		ppd->ibport_data.rvp.rc_qacks = NULL;
9918		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9919		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9920		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9921		if (!ppd->ibport_data.rvp.rc_acks ||
9922		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9923		    !ppd->ibport_data.rvp.rc_qacks)
9924			return -ENOMEM;
9925	}
9926
9927	return 0;
9928}
9929
9930/*
9931 * index is the index into the receive array
9932 */
9933void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9934		  u32 type, unsigned long pa, u16 order)
9935{
9936	u64 reg;
9937
9938	if (!(dd->flags & HFI1_PRESENT))
9939		goto done;
9940
9941	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9942		pa = 0;
9943		order = 0;
9944	} else if (type > PT_INVALID) {
9945		dd_dev_err(dd,
9946			   "unexpected receive array type %u for index %u, not handled\n",
9947			   type, index);
9948		goto done;
9949	}
9950	trace_hfi1_put_tid(dd, index, type, pa, order);
9951
9952#define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9953	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9954		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9955		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9956					<< RCV_ARRAY_RT_ADDR_SHIFT;
9957	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9958	writeq(reg, dd->rcvarray_wc + (index * 8));
9959
9960	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9961		/*
9962		 * Eager entries are written and flushed
9963		 *
9964		 * Expected entries are flushed every 4 writes
9965		 */
9966		flush_wc();
9967done:
9968	return;
9969}
9970
9971void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9972{
9973	struct hfi1_devdata *dd = rcd->dd;
9974	u32 i;
9975
9976	/* this could be optimized */
9977	for (i = rcd->eager_base; i < rcd->eager_base +
9978		     rcd->egrbufs.alloced; i++)
9979		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9980
9981	for (i = rcd->expected_base;
9982			i < rcd->expected_base + rcd->expected_count; i++)
9983		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9984}
9985
9986static const char * const ib_cfg_name_strings[] = {
9987	"HFI1_IB_CFG_LIDLMC",
9988	"HFI1_IB_CFG_LWID_DG_ENB",
9989	"HFI1_IB_CFG_LWID_ENB",
9990	"HFI1_IB_CFG_LWID",
9991	"HFI1_IB_CFG_SPD_ENB",
9992	"HFI1_IB_CFG_SPD",
9993	"HFI1_IB_CFG_RXPOL_ENB",
9994	"HFI1_IB_CFG_LREV_ENB",
9995	"HFI1_IB_CFG_LINKLATENCY",
9996	"HFI1_IB_CFG_HRTBT",
9997	"HFI1_IB_CFG_OP_VLS",
9998	"HFI1_IB_CFG_VL_HIGH_CAP",
9999	"HFI1_IB_CFG_VL_LOW_CAP",
10000	"HFI1_IB_CFG_OVERRUN_THRESH",
10001	"HFI1_IB_CFG_PHYERR_THRESH",
10002	"HFI1_IB_CFG_LINKDEFAULT",
10003	"HFI1_IB_CFG_PKEYS",
10004	"HFI1_IB_CFG_MTU",
10005	"HFI1_IB_CFG_LSTATE",
10006	"HFI1_IB_CFG_VL_HIGH_LIMIT",
10007	"HFI1_IB_CFG_PMA_TICKS",
10008	"HFI1_IB_CFG_PORT"
10009};
10010
10011static const char *ib_cfg_name(int which)
10012{
10013	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10014		return "invalid";
10015	return ib_cfg_name_strings[which];
10016}
10017
10018int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10019{
10020	struct hfi1_devdata *dd = ppd->dd;
10021	int val = 0;
10022
10023	switch (which) {
10024	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10025		val = ppd->link_width_enabled;
10026		break;
10027	case HFI1_IB_CFG_LWID: /* currently active Link-width */
10028		val = ppd->link_width_active;
10029		break;
10030	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10031		val = ppd->link_speed_enabled;
10032		break;
10033	case HFI1_IB_CFG_SPD: /* current Link speed */
10034		val = ppd->link_speed_active;
10035		break;
10036
10037	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10038	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10039	case HFI1_IB_CFG_LINKLATENCY:
10040		goto unimplemented;
10041
10042	case HFI1_IB_CFG_OP_VLS:
10043		val = ppd->actual_vls_operational;
10044		break;
10045	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10046		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10047		break;
10048	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10049		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10050		break;
10051	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10052		val = ppd->overrun_threshold;
10053		break;
10054	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10055		val = ppd->phy_error_threshold;
10056		break;
10057	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10058		val = HLS_DEFAULT;
10059		break;
10060
10061	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10062	case HFI1_IB_CFG_PMA_TICKS:
10063	default:
10064unimplemented:
10065		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10066			dd_dev_info(
10067				dd,
10068				"%s: which %s: not implemented\n",
10069				__func__,
10070				ib_cfg_name(which));
10071		break;
10072	}
10073
10074	return val;
10075}
10076
10077/*
10078 * The largest MAD packet size.
10079 */
10080#define MAX_MAD_PACKET 2048
10081
10082/*
10083 * Return the maximum header bytes that can go on the _wire_
10084 * for this device. This count includes the ICRC which is
10085 * not part of the packet held in memory but it is appended
10086 * by the HW.
10087 * This is dependent on the device's receive header entry size.
10088 * HFI allows this to be set per-receive context, but the
10089 * driver presently enforces a global value.
10090 */
10091u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10092{
10093	/*
10094	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10095	 * the Receive Header Entry Size minus the PBC (or RHF) size
10096	 * plus one DW for the ICRC appended by HW.
10097	 *
10098	 * dd->rcd[0].rcvhdrqentsize is in DW.
10099	 * We use rcd[0] as all context will have the same value. Also,
10100	 * the first kernel context would have been allocated by now so
10101	 * we are guaranteed a valid value.
10102	 */
10103	return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10104}
10105
10106/*
10107 * Set Send Length
10108 * @ppd: per port data
10109 *
10110 * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10111 * registers compare against LRH.PktLen, so use the max bytes included
10112 * in the LRH.
10113 *
10114 * This routine changes all VL values except VL15, which it maintains at
10115 * the same value.
10116 */
10117static void set_send_length(struct hfi1_pportdata *ppd)
10118{
10119	struct hfi1_devdata *dd = ppd->dd;
10120	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10121	u32 maxvlmtu = dd->vld[15].mtu;
10122	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10123			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10124		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10125	int i, j;
10126	u32 thres;
10127
10128	for (i = 0; i < ppd->vls_supported; i++) {
10129		if (dd->vld[i].mtu > maxvlmtu)
10130			maxvlmtu = dd->vld[i].mtu;
10131		if (i <= 3)
10132			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10133				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10134				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10135		else
10136			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10137				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10138				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10139	}
10140	write_csr(dd, SEND_LEN_CHECK0, len1);
10141	write_csr(dd, SEND_LEN_CHECK1, len2);
10142	/* adjust kernel credit return thresholds based on new MTUs */
10143	/* all kernel receive contexts have the same hdrqentsize */
10144	for (i = 0; i < ppd->vls_supported; i++) {
10145		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10146			    sc_mtu_to_threshold(dd->vld[i].sc,
10147						dd->vld[i].mtu,
10148						get_hdrqentsize(dd->rcd[0])));
10149		for (j = 0; j < INIT_SC_PER_VL; j++)
10150			sc_set_cr_threshold(
10151					pio_select_send_context_vl(dd, j, i),
10152					    thres);
10153	}
10154	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10155		    sc_mtu_to_threshold(dd->vld[15].sc,
10156					dd->vld[15].mtu,
10157					dd->rcd[0]->rcvhdrqentsize));
10158	sc_set_cr_threshold(dd->vld[15].sc, thres);
10159
10160	/* Adjust maximum MTU for the port in DC */
10161	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10162		(ilog2(maxvlmtu >> 8) + 1);
10163	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10164	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10165	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10166		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10167	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10168}
10169
10170static void set_lidlmc(struct hfi1_pportdata *ppd)
10171{
10172	int i;
10173	u64 sreg = 0;
10174	struct hfi1_devdata *dd = ppd->dd;
10175	u32 mask = ~((1U << ppd->lmc) - 1);
10176	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10177	u32 lid;
10178
10179	/*
10180	 * Program 0 in CSR if port lid is extended. This prevents
10181	 * 9B packets being sent out for large lids.
10182	 */
10183	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10184	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10185		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10186	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10187			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10188	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10189			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10190	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10191
10192	/*
10193	 * Iterate over all the send contexts and set their SLID check
10194	 */
10195	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10196			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10197	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10198			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10199
10200	for (i = 0; i < chip_send_contexts(dd); i++) {
10201		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10202			  i, (u32)sreg);
10203		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10204	}
10205
10206	/* Now we have to do the same thing for the sdma engines */
10207	sdma_update_lmc(dd, mask, lid);
10208}
10209
10210static const char *state_completed_string(u32 completed)
10211{
10212	static const char * const state_completed[] = {
10213		"EstablishComm",
10214		"OptimizeEQ",
10215		"VerifyCap"
10216	};
10217
10218	if (completed < ARRAY_SIZE(state_completed))
10219		return state_completed[completed];
10220
10221	return "unknown";
10222}
10223
10224static const char all_lanes_dead_timeout_expired[] =
10225	"All lanes were inactive ��� was the interconnect media removed?";
10226static const char tx_out_of_policy[] =
10227	"Passing lanes on local port do not meet the local link width policy";
10228static const char no_state_complete[] =
10229	"State timeout occurred before link partner completed the state";
10230static const char * const state_complete_reasons[] = {
10231	[0x00] = "Reason unknown",
10232	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10233	[0x02] = "Link partner reported failure",
10234	[0x10] = "Unable to achieve frame sync on any lane",
10235	[0x11] =
10236	  "Unable to find a common bit rate with the link partner",
10237	[0x12] =
10238	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10239	[0x13] =
10240	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10241	[0x14] = no_state_complete,
10242	[0x15] =
10243	  "State timeout occurred before link partner identified equalization presets",
10244	[0x16] =
10245	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10246	[0x17] = tx_out_of_policy,
10247	[0x20] = all_lanes_dead_timeout_expired,
10248	[0x21] =
10249	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10250	[0x22] = no_state_complete,
10251	[0x23] =
10252	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10253	[0x24] = tx_out_of_policy,
10254	[0x30] = all_lanes_dead_timeout_expired,
10255	[0x31] =
10256	  "State timeout occurred waiting for host to process received frames",
10257	[0x32] = no_state_complete,
10258	[0x33] =
10259	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10260	[0x34] = tx_out_of_policy,
10261	[0x35] = "Negotiated link width is mutually exclusive",
10262	[0x36] =
10263	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10264	[0x37] = "Unable to resolve secure data exchange",
10265};
10266
10267static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10268						     u32 code)
10269{
10270	const char *str = NULL;
10271
10272	if (code < ARRAY_SIZE(state_complete_reasons))
10273		str = state_complete_reasons[code];
10274
10275	if (str)
10276		return str;
10277	return "Reserved";
10278}
10279
10280/* describe the given last state complete frame */
10281static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10282				  const char *prefix)
10283{
10284	struct hfi1_devdata *dd = ppd->dd;
10285	u32 success;
10286	u32 state;
10287	u32 reason;
10288	u32 lanes;
10289
10290	/*
10291	 * Decode frame:
10292	 *  [ 0: 0] - success
10293	 *  [ 3: 1] - state
10294	 *  [ 7: 4] - next state timeout
10295	 *  [15: 8] - reason code
10296	 *  [31:16] - lanes
10297	 */
10298	success = frame & 0x1;
10299	state = (frame >> 1) & 0x7;
10300	reason = (frame >> 8) & 0xff;
10301	lanes = (frame >> 16) & 0xffff;
10302
10303	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10304		   prefix, frame);
10305	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10306		   state_completed_string(state), state);
10307	dd_dev_err(dd, "    state successfully completed: %s\n",
10308		   success ? "yes" : "no");
10309	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10310		   reason, state_complete_reason_code_string(ppd, reason));
10311	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10312}
10313
10314/*
10315 * Read the last state complete frames and explain them.  This routine
10316 * expects to be called if the link went down during link negotiation
10317 * and initialization (LNI).  That is, anywhere between polling and link up.
10318 */
10319static void check_lni_states(struct hfi1_pportdata *ppd)
10320{
10321	u32 last_local_state;
10322	u32 last_remote_state;
10323
10324	read_last_local_state(ppd->dd, &last_local_state);
10325	read_last_remote_state(ppd->dd, &last_remote_state);
10326
10327	/*
10328	 * Don't report anything if there is nothing to report.  A value of
10329	 * 0 means the link was taken down while polling and there was no
10330	 * training in-process.
10331	 */
10332	if (last_local_state == 0 && last_remote_state == 0)
10333		return;
10334
10335	decode_state_complete(ppd, last_local_state, "transmitted");
10336	decode_state_complete(ppd, last_remote_state, "received");
10337}
10338
10339/* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10340static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10341{
10342	u64 reg;
10343	unsigned long timeout;
10344
10345	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10346	timeout = jiffies + msecs_to_jiffies(wait_ms);
10347	while (1) {
10348		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10349		if (reg)
10350			break;
10351		if (time_after(jiffies, timeout)) {
10352			dd_dev_err(dd,
10353				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10354			return -ETIMEDOUT;
10355		}
10356		udelay(2);
10357	}
10358	return 0;
10359}
10360
10361/* called when the logical link state is not down as it should be */
10362static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10363{
10364	struct hfi1_devdata *dd = ppd->dd;
10365
10366	/*
10367	 * Bring link up in LCB loopback
10368	 */
10369	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10370	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10371		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10372
10373	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10374	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10375	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10376	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10377
10378	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10379	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10380	udelay(3);
10381	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10382	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10383
10384	wait_link_transfer_active(dd, 100);
10385
10386	/*
10387	 * Bring the link down again.
10388	 */
10389	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10390	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10391	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10392
10393	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10394}
10395
10396/*
10397 * Helper for set_link_state().  Do not call except from that routine.
10398 * Expects ppd->hls_mutex to be held.
10399 *
10400 * @rem_reason value to be sent to the neighbor
10401 *
10402 * LinkDownReasons only set if transition succeeds.
10403 */
10404static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10405{
10406	struct hfi1_devdata *dd = ppd->dd;
10407	u32 previous_state;
10408	int offline_state_ret;
10409	int ret;
10410
10411	update_lcb_cache(dd);
10412
10413	previous_state = ppd->host_link_state;
10414	ppd->host_link_state = HLS_GOING_OFFLINE;
10415
10416	/* start offline transition */
10417	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10418
10419	if (ret != HCMD_SUCCESS) {
10420		dd_dev_err(dd,
10421			   "Failed to transition to Offline link state, return %d\n",
10422			   ret);
10423		return -EINVAL;
10424	}
10425	if (ppd->offline_disabled_reason ==
10426			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10427		ppd->offline_disabled_reason =
10428		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10429
10430	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10431	if (offline_state_ret < 0)
10432		return offline_state_ret;
10433
10434	/* Disabling AOC transmitters */
10435	if (ppd->port_type == PORT_TYPE_QSFP &&
10436	    ppd->qsfp_info.limiting_active &&
10437	    qsfp_mod_present(ppd)) {
10438		int ret;
10439
10440		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10441		if (ret == 0) {
10442			set_qsfp_tx(ppd, 0);
10443			release_chip_resource(dd, qsfp_resource(dd));
10444		} else {
10445			/* not fatal, but should warn */
10446			dd_dev_err(dd,
10447				   "Unable to acquire lock to turn off QSFP TX\n");
10448		}
10449	}
10450
10451	/*
10452	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10453	 * can take a while for the link to go down.
10454	 */
10455	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10456		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10457		if (ret < 0)
10458			return ret;
10459	}
10460
10461	/*
10462	 * Now in charge of LCB - must be after the physical state is
10463	 * offline.quiet and before host_link_state is changed.
10464	 */
10465	set_host_lcb_access(dd);
10466	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10467
10468	/* make sure the logical state is also down */
10469	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10470	if (ret)
10471		force_logical_link_state_down(ppd);
10472
10473	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10474	update_statusp(ppd, IB_PORT_DOWN);
10475
10476	/*
10477	 * The LNI has a mandatory wait time after the physical state
10478	 * moves to Offline.Quiet.  The wait time may be different
10479	 * depending on how the link went down.  The 8051 firmware
10480	 * will observe the needed wait time and only move to ready
10481	 * when that is completed.  The largest of the quiet timeouts
10482	 * is 6s, so wait that long and then at least 0.5s more for
10483	 * other transitions, and another 0.5s for a buffer.
10484	 */
10485	ret = wait_fm_ready(dd, 7000);
10486	if (ret) {
10487		dd_dev_err(dd,
10488			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10489		/* state is really offline, so make it so */
10490		ppd->host_link_state = HLS_DN_OFFLINE;
10491		return ret;
10492	}
10493
10494	/*
10495	 * The state is now offline and the 8051 is ready to accept host
10496	 * requests.
10497	 *	- change our state
10498	 *	- notify others if we were previously in a linkup state
10499	 */
10500	ppd->host_link_state = HLS_DN_OFFLINE;
10501	if (previous_state & HLS_UP) {
10502		/* went down while link was up */
10503		handle_linkup_change(dd, 0);
10504	} else if (previous_state
10505			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10506		/* went down while attempting link up */
10507		check_lni_states(ppd);
10508
10509		/* The QSFP doesn't need to be reset on LNI failure */
10510		ppd->qsfp_info.reset_needed = 0;
10511	}
10512
10513	/* the active link width (downgrade) is 0 on link down */
10514	ppd->link_width_active = 0;
10515	ppd->link_width_downgrade_tx_active = 0;
10516	ppd->link_width_downgrade_rx_active = 0;
10517	ppd->current_egress_rate = 0;
10518	return 0;
10519}
10520
10521/* return the link state name */
10522static const char *link_state_name(u32 state)
10523{
10524	const char *name;
10525	int n = ilog2(state);
10526	static const char * const names[] = {
10527		[__HLS_UP_INIT_BP]	 = "INIT",
10528		[__HLS_UP_ARMED_BP]	 = "ARMED",
10529		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10530		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10531		[__HLS_DN_POLL_BP]	 = "POLL",
10532		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10533		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10534		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10535		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10536		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10537		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10538	};
10539
10540	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10541	return name ? name : "unknown";
10542}
10543
10544/* return the link state reason name */
10545static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10546{
10547	if (state == HLS_UP_INIT) {
10548		switch (ppd->linkinit_reason) {
10549		case OPA_LINKINIT_REASON_LINKUP:
10550			return "(LINKUP)";
10551		case OPA_LINKINIT_REASON_FLAPPING:
10552			return "(FLAPPING)";
10553		case OPA_LINKINIT_OUTSIDE_POLICY:
10554			return "(OUTSIDE_POLICY)";
10555		case OPA_LINKINIT_QUARANTINED:
10556			return "(QUARANTINED)";
10557		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10558			return "(INSUFIC_CAPABILITY)";
10559		default:
10560			break;
10561		}
10562	}
10563	return "";
10564}
10565
10566/*
10567 * driver_pstate - convert the driver's notion of a port's
10568 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10569 * Return -1 (converted to a u32) to indicate error.
10570 */
10571u32 driver_pstate(struct hfi1_pportdata *ppd)
10572{
10573	switch (ppd->host_link_state) {
10574	case HLS_UP_INIT:
10575	case HLS_UP_ARMED:
10576	case HLS_UP_ACTIVE:
10577		return IB_PORTPHYSSTATE_LINKUP;
10578	case HLS_DN_POLL:
10579		return IB_PORTPHYSSTATE_POLLING;
10580	case HLS_DN_DISABLE:
10581		return IB_PORTPHYSSTATE_DISABLED;
10582	case HLS_DN_OFFLINE:
10583		return OPA_PORTPHYSSTATE_OFFLINE;
10584	case HLS_VERIFY_CAP:
10585		return IB_PORTPHYSSTATE_TRAINING;
10586	case HLS_GOING_UP:
10587		return IB_PORTPHYSSTATE_TRAINING;
10588	case HLS_GOING_OFFLINE:
10589		return OPA_PORTPHYSSTATE_OFFLINE;
10590	case HLS_LINK_COOLDOWN:
10591		return OPA_PORTPHYSSTATE_OFFLINE;
10592	case HLS_DN_DOWNDEF:
10593	default:
10594		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10595			   ppd->host_link_state);
10596		return  -1;
10597	}
10598}
10599
10600/*
10601 * driver_lstate - convert the driver's notion of a port's
10602 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10603 * (converted to a u32) to indicate error.
10604 */
10605u32 driver_lstate(struct hfi1_pportdata *ppd)
10606{
10607	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10608		return IB_PORT_DOWN;
10609
10610	switch (ppd->host_link_state & HLS_UP) {
10611	case HLS_UP_INIT:
10612		return IB_PORT_INIT;
10613	case HLS_UP_ARMED:
10614		return IB_PORT_ARMED;
10615	case HLS_UP_ACTIVE:
10616		return IB_PORT_ACTIVE;
10617	default:
10618		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10619			   ppd->host_link_state);
10620	return -1;
10621	}
10622}
10623
10624void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10625			  u8 neigh_reason, u8 rem_reason)
10626{
10627	if (ppd->local_link_down_reason.latest == 0 &&
10628	    ppd->neigh_link_down_reason.latest == 0) {
10629		ppd->local_link_down_reason.latest = lcl_reason;
10630		ppd->neigh_link_down_reason.latest = neigh_reason;
10631		ppd->remote_link_down_reason = rem_reason;
10632	}
10633}
10634
10635/**
10636 * data_vls_operational() - Verify if data VL BCT credits and MTU
10637 *			    are both set.
10638 * @ppd: pointer to hfi1_pportdata structure
10639 *
10640 * Return: true - Ok, false -otherwise.
10641 */
10642static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10643{
10644	int i;
10645	u64 reg;
10646
10647	if (!ppd->actual_vls_operational)
10648		return false;
10649
10650	for (i = 0; i < ppd->vls_supported; i++) {
10651		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10652		if ((reg && !ppd->dd->vld[i].mtu) ||
10653		    (!reg && ppd->dd->vld[i].mtu))
10654			return false;
10655	}
10656
10657	return true;
10658}
10659
10660/*
10661 * Change the physical and/or logical link state.
10662 *
10663 * Do not call this routine while inside an interrupt.  It contains
10664 * calls to routines that can take multiple seconds to finish.
10665 *
10666 * Returns 0 on success, -errno on failure.
10667 */
10668int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10669{
10670	struct hfi1_devdata *dd = ppd->dd;
10671	struct ib_event event = {.device = NULL};
10672	int ret1, ret = 0;
10673	int orig_new_state, poll_bounce;
10674
10675	mutex_lock(&ppd->hls_lock);
10676
10677	orig_new_state = state;
10678	if (state == HLS_DN_DOWNDEF)
10679		state = HLS_DEFAULT;
10680
10681	/* interpret poll -> poll as a link bounce */
10682	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10683		      state == HLS_DN_POLL;
10684
10685	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10686		    link_state_name(ppd->host_link_state),
10687		    link_state_name(orig_new_state),
10688		    poll_bounce ? "(bounce) " : "",
10689		    link_state_reason_name(ppd, state));
10690
10691	/*
10692	 * If we're going to a (HLS_*) link state that implies the logical
10693	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10694	 * reset is_sm_config_started to 0.
10695	 */
10696	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10697		ppd->is_sm_config_started = 0;
10698
10699	/*
10700	 * Do nothing if the states match.  Let a poll to poll link bounce
10701	 * go through.
10702	 */
10703	if (ppd->host_link_state == state && !poll_bounce)
10704		goto done;
10705
10706	switch (state) {
10707	case HLS_UP_INIT:
10708		if (ppd->host_link_state == HLS_DN_POLL &&
10709		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10710			/*
10711			 * Quick link up jumps from polling to here.
10712			 *
10713			 * Whether in normal or loopback mode, the
10714			 * simulator jumps from polling to link up.
10715			 * Accept that here.
10716			 */
10717			/* OK */
10718		} else if (ppd->host_link_state != HLS_GOING_UP) {
10719			goto unexpected;
10720		}
10721
10722		/*
10723		 * Wait for Link_Up physical state.
10724		 * Physical and Logical states should already be
10725		 * be transitioned to LinkUp and LinkInit respectively.
10726		 */
10727		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10728		if (ret) {
10729			dd_dev_err(dd,
10730				   "%s: physical state did not change to LINK-UP\n",
10731				   __func__);
10732			break;
10733		}
10734
10735		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10736		if (ret) {
10737			dd_dev_err(dd,
10738				   "%s: logical state did not change to INIT\n",
10739				   __func__);
10740			break;
10741		}
10742
10743		/* clear old transient LINKINIT_REASON code */
10744		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10745			ppd->linkinit_reason =
10746				OPA_LINKINIT_REASON_LINKUP;
10747
10748		/* enable the port */
10749		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10750
10751		handle_linkup_change(dd, 1);
10752		pio_kernel_linkup(dd);
10753
10754		/*
10755		 * After link up, a new link width will have been set.
10756		 * Update the xmit counters with regards to the new
10757		 * link width.
10758		 */
10759		update_xmit_counters(ppd, ppd->link_width_active);
10760
10761		ppd->host_link_state = HLS_UP_INIT;
10762		update_statusp(ppd, IB_PORT_INIT);
10763		break;
10764	case HLS_UP_ARMED:
10765		if (ppd->host_link_state != HLS_UP_INIT)
10766			goto unexpected;
10767
10768		if (!data_vls_operational(ppd)) {
10769			dd_dev_err(dd,
10770				   "%s: Invalid data VL credits or mtu\n",
10771				   __func__);
10772			ret = -EINVAL;
10773			break;
10774		}
10775
10776		set_logical_state(dd, LSTATE_ARMED);
10777		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10778		if (ret) {
10779			dd_dev_err(dd,
10780				   "%s: logical state did not change to ARMED\n",
10781				   __func__);
10782			break;
10783		}
10784		ppd->host_link_state = HLS_UP_ARMED;
10785		update_statusp(ppd, IB_PORT_ARMED);
10786		/*
10787		 * The simulator does not currently implement SMA messages,
10788		 * so neighbor_normal is not set.  Set it here when we first
10789		 * move to Armed.
10790		 */
10791		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10792			ppd->neighbor_normal = 1;
10793		break;
10794	case HLS_UP_ACTIVE:
10795		if (ppd->host_link_state != HLS_UP_ARMED)
10796			goto unexpected;
10797
10798		set_logical_state(dd, LSTATE_ACTIVE);
10799		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10800		if (ret) {
10801			dd_dev_err(dd,
10802				   "%s: logical state did not change to ACTIVE\n",
10803				   __func__);
10804		} else {
10805			/* tell all engines to go running */
10806			sdma_all_running(dd);
10807			ppd->host_link_state = HLS_UP_ACTIVE;
10808			update_statusp(ppd, IB_PORT_ACTIVE);
10809
10810			/* Signal the IB layer that the port has went active */
10811			event.device = &dd->verbs_dev.rdi.ibdev;
10812			event.element.port_num = ppd->port;
10813			event.event = IB_EVENT_PORT_ACTIVE;
10814		}
10815		break;
10816	case HLS_DN_POLL:
10817		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10818		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10819		    dd->dc_shutdown)
10820			dc_start(dd);
10821		/* Hand LED control to the DC */
10822		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10823
10824		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10825			u8 tmp = ppd->link_enabled;
10826
10827			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10828			if (ret) {
10829				ppd->link_enabled = tmp;
10830				break;
10831			}
10832			ppd->remote_link_down_reason = 0;
10833
10834			if (ppd->driver_link_ready)
10835				ppd->link_enabled = 1;
10836		}
10837
10838		set_all_slowpath(ppd->dd);
10839		ret = set_local_link_attributes(ppd);
10840		if (ret)
10841			break;
10842
10843		ppd->port_error_action = 0;
10844
10845		if (quick_linkup) {
10846			/* quick linkup does not go into polling */
10847			ret = do_quick_linkup(dd);
10848		} else {
10849			ret1 = set_physical_link_state(dd, PLS_POLLING);
10850			if (!ret1)
10851				ret1 = wait_phys_link_out_of_offline(ppd,
10852								     3000);
10853			if (ret1 != HCMD_SUCCESS) {
10854				dd_dev_err(dd,
10855					   "Failed to transition to Polling link state, return 0x%x\n",
10856					   ret1);
10857				ret = -EINVAL;
10858			}
10859		}
10860
10861		/*
10862		 * Change the host link state after requesting DC8051 to
10863		 * change its physical state so that we can ignore any
10864		 * interrupt with stale LNI(XX) error, which will not be
10865		 * cleared until DC8051 transitions to Polling state.
10866		 */
10867		ppd->host_link_state = HLS_DN_POLL;
10868		ppd->offline_disabled_reason =
10869			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10870		/*
10871		 * If an error occurred above, go back to offline.  The
10872		 * caller may reschedule another attempt.
10873		 */
10874		if (ret)
10875			goto_offline(ppd, 0);
10876		else
10877			log_physical_state(ppd, PLS_POLLING);
10878		break;
10879	case HLS_DN_DISABLE:
10880		/* link is disabled */
10881		ppd->link_enabled = 0;
10882
10883		/* allow any state to transition to disabled */
10884
10885		/* must transition to offline first */
10886		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10887			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10888			if (ret)
10889				break;
10890			ppd->remote_link_down_reason = 0;
10891		}
10892
10893		if (!dd->dc_shutdown) {
10894			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10895			if (ret1 != HCMD_SUCCESS) {
10896				dd_dev_err(dd,
10897					   "Failed to transition to Disabled link state, return 0x%x\n",
10898					   ret1);
10899				ret = -EINVAL;
10900				break;
10901			}
10902			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10903			if (ret) {
10904				dd_dev_err(dd,
10905					   "%s: physical state did not change to DISABLED\n",
10906					   __func__);
10907				break;
10908			}
10909			dc_shutdown(dd);
10910		}
10911		ppd->host_link_state = HLS_DN_DISABLE;
10912		break;
10913	case HLS_DN_OFFLINE:
10914		if (ppd->host_link_state == HLS_DN_DISABLE)
10915			dc_start(dd);
10916
10917		/* allow any state to transition to offline */
10918		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10919		if (!ret)
10920			ppd->remote_link_down_reason = 0;
10921		break;
10922	case HLS_VERIFY_CAP:
10923		if (ppd->host_link_state != HLS_DN_POLL)
10924			goto unexpected;
10925		ppd->host_link_state = HLS_VERIFY_CAP;
10926		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10927		break;
10928	case HLS_GOING_UP:
10929		if (ppd->host_link_state != HLS_VERIFY_CAP)
10930			goto unexpected;
10931
10932		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10933		if (ret1 != HCMD_SUCCESS) {
10934			dd_dev_err(dd,
10935				   "Failed to transition to link up state, return 0x%x\n",
10936				   ret1);
10937			ret = -EINVAL;
10938			break;
10939		}
10940		ppd->host_link_state = HLS_GOING_UP;
10941		break;
10942
10943	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10944	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10945	default:
10946		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10947			    __func__, state);
10948		ret = -EINVAL;
10949		break;
10950	}
10951
10952	goto done;
10953
10954unexpected:
10955	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10956		   __func__, link_state_name(ppd->host_link_state),
10957		   link_state_name(state));
10958	ret = -EINVAL;
10959
10960done:
10961	mutex_unlock(&ppd->hls_lock);
10962
10963	if (event.device)
10964		ib_dispatch_event(&event);
10965
10966	return ret;
10967}
10968
10969int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10970{
10971	u64 reg;
10972	int ret = 0;
10973
10974	switch (which) {
10975	case HFI1_IB_CFG_LIDLMC:
10976		set_lidlmc(ppd);
10977		break;
10978	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10979		/*
10980		 * The VL Arbitrator high limit is sent in units of 4k
10981		 * bytes, while HFI stores it in units of 64 bytes.
10982		 */
10983		val *= 4096 / 64;
10984		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10985			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10986		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10987		break;
10988	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10989		/* HFI only supports POLL as the default link down state */
10990		if (val != HLS_DN_POLL)
10991			ret = -EINVAL;
10992		break;
10993	case HFI1_IB_CFG_OP_VLS:
10994		if (ppd->vls_operational != val) {
10995			ppd->vls_operational = val;
10996			if (!ppd->port)
10997				ret = -EINVAL;
10998		}
10999		break;
11000	/*
11001	 * For link width, link width downgrade, and speed enable, always AND
11002	 * the setting with what is actually supported.  This has two benefits.
11003	 * First, enabled can't have unsupported values, no matter what the
11004	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11005	 * "fill in with your supported value" have all the bits in the
11006	 * field set, so simply ANDing with supported has the desired result.
11007	 */
11008	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11009		ppd->link_width_enabled = val & ppd->link_width_supported;
11010		break;
11011	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11012		ppd->link_width_downgrade_enabled =
11013				val & ppd->link_width_downgrade_supported;
11014		break;
11015	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11016		ppd->link_speed_enabled = val & ppd->link_speed_supported;
11017		break;
11018	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11019		/*
11020		 * HFI does not follow IB specs, save this value
11021		 * so we can report it, if asked.
11022		 */
11023		ppd->overrun_threshold = val;
11024		break;
11025	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11026		/*
11027		 * HFI does not follow IB specs, save this value
11028		 * so we can report it, if asked.
11029		 */
11030		ppd->phy_error_threshold = val;
11031		break;
11032
11033	case HFI1_IB_CFG_MTU:
11034		set_send_length(ppd);
11035		break;
11036
11037	case HFI1_IB_CFG_PKEYS:
11038		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11039			set_partition_keys(ppd);
11040		break;
11041
11042	default:
11043		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11044			dd_dev_info(ppd->dd,
11045				    "%s: which %s, val 0x%x: not implemented\n",
11046				    __func__, ib_cfg_name(which), val);
11047		break;
11048	}
11049	return ret;
11050}
11051
11052/* begin functions related to vl arbitration table caching */
11053static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11054{
11055	int i;
11056
11057	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11058			VL_ARB_LOW_PRIO_TABLE_SIZE);
11059	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11060			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11061
11062	/*
11063	 * Note that we always return values directly from the
11064	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11065	 * 'Get(VLArbTable)'. This is obviously correct after a
11066	 * 'Set(VLArbTable)', since the cache will then be up to
11067	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11068	 * since then both the cache, and the relevant h/w registers
11069	 * will be zeroed.
11070	 */
11071
11072	for (i = 0; i < MAX_PRIO_TABLE; i++)
11073		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11074}
11075
11076/*
11077 * vl_arb_lock_cache
11078 *
11079 * All other vl_arb_* functions should be called only after locking
11080 * the cache.
11081 */
11082static inline struct vl_arb_cache *
11083vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11084{
11085	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11086		return NULL;
11087	spin_lock(&ppd->vl_arb_cache[idx].lock);
11088	return &ppd->vl_arb_cache[idx];
11089}
11090
11091static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11092{
11093	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11094}
11095
11096static void vl_arb_get_cache(struct vl_arb_cache *cache,
11097			     struct ib_vl_weight_elem *vl)
11098{
11099	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11100}
11101
11102static void vl_arb_set_cache(struct vl_arb_cache *cache,
11103			     struct ib_vl_weight_elem *vl)
11104{
11105	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11106}
11107
11108static int vl_arb_match_cache(struct vl_arb_cache *cache,
11109			      struct ib_vl_weight_elem *vl)
11110{
11111	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11112}
11113
11114/* end functions related to vl arbitration table caching */
11115
11116static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11117			  u32 size, struct ib_vl_weight_elem *vl)
11118{
11119	struct hfi1_devdata *dd = ppd->dd;
11120	u64 reg;
11121	unsigned int i, is_up = 0;
11122	int drain, ret = 0;
11123
11124	mutex_lock(&ppd->hls_lock);
11125
11126	if (ppd->host_link_state & HLS_UP)
11127		is_up = 1;
11128
11129	drain = !is_ax(dd) && is_up;
11130
11131	if (drain)
11132		/*
11133		 * Before adjusting VL arbitration weights, empty per-VL
11134		 * FIFOs, otherwise a packet whose VL weight is being
11135		 * set to 0 could get stuck in a FIFO with no chance to
11136		 * egress.
11137		 */
11138		ret = stop_drain_data_vls(dd);
11139
11140	if (ret) {
11141		dd_dev_err(
11142			dd,
11143			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11144			__func__);
11145		goto err;
11146	}
11147
11148	for (i = 0; i < size; i++, vl++) {
11149		/*
11150		 * NOTE: The low priority shift and mask are used here, but
11151		 * they are the same for both the low and high registers.
11152		 */
11153		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11154				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11155		      | (((u64)vl->weight
11156				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11157				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11158		write_csr(dd, target + (i * 8), reg);
11159	}
11160	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11161
11162	if (drain)
11163		open_fill_data_vls(dd); /* reopen all VLs */
11164
11165err:
11166	mutex_unlock(&ppd->hls_lock);
11167
11168	return ret;
11169}
11170
11171/*
11172 * Read one credit merge VL register.
11173 */
11174static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11175			   struct vl_limit *vll)
11176{
11177	u64 reg = read_csr(dd, csr);
11178
11179	vll->dedicated = cpu_to_be16(
11180		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11181		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11182	vll->shared = cpu_to_be16(
11183		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11184		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11185}
11186
11187/*
11188 * Read the current credit merge limits.
11189 */
11190static int get_buffer_control(struct hfi1_devdata *dd,
11191			      struct buffer_control *bc, u16 *overall_limit)
11192{
11193	u64 reg;
11194	int i;
11195
11196	/* not all entries are filled in */
11197	memset(bc, 0, sizeof(*bc));
11198
11199	/* OPA and HFI have a 1-1 mapping */
11200	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11201		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11202
11203	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11204	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11205
11206	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11207	bc->overall_shared_limit = cpu_to_be16(
11208		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11209		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11210	if (overall_limit)
11211		*overall_limit = (reg
11212			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11213			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11214	return sizeof(struct buffer_control);
11215}
11216
11217static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11218{
11219	u64 reg;
11220	int i;
11221
11222	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11223	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11224	for (i = 0; i < sizeof(u64); i++) {
11225		u8 byte = *(((u8 *)&reg) + i);
11226
11227		dp->vlnt[2 * i] = byte & 0xf;
11228		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11229	}
11230
11231	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11232	for (i = 0; i < sizeof(u64); i++) {
11233		u8 byte = *(((u8 *)&reg) + i);
11234
11235		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11236		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11237	}
11238	return sizeof(struct sc2vlnt);
11239}
11240
11241static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11242			      struct ib_vl_weight_elem *vl)
11243{
11244	unsigned int i;
11245
11246	for (i = 0; i < nelems; i++, vl++) {
11247		vl->vl = 0xf;
11248		vl->weight = 0;
11249	}
11250}
11251
11252static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11253{
11254	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11255		  DC_SC_VL_VAL(15_0,
11256			       0, dp->vlnt[0] & 0xf,
11257			       1, dp->vlnt[1] & 0xf,
11258			       2, dp->vlnt[2] & 0xf,
11259			       3, dp->vlnt[3] & 0xf,
11260			       4, dp->vlnt[4] & 0xf,
11261			       5, dp->vlnt[5] & 0xf,
11262			       6, dp->vlnt[6] & 0xf,
11263			       7, dp->vlnt[7] & 0xf,
11264			       8, dp->vlnt[8] & 0xf,
11265			       9, dp->vlnt[9] & 0xf,
11266			       10, dp->vlnt[10] & 0xf,
11267			       11, dp->vlnt[11] & 0xf,
11268			       12, dp->vlnt[12] & 0xf,
11269			       13, dp->vlnt[13] & 0xf,
11270			       14, dp->vlnt[14] & 0xf,
11271			       15, dp->vlnt[15] & 0xf));
11272	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11273		  DC_SC_VL_VAL(31_16,
11274			       16, dp->vlnt[16] & 0xf,
11275			       17, dp->vlnt[17] & 0xf,
11276			       18, dp->vlnt[18] & 0xf,
11277			       19, dp->vlnt[19] & 0xf,
11278			       20, dp->vlnt[20] & 0xf,
11279			       21, dp->vlnt[21] & 0xf,
11280			       22, dp->vlnt[22] & 0xf,
11281			       23, dp->vlnt[23] & 0xf,
11282			       24, dp->vlnt[24] & 0xf,
11283			       25, dp->vlnt[25] & 0xf,
11284			       26, dp->vlnt[26] & 0xf,
11285			       27, dp->vlnt[27] & 0xf,
11286			       28, dp->vlnt[28] & 0xf,
11287			       29, dp->vlnt[29] & 0xf,
11288			       30, dp->vlnt[30] & 0xf,
11289			       31, dp->vlnt[31] & 0xf));
11290}
11291
11292static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11293			u16 limit)
11294{
11295	if (limit != 0)
11296		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11297			    what, (int)limit, idx);
11298}
11299
11300/* change only the shared limit portion of SendCmGLobalCredit */
11301static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11302{
11303	u64 reg;
11304
11305	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11306	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11307	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11308	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11309}
11310
11311/* change only the total credit limit portion of SendCmGLobalCredit */
11312static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11313{
11314	u64 reg;
11315
11316	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11317	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11318	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11319	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11320}
11321
11322/* set the given per-VL shared limit */
11323static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11324{
11325	u64 reg;
11326	u32 addr;
11327
11328	if (vl < TXE_NUM_DATA_VL)
11329		addr = SEND_CM_CREDIT_VL + (8 * vl);
11330	else
11331		addr = SEND_CM_CREDIT_VL15;
11332
11333	reg = read_csr(dd, addr);
11334	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11335	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11336	write_csr(dd, addr, reg);
11337}
11338
11339/* set the given per-VL dedicated limit */
11340static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11341{
11342	u64 reg;
11343	u32 addr;
11344
11345	if (vl < TXE_NUM_DATA_VL)
11346		addr = SEND_CM_CREDIT_VL + (8 * vl);
11347	else
11348		addr = SEND_CM_CREDIT_VL15;
11349
11350	reg = read_csr(dd, addr);
11351	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11352	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11353	write_csr(dd, addr, reg);
11354}
11355
11356/* spin until the given per-VL status mask bits clear */
11357static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11358				     const char *which)
11359{
11360	unsigned long timeout;
11361	u64 reg;
11362
11363	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11364	while (1) {
11365		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11366
11367		if (reg == 0)
11368			return;	/* success */
11369		if (time_after(jiffies, timeout))
11370			break;		/* timed out */
11371		udelay(1);
11372	}
11373
11374	dd_dev_err(dd,
11375		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11376		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11377	/*
11378	 * If this occurs, it is likely there was a credit loss on the link.
11379	 * The only recovery from that is a link bounce.
11380	 */
11381	dd_dev_err(dd,
11382		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11383}
11384
11385/*
11386 * The number of credits on the VLs may be changed while everything
11387 * is "live", but the following algorithm must be followed due to
11388 * how the hardware is actually implemented.  In particular,
11389 * Return_Credit_Status[] is the only correct status check.
11390 *
11391 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11392 *     set Global_Shared_Credit_Limit = 0
11393 *     use_all_vl = 1
11394 * mask0 = all VLs that are changing either dedicated or shared limits
11395 * set Shared_Limit[mask0] = 0
11396 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11397 * if (changing any dedicated limit)
11398 *     mask1 = all VLs that are lowering dedicated limits
11399 *     lower Dedicated_Limit[mask1]
11400 *     spin until Return_Credit_Status[mask1] == 0
11401 *     raise Dedicated_Limits
11402 * raise Shared_Limits
11403 * raise Global_Shared_Credit_Limit
11404 *
11405 * lower = if the new limit is lower, set the limit to the new value
11406 * raise = if the new limit is higher than the current value (may be changed
11407 *	earlier in the algorithm), set the new limit to the new value
11408 */
11409int set_buffer_control(struct hfi1_pportdata *ppd,
11410		       struct buffer_control *new_bc)
11411{
11412	struct hfi1_devdata *dd = ppd->dd;
11413	u64 changing_mask, ld_mask, stat_mask;
11414	int change_count;
11415	int i, use_all_mask;
11416	int this_shared_changing;
11417	int vl_count = 0, ret;
11418	/*
11419	 * A0: add the variable any_shared_limit_changing below and in the
11420	 * algorithm above.  If removing A0 support, it can be removed.
11421	 */
11422	int any_shared_limit_changing;
11423	struct buffer_control cur_bc;
11424	u8 changing[OPA_MAX_VLS];
11425	u8 lowering_dedicated[OPA_MAX_VLS];
11426	u16 cur_total;
11427	u32 new_total = 0;
11428	const u64 all_mask =
11429	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11430	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11431	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11432	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11433	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11434	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11435	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11436	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11437	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11438
11439#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11440#define NUM_USABLE_VLS 16	/* look at VL15 and less */
11441
11442	/* find the new total credits, do sanity check on unused VLs */
11443	for (i = 0; i < OPA_MAX_VLS; i++) {
11444		if (valid_vl(i)) {
11445			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11446			continue;
11447		}
11448		nonzero_msg(dd, i, "dedicated",
11449			    be16_to_cpu(new_bc->vl[i].dedicated));
11450		nonzero_msg(dd, i, "shared",
11451			    be16_to_cpu(new_bc->vl[i].shared));
11452		new_bc->vl[i].dedicated = 0;
11453		new_bc->vl[i].shared = 0;
11454	}
11455	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11456
11457	/* fetch the current values */
11458	get_buffer_control(dd, &cur_bc, &cur_total);
11459
11460	/*
11461	 * Create the masks we will use.
11462	 */
11463	memset(changing, 0, sizeof(changing));
11464	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11465	/*
11466	 * NOTE: Assumes that the individual VL bits are adjacent and in
11467	 * increasing order
11468	 */
11469	stat_mask =
11470		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11471	changing_mask = 0;
11472	ld_mask = 0;
11473	change_count = 0;
11474	any_shared_limit_changing = 0;
11475	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11476		if (!valid_vl(i))
11477			continue;
11478		this_shared_changing = new_bc->vl[i].shared
11479						!= cur_bc.vl[i].shared;
11480		if (this_shared_changing)
11481			any_shared_limit_changing = 1;
11482		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11483		    this_shared_changing) {
11484			changing[i] = 1;
11485			changing_mask |= stat_mask;
11486			change_count++;
11487		}
11488		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11489					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11490			lowering_dedicated[i] = 1;
11491			ld_mask |= stat_mask;
11492		}
11493	}
11494
11495	/* bracket the credit change with a total adjustment */
11496	if (new_total > cur_total)
11497		set_global_limit(dd, new_total);
11498
11499	/*
11500	 * Start the credit change algorithm.
11501	 */
11502	use_all_mask = 0;
11503	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11504	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11505	    (is_ax(dd) && any_shared_limit_changing)) {
11506		set_global_shared(dd, 0);
11507		cur_bc.overall_shared_limit = 0;
11508		use_all_mask = 1;
11509	}
11510
11511	for (i = 0; i < NUM_USABLE_VLS; i++) {
11512		if (!valid_vl(i))
11513			continue;
11514
11515		if (changing[i]) {
11516			set_vl_shared(dd, i, 0);
11517			cur_bc.vl[i].shared = 0;
11518		}
11519	}
11520
11521	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11522				 "shared");
11523
11524	if (change_count > 0) {
11525		for (i = 0; i < NUM_USABLE_VLS; i++) {
11526			if (!valid_vl(i))
11527				continue;
11528
11529			if (lowering_dedicated[i]) {
11530				set_vl_dedicated(dd, i,
11531						 be16_to_cpu(new_bc->
11532							     vl[i].dedicated));
11533				cur_bc.vl[i].dedicated =
11534						new_bc->vl[i].dedicated;
11535			}
11536		}
11537
11538		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11539
11540		/* now raise all dedicated that are going up */
11541		for (i = 0; i < NUM_USABLE_VLS; i++) {
11542			if (!valid_vl(i))
11543				continue;
11544
11545			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11546					be16_to_cpu(cur_bc.vl[i].dedicated))
11547				set_vl_dedicated(dd, i,
11548						 be16_to_cpu(new_bc->
11549							     vl[i].dedicated));
11550		}
11551	}
11552
11553	/* next raise all shared that are going up */
11554	for (i = 0; i < NUM_USABLE_VLS; i++) {
11555		if (!valid_vl(i))
11556			continue;
11557
11558		if (be16_to_cpu(new_bc->vl[i].shared) >
11559				be16_to_cpu(cur_bc.vl[i].shared))
11560			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11561	}
11562
11563	/* finally raise the global shared */
11564	if (be16_to_cpu(new_bc->overall_shared_limit) >
11565	    be16_to_cpu(cur_bc.overall_shared_limit))
11566		set_global_shared(dd,
11567				  be16_to_cpu(new_bc->overall_shared_limit));
11568
11569	/* bracket the credit change with a total adjustment */
11570	if (new_total < cur_total)
11571		set_global_limit(dd, new_total);
11572
11573	/*
11574	 * Determine the actual number of operational VLS using the number of
11575	 * dedicated and shared credits for each VL.
11576	 */
11577	if (change_count > 0) {
11578		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11579			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11580			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11581				vl_count++;
11582		ppd->actual_vls_operational = vl_count;
11583		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11584				    ppd->actual_vls_operational :
11585				    ppd->vls_operational,
11586				    NULL);
11587		if (ret == 0)
11588			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11589					   ppd->actual_vls_operational :
11590					   ppd->vls_operational, NULL);
11591		if (ret)
11592			return ret;
11593	}
11594	return 0;
11595}
11596
11597/*
11598 * Read the given fabric manager table. Return the size of the
11599 * table (in bytes) on success, and a negative error code on
11600 * failure.
11601 */
11602int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11603
11604{
11605	int size;
11606	struct vl_arb_cache *vlc;
11607
11608	switch (which) {
11609	case FM_TBL_VL_HIGH_ARB:
11610		size = 256;
11611		/*
11612		 * OPA specifies 128 elements (of 2 bytes each), though
11613		 * HFI supports only 16 elements in h/w.
11614		 */
11615		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11616		vl_arb_get_cache(vlc, t);
11617		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11618		break;
11619	case FM_TBL_VL_LOW_ARB:
11620		size = 256;
11621		/*
11622		 * OPA specifies 128 elements (of 2 bytes each), though
11623		 * HFI supports only 16 elements in h/w.
11624		 */
11625		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11626		vl_arb_get_cache(vlc, t);
11627		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11628		break;
11629	case FM_TBL_BUFFER_CONTROL:
11630		size = get_buffer_control(ppd->dd, t, NULL);
11631		break;
11632	case FM_TBL_SC2VLNT:
11633		size = get_sc2vlnt(ppd->dd, t);
11634		break;
11635	case FM_TBL_VL_PREEMPT_ELEMS:
11636		size = 256;
11637		/* OPA specifies 128 elements, of 2 bytes each */
11638		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11639		break;
11640	case FM_TBL_VL_PREEMPT_MATRIX:
11641		size = 256;
11642		/*
11643		 * OPA specifies that this is the same size as the VL
11644		 * arbitration tables (i.e., 256 bytes).
11645		 */
11646		break;
11647	default:
11648		return -EINVAL;
11649	}
11650	return size;
11651}
11652
11653/*
11654 * Write the given fabric manager table.
11655 */
11656int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11657{
11658	int ret = 0;
11659	struct vl_arb_cache *vlc;
11660
11661	switch (which) {
11662	case FM_TBL_VL_HIGH_ARB:
11663		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11664		if (vl_arb_match_cache(vlc, t)) {
11665			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11666			break;
11667		}
11668		vl_arb_set_cache(vlc, t);
11669		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11670		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11671				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11672		break;
11673	case FM_TBL_VL_LOW_ARB:
11674		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11675		if (vl_arb_match_cache(vlc, t)) {
11676			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11677			break;
11678		}
11679		vl_arb_set_cache(vlc, t);
11680		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11681		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11682				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11683		break;
11684	case FM_TBL_BUFFER_CONTROL:
11685		ret = set_buffer_control(ppd, t);
11686		break;
11687	case FM_TBL_SC2VLNT:
11688		set_sc2vlnt(ppd->dd, t);
11689		break;
11690	default:
11691		ret = -EINVAL;
11692	}
11693	return ret;
11694}
11695
11696/*
11697 * Disable all data VLs.
11698 *
11699 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11700 */
11701static int disable_data_vls(struct hfi1_devdata *dd)
11702{
11703	if (is_ax(dd))
11704		return 1;
11705
11706	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11707
11708	return 0;
11709}
11710
11711/*
11712 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11713 * Just re-enables all data VLs (the "fill" part happens
11714 * automatically - the name was chosen for symmetry with
11715 * stop_drain_data_vls()).
11716 *
11717 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11718 */
11719int open_fill_data_vls(struct hfi1_devdata *dd)
11720{
11721	if (is_ax(dd))
11722		return 1;
11723
11724	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11725
11726	return 0;
11727}
11728
11729/*
11730 * drain_data_vls() - assumes that disable_data_vls() has been called,
11731 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11732 * engines to drop to 0.
11733 */
11734static void drain_data_vls(struct hfi1_devdata *dd)
11735{
11736	sc_wait(dd);
11737	sdma_wait(dd);
11738	pause_for_credit_return(dd);
11739}
11740
11741/*
11742 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11743 *
11744 * Use open_fill_data_vls() to resume using data VLs.  This pair is
11745 * meant to be used like this:
11746 *
11747 * stop_drain_data_vls(dd);
11748 * // do things with per-VL resources
11749 * open_fill_data_vls(dd);
11750 */
11751int stop_drain_data_vls(struct hfi1_devdata *dd)
11752{
11753	int ret;
11754
11755	ret = disable_data_vls(dd);
11756	if (ret == 0)
11757		drain_data_vls(dd);
11758
11759	return ret;
11760}
11761
11762/*
11763 * Convert a nanosecond time to a cclock count.  No matter how slow
11764 * the cclock, a non-zero ns will always have a non-zero result.
11765 */
11766u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11767{
11768	u32 cclocks;
11769
11770	if (dd->icode == ICODE_FPGA_EMULATION)
11771		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11772	else  /* simulation pretends to be ASIC */
11773		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11774	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11775		cclocks = 1;
11776	return cclocks;
11777}
11778
11779/*
11780 * Convert a cclock count to nanoseconds. Not matter how slow
11781 * the cclock, a non-zero cclocks will always have a non-zero result.
11782 */
11783u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11784{
11785	u32 ns;
11786
11787	if (dd->icode == ICODE_FPGA_EMULATION)
11788		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11789	else  /* simulation pretends to be ASIC */
11790		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11791	if (cclocks && !ns)
11792		ns = 1;
11793	return ns;
11794}
11795
11796/*
11797 * Dynamically adjust the receive interrupt timeout for a context based on
11798 * incoming packet rate.
11799 *
11800 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11801 */
11802static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11803{
11804	struct hfi1_devdata *dd = rcd->dd;
11805	u32 timeout = rcd->rcvavail_timeout;
11806
11807	/*
11808	 * This algorithm doubles or halves the timeout depending on whether
11809	 * the number of packets received in this interrupt were less than or
11810	 * greater equal the interrupt count.
11811	 *
11812	 * The calculations below do not allow a steady state to be achieved.
11813	 * Only at the endpoints it is possible to have an unchanging
11814	 * timeout.
11815	 */
11816	if (npkts < rcv_intr_count) {
11817		/*
11818		 * Not enough packets arrived before the timeout, adjust
11819		 * timeout downward.
11820		 */
11821		if (timeout < 2) /* already at minimum? */
11822			return;
11823		timeout >>= 1;
11824	} else {
11825		/*
11826		 * More than enough packets arrived before the timeout, adjust
11827		 * timeout upward.
11828		 */
11829		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11830			return;
11831		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11832	}
11833
11834	rcd->rcvavail_timeout = timeout;
11835	/*
11836	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11837	 * been verified to be in range
11838	 */
11839	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11840			(u64)timeout <<
11841			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11842}
11843
11844void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11845		    u32 intr_adjust, u32 npkts)
11846{
11847	struct hfi1_devdata *dd = rcd->dd;
11848	u64 reg;
11849	u32 ctxt = rcd->ctxt;
11850
11851	/*
11852	 * Need to write timeout register before updating RcvHdrHead to ensure
11853	 * that a new value is used when the HW decides to restart counting.
11854	 */
11855	if (intr_adjust)
11856		adjust_rcv_timeout(rcd, npkts);
11857	if (updegr) {
11858		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11859			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11860		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11861	}
11862	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11863		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11864			<< RCV_HDR_HEAD_HEAD_SHIFT);
11865	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11866}
11867
11868u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11869{
11870	u32 head, tail;
11871
11872	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11873		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11874
11875	if (hfi1_rcvhdrtail_kvaddr(rcd))
11876		tail = get_rcvhdrtail(rcd);
11877	else
11878		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11879
11880	return head == tail;
11881}
11882
11883/*
11884 * Context Control and Receive Array encoding for buffer size:
11885 *	0x0 invalid
11886 *	0x1   4 KB
11887 *	0x2   8 KB
11888 *	0x3  16 KB
11889 *	0x4  32 KB
11890 *	0x5  64 KB
11891 *	0x6 128 KB
11892 *	0x7 256 KB
11893 *	0x8 512 KB (Receive Array only)
11894 *	0x9   1 MB (Receive Array only)
11895 *	0xa   2 MB (Receive Array only)
11896 *
11897 *	0xB-0xF - reserved (Receive Array only)
11898 *
11899 *
11900 * This routine assumes that the value has already been sanity checked.
11901 */
11902static u32 encoded_size(u32 size)
11903{
11904	switch (size) {
11905	case   4 * 1024: return 0x1;
11906	case   8 * 1024: return 0x2;
11907	case  16 * 1024: return 0x3;
11908	case  32 * 1024: return 0x4;
11909	case  64 * 1024: return 0x5;
11910	case 128 * 1024: return 0x6;
11911	case 256 * 1024: return 0x7;
11912	case 512 * 1024: return 0x8;
11913	case   1 * 1024 * 1024: return 0x9;
11914	case   2 * 1024 * 1024: return 0xa;
11915	}
11916	return 0x1;	/* if invalid, go with the minimum size */
11917}
11918
11919/**
11920 * encode_rcv_header_entry_size - return chip specific encoding for size
11921 * @size: size in dwords
11922 *
11923 * Convert a receive header entry size that to the encoding used in the CSR.
11924 *
11925 * Return a zero if the given size is invalid, otherwise the encoding.
11926 */
11927u8 encode_rcv_header_entry_size(u8 size)
11928{
11929	/* there are only 3 valid receive header entry sizes */
11930	if (size == 2)
11931		return 1;
11932	if (size == 16)
11933		return 2;
11934	if (size == 32)
11935		return 4;
11936	return 0; /* invalid */
11937}
11938
11939/**
11940 * hfi1_validate_rcvhdrcnt - validate hdrcnt
11941 * @dd: the device data
11942 * @thecnt: the header count
11943 */
11944int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11945{
11946	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11947		dd_dev_err(dd, "Receive header queue count too small\n");
11948		return -EINVAL;
11949	}
11950
11951	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11952		dd_dev_err(dd,
11953			   "Receive header queue count cannot be greater than %u\n",
11954			   HFI1_MAX_HDRQ_EGRBUF_CNT);
11955		return -EINVAL;
11956	}
11957
11958	if (thecnt % HDRQ_INCREMENT) {
11959		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11960			   thecnt, HDRQ_INCREMENT);
11961		return -EINVAL;
11962	}
11963
11964	return 0;
11965}
11966
11967/**
11968 * set_hdrq_regs - set header queue registers for context
11969 * @dd: the device data
11970 * @ctxt: the context
11971 * @entsize: the dword entry size
11972 * @hdrcnt: the number of header entries
11973 */
11974void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
11975{
11976	u64 reg;
11977
11978	reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
11979	      RCV_HDR_CNT_CNT_SHIFT;
11980	write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
11981	reg = ((u64)encode_rcv_header_entry_size(entsize) &
11982	       RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
11983	      RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
11984	write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
11985	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
11986	      RCV_HDR_SIZE_HDR_SIZE_SHIFT;
11987	write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
11988
11989	/*
11990	 * Program dummy tail address for every receive context
11991	 * before enabling any receive context
11992	 */
11993	write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11994			dd->rcvhdrtail_dummy_dma);
11995}
11996
11997void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11998		  struct hfi1_ctxtdata *rcd)
11999{
12000	u64 rcvctrl, reg;
12001	int did_enable = 0;
12002	u16 ctxt;
12003
12004	if (!rcd)
12005		return;
12006
12007	ctxt = rcd->ctxt;
12008
12009	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12010
12011	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12012	/* if the context already enabled, don't do the extra steps */
12013	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12014	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12015		/* reset the tail and hdr addresses, and sequence count */
12016		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12017				rcd->rcvhdrq_dma);
12018		if (hfi1_rcvhdrtail_kvaddr(rcd))
12019			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12020					rcd->rcvhdrqtailaddr_dma);
12021		hfi1_set_seq_cnt(rcd, 1);
12022
12023		/* reset the cached receive header queue head value */
12024		hfi1_set_rcd_head(rcd, 0);
12025
12026		/*
12027		 * Zero the receive header queue so we don't get false
12028		 * positives when checking the sequence number.  The
12029		 * sequence numbers could land exactly on the same spot.
12030		 * E.g. a rcd restart before the receive header wrapped.
12031		 */
12032		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12033
12034		/* starting timeout */
12035		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12036
12037		/* enable the context */
12038		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12039
12040		/* clean the egr buffer size first */
12041		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12042		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12043				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12044					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12045
12046		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12047		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12048		did_enable = 1;
12049
12050		/* zero RcvEgrIndexHead */
12051		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12052
12053		/* set eager count and base index */
12054		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12055			& RCV_EGR_CTRL_EGR_CNT_MASK)
12056		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12057			(((rcd->eager_base >> RCV_SHIFT)
12058			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12059			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12060		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12061
12062		/*
12063		 * Set TID (expected) count and base index.
12064		 * rcd->expected_count is set to individual RcvArray entries,
12065		 * not pairs, and the CSR takes a pair-count in groups of
12066		 * four, so divide by 8.
12067		 */
12068		reg = (((rcd->expected_count >> RCV_SHIFT)
12069					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12070				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12071		      (((rcd->expected_base >> RCV_SHIFT)
12072					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12073				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12074		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12075		if (ctxt == HFI1_CTRL_CTXT)
12076			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12077	}
12078	if (op & HFI1_RCVCTRL_CTXT_DIS) {
12079		write_csr(dd, RCV_VL15, 0);
12080		/*
12081		 * When receive context is being disabled turn on tail
12082		 * update with a dummy tail address and then disable
12083		 * receive context.
12084		 */
12085		if (dd->rcvhdrtail_dummy_dma) {
12086			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12087					dd->rcvhdrtail_dummy_dma);
12088			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12089			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12090		}
12091
12092		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12093	}
12094	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12095		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12096			      IS_RCVAVAIL_START + rcd->ctxt, true);
12097		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12098	}
12099	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12100		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12101			      IS_RCVAVAIL_START + rcd->ctxt, false);
12102		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12103	}
12104	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12105		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12106	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12107		/* See comment on RcvCtxtCtrl.TailUpd above */
12108		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12109			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12110	}
12111	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12112		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12113	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12114		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12115	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12116		/*
12117		 * In one-packet-per-eager mode, the size comes from
12118		 * the RcvArray entry.
12119		 */
12120		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12121		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12122	}
12123	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12124		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12125	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12126		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12127	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12128		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12129	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12130		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12131	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12132		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12133	if (op & HFI1_RCVCTRL_URGENT_ENB)
12134		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12135			      IS_RCVURGENT_START + rcd->ctxt, true);
12136	if (op & HFI1_RCVCTRL_URGENT_DIS)
12137		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12138			      IS_RCVURGENT_START + rcd->ctxt, false);
12139
12140	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx", ctxt, rcvctrl);
12141	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12142
12143	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12144	if (did_enable &&
12145	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12146		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12147		if (reg != 0) {
12148			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12149				    ctxt, reg);
12150			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12151			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12152			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12153			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12154			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12155			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12156				    ctxt, reg, reg == 0 ? "not" : "still");
12157		}
12158	}
12159
12160	if (did_enable) {
12161		/*
12162		 * The interrupt timeout and count must be set after
12163		 * the context is enabled to take effect.
12164		 */
12165		/* set interrupt timeout */
12166		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12167				(u64)rcd->rcvavail_timeout <<
12168				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12169
12170		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12171		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12172		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12173	}
12174
12175	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12176		/*
12177		 * If the context has been disabled and the Tail Update has
12178		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12179		 * so it doesn't contain an address that is invalid.
12180		 */
12181		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12182				dd->rcvhdrtail_dummy_dma);
12183}
12184
12185u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12186{
12187	int ret;
12188	u64 val = 0;
12189
12190	if (namep) {
12191		ret = dd->cntrnameslen;
12192		*namep = dd->cntrnames;
12193	} else {
12194		const struct cntr_entry *entry;
12195		int i, j;
12196
12197		ret = (dd->ndevcntrs) * sizeof(u64);
12198
12199		/* Get the start of the block of counters */
12200		*cntrp = dd->cntrs;
12201
12202		/*
12203		 * Now go and fill in each counter in the block.
12204		 */
12205		for (i = 0; i < DEV_CNTR_LAST; i++) {
12206			entry = &dev_cntrs[i];
12207			hfi1_cdbg(CNTR, "reading %s", entry->name);
12208			if (entry->flags & CNTR_DISABLED) {
12209				/* Nothing */
12210				hfi1_cdbg(CNTR, "\tDisabled");
12211			} else {
12212				if (entry->flags & CNTR_VL) {
12213					hfi1_cdbg(CNTR, "\tPer VL");
12214					for (j = 0; j < C_VL_COUNT; j++) {
12215						val = entry->rw_cntr(entry,
12216								  dd, j,
12217								  CNTR_MODE_R,
12218								  0);
12219						hfi1_cdbg(
12220						   CNTR,
12221						   "\t\tRead 0x%llx for %d",
12222						   val, j);
12223						dd->cntrs[entry->offset + j] =
12224									    val;
12225					}
12226				} else if (entry->flags & CNTR_SDMA) {
12227					hfi1_cdbg(CNTR,
12228						  "\t Per SDMA Engine");
12229					for (j = 0; j < chip_sdma_engines(dd);
12230					     j++) {
12231						val =
12232						entry->rw_cntr(entry, dd, j,
12233							       CNTR_MODE_R, 0);
12234						hfi1_cdbg(CNTR,
12235							  "\t\tRead 0x%llx for %d",
12236							  val, j);
12237						dd->cntrs[entry->offset + j] =
12238									val;
12239					}
12240				} else {
12241					val = entry->rw_cntr(entry, dd,
12242							CNTR_INVALID_VL,
12243							CNTR_MODE_R, 0);
12244					dd->cntrs[entry->offset] = val;
12245					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12246				}
12247			}
12248		}
12249	}
12250	return ret;
12251}
12252
12253/*
12254 * Used by sysfs to create files for hfi stats to read
12255 */
12256u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12257{
12258	int ret;
12259	u64 val = 0;
12260
12261	if (namep) {
12262		ret = ppd->dd->portcntrnameslen;
12263		*namep = ppd->dd->portcntrnames;
12264	} else {
12265		const struct cntr_entry *entry;
12266		int i, j;
12267
12268		ret = ppd->dd->nportcntrs * sizeof(u64);
12269		*cntrp = ppd->cntrs;
12270
12271		for (i = 0; i < PORT_CNTR_LAST; i++) {
12272			entry = &port_cntrs[i];
12273			hfi1_cdbg(CNTR, "reading %s", entry->name);
12274			if (entry->flags & CNTR_DISABLED) {
12275				/* Nothing */
12276				hfi1_cdbg(CNTR, "\tDisabled");
12277				continue;
12278			}
12279
12280			if (entry->flags & CNTR_VL) {
12281				hfi1_cdbg(CNTR, "\tPer VL");
12282				for (j = 0; j < C_VL_COUNT; j++) {
12283					val = entry->rw_cntr(entry, ppd, j,
12284							       CNTR_MODE_R,
12285							       0);
12286					hfi1_cdbg(
12287					   CNTR,
12288					   "\t\tRead 0x%llx for %d",
12289					   val, j);
12290					ppd->cntrs[entry->offset + j] = val;
12291				}
12292			} else {
12293				val = entry->rw_cntr(entry, ppd,
12294						       CNTR_INVALID_VL,
12295						       CNTR_MODE_R,
12296						       0);
12297				ppd->cntrs[entry->offset] = val;
12298				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12299			}
12300		}
12301	}
12302	return ret;
12303}
12304
12305static void free_cntrs(struct hfi1_devdata *dd)
12306{
12307	struct hfi1_pportdata *ppd;
12308	int i;
12309
12310	if (dd->synth_stats_timer.function)
12311		del_timer_sync(&dd->synth_stats_timer);
12312	cancel_work_sync(&dd->update_cntr_work);
12313	ppd = (struct hfi1_pportdata *)(dd + 1);
12314	for (i = 0; i < dd->num_pports; i++, ppd++) {
12315		kfree(ppd->cntrs);
12316		kfree(ppd->scntrs);
12317		free_percpu(ppd->ibport_data.rvp.rc_acks);
12318		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12319		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12320		ppd->cntrs = NULL;
12321		ppd->scntrs = NULL;
12322		ppd->ibport_data.rvp.rc_acks = NULL;
12323		ppd->ibport_data.rvp.rc_qacks = NULL;
12324		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12325	}
12326	kfree(dd->portcntrnames);
12327	dd->portcntrnames = NULL;
12328	kfree(dd->cntrs);
12329	dd->cntrs = NULL;
12330	kfree(dd->scntrs);
12331	dd->scntrs = NULL;
12332	kfree(dd->cntrnames);
12333	dd->cntrnames = NULL;
12334	if (dd->update_cntr_wq) {
12335		destroy_workqueue(dd->update_cntr_wq);
12336		dd->update_cntr_wq = NULL;
12337	}
12338}
12339
12340static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12341			      u64 *psval, void *context, int vl)
12342{
12343	u64 val;
12344	u64 sval = *psval;
12345
12346	if (entry->flags & CNTR_DISABLED) {
12347		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12348		return 0;
12349	}
12350
12351	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12352
12353	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12354
12355	/* If its a synthetic counter there is more work we need to do */
12356	if (entry->flags & CNTR_SYNTH) {
12357		if (sval == CNTR_MAX) {
12358			/* No need to read already saturated */
12359			return CNTR_MAX;
12360		}
12361
12362		if (entry->flags & CNTR_32BIT) {
12363			/* 32bit counters can wrap multiple times */
12364			u64 upper = sval >> 32;
12365			u64 lower = (sval << 32) >> 32;
12366
12367			if (lower > val) { /* hw wrapped */
12368				if (upper == CNTR_32BIT_MAX)
12369					val = CNTR_MAX;
12370				else
12371					upper++;
12372			}
12373
12374			if (val != CNTR_MAX)
12375				val = (upper << 32) | val;
12376
12377		} else {
12378			/* If we rolled we are saturated */
12379			if ((val < sval) || (val > CNTR_MAX))
12380				val = CNTR_MAX;
12381		}
12382	}
12383
12384	*psval = val;
12385
12386	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12387
12388	return val;
12389}
12390
12391static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12392			       struct cntr_entry *entry,
12393			       u64 *psval, void *context, int vl, u64 data)
12394{
12395	u64 val;
12396
12397	if (entry->flags & CNTR_DISABLED) {
12398		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12399		return 0;
12400	}
12401
12402	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12403
12404	if (entry->flags & CNTR_SYNTH) {
12405		*psval = data;
12406		if (entry->flags & CNTR_32BIT) {
12407			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12408					     (data << 32) >> 32);
12409			val = data; /* return the full 64bit value */
12410		} else {
12411			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12412					     data);
12413		}
12414	} else {
12415		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12416	}
12417
12418	*psval = val;
12419
12420	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12421
12422	return val;
12423}
12424
12425u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12426{
12427	struct cntr_entry *entry;
12428	u64 *sval;
12429
12430	entry = &dev_cntrs[index];
12431	sval = dd->scntrs + entry->offset;
12432
12433	if (vl != CNTR_INVALID_VL)
12434		sval += vl;
12435
12436	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12437}
12438
12439u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12440{
12441	struct cntr_entry *entry;
12442	u64 *sval;
12443
12444	entry = &dev_cntrs[index];
12445	sval = dd->scntrs + entry->offset;
12446
12447	if (vl != CNTR_INVALID_VL)
12448		sval += vl;
12449
12450	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12451}
12452
12453u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12454{
12455	struct cntr_entry *entry;
12456	u64 *sval;
12457
12458	entry = &port_cntrs[index];
12459	sval = ppd->scntrs + entry->offset;
12460
12461	if (vl != CNTR_INVALID_VL)
12462		sval += vl;
12463
12464	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12465	    (index <= C_RCV_HDR_OVF_LAST)) {
12466		/* We do not want to bother for disabled contexts */
12467		return 0;
12468	}
12469
12470	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12471}
12472
12473u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12474{
12475	struct cntr_entry *entry;
12476	u64 *sval;
12477
12478	entry = &port_cntrs[index];
12479	sval = ppd->scntrs + entry->offset;
12480
12481	if (vl != CNTR_INVALID_VL)
12482		sval += vl;
12483
12484	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12485	    (index <= C_RCV_HDR_OVF_LAST)) {
12486		/* We do not want to bother for disabled contexts */
12487		return 0;
12488	}
12489
12490	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12491}
12492
12493static void do_update_synth_timer(struct work_struct *work)
12494{
12495	u64 cur_tx;
12496	u64 cur_rx;
12497	u64 total_flits;
12498	u8 update = 0;
12499	int i, j, vl;
12500	struct hfi1_pportdata *ppd;
12501	struct cntr_entry *entry;
12502	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12503					       update_cntr_work);
12504
12505	/*
12506	 * Rather than keep beating on the CSRs pick a minimal set that we can
12507	 * check to watch for potential roll over. We can do this by looking at
12508	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12509	 * we have to iterate all the counters and update.
12510	 */
12511	entry = &dev_cntrs[C_DC_RCV_FLITS];
12512	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12513
12514	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12515	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12516
12517	hfi1_cdbg(
12518	    CNTR,
12519	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx",
12520	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12521
12522	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12523		/*
12524		 * May not be strictly necessary to update but it won't hurt and
12525		 * simplifies the logic here.
12526		 */
12527		update = 1;
12528		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12529			  dd->unit);
12530	} else {
12531		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12532		hfi1_cdbg(CNTR,
12533			  "[%d] total flits 0x%llx limit 0x%llx", dd->unit,
12534			  total_flits, (u64)CNTR_32BIT_MAX);
12535		if (total_flits >= CNTR_32BIT_MAX) {
12536			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12537				  dd->unit);
12538			update = 1;
12539		}
12540	}
12541
12542	if (update) {
12543		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12544		for (i = 0; i < DEV_CNTR_LAST; i++) {
12545			entry = &dev_cntrs[i];
12546			if (entry->flags & CNTR_VL) {
12547				for (vl = 0; vl < C_VL_COUNT; vl++)
12548					read_dev_cntr(dd, i, vl);
12549			} else {
12550				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12551			}
12552		}
12553		ppd = (struct hfi1_pportdata *)(dd + 1);
12554		for (i = 0; i < dd->num_pports; i++, ppd++) {
12555			for (j = 0; j < PORT_CNTR_LAST; j++) {
12556				entry = &port_cntrs[j];
12557				if (entry->flags & CNTR_VL) {
12558					for (vl = 0; vl < C_VL_COUNT; vl++)
12559						read_port_cntr(ppd, j, vl);
12560				} else {
12561					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12562				}
12563			}
12564		}
12565
12566		/*
12567		 * We want the value in the register. The goal is to keep track
12568		 * of the number of "ticks" not the counter value. In other
12569		 * words if the register rolls we want to notice it and go ahead
12570		 * and force an update.
12571		 */
12572		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12573		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12574						CNTR_MODE_R, 0);
12575
12576		entry = &dev_cntrs[C_DC_RCV_FLITS];
12577		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12578						CNTR_MODE_R, 0);
12579
12580		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12581			  dd->unit, dd->last_tx, dd->last_rx);
12582
12583	} else {
12584		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12585	}
12586}
12587
12588static void update_synth_timer(struct timer_list *t)
12589{
12590	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12591
12592	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12593	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12594}
12595
12596#define C_MAX_NAME 16 /* 15 chars + one for /0 */
12597static int init_cntrs(struct hfi1_devdata *dd)
12598{
12599	int i, rcv_ctxts, j;
12600	size_t sz;
12601	char *p;
12602	char name[C_MAX_NAME];
12603	struct hfi1_pportdata *ppd;
12604	const char *bit_type_32 = ",32";
12605	const int bit_type_32_sz = strlen(bit_type_32);
12606	u32 sdma_engines = chip_sdma_engines(dd);
12607
12608	/* set up the stats timer; the add_timer is done at the end */
12609	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12610
12611	/***********************/
12612	/* per device counters */
12613	/***********************/
12614
12615	/* size names and determine how many we have*/
12616	dd->ndevcntrs = 0;
12617	sz = 0;
12618
12619	for (i = 0; i < DEV_CNTR_LAST; i++) {
12620		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12621			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12622			continue;
12623		}
12624
12625		if (dev_cntrs[i].flags & CNTR_VL) {
12626			dev_cntrs[i].offset = dd->ndevcntrs;
12627			for (j = 0; j < C_VL_COUNT; j++) {
12628				snprintf(name, C_MAX_NAME, "%s%d",
12629					 dev_cntrs[i].name, vl_from_idx(j));
12630				sz += strlen(name);
12631				/* Add ",32" for 32-bit counters */
12632				if (dev_cntrs[i].flags & CNTR_32BIT)
12633					sz += bit_type_32_sz;
12634				sz++;
12635				dd->ndevcntrs++;
12636			}
12637		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12638			dev_cntrs[i].offset = dd->ndevcntrs;
12639			for (j = 0; j < sdma_engines; j++) {
12640				snprintf(name, C_MAX_NAME, "%s%d",
12641					 dev_cntrs[i].name, j);
12642				sz += strlen(name);
12643				/* Add ",32" for 32-bit counters */
12644				if (dev_cntrs[i].flags & CNTR_32BIT)
12645					sz += bit_type_32_sz;
12646				sz++;
12647				dd->ndevcntrs++;
12648			}
12649		} else {
12650			/* +1 for newline. */
12651			sz += strlen(dev_cntrs[i].name) + 1;
12652			/* Add ",32" for 32-bit counters */
12653			if (dev_cntrs[i].flags & CNTR_32BIT)
12654				sz += bit_type_32_sz;
12655			dev_cntrs[i].offset = dd->ndevcntrs;
12656			dd->ndevcntrs++;
12657		}
12658	}
12659
12660	/* allocate space for the counter values */
12661	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12662			    GFP_KERNEL);
12663	if (!dd->cntrs)
12664		goto bail;
12665
12666	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12667	if (!dd->scntrs)
12668		goto bail;
12669
12670	/* allocate space for the counter names */
12671	dd->cntrnameslen = sz;
12672	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12673	if (!dd->cntrnames)
12674		goto bail;
12675
12676	/* fill in the names */
12677	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12678		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12679			/* Nothing */
12680		} else if (dev_cntrs[i].flags & CNTR_VL) {
12681			for (j = 0; j < C_VL_COUNT; j++) {
12682				snprintf(name, C_MAX_NAME, "%s%d",
12683					 dev_cntrs[i].name,
12684					 vl_from_idx(j));
12685				memcpy(p, name, strlen(name));
12686				p += strlen(name);
12687
12688				/* Counter is 32 bits */
12689				if (dev_cntrs[i].flags & CNTR_32BIT) {
12690					memcpy(p, bit_type_32, bit_type_32_sz);
12691					p += bit_type_32_sz;
12692				}
12693
12694				*p++ = '\n';
12695			}
12696		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12697			for (j = 0; j < sdma_engines; j++) {
12698				snprintf(name, C_MAX_NAME, "%s%d",
12699					 dev_cntrs[i].name, j);
12700				memcpy(p, name, strlen(name));
12701				p += strlen(name);
12702
12703				/* Counter is 32 bits */
12704				if (dev_cntrs[i].flags & CNTR_32BIT) {
12705					memcpy(p, bit_type_32, bit_type_32_sz);
12706					p += bit_type_32_sz;
12707				}
12708
12709				*p++ = '\n';
12710			}
12711		} else {
12712			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12713			p += strlen(dev_cntrs[i].name);
12714
12715			/* Counter is 32 bits */
12716			if (dev_cntrs[i].flags & CNTR_32BIT) {
12717				memcpy(p, bit_type_32, bit_type_32_sz);
12718				p += bit_type_32_sz;
12719			}
12720
12721			*p++ = '\n';
12722		}
12723	}
12724
12725	/*********************/
12726	/* per port counters */
12727	/*********************/
12728
12729	/*
12730	 * Go through the counters for the overflows and disable the ones we
12731	 * don't need. This varies based on platform so we need to do it
12732	 * dynamically here.
12733	 */
12734	rcv_ctxts = dd->num_rcv_contexts;
12735	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12736	     i <= C_RCV_HDR_OVF_LAST; i++) {
12737		port_cntrs[i].flags |= CNTR_DISABLED;
12738	}
12739
12740	/* size port counter names and determine how many we have*/
12741	sz = 0;
12742	dd->nportcntrs = 0;
12743	for (i = 0; i < PORT_CNTR_LAST; i++) {
12744		if (port_cntrs[i].flags & CNTR_DISABLED) {
12745			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12746			continue;
12747		}
12748
12749		if (port_cntrs[i].flags & CNTR_VL) {
12750			port_cntrs[i].offset = dd->nportcntrs;
12751			for (j = 0; j < C_VL_COUNT; j++) {
12752				snprintf(name, C_MAX_NAME, "%s%d",
12753					 port_cntrs[i].name, vl_from_idx(j));
12754				sz += strlen(name);
12755				/* Add ",32" for 32-bit counters */
12756				if (port_cntrs[i].flags & CNTR_32BIT)
12757					sz += bit_type_32_sz;
12758				sz++;
12759				dd->nportcntrs++;
12760			}
12761		} else {
12762			/* +1 for newline */
12763			sz += strlen(port_cntrs[i].name) + 1;
12764			/* Add ",32" for 32-bit counters */
12765			if (port_cntrs[i].flags & CNTR_32BIT)
12766				sz += bit_type_32_sz;
12767			port_cntrs[i].offset = dd->nportcntrs;
12768			dd->nportcntrs++;
12769		}
12770	}
12771
12772	/* allocate space for the counter names */
12773	dd->portcntrnameslen = sz;
12774	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12775	if (!dd->portcntrnames)
12776		goto bail;
12777
12778	/* fill in port cntr names */
12779	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12780		if (port_cntrs[i].flags & CNTR_DISABLED)
12781			continue;
12782
12783		if (port_cntrs[i].flags & CNTR_VL) {
12784			for (j = 0; j < C_VL_COUNT; j++) {
12785				snprintf(name, C_MAX_NAME, "%s%d",
12786					 port_cntrs[i].name, vl_from_idx(j));
12787				memcpy(p, name, strlen(name));
12788				p += strlen(name);
12789
12790				/* Counter is 32 bits */
12791				if (port_cntrs[i].flags & CNTR_32BIT) {
12792					memcpy(p, bit_type_32, bit_type_32_sz);
12793					p += bit_type_32_sz;
12794				}
12795
12796				*p++ = '\n';
12797			}
12798		} else {
12799			memcpy(p, port_cntrs[i].name,
12800			       strlen(port_cntrs[i].name));
12801			p += strlen(port_cntrs[i].name);
12802
12803			/* Counter is 32 bits */
12804			if (port_cntrs[i].flags & CNTR_32BIT) {
12805				memcpy(p, bit_type_32, bit_type_32_sz);
12806				p += bit_type_32_sz;
12807			}
12808
12809			*p++ = '\n';
12810		}
12811	}
12812
12813	/* allocate per port storage for counter values */
12814	ppd = (struct hfi1_pportdata *)(dd + 1);
12815	for (i = 0; i < dd->num_pports; i++, ppd++) {
12816		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12817		if (!ppd->cntrs)
12818			goto bail;
12819
12820		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12821		if (!ppd->scntrs)
12822			goto bail;
12823	}
12824
12825	/* CPU counters need to be allocated and zeroed */
12826	if (init_cpu_counters(dd))
12827		goto bail;
12828
12829	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12830						     WQ_MEM_RECLAIM, dd->unit);
12831	if (!dd->update_cntr_wq)
12832		goto bail;
12833
12834	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12835
12836	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12837	return 0;
12838bail:
12839	free_cntrs(dd);
12840	return -ENOMEM;
12841}
12842
12843static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12844{
12845	switch (chip_lstate) {
12846	case LSTATE_DOWN:
12847		return IB_PORT_DOWN;
12848	case LSTATE_INIT:
12849		return IB_PORT_INIT;
12850	case LSTATE_ARMED:
12851		return IB_PORT_ARMED;
12852	case LSTATE_ACTIVE:
12853		return IB_PORT_ACTIVE;
12854	default:
12855		dd_dev_err(dd,
12856			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12857			   chip_lstate);
12858		return IB_PORT_DOWN;
12859	}
12860}
12861
12862u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12863{
12864	/* look at the HFI meta-states only */
12865	switch (chip_pstate & 0xf0) {
12866	case PLS_DISABLED:
12867		return IB_PORTPHYSSTATE_DISABLED;
12868	case PLS_OFFLINE:
12869		return OPA_PORTPHYSSTATE_OFFLINE;
12870	case PLS_POLLING:
12871		return IB_PORTPHYSSTATE_POLLING;
12872	case PLS_CONFIGPHY:
12873		return IB_PORTPHYSSTATE_TRAINING;
12874	case PLS_LINKUP:
12875		return IB_PORTPHYSSTATE_LINKUP;
12876	case PLS_PHYTEST:
12877		return IB_PORTPHYSSTATE_PHY_TEST;
12878	default:
12879		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12880			   chip_pstate);
12881		return IB_PORTPHYSSTATE_DISABLED;
12882	}
12883}
12884
12885/* return the OPA port logical state name */
12886const char *opa_lstate_name(u32 lstate)
12887{
12888	static const char * const port_logical_names[] = {
12889		"PORT_NOP",
12890		"PORT_DOWN",
12891		"PORT_INIT",
12892		"PORT_ARMED",
12893		"PORT_ACTIVE",
12894		"PORT_ACTIVE_DEFER",
12895	};
12896	if (lstate < ARRAY_SIZE(port_logical_names))
12897		return port_logical_names[lstate];
12898	return "unknown";
12899}
12900
12901/* return the OPA port physical state name */
12902const char *opa_pstate_name(u32 pstate)
12903{
12904	static const char * const port_physical_names[] = {
12905		"PHYS_NOP",
12906		"reserved1",
12907		"PHYS_POLL",
12908		"PHYS_DISABLED",
12909		"PHYS_TRAINING",
12910		"PHYS_LINKUP",
12911		"PHYS_LINK_ERR_RECOVER",
12912		"PHYS_PHY_TEST",
12913		"reserved8",
12914		"PHYS_OFFLINE",
12915		"PHYS_GANGED",
12916		"PHYS_TEST",
12917	};
12918	if (pstate < ARRAY_SIZE(port_physical_names))
12919		return port_physical_names[pstate];
12920	return "unknown";
12921}
12922
12923/**
12924 * update_statusp - Update userspace status flag
12925 * @ppd: Port data structure
12926 * @state: port state information
12927 *
12928 * Actual port status is determined by the host_link_state value
12929 * in the ppd.
12930 *
12931 * host_link_state MUST be updated before updating the user space
12932 * statusp.
12933 */
12934static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12935{
12936	/*
12937	 * Set port status flags in the page mapped into userspace
12938	 * memory. Do it here to ensure a reliable state - this is
12939	 * the only function called by all state handling code.
12940	 * Always set the flags due to the fact that the cache value
12941	 * might have been changed explicitly outside of this
12942	 * function.
12943	 */
12944	if (ppd->statusp) {
12945		switch (state) {
12946		case IB_PORT_DOWN:
12947		case IB_PORT_INIT:
12948			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12949					   HFI1_STATUS_IB_READY);
12950			break;
12951		case IB_PORT_ARMED:
12952			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12953			break;
12954		case IB_PORT_ACTIVE:
12955			*ppd->statusp |= HFI1_STATUS_IB_READY;
12956			break;
12957		}
12958	}
12959	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12960		    opa_lstate_name(state), state);
12961}
12962
12963/**
12964 * wait_logical_linkstate - wait for an IB link state change to occur
12965 * @ppd: port device
12966 * @state: the state to wait for
12967 * @msecs: the number of milliseconds to wait
12968 *
12969 * Wait up to msecs milliseconds for IB link state change to occur.
12970 * For now, take the easy polling route.
12971 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12972 */
12973static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12974				  int msecs)
12975{
12976	unsigned long timeout;
12977	u32 new_state;
12978
12979	timeout = jiffies + msecs_to_jiffies(msecs);
12980	while (1) {
12981		new_state = chip_to_opa_lstate(ppd->dd,
12982					       read_logical_state(ppd->dd));
12983		if (new_state == state)
12984			break;
12985		if (time_after(jiffies, timeout)) {
12986			dd_dev_err(ppd->dd,
12987				   "timeout waiting for link state 0x%x\n",
12988				   state);
12989			return -ETIMEDOUT;
12990		}
12991		msleep(20);
12992	}
12993
12994	return 0;
12995}
12996
12997static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12998{
12999	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
13000
13001	dd_dev_info(ppd->dd,
13002		    "physical state changed to %s (0x%x), phy 0x%x\n",
13003		    opa_pstate_name(ib_pstate), ib_pstate, state);
13004}
13005
13006/*
13007 * Read the physical hardware link state and check if it matches host
13008 * drivers anticipated state.
13009 */
13010static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13011{
13012	u32 read_state = read_physical_state(ppd->dd);
13013
13014	if (read_state == state) {
13015		log_state_transition(ppd, state);
13016	} else {
13017		dd_dev_err(ppd->dd,
13018			   "anticipated phy link state 0x%x, read 0x%x\n",
13019			   state, read_state);
13020	}
13021}
13022
13023/*
13024 * wait_physical_linkstate - wait for an physical link state change to occur
13025 * @ppd: port device
13026 * @state: the state to wait for
13027 * @msecs: the number of milliseconds to wait
13028 *
13029 * Wait up to msecs milliseconds for physical link state change to occur.
13030 * Returns 0 if state reached, otherwise -ETIMEDOUT.
13031 */
13032static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13033				   int msecs)
13034{
13035	u32 read_state;
13036	unsigned long timeout;
13037
13038	timeout = jiffies + msecs_to_jiffies(msecs);
13039	while (1) {
13040		read_state = read_physical_state(ppd->dd);
13041		if (read_state == state)
13042			break;
13043		if (time_after(jiffies, timeout)) {
13044			dd_dev_err(ppd->dd,
13045				   "timeout waiting for phy link state 0x%x\n",
13046				   state);
13047			return -ETIMEDOUT;
13048		}
13049		usleep_range(1950, 2050); /* sleep 2ms-ish */
13050	}
13051
13052	log_state_transition(ppd, state);
13053	return 0;
13054}
13055
13056/*
13057 * wait_phys_link_offline_quiet_substates - wait for any offline substate
13058 * @ppd: port device
13059 * @msecs: the number of milliseconds to wait
13060 *
13061 * Wait up to msecs milliseconds for any offline physical link
13062 * state change to occur.
13063 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13064 */
13065static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13066					    int msecs)
13067{
13068	u32 read_state;
13069	unsigned long timeout;
13070
13071	timeout = jiffies + msecs_to_jiffies(msecs);
13072	while (1) {
13073		read_state = read_physical_state(ppd->dd);
13074		if ((read_state & 0xF0) == PLS_OFFLINE)
13075			break;
13076		if (time_after(jiffies, timeout)) {
13077			dd_dev_err(ppd->dd,
13078				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13079				   read_state, msecs);
13080			return -ETIMEDOUT;
13081		}
13082		usleep_range(1950, 2050); /* sleep 2ms-ish */
13083	}
13084
13085	log_state_transition(ppd, read_state);
13086	return read_state;
13087}
13088
13089/*
13090 * wait_phys_link_out_of_offline - wait for any out of offline state
13091 * @ppd: port device
13092 * @msecs: the number of milliseconds to wait
13093 *
13094 * Wait up to msecs milliseconds for any out of offline physical link
13095 * state change to occur.
13096 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13097 */
13098static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13099					 int msecs)
13100{
13101	u32 read_state;
13102	unsigned long timeout;
13103
13104	timeout = jiffies + msecs_to_jiffies(msecs);
13105	while (1) {
13106		read_state = read_physical_state(ppd->dd);
13107		if ((read_state & 0xF0) != PLS_OFFLINE)
13108			break;
13109		if (time_after(jiffies, timeout)) {
13110			dd_dev_err(ppd->dd,
13111				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13112				   read_state, msecs);
13113			return -ETIMEDOUT;
13114		}
13115		usleep_range(1950, 2050); /* sleep 2ms-ish */
13116	}
13117
13118	log_state_transition(ppd, read_state);
13119	return read_state;
13120}
13121
13122#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13123(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13124
13125#define SET_STATIC_RATE_CONTROL_SMASK(r) \
13126(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13127
13128void hfi1_init_ctxt(struct send_context *sc)
13129{
13130	if (sc) {
13131		struct hfi1_devdata *dd = sc->dd;
13132		u64 reg;
13133		u8 set = (sc->type == SC_USER ?
13134			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13135			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13136		reg = read_kctxt_csr(dd, sc->hw_context,
13137				     SEND_CTXT_CHECK_ENABLE);
13138		if (set)
13139			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13140		else
13141			SET_STATIC_RATE_CONTROL_SMASK(reg);
13142		write_kctxt_csr(dd, sc->hw_context,
13143				SEND_CTXT_CHECK_ENABLE, reg);
13144	}
13145}
13146
13147int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13148{
13149	int ret = 0;
13150	u64 reg;
13151
13152	if (dd->icode != ICODE_RTL_SILICON) {
13153		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13154			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13155				    __func__);
13156		return -EINVAL;
13157	}
13158	reg = read_csr(dd, ASIC_STS_THERM);
13159	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13160		      ASIC_STS_THERM_CURR_TEMP_MASK);
13161	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13162			ASIC_STS_THERM_LO_TEMP_MASK);
13163	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13164			ASIC_STS_THERM_HI_TEMP_MASK);
13165	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13166			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13167	/* triggers is a 3-bit value - 1 bit per trigger. */
13168	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13169
13170	return ret;
13171}
13172
13173/* ========================================================================= */
13174
13175/**
13176 * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13177 * @dd: valid devdata
13178 * @src: IRQ source to determine register index from
13179 * @bits: the bits to set or clear
13180 * @set: true == set the bits, false == clear the bits
13181 *
13182 */
13183static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13184			   bool set)
13185{
13186	u64 reg;
13187	u16 idx = src / BITS_PER_REGISTER;
13188	unsigned long flags;
13189
13190	spin_lock_irqsave(&dd->irq_src_lock, flags);
13191	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13192	if (set)
13193		reg |= bits;
13194	else
13195		reg &= ~bits;
13196	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13197	spin_unlock_irqrestore(&dd->irq_src_lock, flags);
13198}
13199
13200/**
13201 * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13202 * @dd: valid devdata
13203 * @first: first IRQ source to set/clear
13204 * @last: last IRQ source (inclusive) to set/clear
13205 * @set: true == set the bits, false == clear the bits
13206 *
13207 * If first == last, set the exact source.
13208 */
13209int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13210{
13211	u64 bits = 0;
13212	u64 bit;
13213	u16 src;
13214
13215	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13216		return -EINVAL;
13217
13218	if (last < first)
13219		return -ERANGE;
13220
13221	for (src = first; src <= last; src++) {
13222		bit = src % BITS_PER_REGISTER;
13223		/* wrapped to next register? */
13224		if (!bit && bits) {
13225			read_mod_write(dd, src - 1, bits, set);
13226			bits = 0;
13227		}
13228		bits |= BIT_ULL(bit);
13229	}
13230	read_mod_write(dd, last, bits, set);
13231
13232	return 0;
13233}
13234
13235/*
13236 * Clear all interrupt sources on the chip.
13237 */
13238void clear_all_interrupts(struct hfi1_devdata *dd)
13239{
13240	int i;
13241
13242	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13243		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13244
13245	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13246	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13247	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13248	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13249	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13250	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13251	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13252	for (i = 0; i < chip_send_contexts(dd); i++)
13253		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13254	for (i = 0; i < chip_sdma_engines(dd); i++)
13255		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13256
13257	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13258	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13259	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13260}
13261
13262/*
13263 * Remap the interrupt source from the general handler to the given MSI-X
13264 * interrupt.
13265 */
13266void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13267{
13268	u64 reg;
13269	int m, n;
13270
13271	/* clear from the handled mask of the general interrupt */
13272	m = isrc / 64;
13273	n = isrc % 64;
13274	if (likely(m < CCE_NUM_INT_CSRS)) {
13275		dd->gi_mask[m] &= ~((u64)1 << n);
13276	} else {
13277		dd_dev_err(dd, "remap interrupt err\n");
13278		return;
13279	}
13280
13281	/* direct the chip source to the given MSI-X interrupt */
13282	m = isrc / 8;
13283	n = isrc % 8;
13284	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13285	reg &= ~((u64)0xff << (8 * n));
13286	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13287	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13288}
13289
13290void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13291{
13292	/*
13293	 * SDMA engine interrupt sources grouped by type, rather than
13294	 * engine.  Per-engine interrupts are as follows:
13295	 *	SDMA
13296	 *	SDMAProgress
13297	 *	SDMAIdle
13298	 */
13299	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13300	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13301	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13302}
13303
13304/*
13305 * Set the general handler to accept all interrupts, remap all
13306 * chip interrupts back to MSI-X 0.
13307 */
13308void reset_interrupts(struct hfi1_devdata *dd)
13309{
13310	int i;
13311
13312	/* all interrupts handled by the general handler */
13313	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13314		dd->gi_mask[i] = ~(u64)0;
13315
13316	/* all chip interrupts map to MSI-X 0 */
13317	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13318		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13319}
13320
13321/**
13322 * set_up_interrupts() - Initialize the IRQ resources and state
13323 * @dd: valid devdata
13324 *
13325 */
13326static int set_up_interrupts(struct hfi1_devdata *dd)
13327{
13328	int ret;
13329
13330	/* mask all interrupts */
13331	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13332
13333	/* clear all pending interrupts */
13334	clear_all_interrupts(dd);
13335
13336	/* reset general handler mask, chip MSI-X mappings */
13337	reset_interrupts(dd);
13338
13339	/* ask for MSI-X interrupts */
13340	ret = msix_initialize(dd);
13341	if (ret)
13342		return ret;
13343
13344	ret = msix_request_irqs(dd);
13345	if (ret)
13346		msix_clean_up_interrupts(dd);
13347
13348	return ret;
13349}
13350
13351/*
13352 * Set up context values in dd.  Sets:
13353 *
13354 *	num_rcv_contexts - number of contexts being used
13355 *	n_krcv_queues - number of kernel contexts
13356 *	first_dyn_alloc_ctxt - first dynamically allocated context
13357 *                             in array of contexts
13358 *	freectxts  - number of free user contexts
13359 *	num_send_contexts - number of PIO send contexts being used
13360 *	num_netdev_contexts - number of contexts reserved for netdev
13361 */
13362static int set_up_context_variables(struct hfi1_devdata *dd)
13363{
13364	unsigned long num_kernel_contexts;
13365	u16 num_netdev_contexts;
13366	int ret;
13367	unsigned ngroups;
13368	int rmt_count;
13369	u32 n_usr_ctxts;
13370	u32 send_contexts = chip_send_contexts(dd);
13371	u32 rcv_contexts = chip_rcv_contexts(dd);
13372
13373	/*
13374	 * Kernel receive contexts:
13375	 * - Context 0 - control context (VL15/multicast/error)
13376	 * - Context 1 - first kernel context
13377	 * - Context 2 - second kernel context
13378	 * ...
13379	 */
13380	if (n_krcvqs)
13381		/*
13382		 * n_krcvqs is the sum of module parameter kernel receive
13383		 * contexts, krcvqs[].  It does not include the control
13384		 * context, so add that.
13385		 */
13386		num_kernel_contexts = n_krcvqs + 1;
13387	else
13388		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13389	/*
13390	 * Every kernel receive context needs an ACK send context.
13391	 * one send context is allocated for each VL{0-7} and VL15
13392	 */
13393	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13394		dd_dev_err(dd,
13395			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13396			   send_contexts - num_vls - 1,
13397			   num_kernel_contexts);
13398		num_kernel_contexts = send_contexts - num_vls - 1;
13399	}
13400
13401	/*
13402	 * User contexts:
13403	 *	- default to 1 user context per real (non-HT) CPU core if
13404	 *	  num_user_contexts is negative
13405	 */
13406	if (num_user_contexts < 0)
13407		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13408	else
13409		n_usr_ctxts = num_user_contexts;
13410	/*
13411	 * Adjust the counts given a global max.
13412	 */
13413	if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13414		dd_dev_err(dd,
13415			   "Reducing # user receive contexts to: %u, from %u\n",
13416			   (u32)(rcv_contexts - num_kernel_contexts),
13417			   n_usr_ctxts);
13418		/* recalculate */
13419		n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13420	}
13421
13422	num_netdev_contexts =
13423		hfi1_num_netdev_contexts(dd, rcv_contexts -
13424					 (num_kernel_contexts + n_usr_ctxts),
13425					 &node_affinity.real_cpu_mask);
13426	/*
13427	 * RMT entries are allocated as follows:
13428	 * 1. QOS (0 to 128 entries)
13429	 * 2. FECN (num_kernel_context - 1 [a] + num_user_contexts +
13430	 *          num_netdev_contexts [b])
13431	 * 3. netdev (NUM_NETDEV_MAP_ENTRIES)
13432	 *
13433	 * Notes:
13434	 * [a] Kernel contexts (except control) are included in FECN if kernel
13435	 *     TID_RDMA is active.
13436	 * [b] Netdev and user contexts are randomly allocated from the same
13437	 *     context pool, so FECN must cover all contexts in the pool.
13438	 */
13439	rmt_count = qos_rmt_entries(num_kernel_contexts - 1, NULL, NULL)
13440		    + (HFI1_CAP_IS_KSET(TID_RDMA) ? num_kernel_contexts - 1
13441						  : 0)
13442		    + n_usr_ctxts
13443		    + num_netdev_contexts
13444		    + NUM_NETDEV_MAP_ENTRIES;
13445	if (rmt_count > NUM_MAP_ENTRIES) {
13446		int over = rmt_count - NUM_MAP_ENTRIES;
13447		/* try to squish user contexts, minimum of 1 */
13448		if (over >= n_usr_ctxts) {
13449			dd_dev_err(dd, "RMT overflow: reduce the requested number of contexts\n");
13450			return -EINVAL;
13451		}
13452		dd_dev_err(dd, "RMT overflow: reducing # user contexts from %u to %u\n",
13453			   n_usr_ctxts, n_usr_ctxts - over);
13454		n_usr_ctxts -= over;
13455	}
13456
13457	/* the first N are kernel contexts, the rest are user/netdev contexts */
13458	dd->num_rcv_contexts =
13459		num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13460	dd->n_krcv_queues = num_kernel_contexts;
13461	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13462	dd->num_netdev_contexts = num_netdev_contexts;
13463	dd->num_user_contexts = n_usr_ctxts;
13464	dd->freectxts = n_usr_ctxts;
13465	dd_dev_info(dd,
13466		    "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13467		    rcv_contexts,
13468		    (int)dd->num_rcv_contexts,
13469		    (int)dd->n_krcv_queues,
13470		    dd->num_netdev_contexts,
13471		    dd->num_user_contexts);
13472
13473	/*
13474	 * Receive array allocation:
13475	 *   All RcvArray entries are divided into groups of 8. This
13476	 *   is required by the hardware and will speed up writes to
13477	 *   consecutive entries by using write-combining of the entire
13478	 *   cacheline.
13479	 *
13480	 *   The number of groups are evenly divided among all contexts.
13481	 *   any left over groups will be given to the first N user
13482	 *   contexts.
13483	 */
13484	dd->rcv_entries.group_size = RCV_INCREMENT;
13485	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13486	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13487	dd->rcv_entries.nctxt_extra = ngroups -
13488		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13489	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13490		    dd->rcv_entries.ngroups,
13491		    dd->rcv_entries.nctxt_extra);
13492	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13493	    MAX_EAGER_ENTRIES * 2) {
13494		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13495			dd->rcv_entries.group_size;
13496		dd_dev_info(dd,
13497			    "RcvArray group count too high, change to %u\n",
13498			    dd->rcv_entries.ngroups);
13499		dd->rcv_entries.nctxt_extra = 0;
13500	}
13501	/*
13502	 * PIO send contexts
13503	 */
13504	ret = init_sc_pools_and_sizes(dd);
13505	if (ret >= 0) {	/* success */
13506		dd->num_send_contexts = ret;
13507		dd_dev_info(
13508			dd,
13509			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13510			send_contexts,
13511			dd->num_send_contexts,
13512			dd->sc_sizes[SC_KERNEL].count,
13513			dd->sc_sizes[SC_ACK].count,
13514			dd->sc_sizes[SC_USER].count,
13515			dd->sc_sizes[SC_VL15].count);
13516		ret = 0;	/* success */
13517	}
13518
13519	return ret;
13520}
13521
13522/*
13523 * Set the device/port partition key table. The MAD code
13524 * will ensure that, at least, the partial management
13525 * partition key is present in the table.
13526 */
13527static void set_partition_keys(struct hfi1_pportdata *ppd)
13528{
13529	struct hfi1_devdata *dd = ppd->dd;
13530	u64 reg = 0;
13531	int i;
13532
13533	dd_dev_info(dd, "Setting partition keys\n");
13534	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13535		reg |= (ppd->pkeys[i] &
13536			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13537			((i % 4) *
13538			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13539		/* Each register holds 4 PKey values. */
13540		if ((i % 4) == 3) {
13541			write_csr(dd, RCV_PARTITION_KEY +
13542				  ((i - 3) * 2), reg);
13543			reg = 0;
13544		}
13545	}
13546
13547	/* Always enable HW pkeys check when pkeys table is set */
13548	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13549}
13550
13551/*
13552 * These CSRs and memories are uninitialized on reset and must be
13553 * written before reading to set the ECC/parity bits.
13554 *
13555 * NOTE: All user context CSRs that are not mmaped write-only
13556 * (e.g. the TID flows) must be initialized even if the driver never
13557 * reads them.
13558 */
13559static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13560{
13561	int i, j;
13562
13563	/* CceIntMap */
13564	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13565		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13566
13567	/* SendCtxtCreditReturnAddr */
13568	for (i = 0; i < chip_send_contexts(dd); i++)
13569		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13570
13571	/* PIO Send buffers */
13572	/* SDMA Send buffers */
13573	/*
13574	 * These are not normally read, and (presently) have no method
13575	 * to be read, so are not pre-initialized
13576	 */
13577
13578	/* RcvHdrAddr */
13579	/* RcvHdrTailAddr */
13580	/* RcvTidFlowTable */
13581	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13582		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13583		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13584		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13585			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13586	}
13587
13588	/* RcvArray */
13589	for (i = 0; i < chip_rcv_array_count(dd); i++)
13590		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13591
13592	/* RcvQPMapTable */
13593	for (i = 0; i < 32; i++)
13594		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13595}
13596
13597/*
13598 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13599 */
13600static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13601			     u64 ctrl_bits)
13602{
13603	unsigned long timeout;
13604	u64 reg;
13605
13606	/* is the condition present? */
13607	reg = read_csr(dd, CCE_STATUS);
13608	if ((reg & status_bits) == 0)
13609		return;
13610
13611	/* clear the condition */
13612	write_csr(dd, CCE_CTRL, ctrl_bits);
13613
13614	/* wait for the condition to clear */
13615	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13616	while (1) {
13617		reg = read_csr(dd, CCE_STATUS);
13618		if ((reg & status_bits) == 0)
13619			return;
13620		if (time_after(jiffies, timeout)) {
13621			dd_dev_err(dd,
13622				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13623				   status_bits, reg & status_bits);
13624			return;
13625		}
13626		udelay(1);
13627	}
13628}
13629
13630/* set CCE CSRs to chip reset defaults */
13631static void reset_cce_csrs(struct hfi1_devdata *dd)
13632{
13633	int i;
13634
13635	/* CCE_REVISION read-only */
13636	/* CCE_REVISION2 read-only */
13637	/* CCE_CTRL - bits clear automatically */
13638	/* CCE_STATUS read-only, use CceCtrl to clear */
13639	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13640	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13641	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13642	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13643		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13644	/* CCE_ERR_STATUS read-only */
13645	write_csr(dd, CCE_ERR_MASK, 0);
13646	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13647	/* CCE_ERR_FORCE leave alone */
13648	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13649		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13650	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13651	/* CCE_PCIE_CTRL leave alone */
13652	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13653		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13654		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13655			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13656	}
13657	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13658		/* CCE_MSIX_PBA read-only */
13659		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13660		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13661	}
13662	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13663		write_csr(dd, CCE_INT_MAP, 0);
13664	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13665		/* CCE_INT_STATUS read-only */
13666		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13667		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13668		/* CCE_INT_FORCE leave alone */
13669		/* CCE_INT_BLOCKED read-only */
13670	}
13671	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13672		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13673}
13674
13675/* set MISC CSRs to chip reset defaults */
13676static void reset_misc_csrs(struct hfi1_devdata *dd)
13677{
13678	int i;
13679
13680	for (i = 0; i < 32; i++) {
13681		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13682		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13683		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13684	}
13685	/*
13686	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13687	 * only be written 128-byte chunks
13688	 */
13689	/* init RSA engine to clear lingering errors */
13690	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13691	write_csr(dd, MISC_CFG_RSA_MU, 0);
13692	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13693	/* MISC_STS_8051_DIGEST read-only */
13694	/* MISC_STS_SBM_DIGEST read-only */
13695	/* MISC_STS_PCIE_DIGEST read-only */
13696	/* MISC_STS_FAB_DIGEST read-only */
13697	/* MISC_ERR_STATUS read-only */
13698	write_csr(dd, MISC_ERR_MASK, 0);
13699	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13700	/* MISC_ERR_FORCE leave alone */
13701}
13702
13703/* set TXE CSRs to chip reset defaults */
13704static void reset_txe_csrs(struct hfi1_devdata *dd)
13705{
13706	int i;
13707
13708	/*
13709	 * TXE Kernel CSRs
13710	 */
13711	write_csr(dd, SEND_CTRL, 0);
13712	__cm_reset(dd, 0);	/* reset CM internal state */
13713	/* SEND_CONTEXTS read-only */
13714	/* SEND_DMA_ENGINES read-only */
13715	/* SEND_PIO_MEM_SIZE read-only */
13716	/* SEND_DMA_MEM_SIZE read-only */
13717	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13718	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13719	/* SEND_PIO_ERR_STATUS read-only */
13720	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13721	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13722	/* SEND_PIO_ERR_FORCE leave alone */
13723	/* SEND_DMA_ERR_STATUS read-only */
13724	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13725	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13726	/* SEND_DMA_ERR_FORCE leave alone */
13727	/* SEND_EGRESS_ERR_STATUS read-only */
13728	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13729	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13730	/* SEND_EGRESS_ERR_FORCE leave alone */
13731	write_csr(dd, SEND_BTH_QP, 0);
13732	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13733	write_csr(dd, SEND_SC2VLT0, 0);
13734	write_csr(dd, SEND_SC2VLT1, 0);
13735	write_csr(dd, SEND_SC2VLT2, 0);
13736	write_csr(dd, SEND_SC2VLT3, 0);
13737	write_csr(dd, SEND_LEN_CHECK0, 0);
13738	write_csr(dd, SEND_LEN_CHECK1, 0);
13739	/* SEND_ERR_STATUS read-only */
13740	write_csr(dd, SEND_ERR_MASK, 0);
13741	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13742	/* SEND_ERR_FORCE read-only */
13743	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13744		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13745	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13746		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13747	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13748		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13749	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13750		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13751	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13752		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13753	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13754	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13755	/* SEND_CM_CREDIT_USED_STATUS read-only */
13756	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13757	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13758	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13759	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13760	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13761	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13762		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13763	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13764	/* SEND_CM_CREDIT_USED_VL read-only */
13765	/* SEND_CM_CREDIT_USED_VL15 read-only */
13766	/* SEND_EGRESS_CTXT_STATUS read-only */
13767	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13768	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13769	/* SEND_EGRESS_ERR_INFO read-only */
13770	/* SEND_EGRESS_ERR_SOURCE read-only */
13771
13772	/*
13773	 * TXE Per-Context CSRs
13774	 */
13775	for (i = 0; i < chip_send_contexts(dd); i++) {
13776		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13777		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13778		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13779		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13780		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13781		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13782		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13783		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13784		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13785		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13786		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13787		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13788	}
13789
13790	/*
13791	 * TXE Per-SDMA CSRs
13792	 */
13793	for (i = 0; i < chip_sdma_engines(dd); i++) {
13794		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13795		/* SEND_DMA_STATUS read-only */
13796		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13797		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13798		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13799		/* SEND_DMA_HEAD read-only */
13800		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13801		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13802		/* SEND_DMA_IDLE_CNT read-only */
13803		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13804		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13805		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13806		/* SEND_DMA_ENG_ERR_STATUS read-only */
13807		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13808		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13809		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13810		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13811		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13812		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13813		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13814		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13815		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13816		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13817	}
13818}
13819
13820/*
13821 * Expect on entry:
13822 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13823 */
13824static void init_rbufs(struct hfi1_devdata *dd)
13825{
13826	u64 reg;
13827	int count;
13828
13829	/*
13830	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13831	 * clear.
13832	 */
13833	count = 0;
13834	while (1) {
13835		reg = read_csr(dd, RCV_STATUS);
13836		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13837			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13838			break;
13839		/*
13840		 * Give up after 1ms - maximum wait time.
13841		 *
13842		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13843		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13844		 *	136 KB / (66% * 250MB/s) = 844us
13845		 */
13846		if (count++ > 500) {
13847			dd_dev_err(dd,
13848				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13849				   __func__, reg);
13850			break;
13851		}
13852		udelay(2); /* do not busy-wait the CSR */
13853	}
13854
13855	/* start the init - expect RcvCtrl to be 0 */
13856	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13857
13858	/*
13859	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13860	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13861	 * The delay in the first run through the loop below is sufficient and
13862	 * required before the first read of RcvStatus.RxRbufInintDone.
13863	 */
13864	read_csr(dd, RCV_CTRL);
13865
13866	/* wait for the init to finish */
13867	count = 0;
13868	while (1) {
13869		/* delay is required first time through - see above */
13870		udelay(2); /* do not busy-wait the CSR */
13871		reg = read_csr(dd, RCV_STATUS);
13872		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13873			break;
13874
13875		/* give up after 100us - slowest possible at 33MHz is 73us */
13876		if (count++ > 50) {
13877			dd_dev_err(dd,
13878				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13879				   __func__);
13880			break;
13881		}
13882	}
13883}
13884
13885/* set RXE CSRs to chip reset defaults */
13886static void reset_rxe_csrs(struct hfi1_devdata *dd)
13887{
13888	int i, j;
13889
13890	/*
13891	 * RXE Kernel CSRs
13892	 */
13893	write_csr(dd, RCV_CTRL, 0);
13894	init_rbufs(dd);
13895	/* RCV_STATUS read-only */
13896	/* RCV_CONTEXTS read-only */
13897	/* RCV_ARRAY_CNT read-only */
13898	/* RCV_BUF_SIZE read-only */
13899	write_csr(dd, RCV_BTH_QP, 0);
13900	write_csr(dd, RCV_MULTICAST, 0);
13901	write_csr(dd, RCV_BYPASS, 0);
13902	write_csr(dd, RCV_VL15, 0);
13903	/* this is a clear-down */
13904	write_csr(dd, RCV_ERR_INFO,
13905		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13906	/* RCV_ERR_STATUS read-only */
13907	write_csr(dd, RCV_ERR_MASK, 0);
13908	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13909	/* RCV_ERR_FORCE leave alone */
13910	for (i = 0; i < 32; i++)
13911		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13912	for (i = 0; i < 4; i++)
13913		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13914	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13915		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13916	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13917		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13918	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13919		clear_rsm_rule(dd, i);
13920	for (i = 0; i < 32; i++)
13921		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13922
13923	/*
13924	 * RXE Kernel and User Per-Context CSRs
13925	 */
13926	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13927		/* kernel */
13928		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13929		/* RCV_CTXT_STATUS read-only */
13930		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13931		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13932		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13933		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13934		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13935		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13936		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13937		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13938		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13939		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13940
13941		/* user */
13942		/* RCV_HDR_TAIL read-only */
13943		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13944		/* RCV_EGR_INDEX_TAIL read-only */
13945		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13946		/* RCV_EGR_OFFSET_TAIL read-only */
13947		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13948			write_uctxt_csr(dd, i,
13949					RCV_TID_FLOW_TABLE + (8 * j), 0);
13950		}
13951	}
13952}
13953
13954/*
13955 * Set sc2vl tables.
13956 *
13957 * They power on to zeros, so to avoid send context errors
13958 * they need to be set:
13959 *
13960 * SC 0-7 -> VL 0-7 (respectively)
13961 * SC 15  -> VL 15
13962 * otherwise
13963 *        -> VL 0
13964 */
13965static void init_sc2vl_tables(struct hfi1_devdata *dd)
13966{
13967	int i;
13968	/* init per architecture spec, constrained by hardware capability */
13969
13970	/* HFI maps sent packets */
13971	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13972		0,
13973		0, 0, 1, 1,
13974		2, 2, 3, 3,
13975		4, 4, 5, 5,
13976		6, 6, 7, 7));
13977	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13978		1,
13979		8, 0, 9, 0,
13980		10, 0, 11, 0,
13981		12, 0, 13, 0,
13982		14, 0, 15, 15));
13983	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13984		2,
13985		16, 0, 17, 0,
13986		18, 0, 19, 0,
13987		20, 0, 21, 0,
13988		22, 0, 23, 0));
13989	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13990		3,
13991		24, 0, 25, 0,
13992		26, 0, 27, 0,
13993		28, 0, 29, 0,
13994		30, 0, 31, 0));
13995
13996	/* DC maps received packets */
13997	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13998		15_0,
13999		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14000		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14001	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14002		31_16,
14003		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14004		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14005
14006	/* initialize the cached sc2vl values consistently with h/w */
14007	for (i = 0; i < 32; i++) {
14008		if (i < 8 || i == 15)
14009			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14010		else
14011			*((u8 *)(dd->sc2vl) + i) = 0;
14012	}
14013}
14014
14015/*
14016 * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14017 * depend on the chip going through a power-on reset - a driver may be loaded
14018 * and unloaded many times.
14019 *
14020 * Do not write any CSR values to the chip in this routine - there may be
14021 * a reset following the (possible) FLR in this routine.
14022 *
14023 */
14024static int init_chip(struct hfi1_devdata *dd)
14025{
14026	int i;
14027	int ret = 0;
14028
14029	/*
14030	 * Put the HFI CSRs in a known state.
14031	 * Combine this with a DC reset.
14032	 *
14033	 * Stop the device from doing anything while we do a
14034	 * reset.  We know there are no other active users of
14035	 * the device since we are now in charge.  Turn off
14036	 * off all outbound and inbound traffic and make sure
14037	 * the device does not generate any interrupts.
14038	 */
14039
14040	/* disable send contexts and SDMA engines */
14041	write_csr(dd, SEND_CTRL, 0);
14042	for (i = 0; i < chip_send_contexts(dd); i++)
14043		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14044	for (i = 0; i < chip_sdma_engines(dd); i++)
14045		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14046	/* disable port (turn off RXE inbound traffic) and contexts */
14047	write_csr(dd, RCV_CTRL, 0);
14048	for (i = 0; i < chip_rcv_contexts(dd); i++)
14049		write_csr(dd, RCV_CTXT_CTRL, 0);
14050	/* mask all interrupt sources */
14051	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14052		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14053
14054	/*
14055	 * DC Reset: do a full DC reset before the register clear.
14056	 * A recommended length of time to hold is one CSR read,
14057	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14058	 * across the clear.
14059	 */
14060	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14061	(void)read_csr(dd, CCE_DC_CTRL);
14062
14063	if (use_flr) {
14064		/*
14065		 * A FLR will reset the SPC core and part of the PCIe.
14066		 * The parts that need to be restored have already been
14067		 * saved.
14068		 */
14069		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14070
14071		/* do the FLR, the DC reset will remain */
14072		pcie_flr(dd->pcidev);
14073
14074		/* restore command and BARs */
14075		ret = restore_pci_variables(dd);
14076		if (ret) {
14077			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14078				   __func__);
14079			return ret;
14080		}
14081
14082		if (is_ax(dd)) {
14083			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14084			pcie_flr(dd->pcidev);
14085			ret = restore_pci_variables(dd);
14086			if (ret) {
14087				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14088					   __func__);
14089				return ret;
14090			}
14091		}
14092	} else {
14093		dd_dev_info(dd, "Resetting CSRs with writes\n");
14094		reset_cce_csrs(dd);
14095		reset_txe_csrs(dd);
14096		reset_rxe_csrs(dd);
14097		reset_misc_csrs(dd);
14098	}
14099	/* clear the DC reset */
14100	write_csr(dd, CCE_DC_CTRL, 0);
14101
14102	/* Set the LED off */
14103	setextled(dd, 0);
14104
14105	/*
14106	 * Clear the QSFP reset.
14107	 * An FLR enforces a 0 on all out pins. The driver does not touch
14108	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14109	 * anything plugged constantly in reset, if it pays attention
14110	 * to RESET_N.
14111	 * Prime examples of this are optical cables. Set all pins high.
14112	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14113	 * MODPRS_N are input only and their value is ignored.
14114	 */
14115	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14116	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14117	init_chip_resources(dd);
14118	return ret;
14119}
14120
14121static void init_early_variables(struct hfi1_devdata *dd)
14122{
14123	int i;
14124
14125	/* assign link credit variables */
14126	dd->vau = CM_VAU;
14127	dd->link_credits = CM_GLOBAL_CREDITS;
14128	if (is_ax(dd))
14129		dd->link_credits--;
14130	dd->vcu = cu_to_vcu(hfi1_cu);
14131	/* enough room for 8 MAD packets plus header - 17K */
14132	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14133	if (dd->vl15_init > dd->link_credits)
14134		dd->vl15_init = dd->link_credits;
14135
14136	write_uninitialized_csrs_and_memories(dd);
14137
14138	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14139		for (i = 0; i < dd->num_pports; i++) {
14140			struct hfi1_pportdata *ppd = &dd->pport[i];
14141
14142			set_partition_keys(ppd);
14143		}
14144	init_sc2vl_tables(dd);
14145}
14146
14147static void init_kdeth_qp(struct hfi1_devdata *dd)
14148{
14149	write_csr(dd, SEND_BTH_QP,
14150		  (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14151		  SEND_BTH_QP_KDETH_QP_SHIFT);
14152
14153	write_csr(dd, RCV_BTH_QP,
14154		  (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14155		  RCV_BTH_QP_KDETH_QP_SHIFT);
14156}
14157
14158/**
14159 * hfi1_get_qp_map - get qp map
14160 * @dd: device data
14161 * @idx: index to read
14162 */
14163u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14164{
14165	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14166
14167	reg >>= (idx % 8) * 8;
14168	return reg;
14169}
14170
14171/**
14172 * init_qpmap_table - init qp map
14173 * @dd: device data
14174 * @first_ctxt: first context
14175 * @last_ctxt: first context
14176 *
14177 * This return sets the qpn mapping table that
14178 * is indexed by qpn[8:1].
14179 *
14180 * The routine will round robin the 256 settings
14181 * from first_ctxt to last_ctxt.
14182 *
14183 * The first/last looks ahead to having specialized
14184 * receive contexts for mgmt and bypass.  Normal
14185 * verbs traffic will assumed to be on a range
14186 * of receive contexts.
14187 */
14188static void init_qpmap_table(struct hfi1_devdata *dd,
14189			     u32 first_ctxt,
14190			     u32 last_ctxt)
14191{
14192	u64 reg = 0;
14193	u64 regno = RCV_QP_MAP_TABLE;
14194	int i;
14195	u64 ctxt = first_ctxt;
14196
14197	for (i = 0; i < 256; i++) {
14198		reg |= ctxt << (8 * (i % 8));
14199		ctxt++;
14200		if (ctxt > last_ctxt)
14201			ctxt = first_ctxt;
14202		if (i % 8 == 7) {
14203			write_csr(dd, regno, reg);
14204			reg = 0;
14205			regno += 8;
14206		}
14207	}
14208
14209	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14210			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14211}
14212
14213struct rsm_map_table {
14214	u64 map[NUM_MAP_REGS];
14215	unsigned int used;
14216};
14217
14218struct rsm_rule_data {
14219	u8 offset;
14220	u8 pkt_type;
14221	u32 field1_off;
14222	u32 field2_off;
14223	u32 index1_off;
14224	u32 index1_width;
14225	u32 index2_off;
14226	u32 index2_width;
14227	u32 mask1;
14228	u32 value1;
14229	u32 mask2;
14230	u32 value2;
14231};
14232
14233/*
14234 * Return an initialized RMT map table for users to fill in.  OK if it
14235 * returns NULL, indicating no table.
14236 */
14237static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14238{
14239	struct rsm_map_table *rmt;
14240	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14241
14242	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14243	if (rmt) {
14244		memset(rmt->map, rxcontext, sizeof(rmt->map));
14245		rmt->used = 0;
14246	}
14247
14248	return rmt;
14249}
14250
14251/*
14252 * Write the final RMT map table to the chip and free the table.  OK if
14253 * table is NULL.
14254 */
14255static void complete_rsm_map_table(struct hfi1_devdata *dd,
14256				   struct rsm_map_table *rmt)
14257{
14258	int i;
14259
14260	if (rmt) {
14261		/* write table to chip */
14262		for (i = 0; i < NUM_MAP_REGS; i++)
14263			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14264
14265		/* enable RSM */
14266		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14267	}
14268}
14269
14270/* Is a receive side mapping rule */
14271static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14272{
14273	return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14274}
14275
14276/*
14277 * Add a receive side mapping rule.
14278 */
14279static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14280			 struct rsm_rule_data *rrd)
14281{
14282	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14283		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14284		  1ull << rule_index | /* enable bit */
14285		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14286	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14287		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14288		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14289		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14290		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14291		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14292		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14293	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14294		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14295		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14296		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14297		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14298}
14299
14300/*
14301 * Clear a receive side mapping rule.
14302 */
14303static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14304{
14305	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14306	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14307	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14308}
14309
14310/* return the number of RSM map table entries that will be used for QOS */
14311static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
14312			   unsigned int *np)
14313{
14314	int i;
14315	unsigned int m, n;
14316	uint max_by_vl = 0;
14317
14318	/* is QOS active at all? */
14319	if (n_krcv_queues < MIN_KERNEL_KCTXTS ||
14320	    num_vls == 1 ||
14321	    krcvqsset <= 1)
14322		goto no_qos;
14323
14324	/* determine bits for qpn */
14325	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14326		if (krcvqs[i] > max_by_vl)
14327			max_by_vl = krcvqs[i];
14328	if (max_by_vl > 32)
14329		goto no_qos;
14330	m = ilog2(__roundup_pow_of_two(max_by_vl));
14331
14332	/* determine bits for vl */
14333	n = ilog2(__roundup_pow_of_two(num_vls));
14334
14335	/* reject if too much is used */
14336	if ((m + n) > 7)
14337		goto no_qos;
14338
14339	if (mp)
14340		*mp = m;
14341	if (np)
14342		*np = n;
14343
14344	return 1 << (m + n);
14345
14346no_qos:
14347	if (mp)
14348		*mp = 0;
14349	if (np)
14350		*np = 0;
14351	return 0;
14352}
14353
14354/**
14355 * init_qos - init RX qos
14356 * @dd: device data
14357 * @rmt: RSM map table
14358 *
14359 * This routine initializes Rule 0 and the RSM map table to implement
14360 * quality of service (qos).
14361 *
14362 * If all of the limit tests succeed, qos is applied based on the array
14363 * interpretation of krcvqs where entry 0 is VL0.
14364 *
14365 * The number of vl bits (n) and the number of qpn bits (m) are computed to
14366 * feed both the RSM map table and the single rule.
14367 */
14368static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14369{
14370	struct rsm_rule_data rrd;
14371	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14372	unsigned int rmt_entries;
14373	u64 reg;
14374
14375	if (!rmt)
14376		goto bail;
14377	rmt_entries = qos_rmt_entries(dd->n_krcv_queues - 1, &m, &n);
14378	if (rmt_entries == 0)
14379		goto bail;
14380	qpns_per_vl = 1 << m;
14381
14382	/* enough room in the map table? */
14383	rmt_entries = 1 << (m + n);
14384	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14385		goto bail;
14386
14387	/* add qos entries to the RSM map table */
14388	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14389		unsigned tctxt;
14390
14391		for (qpn = 0, tctxt = ctxt;
14392		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14393			unsigned idx, regoff, regidx;
14394
14395			/* generate the index the hardware will produce */
14396			idx = rmt->used + ((qpn << n) ^ i);
14397			regoff = (idx % 8) * 8;
14398			regidx = idx / 8;
14399			/* replace default with context number */
14400			reg = rmt->map[regidx];
14401			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14402				<< regoff);
14403			reg |= (u64)(tctxt++) << regoff;
14404			rmt->map[regidx] = reg;
14405			if (tctxt == ctxt + krcvqs[i])
14406				tctxt = ctxt;
14407		}
14408		ctxt += krcvqs[i];
14409	}
14410
14411	rrd.offset = rmt->used;
14412	rrd.pkt_type = 2;
14413	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14414	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14415	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14416	rrd.index1_width = n;
14417	rrd.index2_off = QPN_SELECT_OFFSET;
14418	rrd.index2_width = m + n;
14419	rrd.mask1 = LRH_BTH_MASK;
14420	rrd.value1 = LRH_BTH_VALUE;
14421	rrd.mask2 = LRH_SC_MASK;
14422	rrd.value2 = LRH_SC_VALUE;
14423
14424	/* add rule 0 */
14425	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14426
14427	/* mark RSM map entries as used */
14428	rmt->used += rmt_entries;
14429	/* map everything else to the mcast/err/vl15 context */
14430	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14431	dd->qos_shift = n + 1;
14432	return;
14433bail:
14434	dd->qos_shift = 1;
14435	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14436}
14437
14438static void init_fecn_handling(struct hfi1_devdata *dd,
14439			       struct rsm_map_table *rmt)
14440{
14441	struct rsm_rule_data rrd;
14442	u64 reg;
14443	int i, idx, regoff, regidx, start;
14444	u8 offset;
14445	u32 total_cnt;
14446
14447	if (HFI1_CAP_IS_KSET(TID_RDMA))
14448		/* Exclude context 0 */
14449		start = 1;
14450	else
14451		start = dd->first_dyn_alloc_ctxt;
14452
14453	total_cnt = dd->num_rcv_contexts - start;
14454
14455	/* there needs to be enough room in the map table */
14456	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14457		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14458		return;
14459	}
14460
14461	/*
14462	 * RSM will extract the destination context as an index into the
14463	 * map table.  The destination contexts are a sequential block
14464	 * in the range start...num_rcv_contexts-1 (inclusive).
14465	 * Map entries are accessed as offset + extracted value.  Adjust
14466	 * the added offset so this sequence can be placed anywhere in
14467	 * the table - as long as the entries themselves do not wrap.
14468	 * There are only enough bits in offset for the table size, so
14469	 * start with that to allow for a "negative" offset.
14470	 */
14471	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14472
14473	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14474	     i++, idx++) {
14475		/* replace with identity mapping */
14476		regoff = (idx % 8) * 8;
14477		regidx = idx / 8;
14478		reg = rmt->map[regidx];
14479		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14480		reg |= (u64)i << regoff;
14481		rmt->map[regidx] = reg;
14482	}
14483
14484	/*
14485	 * For RSM intercept of Expected FECN packets:
14486	 * o packet type 0 - expected
14487	 * o match on F (bit 95), using select/match 1, and
14488	 * o match on SH (bit 133), using select/match 2.
14489	 *
14490	 * Use index 1 to extract the 8-bit receive context from DestQP
14491	 * (start at bit 64).  Use that as the RSM map table index.
14492	 */
14493	rrd.offset = offset;
14494	rrd.pkt_type = 0;
14495	rrd.field1_off = 95;
14496	rrd.field2_off = 133;
14497	rrd.index1_off = 64;
14498	rrd.index1_width = 8;
14499	rrd.index2_off = 0;
14500	rrd.index2_width = 0;
14501	rrd.mask1 = 1;
14502	rrd.value1 = 1;
14503	rrd.mask2 = 1;
14504	rrd.value2 = 1;
14505
14506	/* add rule 1 */
14507	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14508
14509	rmt->used += total_cnt;
14510}
14511
14512static inline bool hfi1_is_rmt_full(int start, int spare)
14513{
14514	return (start + spare) > NUM_MAP_ENTRIES;
14515}
14516
14517static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14518{
14519	u8 i, j;
14520	u8 ctx_id = 0;
14521	u64 reg;
14522	u32 regoff;
14523	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14524	int ctxt_count = hfi1_netdev_ctxt_count(dd);
14525
14526	/* We already have contexts mapped in RMT */
14527	if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14528		dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14529		return true;
14530	}
14531
14532	if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14533		dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14534			   rmt_start);
14535		return false;
14536	}
14537
14538	dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14539		rmt_start,
14540		rmt_start + NUM_NETDEV_MAP_ENTRIES);
14541
14542	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14543	regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14544	reg = read_csr(dd, regoff);
14545	for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14546		/* Update map register with netdev context */
14547		j = (rmt_start + i) % 8;
14548		reg &= ~(0xffllu << (j * 8));
14549		reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14550		/* Wrap up netdev ctx index */
14551		ctx_id %= ctxt_count;
14552		/* Write back map register */
14553		if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14554			dev_dbg(&(dd)->pcidev->dev,
14555				"RMT[%d] =0x%llx\n",
14556				regoff - RCV_RSM_MAP_TABLE, reg);
14557
14558			write_csr(dd, regoff, reg);
14559			regoff += 8;
14560			if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14561				reg = read_csr(dd, regoff);
14562		}
14563	}
14564
14565	return true;
14566}
14567
14568static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14569				 int rule, struct rsm_rule_data *rrd)
14570{
14571	if (!hfi1_netdev_update_rmt(dd)) {
14572		dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14573		return;
14574	}
14575
14576	add_rsm_rule(dd, rule, rrd);
14577	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14578}
14579
14580void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14581{
14582	/*
14583	 * go through with the initialisation only if this rule actually doesn't
14584	 * exist yet
14585	 */
14586	if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14587		int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14588		struct rsm_rule_data rrd = {
14589			.offset = rmt_start,
14590			.pkt_type = IB_PACKET_TYPE,
14591			.field1_off = LRH_BTH_MATCH_OFFSET,
14592			.mask1 = LRH_BTH_MASK,
14593			.value1 = LRH_BTH_VALUE,
14594			.field2_off = BTH_DESTQP_MATCH_OFFSET,
14595			.mask2 = BTH_DESTQP_MASK,
14596			.value2 = BTH_DESTQP_VALUE,
14597			.index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14598					ilog2(NUM_NETDEV_MAP_ENTRIES),
14599			.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14600			.index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14601			.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14602		};
14603
14604		hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14605	}
14606}
14607
14608/* Initialize RSM for VNIC */
14609void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14610{
14611	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14612	struct rsm_rule_data rrd = {
14613		/* Add rule for vnic */
14614		.offset = rmt_start,
14615		.pkt_type = 4,
14616		/* Match 16B packets */
14617		.field1_off = L2_TYPE_MATCH_OFFSET,
14618		.mask1 = L2_TYPE_MASK,
14619		.value1 = L2_16B_VALUE,
14620		/* Match ETH L4 packets */
14621		.field2_off = L4_TYPE_MATCH_OFFSET,
14622		.mask2 = L4_16B_TYPE_MASK,
14623		.value2 = L4_16B_ETH_VALUE,
14624		/* Calc context from veswid and entropy */
14625		.index1_off = L4_16B_HDR_VESWID_OFFSET,
14626		.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14627		.index2_off = L2_16B_ENTROPY_OFFSET,
14628		.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14629	};
14630
14631	hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14632}
14633
14634void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14635{
14636	clear_rsm_rule(dd, RSM_INS_VNIC);
14637}
14638
14639void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14640{
14641	/* only actually clear the rule if it's the last user asking to do so */
14642	if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14643		clear_rsm_rule(dd, RSM_INS_AIP);
14644}
14645
14646static int init_rxe(struct hfi1_devdata *dd)
14647{
14648	struct rsm_map_table *rmt;
14649	u64 val;
14650
14651	/* enable all receive errors */
14652	write_csr(dd, RCV_ERR_MASK, ~0ull);
14653
14654	rmt = alloc_rsm_map_table(dd);
14655	if (!rmt)
14656		return -ENOMEM;
14657
14658	/* set up QOS, including the QPN map table */
14659	init_qos(dd, rmt);
14660	init_fecn_handling(dd, rmt);
14661	complete_rsm_map_table(dd, rmt);
14662	/* record number of used rsm map entries for netdev */
14663	hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14664	kfree(rmt);
14665
14666	/*
14667	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14668	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14669	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14670	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14671	 * Max_PayLoad_Size set to its minimum of 128.
14672	 *
14673	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14674	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14675	 * tune_pcie_caps() which is called after this routine.
14676	 */
14677
14678	/* Have 16 bytes (4DW) of bypass header available in header queue */
14679	val = read_csr(dd, RCV_BYPASS);
14680	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14681	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14682		RCV_BYPASS_HDR_SIZE_SHIFT);
14683	write_csr(dd, RCV_BYPASS, val);
14684	return 0;
14685}
14686
14687static void init_other(struct hfi1_devdata *dd)
14688{
14689	/* enable all CCE errors */
14690	write_csr(dd, CCE_ERR_MASK, ~0ull);
14691	/* enable *some* Misc errors */
14692	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14693	/* enable all DC errors, except LCB */
14694	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14695	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14696}
14697
14698/*
14699 * Fill out the given AU table using the given CU.  A CU is defined in terms
14700 * AUs.  The table is a an encoding: given the index, how many AUs does that
14701 * represent?
14702 *
14703 * NOTE: Assumes that the register layout is the same for the
14704 * local and remote tables.
14705 */
14706static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14707			       u32 csr0to3, u32 csr4to7)
14708{
14709	write_csr(dd, csr0to3,
14710		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14711		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14712		  2ull * cu <<
14713		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14714		  4ull * cu <<
14715		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14716	write_csr(dd, csr4to7,
14717		  8ull * cu <<
14718		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14719		  16ull * cu <<
14720		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14721		  32ull * cu <<
14722		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14723		  64ull * cu <<
14724		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14725}
14726
14727static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14728{
14729	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14730			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14731}
14732
14733void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14734{
14735	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14736			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14737}
14738
14739static void init_txe(struct hfi1_devdata *dd)
14740{
14741	int i;
14742
14743	/* enable all PIO, SDMA, general, and Egress errors */
14744	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14745	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14746	write_csr(dd, SEND_ERR_MASK, ~0ull);
14747	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14748
14749	/* enable all per-context and per-SDMA engine errors */
14750	for (i = 0; i < chip_send_contexts(dd); i++)
14751		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14752	for (i = 0; i < chip_sdma_engines(dd); i++)
14753		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14754
14755	/* set the local CU to AU mapping */
14756	assign_local_cm_au_table(dd, dd->vcu);
14757
14758	/*
14759	 * Set reasonable default for Credit Return Timer
14760	 * Don't set on Simulator - causes it to choke.
14761	 */
14762	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14763		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14764}
14765
14766int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14767		       u16 jkey)
14768{
14769	u8 hw_ctxt;
14770	u64 reg;
14771
14772	if (!rcd || !rcd->sc)
14773		return -EINVAL;
14774
14775	hw_ctxt = rcd->sc->hw_context;
14776	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14777		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14778		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14779	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14780	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14781		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14782	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14783	/*
14784	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14785	 */
14786	if (!is_ax(dd)) {
14787		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14788		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14789		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14790	}
14791
14792	/* Enable J_KEY check on receive context. */
14793	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14794		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14795		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14796	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14797
14798	return 0;
14799}
14800
14801int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14802{
14803	u8 hw_ctxt;
14804	u64 reg;
14805
14806	if (!rcd || !rcd->sc)
14807		return -EINVAL;
14808
14809	hw_ctxt = rcd->sc->hw_context;
14810	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14811	/*
14812	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14813	 * This check would not have been enabled for A0 h/w, see
14814	 * set_ctxt_jkey().
14815	 */
14816	if (!is_ax(dd)) {
14817		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14818		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14819		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14820	}
14821	/* Turn off the J_KEY on the receive side */
14822	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14823
14824	return 0;
14825}
14826
14827int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14828		       u16 pkey)
14829{
14830	u8 hw_ctxt;
14831	u64 reg;
14832
14833	if (!rcd || !rcd->sc)
14834		return -EINVAL;
14835
14836	hw_ctxt = rcd->sc->hw_context;
14837	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14838		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14839	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14840	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14841	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14842	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14843	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14844
14845	return 0;
14846}
14847
14848int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14849{
14850	u8 hw_ctxt;
14851	u64 reg;
14852
14853	if (!ctxt || !ctxt->sc)
14854		return -EINVAL;
14855
14856	hw_ctxt = ctxt->sc->hw_context;
14857	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14858	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14859	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14860	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14861
14862	return 0;
14863}
14864
14865/*
14866 * Start doing the clean up the chip. Our clean up happens in multiple
14867 * stages and this is just the first.
14868 */
14869void hfi1_start_cleanup(struct hfi1_devdata *dd)
14870{
14871	aspm_exit(dd);
14872	free_cntrs(dd);
14873	free_rcverr(dd);
14874	finish_chip_resources(dd);
14875}
14876
14877#define HFI_BASE_GUID(dev) \
14878	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14879
14880/*
14881 * Information can be shared between the two HFIs on the same ASIC
14882 * in the same OS.  This function finds the peer device and sets
14883 * up a shared structure.
14884 */
14885static int init_asic_data(struct hfi1_devdata *dd)
14886{
14887	unsigned long index;
14888	struct hfi1_devdata *peer;
14889	struct hfi1_asic_data *asic_data;
14890	int ret = 0;
14891
14892	/* pre-allocate the asic structure in case we are the first device */
14893	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14894	if (!asic_data)
14895		return -ENOMEM;
14896
14897	xa_lock_irq(&hfi1_dev_table);
14898	/* Find our peer device */
14899	xa_for_each(&hfi1_dev_table, index, peer) {
14900		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14901		    dd->unit != peer->unit)
14902			break;
14903	}
14904
14905	if (peer) {
14906		/* use already allocated structure */
14907		dd->asic_data = peer->asic_data;
14908		kfree(asic_data);
14909	} else {
14910		dd->asic_data = asic_data;
14911		mutex_init(&dd->asic_data->asic_resource_mutex);
14912	}
14913	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14914	xa_unlock_irq(&hfi1_dev_table);
14915
14916	/* first one through - set up i2c devices */
14917	if (!peer)
14918		ret = set_up_i2c(dd, dd->asic_data);
14919
14920	return ret;
14921}
14922
14923/*
14924 * Set dd->boardname.  Use a generic name if a name is not returned from
14925 * EFI variable space.
14926 *
14927 * Return 0 on success, -ENOMEM if space could not be allocated.
14928 */
14929static int obtain_boardname(struct hfi1_devdata *dd)
14930{
14931	/* generic board description */
14932	const char generic[] =
14933		"Cornelis Omni-Path Host Fabric Interface Adapter 100 Series";
14934	unsigned long size;
14935	int ret;
14936
14937	ret = read_hfi1_efi_var(dd, "description", &size,
14938				(void **)&dd->boardname);
14939	if (ret) {
14940		dd_dev_info(dd, "Board description not found\n");
14941		/* use generic description */
14942		dd->boardname = kstrdup(generic, GFP_KERNEL);
14943		if (!dd->boardname)
14944			return -ENOMEM;
14945	}
14946	return 0;
14947}
14948
14949/*
14950 * Check the interrupt registers to make sure that they are mapped correctly.
14951 * It is intended to help user identify any mismapping by VMM when the driver
14952 * is running in a VM. This function should only be called before interrupt
14953 * is set up properly.
14954 *
14955 * Return 0 on success, -EINVAL on failure.
14956 */
14957static int check_int_registers(struct hfi1_devdata *dd)
14958{
14959	u64 reg;
14960	u64 all_bits = ~(u64)0;
14961	u64 mask;
14962
14963	/* Clear CceIntMask[0] to avoid raising any interrupts */
14964	mask = read_csr(dd, CCE_INT_MASK);
14965	write_csr(dd, CCE_INT_MASK, 0ull);
14966	reg = read_csr(dd, CCE_INT_MASK);
14967	if (reg)
14968		goto err_exit;
14969
14970	/* Clear all interrupt status bits */
14971	write_csr(dd, CCE_INT_CLEAR, all_bits);
14972	reg = read_csr(dd, CCE_INT_STATUS);
14973	if (reg)
14974		goto err_exit;
14975
14976	/* Set all interrupt status bits */
14977	write_csr(dd, CCE_INT_FORCE, all_bits);
14978	reg = read_csr(dd, CCE_INT_STATUS);
14979	if (reg != all_bits)
14980		goto err_exit;
14981
14982	/* Restore the interrupt mask */
14983	write_csr(dd, CCE_INT_CLEAR, all_bits);
14984	write_csr(dd, CCE_INT_MASK, mask);
14985
14986	return 0;
14987err_exit:
14988	write_csr(dd, CCE_INT_MASK, mask);
14989	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14990	return -EINVAL;
14991}
14992
14993/**
14994 * hfi1_init_dd() - Initialize most of the dd structure.
14995 * @dd: the dd device
14996 *
14997 * This is global, and is called directly at init to set up the
14998 * chip-specific function pointers for later use.
14999 */
15000int hfi1_init_dd(struct hfi1_devdata *dd)
15001{
15002	struct pci_dev *pdev = dd->pcidev;
15003	struct hfi1_pportdata *ppd;
15004	u64 reg;
15005	int i, ret;
15006	static const char * const inames[] = { /* implementation names */
15007		"RTL silicon",
15008		"RTL VCS simulation",
15009		"RTL FPGA emulation",
15010		"Functional simulator"
15011	};
15012	struct pci_dev *parent = pdev->bus->self;
15013	u32 sdma_engines = chip_sdma_engines(dd);
15014
15015	ppd = dd->pport;
15016	for (i = 0; i < dd->num_pports; i++, ppd++) {
15017		int vl;
15018		/* init common fields */
15019		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15020		/* DC supports 4 link widths */
15021		ppd->link_width_supported =
15022			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15023			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15024		ppd->link_width_downgrade_supported =
15025			ppd->link_width_supported;
15026		/* start out enabling only 4X */
15027		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15028		ppd->link_width_downgrade_enabled =
15029					ppd->link_width_downgrade_supported;
15030		/* link width active is 0 when link is down */
15031		/* link width downgrade active is 0 when link is down */
15032
15033		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15034		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
15035			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15036				   num_vls, HFI1_MAX_VLS_SUPPORTED);
15037			num_vls = HFI1_MAX_VLS_SUPPORTED;
15038		}
15039		ppd->vls_supported = num_vls;
15040		ppd->vls_operational = ppd->vls_supported;
15041		/* Set the default MTU. */
15042		for (vl = 0; vl < num_vls; vl++)
15043			dd->vld[vl].mtu = hfi1_max_mtu;
15044		dd->vld[15].mtu = MAX_MAD_PACKET;
15045		/*
15046		 * Set the initial values to reasonable default, will be set
15047		 * for real when link is up.
15048		 */
15049		ppd->overrun_threshold = 0x4;
15050		ppd->phy_error_threshold = 0xf;
15051		ppd->port_crc_mode_enabled = link_crc_mask;
15052		/* initialize supported LTP CRC mode */
15053		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15054		/* initialize enabled LTP CRC mode */
15055		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15056		/* start in offline */
15057		ppd->host_link_state = HLS_DN_OFFLINE;
15058		init_vl_arb_caches(ppd);
15059	}
15060
15061	/*
15062	 * Do remaining PCIe setup and save PCIe values in dd.
15063	 * Any error printing is already done by the init code.
15064	 * On return, we have the chip mapped.
15065	 */
15066	ret = hfi1_pcie_ddinit(dd, pdev);
15067	if (ret < 0)
15068		goto bail_free;
15069
15070	/* Save PCI space registers to rewrite after device reset */
15071	ret = save_pci_variables(dd);
15072	if (ret < 0)
15073		goto bail_cleanup;
15074
15075	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15076			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15077	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15078			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15079
15080	/*
15081	 * Check interrupt registers mapping if the driver has no access to
15082	 * the upstream component. In this case, it is likely that the driver
15083	 * is running in a VM.
15084	 */
15085	if (!parent) {
15086		ret = check_int_registers(dd);
15087		if (ret)
15088			goto bail_cleanup;
15089	}
15090
15091	/*
15092	 * obtain the hardware ID - NOT related to unit, which is a
15093	 * software enumeration
15094	 */
15095	reg = read_csr(dd, CCE_REVISION2);
15096	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15097					& CCE_REVISION2_HFI_ID_MASK;
15098	/* the variable size will remove unwanted bits */
15099	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15100	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15101	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15102		    dd->icode < ARRAY_SIZE(inames) ?
15103		    inames[dd->icode] : "unknown", (int)dd->irev);
15104
15105	/* speeds the hardware can support */
15106	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15107	/* speeds allowed to run at */
15108	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15109	/* give a reasonable active value, will be set on link up */
15110	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15111
15112	/* fix up link widths for emulation _p */
15113	ppd = dd->pport;
15114	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15115		ppd->link_width_supported =
15116			ppd->link_width_enabled =
15117			ppd->link_width_downgrade_supported =
15118			ppd->link_width_downgrade_enabled =
15119				OPA_LINK_WIDTH_1X;
15120	}
15121	/* insure num_vls isn't larger than number of sdma engines */
15122	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15123		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15124			   num_vls, sdma_engines);
15125		num_vls = sdma_engines;
15126		ppd->vls_supported = sdma_engines;
15127		ppd->vls_operational = ppd->vls_supported;
15128	}
15129
15130	/*
15131	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15132	 * Limit the max if larger than the field holds.  If timeout is
15133	 * non-zero, then the calculated field will be at least 1.
15134	 *
15135	 * Must be after icode is set up - the cclock rate depends
15136	 * on knowing the hardware being used.
15137	 */
15138	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15139	if (dd->rcv_intr_timeout_csr >
15140			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15141		dd->rcv_intr_timeout_csr =
15142			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15143	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15144		dd->rcv_intr_timeout_csr = 1;
15145
15146	/* needs to be done before we look for the peer device */
15147	read_guid(dd);
15148
15149	/* set up shared ASIC data with peer device */
15150	ret = init_asic_data(dd);
15151	if (ret)
15152		goto bail_cleanup;
15153
15154	/* obtain chip sizes, reset chip CSRs */
15155	ret = init_chip(dd);
15156	if (ret)
15157		goto bail_cleanup;
15158
15159	/* read in the PCIe link speed information */
15160	ret = pcie_speeds(dd);
15161	if (ret)
15162		goto bail_cleanup;
15163
15164	/* call before get_platform_config(), after init_chip_resources() */
15165	ret = eprom_init(dd);
15166	if (ret)
15167		goto bail_free_rcverr;
15168
15169	/* Needs to be called before hfi1_firmware_init */
15170	get_platform_config(dd);
15171
15172	/* read in firmware */
15173	ret = hfi1_firmware_init(dd);
15174	if (ret)
15175		goto bail_cleanup;
15176
15177	/*
15178	 * In general, the PCIe Gen3 transition must occur after the
15179	 * chip has been idled (so it won't initiate any PCIe transactions
15180	 * e.g. an interrupt) and before the driver changes any registers
15181	 * (the transition will reset the registers).
15182	 *
15183	 * In particular, place this call after:
15184	 * - init_chip()     - the chip will not initiate any PCIe transactions
15185	 * - pcie_speeds()   - reads the current link speed
15186	 * - hfi1_firmware_init() - the needed firmware is ready to be
15187	 *			    downloaded
15188	 */
15189	ret = do_pcie_gen3_transition(dd);
15190	if (ret)
15191		goto bail_cleanup;
15192
15193	/*
15194	 * This should probably occur in hfi1_pcie_init(), but historically
15195	 * occurs after the do_pcie_gen3_transition() code.
15196	 */
15197	tune_pcie_caps(dd);
15198
15199	/* start setting dd values and adjusting CSRs */
15200	init_early_variables(dd);
15201
15202	parse_platform_config(dd);
15203
15204	ret = obtain_boardname(dd);
15205	if (ret)
15206		goto bail_cleanup;
15207
15208	snprintf(dd->boardversion, BOARD_VERS_MAX,
15209		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15210		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15211		 (u32)dd->majrev,
15212		 (u32)dd->minrev,
15213		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15214		    & CCE_REVISION_SW_MASK);
15215
15216	/* alloc VNIC/AIP rx data */
15217	ret = hfi1_alloc_rx(dd);
15218	if (ret)
15219		goto bail_cleanup;
15220
15221	ret = set_up_context_variables(dd);
15222	if (ret)
15223		goto bail_cleanup;
15224
15225	/* set initial RXE CSRs */
15226	ret = init_rxe(dd);
15227	if (ret)
15228		goto bail_cleanup;
15229
15230	/* set initial TXE CSRs */
15231	init_txe(dd);
15232	/* set initial non-RXE, non-TXE CSRs */
15233	init_other(dd);
15234	/* set up KDETH QP prefix in both RX and TX CSRs */
15235	init_kdeth_qp(dd);
15236
15237	ret = hfi1_dev_affinity_init(dd);
15238	if (ret)
15239		goto bail_cleanup;
15240
15241	/* send contexts must be set up before receive contexts */
15242	ret = init_send_contexts(dd);
15243	if (ret)
15244		goto bail_cleanup;
15245
15246	ret = hfi1_create_kctxts(dd);
15247	if (ret)
15248		goto bail_cleanup;
15249
15250	/*
15251	 * Initialize aspm, to be done after gen3 transition and setting up
15252	 * contexts and before enabling interrupts
15253	 */
15254	aspm_init(dd);
15255
15256	ret = init_pervl_scs(dd);
15257	if (ret)
15258		goto bail_cleanup;
15259
15260	/* sdma init */
15261	for (i = 0; i < dd->num_pports; ++i) {
15262		ret = sdma_init(dd, i);
15263		if (ret)
15264			goto bail_cleanup;
15265	}
15266
15267	/* use contexts created by hfi1_create_kctxts */
15268	ret = set_up_interrupts(dd);
15269	if (ret)
15270		goto bail_cleanup;
15271
15272	ret = hfi1_comp_vectors_set_up(dd);
15273	if (ret)
15274		goto bail_clear_intr;
15275
15276	/* set up LCB access - must be after set_up_interrupts() */
15277	init_lcb_access(dd);
15278
15279	/*
15280	 * Serial number is created from the base guid:
15281	 * [27:24] = base guid [38:35]
15282	 * [23: 0] = base guid [23: 0]
15283	 */
15284	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15285		 (dd->base_guid & 0xFFFFFF) |
15286		     ((dd->base_guid >> 11) & 0xF000000));
15287
15288	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15289	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15290	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15291
15292	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15293	if (ret)
15294		goto bail_clear_intr;
15295
15296	thermal_init(dd);
15297
15298	ret = init_cntrs(dd);
15299	if (ret)
15300		goto bail_clear_intr;
15301
15302	ret = init_rcverr(dd);
15303	if (ret)
15304		goto bail_free_cntrs;
15305
15306	init_completion(&dd->user_comp);
15307
15308	/* The user refcount starts with one to inidicate an active device */
15309	refcount_set(&dd->user_refcount, 1);
15310
15311	goto bail;
15312
15313bail_free_rcverr:
15314	free_rcverr(dd);
15315bail_free_cntrs:
15316	free_cntrs(dd);
15317bail_clear_intr:
15318	hfi1_comp_vectors_clean_up(dd);
15319	msix_clean_up_interrupts(dd);
15320bail_cleanup:
15321	hfi1_free_rx(dd);
15322	hfi1_pcie_ddcleanup(dd);
15323bail_free:
15324	hfi1_free_devdata(dd);
15325bail:
15326	return ret;
15327}
15328
15329static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15330			u32 dw_len)
15331{
15332	u32 delta_cycles;
15333	u32 current_egress_rate = ppd->current_egress_rate;
15334	/* rates here are in units of 10^6 bits/sec */
15335
15336	if (desired_egress_rate == -1)
15337		return 0; /* shouldn't happen */
15338
15339	if (desired_egress_rate >= current_egress_rate)
15340		return 0; /* we can't help go faster, only slower */
15341
15342	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15343			egress_cycles(dw_len * 4, current_egress_rate);
15344
15345	return (u16)delta_cycles;
15346}
15347
15348/**
15349 * create_pbc - build a pbc for transmission
15350 * @ppd: info of physical Hfi port
15351 * @flags: special case flags or-ed in built pbc
15352 * @srate_mbs: static rate
15353 * @vl: vl
15354 * @dw_len: dword length (header words + data words + pbc words)
15355 *
15356 * Create a PBC with the given flags, rate, VL, and length.
15357 *
15358 * NOTE: The PBC created will not insert any HCRC - all callers but one are
15359 * for verbs, which does not use this PSM feature.  The lone other caller
15360 * is for the diagnostic interface which calls this if the user does not
15361 * supply their own PBC.
15362 */
15363u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15364	       u32 dw_len)
15365{
15366	u64 pbc, delay = 0;
15367
15368	if (unlikely(srate_mbs))
15369		delay = delay_cycles(ppd, srate_mbs, dw_len);
15370
15371	pbc = flags
15372		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15373		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15374		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15375		| (dw_len & PBC_LENGTH_DWS_MASK)
15376			<< PBC_LENGTH_DWS_SHIFT;
15377
15378	return pbc;
15379}
15380
15381#define SBUS_THERMAL    0x4f
15382#define SBUS_THERM_MONITOR_MODE 0x1
15383
15384#define THERM_FAILURE(dev, ret, reason) \
15385	dd_dev_err((dd),						\
15386		   "Thermal sensor initialization failed: %s (%d)\n",	\
15387		   (reason), (ret))
15388
15389/*
15390 * Initialize the thermal sensor.
15391 *
15392 * After initialization, enable polling of thermal sensor through
15393 * SBus interface. In order for this to work, the SBus Master
15394 * firmware has to be loaded due to the fact that the HW polling
15395 * logic uses SBus interrupts, which are not supported with
15396 * default firmware. Otherwise, no data will be returned through
15397 * the ASIC_STS_THERM CSR.
15398 */
15399static int thermal_init(struct hfi1_devdata *dd)
15400{
15401	int ret = 0;
15402
15403	if (dd->icode != ICODE_RTL_SILICON ||
15404	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15405		return ret;
15406
15407	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15408	if (ret) {
15409		THERM_FAILURE(dd, ret, "Acquire SBus");
15410		return ret;
15411	}
15412
15413	dd_dev_info(dd, "Initializing thermal sensor\n");
15414	/* Disable polling of thermal readings */
15415	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15416	msleep(100);
15417	/* Thermal Sensor Initialization */
15418	/*    Step 1: Reset the Thermal SBus Receiver */
15419	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15420				RESET_SBUS_RECEIVER, 0);
15421	if (ret) {
15422		THERM_FAILURE(dd, ret, "Bus Reset");
15423		goto done;
15424	}
15425	/*    Step 2: Set Reset bit in Thermal block */
15426	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15427				WRITE_SBUS_RECEIVER, 0x1);
15428	if (ret) {
15429		THERM_FAILURE(dd, ret, "Therm Block Reset");
15430		goto done;
15431	}
15432	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15433	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15434				WRITE_SBUS_RECEIVER, 0x32);
15435	if (ret) {
15436		THERM_FAILURE(dd, ret, "Write Clock Div");
15437		goto done;
15438	}
15439	/*    Step 4: Select temperature mode */
15440	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15441				WRITE_SBUS_RECEIVER,
15442				SBUS_THERM_MONITOR_MODE);
15443	if (ret) {
15444		THERM_FAILURE(dd, ret, "Write Mode Sel");
15445		goto done;
15446	}
15447	/*    Step 5: De-assert block reset and start conversion */
15448	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15449				WRITE_SBUS_RECEIVER, 0x2);
15450	if (ret) {
15451		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15452		goto done;
15453	}
15454	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15455	msleep(22);
15456
15457	/* Enable polling of thermal readings */
15458	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15459
15460	/* Set initialized flag */
15461	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15462	if (ret)
15463		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15464
15465done:
15466	release_chip_resource(dd, CR_SBUS);
15467	return ret;
15468}
15469
15470static void handle_temp_err(struct hfi1_devdata *dd)
15471{
15472	struct hfi1_pportdata *ppd = &dd->pport[0];
15473	/*
15474	 * Thermal Critical Interrupt
15475	 * Put the device into forced freeze mode, take link down to
15476	 * offline, and put DC into reset.
15477	 */
15478	dd_dev_emerg(dd,
15479		     "Critical temperature reached! Forcing device into freeze mode!\n");
15480	dd->flags |= HFI1_FORCED_FREEZE;
15481	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15482	/*
15483	 * Shut DC down as much and as quickly as possible.
15484	 *
15485	 * Step 1: Take the link down to OFFLINE. This will cause the
15486	 *         8051 to put the Serdes in reset. However, we don't want to
15487	 *         go through the entire link state machine since we want to
15488	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15489	 *         but rather an attempt to save the chip.
15490	 *         Code below is almost the same as quiet_serdes() but avoids
15491	 *         all the extra work and the sleeps.
15492	 */
15493	ppd->driver_link_ready = 0;
15494	ppd->link_enabled = 0;
15495	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15496				PLS_OFFLINE);
15497	/*
15498	 * Step 2: Shutdown LCB and 8051
15499	 *         After shutdown, do not restore DC_CFG_RESET value.
15500	 */
15501	dc_shutdown(dd);
15502}
15503