1// SPDX-License-Identifier: GPL-2.0
2/*
3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
4 *
5 * Copyright (c) 2017 Melexis <cmo@melexis.com>
6 *
7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8 */
9#include <linux/bitfield.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/err.h>
13#include <linux/gpio/consumer.h>
14#include <linux/i2c.h>
15#include <linux/iopoll.h>
16#include <linux/jiffies.h>
17#include <linux/kernel.h>
18#include <linux/limits.h>
19#include <linux/mod_devicetable.h>
20#include <linux/module.h>
21#include <linux/math64.h>
22#include <linux/pm_runtime.h>
23#include <linux/regmap.h>
24#include <linux/regulator/consumer.h>
25
26#include <linux/iio/iio.h>
27#include <linux/iio/sysfs.h>
28
29/* Memory sections addresses */
30#define MLX90632_ADDR_RAM	0x4000 /* Start address of ram */
31#define MLX90632_ADDR_EEPROM	0x2480 /* Start address of user eeprom */
32
33/* EEPROM addresses - used at startup */
34#define MLX90632_EE_CTRL	0x24d4 /* Control register initial value */
35#define MLX90632_EE_I2C_ADDR	0x24d5 /* I2C address register initial value */
36#define MLX90632_EE_VERSION	0x240b /* EEPROM version reg address */
37#define MLX90632_EE_P_R		0x240c /* P_R calibration register 32bit */
38#define MLX90632_EE_P_G		0x240e /* P_G calibration register 32bit */
39#define MLX90632_EE_P_T		0x2410 /* P_T calibration register 32bit */
40#define MLX90632_EE_P_O		0x2412 /* P_O calibration register 32bit */
41#define MLX90632_EE_Aa		0x2414 /* Aa calibration register 32bit */
42#define MLX90632_EE_Ab		0x2416 /* Ab calibration register 32bit */
43#define MLX90632_EE_Ba		0x2418 /* Ba calibration register 32bit */
44#define MLX90632_EE_Bb		0x241a /* Bb calibration register 32bit */
45#define MLX90632_EE_Ca		0x241c /* Ca calibration register 32bit */
46#define MLX90632_EE_Cb		0x241e /* Cb calibration register 32bit */
47#define MLX90632_EE_Da		0x2420 /* Da calibration register 32bit */
48#define MLX90632_EE_Db		0x2422 /* Db calibration register 32bit */
49#define MLX90632_EE_Ea		0x2424 /* Ea calibration register 32bit */
50#define MLX90632_EE_Eb		0x2426 /* Eb calibration register 32bit */
51#define MLX90632_EE_Fa		0x2428 /* Fa calibration register 32bit */
52#define MLX90632_EE_Fb		0x242a /* Fb calibration register 32bit */
53#define MLX90632_EE_Ga		0x242c /* Ga calibration register 32bit */
54
55#define MLX90632_EE_Gb		0x242e /* Gb calibration register 16bit */
56#define MLX90632_EE_Ka		0x242f /* Ka calibration register 16bit */
57
58#define MLX90632_EE_Ha		0x2481 /* Ha customer calib value reg 16bit */
59#define MLX90632_EE_Hb		0x2482 /* Hb customer calib value reg 16bit */
60
61#define MLX90632_EE_MEDICAL_MEAS1      0x24E1 /* Medical measurement 1 16bit */
62#define MLX90632_EE_MEDICAL_MEAS2      0x24E2 /* Medical measurement 2 16bit */
63#define MLX90632_EE_EXTENDED_MEAS1     0x24F1 /* Extended measurement 1 16bit */
64#define MLX90632_EE_EXTENDED_MEAS2     0x24F2 /* Extended measurement 2 16bit */
65#define MLX90632_EE_EXTENDED_MEAS3     0x24F3 /* Extended measurement 3 16bit */
66
67/* Register addresses - volatile */
68#define MLX90632_REG_I2C_ADDR	0x3000 /* Chip I2C address register */
69
70/* Control register address - volatile */
71#define MLX90632_REG_CONTROL	0x3001 /* Control Register address */
72#define   MLX90632_CFG_PWR_MASK		GENMASK(2, 1) /* PowerMode Mask */
73#define   MLX90632_CFG_MTYP_MASK		GENMASK(8, 4) /* Meas select Mask */
74#define   MLX90632_CFG_SOB_MASK BIT(11)
75
76/* PowerModes statuses */
77#define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
78#define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
79#define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step */
80#define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
81#define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous */
82
83#define MLX90632_EE_RR GENMASK(10, 8) /* Only Refresh Rate bits */
84#define MLX90632_REFRESH_RATE(ee_val) FIELD_GET(MLX90632_EE_RR, ee_val)
85					/* Extract Refresh Rate from ee register */
86#define MLX90632_REFRESH_RATE_STATUS(refresh_rate) (refresh_rate << 8)
87
88/* Measurement types */
89#define MLX90632_MTYP_MEDICAL 0
90#define MLX90632_MTYP_EXTENDED 17
91
92/* Measurement type select*/
93#define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4)
94#define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL)
95#define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED)
96
97/* I2C command register - volatile */
98#define MLX90632_REG_I2C_CMD    0x3005 /* I2C command Register address */
99
100/* Device status register - volatile */
101#define MLX90632_REG_STATUS	0x3fff /* Device status register */
102#define   MLX90632_STAT_BUSY		BIT(10) /* Device busy indicator */
103#define   MLX90632_STAT_EE_BUSY		BIT(9) /* EEPROM busy indicator */
104#define   MLX90632_STAT_BRST		BIT(8) /* Brown out reset indicator */
105#define   MLX90632_STAT_CYCLE_POS	GENMASK(6, 2) /* Data position */
106#define   MLX90632_STAT_DATA_RDY	BIT(0) /* Data ready indicator */
107
108/* RAM_MEAS address-es for each channel */
109#define MLX90632_RAM_1(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num)
110#define MLX90632_RAM_2(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 1)
111#define MLX90632_RAM_3(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 2)
112
113/* Name important RAM_MEAS channels */
114#define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17)
115#define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18)
116#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17)
117#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17)
118#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18)
119#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18)
120#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19)
121#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19)
122
123/* Magic constants */
124#define MLX90632_ID_MEDICAL	0x0105 /* EEPROM DSPv5 Medical device id */
125#define MLX90632_ID_CONSUMER	0x0205 /* EEPROM DSPv5 Consumer device id */
126#define MLX90632_ID_EXTENDED	0x0505 /* EEPROM DSPv5 Extended range device id */
127#define MLX90632_ID_MASK	GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */
128#define MLX90632_DSP_VERSION	5 /* DSP version */
129#define MLX90632_DSP_MASK	GENMASK(7, 0) /* DSP version in EE_VERSION */
130#define MLX90632_RESET_CMD	0x0006 /* Reset sensor (address or global) */
131#define MLX90632_REF_12 	12LL /* ResCtrlRef value of Ch 1 or Ch 2 */
132#define MLX90632_REF_3		12LL /* ResCtrlRef value of Channel 3 */
133#define MLX90632_MAX_MEAS_NUM	31 /* Maximum measurements in list */
134#define MLX90632_SLEEP_DELAY_MS 6000 /* Autosleep delay */
135#define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */
136#define MLX90632_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
137
138/**
139 * struct mlx90632_data - private data for the MLX90632 device
140 * @client: I2C client of the device
141 * @lock: Internal mutex for multiple reads for single measurement
142 * @regmap: Regmap of the device
143 * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
144 * @mtyp: Measurement type physical sensor configuration for extended range
145 *        calculations
146 * @object_ambient_temperature: Ambient temperature at object (might differ of
147 *                              the ambient temperature of sensor.
148 * @regulator: Regulator of the device
149 * @powerstatus: Current POWER status of the device
150 * @interaction_ts: Timestamp of the last temperature read that is used
151 *		    for power management in jiffies
152 */
153struct mlx90632_data {
154	struct i2c_client *client;
155	struct mutex lock;
156	struct regmap *regmap;
157	u16 emissivity;
158	u8 mtyp;
159	u32 object_ambient_temperature;
160	struct regulator *regulator;
161	int powerstatus;
162	unsigned long interaction_ts;
163};
164
165static const struct regmap_range mlx90632_volatile_reg_range[] = {
166	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
167	regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
168	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
169	regmap_reg_range(MLX90632_RAM_1(0),
170			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
171};
172
173static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
174	.yes_ranges = mlx90632_volatile_reg_range,
175	.n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
176};
177
178static const struct regmap_range mlx90632_read_reg_range[] = {
179	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
180	regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
181	regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
182	regmap_reg_range(MLX90632_EE_MEDICAL_MEAS1, MLX90632_EE_MEDICAL_MEAS2),
183	regmap_reg_range(MLX90632_EE_EXTENDED_MEAS1, MLX90632_EE_EXTENDED_MEAS3),
184	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
185	regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
186	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
187	regmap_reg_range(MLX90632_RAM_1(0),
188			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
189};
190
191static const struct regmap_access_table mlx90632_readable_regs_tbl = {
192	.yes_ranges = mlx90632_read_reg_range,
193	.n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
194};
195
196static const struct regmap_range mlx90632_no_write_reg_range[] = {
197	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
198	regmap_reg_range(MLX90632_RAM_1(0),
199			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
200};
201
202static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
203	.no_ranges = mlx90632_no_write_reg_range,
204	.n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
205};
206
207static const struct regmap_config mlx90632_regmap = {
208	.reg_bits = 16,
209	.val_bits = 16,
210
211	.volatile_table = &mlx90632_volatile_regs_tbl,
212	.rd_table = &mlx90632_readable_regs_tbl,
213	.wr_table = &mlx90632_writeable_regs_tbl,
214
215	.use_single_read = true,
216	.use_single_write = true,
217	.reg_format_endian = REGMAP_ENDIAN_BIG,
218	.val_format_endian = REGMAP_ENDIAN_BIG,
219	.cache_type = REGCACHE_RBTREE,
220};
221
222static int mlx90632_pwr_set_sleep_step(struct regmap *regmap)
223{
224	struct mlx90632_data *data =
225		iio_priv(dev_get_drvdata(regmap_get_device(regmap)));
226	int ret;
227
228	if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP)
229		return 0;
230
231	ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK,
232				MLX90632_PWR_STATUS_SLEEP_STEP);
233	if (ret < 0)
234		return ret;
235
236	data->powerstatus = MLX90632_PWR_STATUS_SLEEP_STEP;
237	return 0;
238}
239
240static int mlx90632_pwr_continuous(struct regmap *regmap)
241{
242	struct mlx90632_data *data =
243		iio_priv(dev_get_drvdata(regmap_get_device(regmap)));
244	int ret;
245
246	if (data->powerstatus == MLX90632_PWR_STATUS_CONTINUOUS)
247		return 0;
248
249	ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK,
250				MLX90632_PWR_STATUS_CONTINUOUS);
251	if (ret < 0)
252		return ret;
253
254	data->powerstatus = MLX90632_PWR_STATUS_CONTINUOUS;
255	return 0;
256}
257
258/**
259 * mlx90632_reset_delay() - Give the mlx90632 some time to reset properly
260 * If this is not done, the following I2C command(s) will not be accepted.
261 */
262static void mlx90632_reset_delay(void)
263{
264	usleep_range(150, 200);
265}
266
267static int mlx90632_get_measurement_time(struct regmap *regmap, u16 meas)
268{
269	unsigned int reg;
270	int ret;
271
272	ret = regmap_read(regmap, meas, &reg);
273	if (ret < 0)
274		return ret;
275
276	return MLX90632_MEAS_MAX_TIME >> FIELD_GET(MLX90632_EE_RR, reg);
277}
278
279static int mlx90632_calculate_dataset_ready_time(struct mlx90632_data *data)
280{
281	unsigned int refresh_time;
282	int ret;
283
284	if (data->mtyp == MLX90632_MTYP_MEDICAL) {
285		ret = mlx90632_get_measurement_time(data->regmap,
286						    MLX90632_EE_MEDICAL_MEAS1);
287		if (ret < 0)
288			return ret;
289
290		refresh_time = ret;
291
292		ret = mlx90632_get_measurement_time(data->regmap,
293						    MLX90632_EE_MEDICAL_MEAS2);
294		if (ret < 0)
295			return ret;
296
297		refresh_time += ret;
298	} else {
299		ret = mlx90632_get_measurement_time(data->regmap,
300						    MLX90632_EE_EXTENDED_MEAS1);
301		if (ret < 0)
302			return ret;
303
304		refresh_time = ret;
305
306		ret = mlx90632_get_measurement_time(data->regmap,
307						    MLX90632_EE_EXTENDED_MEAS2);
308		if (ret < 0)
309			return ret;
310
311		refresh_time += ret;
312
313		ret = mlx90632_get_measurement_time(data->regmap,
314						    MLX90632_EE_EXTENDED_MEAS3);
315		if (ret < 0)
316			return ret;
317
318		refresh_time += ret;
319	}
320
321	return refresh_time;
322}
323
324/**
325 * mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle
326 * @data: pointer to mlx90632_data object containing regmap information
327 *
328 * Perform a measurement and return latest measurement cycle position reported
329 * by sensor. This is a blocking function for 500ms, as that is default sensor
330 * refresh rate.
331 */
332static int mlx90632_perform_measurement(struct mlx90632_data *data)
333{
334	unsigned int reg_status;
335	int ret;
336
337	ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
338				 MLX90632_STAT_DATA_RDY, 0);
339	if (ret < 0)
340		return ret;
341
342	ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status,
343				       !(reg_status & MLX90632_STAT_DATA_RDY), 10000,
344				       100 * 10000);
345
346	if (ret < 0) {
347		dev_err(&data->client->dev, "data not ready");
348		return -ETIMEDOUT;
349	}
350
351	return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
352}
353
354/**
355 * mlx90632_perform_measurement_burst() - Trigger and retrieve current measurement
356 * cycle in step sleep mode
357 * @data: pointer to mlx90632_data object containing regmap information
358 *
359 * Perform a measurement and return 2 as measurement cycle position reported
360 * by sensor. This is a blocking function for amount dependent on the sensor
361 * refresh rate.
362 */
363static int mlx90632_perform_measurement_burst(struct mlx90632_data *data)
364{
365	unsigned int reg_status;
366	int ret;
367
368	ret = regmap_write_bits(data->regmap, MLX90632_REG_CONTROL,
369				MLX90632_CFG_SOB_MASK, MLX90632_CFG_SOB_MASK);
370	if (ret < 0)
371		return ret;
372
373	ret = mlx90632_calculate_dataset_ready_time(data);
374	if (ret < 0)
375		return ret;
376
377	msleep(ret); /* Wait minimum time for dataset to be ready */
378
379	ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS,
380				       reg_status,
381				       (reg_status & MLX90632_STAT_BUSY) == 0,
382				       10000, 100 * 10000);
383	if (ret < 0) {
384		dev_err(&data->client->dev, "data not ready");
385		return -ETIMEDOUT;
386	}
387
388	return 2;
389}
390
391static int mlx90632_set_meas_type(struct mlx90632_data *data, u8 type)
392{
393	int current_powerstatus;
394	int ret;
395
396	if (data->mtyp == type)
397		return 0;
398
399	current_powerstatus = data->powerstatus;
400	ret = mlx90632_pwr_continuous(data->regmap);
401	if (ret < 0)
402		return ret;
403
404	ret = regmap_write(data->regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD);
405	if (ret < 0)
406		return ret;
407
408	mlx90632_reset_delay();
409
410	ret = regmap_update_bits(data->regmap, MLX90632_REG_CONTROL,
411				 (MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK),
412				 (MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT));
413	if (ret < 0)
414		return ret;
415
416	data->mtyp = type;
417	data->powerstatus = MLX90632_PWR_STATUS_HALT;
418
419	if (current_powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP)
420		return mlx90632_pwr_set_sleep_step(data->regmap);
421
422	return mlx90632_pwr_continuous(data->regmap);
423}
424
425static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
426				       uint8_t *channel_old)
427{
428	switch (perform_ret) {
429	case 1:
430		*channel_new = 1;
431		*channel_old = 2;
432		break;
433	case 2:
434		*channel_new = 2;
435		*channel_old = 1;
436		break;
437	default:
438		return -ECHRNG;
439	}
440
441	return 0;
442}
443
444static int mlx90632_read_ambient_raw(struct regmap *regmap,
445				     s16 *ambient_new_raw, s16 *ambient_old_raw)
446{
447	unsigned int read_tmp;
448	int ret;
449
450	ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
451	if (ret < 0)
452		return ret;
453	*ambient_new_raw = (s16)read_tmp;
454
455	ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
456	if (ret < 0)
457		return ret;
458	*ambient_old_raw = (s16)read_tmp;
459
460	return ret;
461}
462
463static int mlx90632_read_object_raw(struct regmap *regmap,
464				    int perform_measurement_ret,
465				    s16 *object_new_raw, s16 *object_old_raw)
466{
467	unsigned int read_tmp;
468	u8 channel_old = 0;
469	u8 channel = 0;
470	s16 read;
471	int ret;
472
473	ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
474					  &channel_old);
475	if (ret != 0)
476		return ret;
477
478	ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
479	if (ret < 0)
480		return ret;
481
482	read = (s16)read_tmp;
483
484	ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
485	if (ret < 0)
486		return ret;
487	*object_new_raw = (read + (s16)read_tmp) / 2;
488
489	ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
490	if (ret < 0)
491		return ret;
492	read = (s16)read_tmp;
493
494	ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
495	if (ret < 0)
496		return ret;
497	*object_old_raw = (read + (s16)read_tmp) / 2;
498
499	return ret;
500}
501
502static int mlx90632_read_all_channel(struct mlx90632_data *data,
503				     s16 *ambient_new_raw, s16 *ambient_old_raw,
504				     s16 *object_new_raw, s16 *object_old_raw)
505{
506	s32 measurement;
507	int ret;
508
509	mutex_lock(&data->lock);
510	ret = mlx90632_set_meas_type(data, MLX90632_MTYP_MEDICAL);
511	if (ret < 0)
512		goto read_unlock;
513
514	switch (data->powerstatus) {
515	case MLX90632_PWR_STATUS_CONTINUOUS:
516		ret = mlx90632_perform_measurement(data);
517		if (ret < 0)
518			goto read_unlock;
519
520		break;
521	case MLX90632_PWR_STATUS_SLEEP_STEP:
522		ret = mlx90632_perform_measurement_burst(data);
523		if (ret < 0)
524			goto read_unlock;
525
526		break;
527	default:
528		ret = -EOPNOTSUPP;
529		goto read_unlock;
530	}
531
532	measurement = ret; /* If we came here ret holds the measurement position */
533
534	ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
535					ambient_old_raw);
536	if (ret < 0)
537		goto read_unlock;
538
539	ret = mlx90632_read_object_raw(data->regmap, measurement,
540				       object_new_raw, object_old_raw);
541read_unlock:
542	mutex_unlock(&data->lock);
543	return ret;
544}
545
546static int mlx90632_read_ambient_raw_extended(struct regmap *regmap,
547					      s16 *ambient_new_raw, s16 *ambient_old_raw)
548{
549	unsigned int read_tmp;
550	int ret;
551
552	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, &read_tmp);
553	if (ret < 0)
554		return ret;
555	*ambient_new_raw = (s16)read_tmp;
556
557	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, &read_tmp);
558	if (ret < 0)
559		return ret;
560	*ambient_old_raw = (s16)read_tmp;
561
562	return 0;
563}
564
565static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw)
566{
567	unsigned int read_tmp;
568	s32 read;
569	int ret;
570
571	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, &read_tmp);
572	if (ret < 0)
573		return ret;
574	read = (s16)read_tmp;
575
576	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, &read_tmp);
577	if (ret < 0)
578		return ret;
579	read = read - (s16)read_tmp;
580
581	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, &read_tmp);
582	if (ret < 0)
583		return ret;
584	read = read - (s16)read_tmp;
585
586	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, &read_tmp);
587	if (ret < 0)
588		return ret;
589	read = (read + (s16)read_tmp) / 2;
590
591	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, &read_tmp);
592	if (ret < 0)
593		return ret;
594	read = read + (s16)read_tmp;
595
596	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, &read_tmp);
597	if (ret < 0)
598		return ret;
599	read = read + (s16)read_tmp;
600
601	if (read > S16_MAX || read < S16_MIN)
602		return -ERANGE;
603
604	*object_new_raw = read;
605
606	return 0;
607}
608
609static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw,
610					      s16 *ambient_new_raw, s16 *ambient_old_raw)
611{
612	s32 ret, meas;
613
614	mutex_lock(&data->lock);
615	ret = mlx90632_set_meas_type(data, MLX90632_MTYP_EXTENDED);
616	if (ret < 0)
617		goto read_unlock;
618
619	switch (data->powerstatus) {
620	case MLX90632_PWR_STATUS_CONTINUOUS:
621		ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19,
622					50000, 800000, false, data);
623		if (ret)
624			goto read_unlock;
625		break;
626	case MLX90632_PWR_STATUS_SLEEP_STEP:
627		ret = mlx90632_perform_measurement_burst(data);
628		if (ret < 0)
629			goto read_unlock;
630		break;
631	default:
632		ret = -EOPNOTSUPP;
633		goto read_unlock;
634	}
635
636	ret = mlx90632_read_object_raw_extended(data->regmap, object_new_raw);
637	if (ret < 0)
638		goto read_unlock;
639
640	ret = mlx90632_read_ambient_raw_extended(data->regmap, ambient_new_raw, ambient_old_raw);
641
642read_unlock:
643	mutex_unlock(&data->lock);
644	return ret;
645}
646
647static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
648				     s32 *reg_value)
649{
650	unsigned int read;
651	u32 value;
652	int ret;
653
654	ret = regmap_read(regmap, reg_lsb, &read);
655	if (ret < 0)
656		return ret;
657
658	value = read;
659
660	ret = regmap_read(regmap, reg_lsb + 1, &read);
661	if (ret < 0)
662		return ret;
663
664	*reg_value = (read << 16) | (value & 0xffff);
665
666	return 0;
667}
668
669static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
670					s16 ambient_old_raw, s16 Gb)
671{
672	s64 VR_Ta, kGb, tmp;
673
674	kGb = ((s64)Gb * 1000LL) >> 10ULL;
675	VR_Ta = (s64)ambient_old_raw * 1000000LL +
676		kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
677			(MLX90632_REF_3));
678	tmp = div64_s64(
679			 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
680				   (MLX90632_REF_3)), VR_Ta);
681	return div64_s64(tmp << 19ULL, 1000LL);
682}
683
684static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
685					s16 ambient_new_raw,
686					s16 ambient_old_raw, s16 Ka)
687{
688	s64 VR_IR, kKa, tmp;
689
690	kKa = ((s64)Ka * 1000LL) >> 10ULL;
691	VR_IR = (s64)ambient_old_raw * 1000000LL +
692		kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
693			(MLX90632_REF_3));
694	tmp = div64_s64(
695			div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
696				   * 1000000000000LL), (MLX90632_REF_12)),
697			VR_IR);
698	return div64_s64((tmp << 19ULL), 1000LL);
699}
700
701static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw,
702						 s16 ambient_old_raw, s16 Ka)
703{
704	s64 VR_IR, kKa, tmp;
705
706	kKa = ((s64)Ka * 1000LL) >> 10ULL;
707	VR_IR = (s64)ambient_old_raw * 1000000LL +
708		kKa * div64_s64((s64)ambient_new_raw * 1000LL,
709				MLX90632_REF_3);
710	tmp = div64_s64(
711			div64_s64((s64) object_new_raw * 1000000000000LL, MLX90632_REF_12),
712			VR_IR);
713	return div64_s64(tmp << 19ULL, 1000LL);
714}
715
716static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
717				      s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb)
718{
719	s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
720
721	AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
722					   Gb);
723	Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
724	Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
725	Ablock = Asub * (Bsub * Bsub);
726	Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
727	Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
728
729	sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
730
731	return div64_s64(sum, 10000000LL);
732}
733
734static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
735					       s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb,
736					       s32 Ga, s16 Ha, s16 Hb,
737					       u16 emissivity)
738{
739	s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr;
740	s64 Ha_customer, Hb_customer;
741
742	Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
743	Hb_customer = ((s64)Hb * 100) >> 10ULL;
744
745	calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
746			     * 1000LL)) >> 36LL;
747	calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
748	Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
749				* Ha_customer), 1000LL);
750	Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
751	Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
752	Alpha_corr = div64_s64(Alpha_corr, 1000LL);
753	ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
754
755	return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
756		- 27315 - Hb_customer) * 10;
757}
758
759static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale)
760{
761	return (div64_s64(TAdut, scale) + 27315) *
762		(div64_s64(TAdut, scale) + 27315) *
763		(div64_s64(TAdut, scale) + 27315) *
764		(div64_s64(TAdut, scale) + 27315);
765}
766
767static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
768				     s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
769				     u16 tmp_emi)
770{
771	s64 kTA, kTA0, TAdut, TAdut4;
772	s64 temp = 25000;
773	s8 i;
774
775	kTA = (Ea * 1000LL) >> 16LL;
776	kTA0 = (Eb * 1000LL) >> 8LL;
777	TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
778	TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
779
780	/* Iterations of calculation as described in datasheet */
781	for (i = 0; i < 5; ++i) {
782		temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
783							   Fa, Fb, Ga, Ha, Hb,
784							   tmp_emi);
785	}
786	return temp;
787}
788
789static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected,
790					      s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga,
791					      s16 Ha, s16 Hb, u16 tmp_emi)
792{
793	s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4;
794	s64 temp = 25000;
795	s8 i;
796
797	kTA = (Ea * 1000LL) >> 16LL;
798	kTA0 = (Eb * 1000LL) >> 8LL;
799	TAdut = div64_s64((ambient - kTA0) * 1000000LL, kTA) + 25 * 1000000LL;
800	Tr4 = mlx90632_calc_ta4(reflected, 10);
801	TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
802	TaTr4 = Tr4 - div64_s64(Tr4 - TAdut4, tmp_emi) * 1000;
803
804	/* Iterations of calculation as described in datasheet */
805	for (i = 0; i < 5; ++i) {
806		temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TaTr4,
807							   Fa / 2, Fb, Ga, Ha, Hb,
808							   tmp_emi);
809	}
810
811	return temp;
812}
813
814static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
815{
816	s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
817	s32 Ea, Eb, Fa, Fb, Ga;
818	unsigned int read_tmp;
819	s64 object, ambient;
820	s16 Ha, Hb, Gb, Ka;
821	int ret;
822
823	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
824	if (ret < 0)
825		return ret;
826	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
827	if (ret < 0)
828		return ret;
829	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
830	if (ret < 0)
831		return ret;
832	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
833	if (ret < 0)
834		return ret;
835	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
836	if (ret < 0)
837		return ret;
838	ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
839	if (ret < 0)
840		return ret;
841	Ha = (s16)read_tmp;
842	ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
843	if (ret < 0)
844		return ret;
845	Hb = (s16)read_tmp;
846	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
847	if (ret < 0)
848		return ret;
849	Gb = (s16)read_tmp;
850	ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
851	if (ret < 0)
852		return ret;
853	Ka = (s16)read_tmp;
854
855	ret = mlx90632_read_all_channel(data,
856					&ambient_new_raw, &ambient_old_raw,
857					&object_new_raw, &object_old_raw);
858	if (ret < 0)
859		return ret;
860
861	if (object_new_raw > MLX90632_EXTENDED_LIMIT &&
862	    data->mtyp == MLX90632_MTYP_EXTENDED) {
863		ret = mlx90632_read_all_channel_extended(data, &object_new_raw,
864							 &ambient_new_raw, &ambient_old_raw);
865		if (ret < 0)
866			return ret;
867
868		/* Use extended mode calculations */
869		ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
870						       ambient_old_raw, Gb);
871		object = mlx90632_preprocess_temp_obj_extended(object_new_raw,
872							       ambient_new_raw,
873							       ambient_old_raw, Ka);
874		*val = mlx90632_calc_temp_object_extended(object, ambient,
875							  data->object_ambient_temperature,
876							  Ea, Eb, Fa, Fb, Ga,
877							  Ha, Hb, data->emissivity);
878		return 0;
879	}
880
881	ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
882					       ambient_old_raw, Gb);
883	object = mlx90632_preprocess_temp_obj(object_new_raw,
884					      object_old_raw,
885					      ambient_new_raw,
886					      ambient_old_raw, Ka);
887
888	*val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
889					 Ha, Hb, data->emissivity);
890	return 0;
891}
892
893static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
894{
895	s16 ambient_new_raw, ambient_old_raw;
896	unsigned int read_tmp;
897	s32 PT, PR, PG, PO;
898	int ret;
899	s16 Gb;
900
901	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
902	if (ret < 0)
903		return ret;
904	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
905	if (ret < 0)
906		return ret;
907	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
908	if (ret < 0)
909		return ret;
910	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
911	if (ret < 0)
912		return ret;
913	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
914	if (ret < 0)
915		return ret;
916	Gb = (s16)read_tmp;
917
918	ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
919					&ambient_old_raw);
920	if (ret < 0)
921		return ret;
922	*val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
923					  PT, PR, PG, PO, Gb);
924	return ret;
925}
926
927static int mlx90632_get_refresh_rate(struct mlx90632_data *data,
928				     int *refresh_rate)
929{
930	unsigned int meas1;
931	int ret;
932
933	ret = regmap_read(data->regmap, MLX90632_EE_MEDICAL_MEAS1, &meas1);
934	if (ret < 0)
935		return ret;
936
937	*refresh_rate = MLX90632_REFRESH_RATE(meas1);
938
939	return ret;
940}
941
942static const int mlx90632_freqs[][2] = {
943	{0, 500000},
944	{1, 0},
945	{2, 0},
946	{4, 0},
947	{8, 0},
948	{16, 0},
949	{32, 0},
950	{64, 0}
951};
952
953/**
954 * mlx90632_pm_interraction_wakeup() - Measure time between user interactions to change powermode
955 * @data: pointer to mlx90632_data object containing interaction_ts information
956 *
957 * Switch to continuous mode when interaction is faster than MLX90632_MEAS_MAX_TIME. Update the
958 * interaction_ts for each function call with the jiffies to enable measurement between function
959 * calls. Initial value of the interaction_ts needs to be set before this function call.
960 */
961static int mlx90632_pm_interraction_wakeup(struct mlx90632_data *data)
962{
963	unsigned long now;
964	int ret;
965
966	now = jiffies;
967	if (time_in_range(now, data->interaction_ts,
968			  data->interaction_ts +
969			  msecs_to_jiffies(MLX90632_MEAS_MAX_TIME + 100))) {
970		if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP) {
971			ret = mlx90632_pwr_continuous(data->regmap);
972			if (ret < 0)
973				return ret;
974		}
975	}
976
977	data->interaction_ts = now;
978
979	return 0;
980}
981
982static int mlx90632_read_raw(struct iio_dev *indio_dev,
983			     struct iio_chan_spec const *channel, int *val,
984			     int *val2, long mask)
985{
986	struct mlx90632_data *data = iio_priv(indio_dev);
987	int ret;
988	int cr;
989
990	pm_runtime_get_sync(&data->client->dev);
991	ret = mlx90632_pm_interraction_wakeup(data);
992	if (ret < 0)
993		goto mlx90632_read_raw_pm;
994
995	switch (mask) {
996	case IIO_CHAN_INFO_PROCESSED:
997		switch (channel->channel2) {
998		case IIO_MOD_TEMP_AMBIENT:
999			ret = mlx90632_calc_ambient_dsp105(data, val);
1000			if (ret < 0)
1001				goto mlx90632_read_raw_pm;
1002
1003			ret = IIO_VAL_INT;
1004			break;
1005		case IIO_MOD_TEMP_OBJECT:
1006			ret = mlx90632_calc_object_dsp105(data, val);
1007			if (ret < 0)
1008				goto mlx90632_read_raw_pm;
1009
1010			ret = IIO_VAL_INT;
1011			break;
1012		default:
1013			ret = -EINVAL;
1014			break;
1015		}
1016		break;
1017	case IIO_CHAN_INFO_CALIBEMISSIVITY:
1018		if (data->emissivity == 1000) {
1019			*val = 1;
1020			*val2 = 0;
1021		} else {
1022			*val = 0;
1023			*val2 = data->emissivity * 1000;
1024		}
1025		ret = IIO_VAL_INT_PLUS_MICRO;
1026		break;
1027	case IIO_CHAN_INFO_CALIBAMBIENT:
1028		*val = data->object_ambient_temperature;
1029		ret = IIO_VAL_INT;
1030		break;
1031	case IIO_CHAN_INFO_SAMP_FREQ:
1032		ret = mlx90632_get_refresh_rate(data, &cr);
1033		if (ret < 0)
1034			goto mlx90632_read_raw_pm;
1035
1036		*val = mlx90632_freqs[cr][0];
1037		*val2 = mlx90632_freqs[cr][1];
1038		ret = IIO_VAL_INT_PLUS_MICRO;
1039		break;
1040	default:
1041		ret = -EINVAL;
1042		break;
1043	}
1044
1045mlx90632_read_raw_pm:
1046	pm_runtime_mark_last_busy(&data->client->dev);
1047	pm_runtime_put_autosuspend(&data->client->dev);
1048	return ret;
1049}
1050
1051static int mlx90632_write_raw(struct iio_dev *indio_dev,
1052			      struct iio_chan_spec const *channel, int val,
1053			      int val2, long mask)
1054{
1055	struct mlx90632_data *data = iio_priv(indio_dev);
1056
1057	switch (mask) {
1058	case IIO_CHAN_INFO_CALIBEMISSIVITY:
1059		/* Confirm we are within 0 and 1.0 */
1060		if (val < 0 || val2 < 0 || val > 1 ||
1061		    (val == 1 && val2 != 0))
1062			return -EINVAL;
1063		data->emissivity = val * 1000 + val2 / 1000;
1064		return 0;
1065	case IIO_CHAN_INFO_CALIBAMBIENT:
1066		data->object_ambient_temperature = val;
1067		return 0;
1068	default:
1069		return -EINVAL;
1070	}
1071}
1072
1073static int mlx90632_read_avail(struct iio_dev *indio_dev,
1074			       struct iio_chan_spec const *chan,
1075			       const int **vals, int *type, int *length,
1076			       long mask)
1077{
1078	switch (mask) {
1079	case IIO_CHAN_INFO_SAMP_FREQ:
1080		*vals = (int *)mlx90632_freqs;
1081		*type = IIO_VAL_INT_PLUS_MICRO;
1082		*length = 2 * ARRAY_SIZE(mlx90632_freqs);
1083		return IIO_AVAIL_LIST;
1084	default:
1085		return -EINVAL;
1086	}
1087}
1088
1089static const struct iio_chan_spec mlx90632_channels[] = {
1090	{
1091		.type = IIO_TEMP,
1092		.modified = 1,
1093		.channel2 = IIO_MOD_TEMP_AMBIENT,
1094		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
1095		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1096		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1097	},
1098	{
1099		.type = IIO_TEMP,
1100		.modified = 1,
1101		.channel2 = IIO_MOD_TEMP_OBJECT,
1102		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
1103			BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT),
1104		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1105		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1106	},
1107};
1108
1109static const struct iio_info mlx90632_info = {
1110	.read_raw = mlx90632_read_raw,
1111	.write_raw = mlx90632_write_raw,
1112	.read_avail = mlx90632_read_avail,
1113};
1114
1115static void mlx90632_sleep(void *_data)
1116{
1117	struct mlx90632_data *data = _data;
1118
1119	mlx90632_pwr_set_sleep_step(data->regmap);
1120}
1121
1122static int mlx90632_suspend(struct mlx90632_data *data)
1123{
1124	regcache_mark_dirty(data->regmap);
1125
1126	dev_dbg(&data->client->dev, "Requesting suspend");
1127	return mlx90632_pwr_set_sleep_step(data->regmap);
1128}
1129
1130static int mlx90632_wakeup(struct mlx90632_data *data)
1131{
1132	int ret;
1133
1134	ret = regcache_sync(data->regmap);
1135	if (ret < 0) {
1136		dev_err(&data->client->dev,
1137			"Failed to sync regmap registers: %d\n", ret);
1138		return ret;
1139	}
1140
1141	dev_dbg(&data->client->dev, "Requesting wake-up\n");
1142	return mlx90632_pwr_continuous(data->regmap);
1143}
1144
1145static void mlx90632_disable_regulator(void *_data)
1146{
1147	struct mlx90632_data *data = _data;
1148	int ret;
1149
1150	ret = regulator_disable(data->regulator);
1151	if (ret < 0)
1152		dev_err(regmap_get_device(data->regmap),
1153			"Failed to disable power regulator: %d\n", ret);
1154}
1155
1156static int mlx90632_enable_regulator(struct mlx90632_data *data)
1157{
1158	int ret;
1159
1160	ret = regulator_enable(data->regulator);
1161	if (ret < 0) {
1162		dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
1163		return ret;
1164	}
1165
1166	mlx90632_reset_delay();
1167
1168	return ret;
1169}
1170
1171static int mlx90632_probe(struct i2c_client *client)
1172{
1173	const struct i2c_device_id *id = i2c_client_get_device_id(client);
1174	struct mlx90632_data *mlx90632;
1175	struct iio_dev *indio_dev;
1176	struct regmap *regmap;
1177	unsigned int read;
1178	int ret;
1179
1180	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
1181	if (!indio_dev) {
1182		dev_err(&client->dev, "Failed to allocate device\n");
1183		return -ENOMEM;
1184	}
1185
1186	regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
1187	if (IS_ERR(regmap)) {
1188		ret = PTR_ERR(regmap);
1189		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1190		return ret;
1191	}
1192
1193	mlx90632 = iio_priv(indio_dev);
1194	i2c_set_clientdata(client, indio_dev);
1195	mlx90632->client = client;
1196	mlx90632->regmap = regmap;
1197	mlx90632->mtyp = MLX90632_MTYP_MEDICAL;
1198	mlx90632->powerstatus = MLX90632_PWR_STATUS_HALT;
1199
1200	mutex_init(&mlx90632->lock);
1201	indio_dev->name = id->name;
1202	indio_dev->modes = INDIO_DIRECT_MODE;
1203	indio_dev->info = &mlx90632_info;
1204	indio_dev->channels = mlx90632_channels;
1205	indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
1206
1207	mlx90632->regulator = devm_regulator_get(&client->dev, "vdd");
1208	if (IS_ERR(mlx90632->regulator))
1209		return dev_err_probe(&client->dev, PTR_ERR(mlx90632->regulator),
1210				     "failed to get vdd regulator");
1211
1212	ret = mlx90632_enable_regulator(mlx90632);
1213	if (ret < 0)
1214		return ret;
1215
1216	ret = devm_add_action_or_reset(&client->dev, mlx90632_disable_regulator,
1217				       mlx90632);
1218	if (ret < 0) {
1219		dev_err(&client->dev, "Failed to setup regulator cleanup action %d\n",
1220			ret);
1221		return ret;
1222	}
1223
1224	ret = mlx90632_wakeup(mlx90632);
1225	if (ret < 0) {
1226		dev_err(&client->dev, "Wakeup failed: %d\n", ret);
1227		return ret;
1228	}
1229
1230	ret = devm_add_action_or_reset(&client->dev, mlx90632_sleep, mlx90632);
1231	if (ret < 0) {
1232		dev_err(&client->dev, "Failed to setup low power cleanup action %d\n",
1233			ret);
1234		return ret;
1235	}
1236
1237	ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
1238	if (ret < 0) {
1239		dev_err(&client->dev, "read of version failed: %d\n", ret);
1240		return ret;
1241	}
1242	read = read & MLX90632_ID_MASK;
1243	if (read == MLX90632_ID_MEDICAL) {
1244		dev_dbg(&client->dev,
1245			"Detected Medical EEPROM calibration %x\n", read);
1246	} else if (read == MLX90632_ID_CONSUMER) {
1247		dev_dbg(&client->dev,
1248			"Detected Consumer EEPROM calibration %x\n", read);
1249	} else if (read == MLX90632_ID_EXTENDED) {
1250		dev_dbg(&client->dev,
1251			"Detected Extended range EEPROM calibration %x\n", read);
1252		mlx90632->mtyp = MLX90632_MTYP_EXTENDED;
1253	} else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
1254		dev_dbg(&client->dev,
1255			"Detected Unknown EEPROM calibration %x\n", read);
1256	} else {
1257		dev_err(&client->dev,
1258			"Wrong DSP version %x (expected %x)\n",
1259			read, MLX90632_DSP_VERSION);
1260		return -EPROTONOSUPPORT;
1261	}
1262
1263	mlx90632->emissivity = 1000;
1264	mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */
1265	mlx90632->interaction_ts = jiffies; /* Set initial value */
1266
1267	pm_runtime_get_noresume(&client->dev);
1268	pm_runtime_set_active(&client->dev);
1269
1270	ret = devm_pm_runtime_enable(&client->dev);
1271	if (ret)
1272		return ret;
1273
1274	pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
1275	pm_runtime_use_autosuspend(&client->dev);
1276	pm_runtime_put_autosuspend(&client->dev);
1277
1278	return devm_iio_device_register(&client->dev, indio_dev);
1279}
1280
1281static const struct i2c_device_id mlx90632_id[] = {
1282	{ "mlx90632", 0 },
1283	{ }
1284};
1285MODULE_DEVICE_TABLE(i2c, mlx90632_id);
1286
1287static const struct of_device_id mlx90632_of_match[] = {
1288	{ .compatible = "melexis,mlx90632" },
1289	{ }
1290};
1291MODULE_DEVICE_TABLE(of, mlx90632_of_match);
1292
1293static int mlx90632_pm_suspend(struct device *dev)
1294{
1295	struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
1296	int ret;
1297
1298	ret = mlx90632_suspend(data);
1299	if (ret < 0)
1300		return ret;
1301
1302	ret = regulator_disable(data->regulator);
1303	if (ret < 0)
1304		dev_err(regmap_get_device(data->regmap),
1305			"Failed to disable power regulator: %d\n", ret);
1306
1307	return ret;
1308}
1309
1310static int mlx90632_pm_resume(struct device *dev)
1311{
1312	struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
1313	int ret;
1314
1315	ret = mlx90632_enable_regulator(data);
1316	if (ret < 0)
1317		return ret;
1318
1319	return mlx90632_wakeup(data);
1320}
1321
1322static int mlx90632_pm_runtime_suspend(struct device *dev)
1323{
1324	struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
1325
1326	return mlx90632_pwr_set_sleep_step(data->regmap);
1327}
1328
1329static const struct dev_pm_ops mlx90632_pm_ops = {
1330	SYSTEM_SLEEP_PM_OPS(mlx90632_pm_suspend, mlx90632_pm_resume)
1331	RUNTIME_PM_OPS(mlx90632_pm_runtime_suspend, NULL, NULL)
1332};
1333
1334static struct i2c_driver mlx90632_driver = {
1335	.driver = {
1336		.name	= "mlx90632",
1337		.of_match_table = mlx90632_of_match,
1338		.pm	= pm_ptr(&mlx90632_pm_ops),
1339	},
1340	.probe = mlx90632_probe,
1341	.id_table = mlx90632_id,
1342};
1343module_i2c_driver(mlx90632_driver);
1344
1345MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
1346MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
1347MODULE_LICENSE("GPL v2");
1348