1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * The industrial I/O core
4 *
5 * Copyright (c) 2008 Jonathan Cameron
6 *
7 * Based on elements of hwmon and input subsystems.
8 */
9
10#define pr_fmt(fmt) "iio-core: " fmt
11
12#include <linux/anon_inodes.h>
13#include <linux/cdev.h>
14#include <linux/debugfs.h>
15#include <linux/device.h>
16#include <linux/err.h>
17#include <linux/fs.h>
18#include <linux/idr.h>
19#include <linux/kdev_t.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/mutex.h>
23#include <linux/poll.h>
24#include <linux/property.h>
25#include <linux/sched.h>
26#include <linux/slab.h>
27#include <linux/wait.h>
28
29#include <linux/iio/buffer.h>
30#include <linux/iio/buffer_impl.h>
31#include <linux/iio/events.h>
32#include <linux/iio/iio-opaque.h>
33#include <linux/iio/iio.h>
34#include <linux/iio/sysfs.h>
35
36#include "iio_core.h"
37#include "iio_core_trigger.h"
38
39/* IDA to assign each registered device a unique id */
40static DEFINE_IDA(iio_ida);
41
42static dev_t iio_devt;
43
44#define IIO_DEV_MAX 256
45const struct bus_type iio_bus_type = {
46	.name = "iio",
47};
48EXPORT_SYMBOL(iio_bus_type);
49
50static struct dentry *iio_debugfs_dentry;
51
52static const char * const iio_direction[] = {
53	[0] = "in",
54	[1] = "out",
55};
56
57static const char * const iio_chan_type_name_spec[] = {
58	[IIO_VOLTAGE] = "voltage",
59	[IIO_CURRENT] = "current",
60	[IIO_POWER] = "power",
61	[IIO_ACCEL] = "accel",
62	[IIO_ANGL_VEL] = "anglvel",
63	[IIO_MAGN] = "magn",
64	[IIO_LIGHT] = "illuminance",
65	[IIO_INTENSITY] = "intensity",
66	[IIO_PROXIMITY] = "proximity",
67	[IIO_TEMP] = "temp",
68	[IIO_INCLI] = "incli",
69	[IIO_ROT] = "rot",
70	[IIO_ANGL] = "angl",
71	[IIO_TIMESTAMP] = "timestamp",
72	[IIO_CAPACITANCE] = "capacitance",
73	[IIO_ALTVOLTAGE] = "altvoltage",
74	[IIO_CCT] = "cct",
75	[IIO_PRESSURE] = "pressure",
76	[IIO_HUMIDITYRELATIVE] = "humidityrelative",
77	[IIO_ACTIVITY] = "activity",
78	[IIO_STEPS] = "steps",
79	[IIO_ENERGY] = "energy",
80	[IIO_DISTANCE] = "distance",
81	[IIO_VELOCITY] = "velocity",
82	[IIO_CONCENTRATION] = "concentration",
83	[IIO_RESISTANCE] = "resistance",
84	[IIO_PH] = "ph",
85	[IIO_UVINDEX] = "uvindex",
86	[IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
87	[IIO_COUNT] = "count",
88	[IIO_INDEX] = "index",
89	[IIO_GRAVITY]  = "gravity",
90	[IIO_POSITIONRELATIVE]  = "positionrelative",
91	[IIO_PHASE] = "phase",
92	[IIO_MASSCONCENTRATION] = "massconcentration",
93	[IIO_DELTA_ANGL] = "deltaangl",
94	[IIO_DELTA_VELOCITY] = "deltavelocity",
95	[IIO_COLORTEMP] = "colortemp",
96	[IIO_CHROMATICITY] = "chromaticity",
97};
98
99static const char * const iio_modifier_names[] = {
100	[IIO_MOD_X] = "x",
101	[IIO_MOD_Y] = "y",
102	[IIO_MOD_Z] = "z",
103	[IIO_MOD_X_AND_Y] = "x&y",
104	[IIO_MOD_X_AND_Z] = "x&z",
105	[IIO_MOD_Y_AND_Z] = "y&z",
106	[IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
107	[IIO_MOD_X_OR_Y] = "x|y",
108	[IIO_MOD_X_OR_Z] = "x|z",
109	[IIO_MOD_Y_OR_Z] = "y|z",
110	[IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
111	[IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
112	[IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
113	[IIO_MOD_LIGHT_BOTH] = "both",
114	[IIO_MOD_LIGHT_IR] = "ir",
115	[IIO_MOD_LIGHT_CLEAR] = "clear",
116	[IIO_MOD_LIGHT_RED] = "red",
117	[IIO_MOD_LIGHT_GREEN] = "green",
118	[IIO_MOD_LIGHT_BLUE] = "blue",
119	[IIO_MOD_LIGHT_UV] = "uv",
120	[IIO_MOD_LIGHT_UVA] = "uva",
121	[IIO_MOD_LIGHT_UVB] = "uvb",
122	[IIO_MOD_LIGHT_DUV] = "duv",
123	[IIO_MOD_QUATERNION] = "quaternion",
124	[IIO_MOD_TEMP_AMBIENT] = "ambient",
125	[IIO_MOD_TEMP_OBJECT] = "object",
126	[IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
127	[IIO_MOD_NORTH_TRUE] = "from_north_true",
128	[IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
129	[IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
130	[IIO_MOD_RUNNING] = "running",
131	[IIO_MOD_JOGGING] = "jogging",
132	[IIO_MOD_WALKING] = "walking",
133	[IIO_MOD_STILL] = "still",
134	[IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
135	[IIO_MOD_I] = "i",
136	[IIO_MOD_Q] = "q",
137	[IIO_MOD_CO2] = "co2",
138	[IIO_MOD_VOC] = "voc",
139	[IIO_MOD_PM1] = "pm1",
140	[IIO_MOD_PM2P5] = "pm2p5",
141	[IIO_MOD_PM4] = "pm4",
142	[IIO_MOD_PM10] = "pm10",
143	[IIO_MOD_ETHANOL] = "ethanol",
144	[IIO_MOD_H2] = "h2",
145	[IIO_MOD_O2] = "o2",
146	[IIO_MOD_LINEAR_X] = "linear_x",
147	[IIO_MOD_LINEAR_Y] = "linear_y",
148	[IIO_MOD_LINEAR_Z] = "linear_z",
149	[IIO_MOD_PITCH] = "pitch",
150	[IIO_MOD_YAW] = "yaw",
151	[IIO_MOD_ROLL] = "roll",
152};
153
154/* relies on pairs of these shared then separate */
155static const char * const iio_chan_info_postfix[] = {
156	[IIO_CHAN_INFO_RAW] = "raw",
157	[IIO_CHAN_INFO_PROCESSED] = "input",
158	[IIO_CHAN_INFO_SCALE] = "scale",
159	[IIO_CHAN_INFO_OFFSET] = "offset",
160	[IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
161	[IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
162	[IIO_CHAN_INFO_PEAK] = "peak_raw",
163	[IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
164	[IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
165	[IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
166	[IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
167	= "filter_low_pass_3db_frequency",
168	[IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
169	= "filter_high_pass_3db_frequency",
170	[IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
171	[IIO_CHAN_INFO_FREQUENCY] = "frequency",
172	[IIO_CHAN_INFO_PHASE] = "phase",
173	[IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
174	[IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
175	[IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
176	[IIO_CHAN_INFO_INT_TIME] = "integration_time",
177	[IIO_CHAN_INFO_ENABLE] = "en",
178	[IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
179	[IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
180	[IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
181	[IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
182	[IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
183	[IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
184	[IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
185	[IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
186	[IIO_CHAN_INFO_ZEROPOINT] = "zeropoint",
187	[IIO_CHAN_INFO_TROUGH] = "trough_raw",
188};
189/**
190 * iio_device_id() - query the unique ID for the device
191 * @indio_dev:		Device structure whose ID is being queried
192 *
193 * The IIO device ID is a unique index used for example for the naming
194 * of the character device /dev/iio\:device[ID].
195 *
196 * Returns: Unique ID for the device.
197 */
198int iio_device_id(struct iio_dev *indio_dev)
199{
200	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
201
202	return iio_dev_opaque->id;
203}
204EXPORT_SYMBOL_GPL(iio_device_id);
205
206/**
207 * iio_buffer_enabled() - helper function to test if the buffer is enabled
208 * @indio_dev:		IIO device structure for device
209 *
210 * Returns: True, if the buffer is enabled.
211 */
212bool iio_buffer_enabled(struct iio_dev *indio_dev)
213{
214	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
215
216	return iio_dev_opaque->currentmode & INDIO_ALL_BUFFER_MODES;
217}
218EXPORT_SYMBOL_GPL(iio_buffer_enabled);
219
220#if defined(CONFIG_DEBUG_FS)
221/*
222 * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
223 * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
224 */
225struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
226{
227	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
228
229	return iio_dev_opaque->debugfs_dentry;
230}
231EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
232#endif
233
234/**
235 * iio_find_channel_from_si() - get channel from its scan index
236 * @indio_dev:		device
237 * @si:			scan index to match
238 *
239 * Returns:
240 * Constant pointer to iio_chan_spec, if scan index matches, NULL on failure.
241 */
242const struct iio_chan_spec
243*iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
244{
245	int i;
246
247	for (i = 0; i < indio_dev->num_channels; i++)
248		if (indio_dev->channels[i].scan_index == si)
249			return &indio_dev->channels[i];
250	return NULL;
251}
252
253/* This turns up an awful lot */
254ssize_t iio_read_const_attr(struct device *dev,
255			    struct device_attribute *attr,
256			    char *buf)
257{
258	return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
259}
260EXPORT_SYMBOL(iio_read_const_attr);
261
262/**
263 * iio_device_set_clock() - Set current timestamping clock for the device
264 * @indio_dev: IIO device structure containing the device
265 * @clock_id: timestamping clock POSIX identifier to set.
266 *
267 * Returns: 0 on success, or a negative error code.
268 */
269int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
270{
271	int ret;
272	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
273	const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
274
275	ret = mutex_lock_interruptible(&iio_dev_opaque->mlock);
276	if (ret)
277		return ret;
278	if ((ev_int && iio_event_enabled(ev_int)) ||
279	    iio_buffer_enabled(indio_dev)) {
280		mutex_unlock(&iio_dev_opaque->mlock);
281		return -EBUSY;
282	}
283	iio_dev_opaque->clock_id = clock_id;
284	mutex_unlock(&iio_dev_opaque->mlock);
285
286	return 0;
287}
288EXPORT_SYMBOL(iio_device_set_clock);
289
290/**
291 * iio_device_get_clock() - Retrieve current timestamping clock for the device
292 * @indio_dev: IIO device structure containing the device
293 *
294 * Returns: Clock ID of the current timestamping clock for the device.
295 */
296clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
297{
298	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
299
300	return iio_dev_opaque->clock_id;
301}
302EXPORT_SYMBOL(iio_device_get_clock);
303
304/**
305 * iio_get_time_ns() - utility function to get a time stamp for events etc
306 * @indio_dev: device
307 *
308 * Returns: Timestamp of the event in nanoseconds.
309 */
310s64 iio_get_time_ns(const struct iio_dev *indio_dev)
311{
312	struct timespec64 tp;
313
314	switch (iio_device_get_clock(indio_dev)) {
315	case CLOCK_REALTIME:
316		return ktime_get_real_ns();
317	case CLOCK_MONOTONIC:
318		return ktime_get_ns();
319	case CLOCK_MONOTONIC_RAW:
320		return ktime_get_raw_ns();
321	case CLOCK_REALTIME_COARSE:
322		return ktime_to_ns(ktime_get_coarse_real());
323	case CLOCK_MONOTONIC_COARSE:
324		ktime_get_coarse_ts64(&tp);
325		return timespec64_to_ns(&tp);
326	case CLOCK_BOOTTIME:
327		return ktime_get_boottime_ns();
328	case CLOCK_TAI:
329		return ktime_get_clocktai_ns();
330	default:
331		BUG();
332	}
333}
334EXPORT_SYMBOL(iio_get_time_ns);
335
336static int __init iio_init(void)
337{
338	int ret;
339
340	/* Register sysfs bus */
341	ret  = bus_register(&iio_bus_type);
342	if (ret < 0) {
343		pr_err("could not register bus type\n");
344		goto error_nothing;
345	}
346
347	ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
348	if (ret < 0) {
349		pr_err("failed to allocate char dev region\n");
350		goto error_unregister_bus_type;
351	}
352
353	iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
354
355	return 0;
356
357error_unregister_bus_type:
358	bus_unregister(&iio_bus_type);
359error_nothing:
360	return ret;
361}
362
363static void __exit iio_exit(void)
364{
365	if (iio_devt)
366		unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
367	bus_unregister(&iio_bus_type);
368	debugfs_remove(iio_debugfs_dentry);
369}
370
371#if defined(CONFIG_DEBUG_FS)
372static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
373			      size_t count, loff_t *ppos)
374{
375	struct iio_dev *indio_dev = file->private_data;
376	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
377	unsigned int val = 0;
378	int ret;
379
380	if (*ppos > 0)
381		return simple_read_from_buffer(userbuf, count, ppos,
382					       iio_dev_opaque->read_buf,
383					       iio_dev_opaque->read_buf_len);
384
385	ret = indio_dev->info->debugfs_reg_access(indio_dev,
386						  iio_dev_opaque->cached_reg_addr,
387						  0, &val);
388	if (ret) {
389		dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
390		return ret;
391	}
392
393	iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
394						sizeof(iio_dev_opaque->read_buf),
395						"0x%X\n", val);
396
397	return simple_read_from_buffer(userbuf, count, ppos,
398				       iio_dev_opaque->read_buf,
399				       iio_dev_opaque->read_buf_len);
400}
401
402static ssize_t iio_debugfs_write_reg(struct file *file,
403		     const char __user *userbuf, size_t count, loff_t *ppos)
404{
405	struct iio_dev *indio_dev = file->private_data;
406	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
407	unsigned int reg, val;
408	char buf[80];
409	int ret;
410
411	count = min(count, sizeof(buf) - 1);
412	if (copy_from_user(buf, userbuf, count))
413		return -EFAULT;
414
415	buf[count] = 0;
416
417	ret = sscanf(buf, "%i %i", &reg, &val);
418
419	switch (ret) {
420	case 1:
421		iio_dev_opaque->cached_reg_addr = reg;
422		break;
423	case 2:
424		iio_dev_opaque->cached_reg_addr = reg;
425		ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
426							  val, NULL);
427		if (ret) {
428			dev_err(indio_dev->dev.parent, "%s: write failed\n",
429				__func__);
430			return ret;
431		}
432		break;
433	default:
434		return -EINVAL;
435	}
436
437	return count;
438}
439
440static const struct file_operations iio_debugfs_reg_fops = {
441	.open = simple_open,
442	.read = iio_debugfs_read_reg,
443	.write = iio_debugfs_write_reg,
444};
445
446static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
447{
448	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
449
450	debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
451}
452
453static void iio_device_register_debugfs(struct iio_dev *indio_dev)
454{
455	struct iio_dev_opaque *iio_dev_opaque;
456
457	if (indio_dev->info->debugfs_reg_access == NULL)
458		return;
459
460	if (!iio_debugfs_dentry)
461		return;
462
463	iio_dev_opaque = to_iio_dev_opaque(indio_dev);
464
465	iio_dev_opaque->debugfs_dentry =
466		debugfs_create_dir(dev_name(&indio_dev->dev),
467				   iio_debugfs_dentry);
468
469	debugfs_create_file("direct_reg_access", 0644,
470			    iio_dev_opaque->debugfs_dentry, indio_dev,
471			    &iio_debugfs_reg_fops);
472}
473#else
474static void iio_device_register_debugfs(struct iio_dev *indio_dev)
475{
476}
477
478static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
479{
480}
481#endif /* CONFIG_DEBUG_FS */
482
483static ssize_t iio_read_channel_ext_info(struct device *dev,
484				     struct device_attribute *attr,
485				     char *buf)
486{
487	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
488	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
489	const struct iio_chan_spec_ext_info *ext_info;
490
491	ext_info = &this_attr->c->ext_info[this_attr->address];
492
493	return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
494}
495
496static ssize_t iio_write_channel_ext_info(struct device *dev,
497				     struct device_attribute *attr,
498				     const char *buf, size_t len)
499{
500	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
501	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
502	const struct iio_chan_spec_ext_info *ext_info;
503
504	ext_info = &this_attr->c->ext_info[this_attr->address];
505
506	return ext_info->write(indio_dev, ext_info->private,
507			       this_attr->c, buf, len);
508}
509
510ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
511	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
512{
513	const struct iio_enum *e = (const struct iio_enum *)priv;
514	unsigned int i;
515	size_t len = 0;
516
517	if (!e->num_items)
518		return 0;
519
520	for (i = 0; i < e->num_items; ++i) {
521		if (!e->items[i])
522			continue;
523		len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
524	}
525
526	/* replace last space with a newline */
527	buf[len - 1] = '\n';
528
529	return len;
530}
531EXPORT_SYMBOL_GPL(iio_enum_available_read);
532
533ssize_t iio_enum_read(struct iio_dev *indio_dev,
534	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
535{
536	const struct iio_enum *e = (const struct iio_enum *)priv;
537	int i;
538
539	if (!e->get)
540		return -EINVAL;
541
542	i = e->get(indio_dev, chan);
543	if (i < 0)
544		return i;
545	if (i >= e->num_items || !e->items[i])
546		return -EINVAL;
547
548	return sysfs_emit(buf, "%s\n", e->items[i]);
549}
550EXPORT_SYMBOL_GPL(iio_enum_read);
551
552ssize_t iio_enum_write(struct iio_dev *indio_dev,
553	uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
554	size_t len)
555{
556	const struct iio_enum *e = (const struct iio_enum *)priv;
557	int ret;
558
559	if (!e->set)
560		return -EINVAL;
561
562	ret = __sysfs_match_string(e->items, e->num_items, buf);
563	if (ret < 0)
564		return ret;
565
566	ret = e->set(indio_dev, chan, ret);
567	return ret ? ret : len;
568}
569EXPORT_SYMBOL_GPL(iio_enum_write);
570
571static const struct iio_mount_matrix iio_mount_idmatrix = {
572	.rotation = {
573		"1", "0", "0",
574		"0", "1", "0",
575		"0", "0", "1"
576	}
577};
578
579static int iio_setup_mount_idmatrix(const struct device *dev,
580				    struct iio_mount_matrix *matrix)
581{
582	*matrix = iio_mount_idmatrix;
583	dev_info(dev, "mounting matrix not found: using identity...\n");
584	return 0;
585}
586
587ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
588			      const struct iio_chan_spec *chan, char *buf)
589{
590	const struct iio_mount_matrix *mtx;
591
592	mtx = ((iio_get_mount_matrix_t *)priv)(indio_dev, chan);
593	if (IS_ERR(mtx))
594		return PTR_ERR(mtx);
595
596	if (!mtx)
597		mtx = &iio_mount_idmatrix;
598
599	return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
600			  mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
601			  mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
602			  mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
603}
604EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
605
606/**
607 * iio_read_mount_matrix() - retrieve iio device mounting matrix from
608 *                           device "mount-matrix" property
609 * @dev:	device the mounting matrix property is assigned to
610 * @matrix:	where to store retrieved matrix
611 *
612 * If device is assigned no mounting matrix property, a default 3x3 identity
613 * matrix will be filled in.
614 *
615 * Returns: 0 if success, or a negative error code on failure.
616 */
617int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
618{
619	size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
620	int err;
621
622	err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
623	if (err == len)
624		return 0;
625
626	if (err >= 0)
627		/* Invalid number of matrix entries. */
628		return -EINVAL;
629
630	if (err != -EINVAL)
631		/* Invalid matrix declaration format. */
632		return err;
633
634	/* Matrix was not declared at all: fallback to identity. */
635	return iio_setup_mount_idmatrix(dev, matrix);
636}
637EXPORT_SYMBOL(iio_read_mount_matrix);
638
639static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
640				  int size, const int *vals)
641{
642	int tmp0, tmp1;
643	s64 tmp2;
644	bool scale_db = false;
645
646	switch (type) {
647	case IIO_VAL_INT:
648		return sysfs_emit_at(buf, offset, "%d", vals[0]);
649	case IIO_VAL_INT_PLUS_MICRO_DB:
650		scale_db = true;
651		fallthrough;
652	case IIO_VAL_INT_PLUS_MICRO:
653		if (vals[1] < 0)
654			return sysfs_emit_at(buf, offset, "-%d.%06u%s",
655					     abs(vals[0]), -vals[1],
656					     scale_db ? " dB" : "");
657		else
658			return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
659					     vals[1], scale_db ? " dB" : "");
660	case IIO_VAL_INT_PLUS_NANO:
661		if (vals[1] < 0)
662			return sysfs_emit_at(buf, offset, "-%d.%09u",
663					     abs(vals[0]), -vals[1]);
664		else
665			return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
666					     vals[1]);
667	case IIO_VAL_FRACTIONAL:
668		tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
669		tmp1 = vals[1];
670		tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
671		if ((tmp2 < 0) && (tmp0 == 0))
672			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
673		else
674			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
675					     abs(tmp1));
676	case IIO_VAL_FRACTIONAL_LOG2:
677		tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
678		tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
679		if (tmp0 == 0 && tmp2 < 0)
680			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
681		else
682			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
683					     abs(tmp1));
684	case IIO_VAL_INT_MULTIPLE:
685	{
686		int i;
687		int l = 0;
688
689		for (i = 0; i < size; ++i)
690			l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
691		return l;
692	}
693	case IIO_VAL_CHAR:
694		return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
695	case IIO_VAL_INT_64:
696		tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
697		return sysfs_emit_at(buf, offset, "%lld", tmp2);
698	default:
699		return 0;
700	}
701}
702
703/**
704 * iio_format_value() - Formats a IIO value into its string representation
705 * @buf:	The buffer to which the formatted value gets written
706 *		which is assumed to be big enough (i.e. PAGE_SIZE).
707 * @type:	One of the IIO_VAL_* constants. This decides how the val
708 *		and val2 parameters are formatted.
709 * @size:	Number of IIO value entries contained in vals
710 * @vals:	Pointer to the values, exact meaning depends on the
711 *		type parameter.
712 *
713 * Returns:
714 * 0 by default, a negative number on failure or the total number of characters
715 * written for a type that belongs to the IIO_VAL_* constant.
716 */
717ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
718{
719	ssize_t len;
720
721	len = __iio_format_value(buf, 0, type, size, vals);
722	if (len >= PAGE_SIZE - 1)
723		return -EFBIG;
724
725	return len + sysfs_emit_at(buf, len, "\n");
726}
727EXPORT_SYMBOL_GPL(iio_format_value);
728
729static ssize_t iio_read_channel_label(struct device *dev,
730				      struct device_attribute *attr,
731				      char *buf)
732{
733	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
734	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
735
736	if (indio_dev->info->read_label)
737		return indio_dev->info->read_label(indio_dev, this_attr->c, buf);
738
739	if (this_attr->c->extend_name)
740		return sysfs_emit(buf, "%s\n", this_attr->c->extend_name);
741
742	return -EINVAL;
743}
744
745static ssize_t iio_read_channel_info(struct device *dev,
746				     struct device_attribute *attr,
747				     char *buf)
748{
749	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
750	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
751	int vals[INDIO_MAX_RAW_ELEMENTS];
752	int ret;
753	int val_len = 2;
754
755	if (indio_dev->info->read_raw_multi)
756		ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
757							INDIO_MAX_RAW_ELEMENTS,
758							vals, &val_len,
759							this_attr->address);
760	else
761		ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
762				    &vals[0], &vals[1], this_attr->address);
763
764	if (ret < 0)
765		return ret;
766
767	return iio_format_value(buf, ret, val_len, vals);
768}
769
770static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
771			       const char *prefix, const char *suffix)
772{
773	ssize_t len;
774	int stride;
775	int i;
776
777	switch (type) {
778	case IIO_VAL_INT:
779		stride = 1;
780		break;
781	default:
782		stride = 2;
783		break;
784	}
785
786	len = sysfs_emit(buf, prefix);
787
788	for (i = 0; i <= length - stride; i += stride) {
789		if (i != 0) {
790			len += sysfs_emit_at(buf, len, " ");
791			if (len >= PAGE_SIZE)
792				return -EFBIG;
793		}
794
795		len += __iio_format_value(buf, len, type, stride, &vals[i]);
796		if (len >= PAGE_SIZE)
797			return -EFBIG;
798	}
799
800	len += sysfs_emit_at(buf, len, "%s\n", suffix);
801
802	return len;
803}
804
805static ssize_t iio_format_avail_list(char *buf, const int *vals,
806				     int type, int length)
807{
808
809	return iio_format_list(buf, vals, type, length, "", "");
810}
811
812static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
813{
814	int length;
815
816	/*
817	 * length refers to the array size , not the number of elements.
818	 * The purpose is to print the range [min , step ,max] so length should
819	 * be 3 in case of int, and 6 for other types.
820	 */
821	switch (type) {
822	case IIO_VAL_INT:
823		length = 3;
824		break;
825	default:
826		length = 6;
827		break;
828	}
829
830	return iio_format_list(buf, vals, type, length, "[", "]");
831}
832
833static ssize_t iio_read_channel_info_avail(struct device *dev,
834					   struct device_attribute *attr,
835					   char *buf)
836{
837	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
838	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
839	const int *vals;
840	int ret;
841	int length;
842	int type;
843
844	ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
845					  &vals, &type, &length,
846					  this_attr->address);
847
848	if (ret < 0)
849		return ret;
850	switch (ret) {
851	case IIO_AVAIL_LIST:
852		return iio_format_avail_list(buf, vals, type, length);
853	case IIO_AVAIL_RANGE:
854		return iio_format_avail_range(buf, vals, type);
855	default:
856		return -EINVAL;
857	}
858}
859
860/**
861 * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
862 * @str: The string to parse
863 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
864 * @integer: The integer part of the number
865 * @fract: The fractional part of the number
866 * @scale_db: True if this should parse as dB
867 *
868 * Returns:
869 * 0 on success, or a negative error code if the string could not be parsed.
870 */
871static int __iio_str_to_fixpoint(const char *str, int fract_mult,
872				 int *integer, int *fract, bool scale_db)
873{
874	int i = 0, f = 0;
875	bool integer_part = true, negative = false;
876
877	if (fract_mult == 0) {
878		*fract = 0;
879
880		return kstrtoint(str, 0, integer);
881	}
882
883	if (str[0] == '-') {
884		negative = true;
885		str++;
886	} else if (str[0] == '+') {
887		str++;
888	}
889
890	while (*str) {
891		if ('0' <= *str && *str <= '9') {
892			if (integer_part) {
893				i = i * 10 + *str - '0';
894			} else {
895				f += fract_mult * (*str - '0');
896				fract_mult /= 10;
897			}
898		} else if (*str == '\n') {
899			if (*(str + 1) == '\0')
900				break;
901			return -EINVAL;
902		} else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
903			/* Ignore the dB suffix */
904			str += sizeof(" dB") - 1;
905			continue;
906		} else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
907			/* Ignore the dB suffix */
908			str += sizeof("dB") - 1;
909			continue;
910		} else if (*str == '.' && integer_part) {
911			integer_part = false;
912		} else {
913			return -EINVAL;
914		}
915		str++;
916	}
917
918	if (negative) {
919		if (i)
920			i = -i;
921		else
922			f = -f;
923	}
924
925	*integer = i;
926	*fract = f;
927
928	return 0;
929}
930
931/**
932 * iio_str_to_fixpoint() - Parse a fixed-point number from a string
933 * @str: The string to parse
934 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
935 * @integer: The integer part of the number
936 * @fract: The fractional part of the number
937 *
938 * Returns:
939 * 0 on success, or a negative error code if the string could not be parsed.
940 */
941int iio_str_to_fixpoint(const char *str, int fract_mult,
942			int *integer, int *fract)
943{
944	return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
945}
946EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
947
948static ssize_t iio_write_channel_info(struct device *dev,
949				      struct device_attribute *attr,
950				      const char *buf,
951				      size_t len)
952{
953	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
954	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
955	int ret, fract_mult = 100000;
956	int integer, fract = 0;
957	bool is_char = false;
958	bool scale_db = false;
959
960	/* Assumes decimal - precision based on number of digits */
961	if (!indio_dev->info->write_raw)
962		return -EINVAL;
963
964	if (indio_dev->info->write_raw_get_fmt)
965		switch (indio_dev->info->write_raw_get_fmt(indio_dev,
966			this_attr->c, this_attr->address)) {
967		case IIO_VAL_INT:
968			fract_mult = 0;
969			break;
970		case IIO_VAL_INT_PLUS_MICRO_DB:
971			scale_db = true;
972			fallthrough;
973		case IIO_VAL_INT_PLUS_MICRO:
974			fract_mult = 100000;
975			break;
976		case IIO_VAL_INT_PLUS_NANO:
977			fract_mult = 100000000;
978			break;
979		case IIO_VAL_CHAR:
980			is_char = true;
981			break;
982		default:
983			return -EINVAL;
984		}
985
986	if (is_char) {
987		char ch;
988
989		if (sscanf(buf, "%c", &ch) != 1)
990			return -EINVAL;
991		integer = ch;
992	} else {
993		ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
994					    scale_db);
995		if (ret)
996			return ret;
997	}
998
999	ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
1000					 integer, fract, this_attr->address);
1001	if (ret)
1002		return ret;
1003
1004	return len;
1005}
1006
1007static
1008int __iio_device_attr_init(struct device_attribute *dev_attr,
1009			   const char *postfix,
1010			   struct iio_chan_spec const *chan,
1011			   ssize_t (*readfunc)(struct device *dev,
1012					       struct device_attribute *attr,
1013					       char *buf),
1014			   ssize_t (*writefunc)(struct device *dev,
1015						struct device_attribute *attr,
1016						const char *buf,
1017						size_t len),
1018			   enum iio_shared_by shared_by)
1019{
1020	int ret = 0;
1021	char *name = NULL;
1022	char *full_postfix;
1023
1024	sysfs_attr_init(&dev_attr->attr);
1025
1026	/* Build up postfix of <extend_name>_<modifier>_postfix */
1027	if (chan->modified && (shared_by == IIO_SEPARATE)) {
1028		if (chan->extend_name)
1029			full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1030						 iio_modifier_names[chan->channel2],
1031						 chan->extend_name,
1032						 postfix);
1033		else
1034			full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1035						 iio_modifier_names[chan->channel2],
1036						 postfix);
1037	} else {
1038		if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1039			full_postfix = kstrdup(postfix, GFP_KERNEL);
1040		else
1041			full_postfix = kasprintf(GFP_KERNEL,
1042						 "%s_%s",
1043						 chan->extend_name,
1044						 postfix);
1045	}
1046	if (full_postfix == NULL)
1047		return -ENOMEM;
1048
1049	if (chan->differential) { /* Differential can not have modifier */
1050		switch (shared_by) {
1051		case IIO_SHARED_BY_ALL:
1052			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1053			break;
1054		case IIO_SHARED_BY_DIR:
1055			name = kasprintf(GFP_KERNEL, "%s_%s",
1056						iio_direction[chan->output],
1057						full_postfix);
1058			break;
1059		case IIO_SHARED_BY_TYPE:
1060			name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1061					    iio_direction[chan->output],
1062					    iio_chan_type_name_spec[chan->type],
1063					    iio_chan_type_name_spec[chan->type],
1064					    full_postfix);
1065			break;
1066		case IIO_SEPARATE:
1067			if (!chan->indexed) {
1068				WARN(1, "Differential channels must be indexed\n");
1069				ret = -EINVAL;
1070				goto error_free_full_postfix;
1071			}
1072			name = kasprintf(GFP_KERNEL,
1073					    "%s_%s%d-%s%d_%s",
1074					    iio_direction[chan->output],
1075					    iio_chan_type_name_spec[chan->type],
1076					    chan->channel,
1077					    iio_chan_type_name_spec[chan->type],
1078					    chan->channel2,
1079					    full_postfix);
1080			break;
1081		}
1082	} else { /* Single ended */
1083		switch (shared_by) {
1084		case IIO_SHARED_BY_ALL:
1085			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1086			break;
1087		case IIO_SHARED_BY_DIR:
1088			name = kasprintf(GFP_KERNEL, "%s_%s",
1089						iio_direction[chan->output],
1090						full_postfix);
1091			break;
1092		case IIO_SHARED_BY_TYPE:
1093			name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1094					    iio_direction[chan->output],
1095					    iio_chan_type_name_spec[chan->type],
1096					    full_postfix);
1097			break;
1098
1099		case IIO_SEPARATE:
1100			if (chan->indexed)
1101				name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1102						    iio_direction[chan->output],
1103						    iio_chan_type_name_spec[chan->type],
1104						    chan->channel,
1105						    full_postfix);
1106			else
1107				name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1108						    iio_direction[chan->output],
1109						    iio_chan_type_name_spec[chan->type],
1110						    full_postfix);
1111			break;
1112		}
1113	}
1114	if (name == NULL) {
1115		ret = -ENOMEM;
1116		goto error_free_full_postfix;
1117	}
1118	dev_attr->attr.name = name;
1119
1120	if (readfunc) {
1121		dev_attr->attr.mode |= 0444;
1122		dev_attr->show = readfunc;
1123	}
1124
1125	if (writefunc) {
1126		dev_attr->attr.mode |= 0200;
1127		dev_attr->store = writefunc;
1128	}
1129
1130error_free_full_postfix:
1131	kfree(full_postfix);
1132
1133	return ret;
1134}
1135
1136static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1137{
1138	kfree(dev_attr->attr.name);
1139}
1140
1141int __iio_add_chan_devattr(const char *postfix,
1142			   struct iio_chan_spec const *chan,
1143			   ssize_t (*readfunc)(struct device *dev,
1144					       struct device_attribute *attr,
1145					       char *buf),
1146			   ssize_t (*writefunc)(struct device *dev,
1147						struct device_attribute *attr,
1148						const char *buf,
1149						size_t len),
1150			   u64 mask,
1151			   enum iio_shared_by shared_by,
1152			   struct device *dev,
1153			   struct iio_buffer *buffer,
1154			   struct list_head *attr_list)
1155{
1156	int ret;
1157	struct iio_dev_attr *iio_attr, *t;
1158
1159	iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1160	if (iio_attr == NULL)
1161		return -ENOMEM;
1162	ret = __iio_device_attr_init(&iio_attr->dev_attr,
1163				     postfix, chan,
1164				     readfunc, writefunc, shared_by);
1165	if (ret)
1166		goto error_iio_dev_attr_free;
1167	iio_attr->c = chan;
1168	iio_attr->address = mask;
1169	iio_attr->buffer = buffer;
1170	list_for_each_entry(t, attr_list, l)
1171		if (strcmp(t->dev_attr.attr.name,
1172			   iio_attr->dev_attr.attr.name) == 0) {
1173			if (shared_by == IIO_SEPARATE)
1174				dev_err(dev, "tried to double register : %s\n",
1175					t->dev_attr.attr.name);
1176			ret = -EBUSY;
1177			goto error_device_attr_deinit;
1178		}
1179	list_add(&iio_attr->l, attr_list);
1180
1181	return 0;
1182
1183error_device_attr_deinit:
1184	__iio_device_attr_deinit(&iio_attr->dev_attr);
1185error_iio_dev_attr_free:
1186	kfree(iio_attr);
1187	return ret;
1188}
1189
1190static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1191					 struct iio_chan_spec const *chan)
1192{
1193	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1194	int ret;
1195
1196	if (!indio_dev->info->read_label && !chan->extend_name)
1197		return 0;
1198
1199	ret = __iio_add_chan_devattr("label",
1200				     chan,
1201				     &iio_read_channel_label,
1202				     NULL,
1203				     0,
1204				     IIO_SEPARATE,
1205				     &indio_dev->dev,
1206				     NULL,
1207				     &iio_dev_opaque->channel_attr_list);
1208	if (ret < 0)
1209		return ret;
1210
1211	return 1;
1212}
1213
1214static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1215					 struct iio_chan_spec const *chan,
1216					 enum iio_shared_by shared_by,
1217					 const long *infomask)
1218{
1219	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1220	int i, ret, attrcount = 0;
1221
1222	for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1223		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1224			return -EINVAL;
1225		ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1226					     chan,
1227					     &iio_read_channel_info,
1228					     &iio_write_channel_info,
1229					     i,
1230					     shared_by,
1231					     &indio_dev->dev,
1232					     NULL,
1233					     &iio_dev_opaque->channel_attr_list);
1234		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1235			continue;
1236		if (ret < 0)
1237			return ret;
1238		attrcount++;
1239	}
1240
1241	return attrcount;
1242}
1243
1244static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1245					       struct iio_chan_spec const *chan,
1246					       enum iio_shared_by shared_by,
1247					       const long *infomask)
1248{
1249	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1250	int i, ret, attrcount = 0;
1251	char *avail_postfix;
1252
1253	for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1254		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1255			return -EINVAL;
1256		avail_postfix = kasprintf(GFP_KERNEL,
1257					  "%s_available",
1258					  iio_chan_info_postfix[i]);
1259		if (!avail_postfix)
1260			return -ENOMEM;
1261
1262		ret = __iio_add_chan_devattr(avail_postfix,
1263					     chan,
1264					     &iio_read_channel_info_avail,
1265					     NULL,
1266					     i,
1267					     shared_by,
1268					     &indio_dev->dev,
1269					     NULL,
1270					     &iio_dev_opaque->channel_attr_list);
1271		kfree(avail_postfix);
1272		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1273			continue;
1274		if (ret < 0)
1275			return ret;
1276		attrcount++;
1277	}
1278
1279	return attrcount;
1280}
1281
1282static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1283					struct iio_chan_spec const *chan)
1284{
1285	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1286	int ret, attrcount = 0;
1287	const struct iio_chan_spec_ext_info *ext_info;
1288
1289	if (chan->channel < 0)
1290		return 0;
1291	ret = iio_device_add_info_mask_type(indio_dev, chan,
1292					    IIO_SEPARATE,
1293					    &chan->info_mask_separate);
1294	if (ret < 0)
1295		return ret;
1296	attrcount += ret;
1297
1298	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1299						  IIO_SEPARATE,
1300						  &chan->info_mask_separate_available);
1301	if (ret < 0)
1302		return ret;
1303	attrcount += ret;
1304
1305	ret = iio_device_add_info_mask_type(indio_dev, chan,
1306					    IIO_SHARED_BY_TYPE,
1307					    &chan->info_mask_shared_by_type);
1308	if (ret < 0)
1309		return ret;
1310	attrcount += ret;
1311
1312	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1313						  IIO_SHARED_BY_TYPE,
1314						  &chan->info_mask_shared_by_type_available);
1315	if (ret < 0)
1316		return ret;
1317	attrcount += ret;
1318
1319	ret = iio_device_add_info_mask_type(indio_dev, chan,
1320					    IIO_SHARED_BY_DIR,
1321					    &chan->info_mask_shared_by_dir);
1322	if (ret < 0)
1323		return ret;
1324	attrcount += ret;
1325
1326	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1327						  IIO_SHARED_BY_DIR,
1328						  &chan->info_mask_shared_by_dir_available);
1329	if (ret < 0)
1330		return ret;
1331	attrcount += ret;
1332
1333	ret = iio_device_add_info_mask_type(indio_dev, chan,
1334					    IIO_SHARED_BY_ALL,
1335					    &chan->info_mask_shared_by_all);
1336	if (ret < 0)
1337		return ret;
1338	attrcount += ret;
1339
1340	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1341						  IIO_SHARED_BY_ALL,
1342						  &chan->info_mask_shared_by_all_available);
1343	if (ret < 0)
1344		return ret;
1345	attrcount += ret;
1346
1347	ret = iio_device_add_channel_label(indio_dev, chan);
1348	if (ret < 0)
1349		return ret;
1350	attrcount += ret;
1351
1352	if (chan->ext_info) {
1353		unsigned int i = 0;
1354
1355		for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1356			ret = __iio_add_chan_devattr(ext_info->name,
1357					chan,
1358					ext_info->read ?
1359					    &iio_read_channel_ext_info : NULL,
1360					ext_info->write ?
1361					    &iio_write_channel_ext_info : NULL,
1362					i,
1363					ext_info->shared,
1364					&indio_dev->dev,
1365					NULL,
1366					&iio_dev_opaque->channel_attr_list);
1367			i++;
1368			if (ret == -EBUSY && ext_info->shared)
1369				continue;
1370
1371			if (ret)
1372				return ret;
1373
1374			attrcount++;
1375		}
1376	}
1377
1378	return attrcount;
1379}
1380
1381/**
1382 * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1383 * @attr_list: List of IIO device attributes
1384 *
1385 * This function frees the memory allocated for each of the IIO device
1386 * attributes in the list.
1387 */
1388void iio_free_chan_devattr_list(struct list_head *attr_list)
1389{
1390	struct iio_dev_attr *p, *n;
1391
1392	list_for_each_entry_safe(p, n, attr_list, l) {
1393		kfree_const(p->dev_attr.attr.name);
1394		list_del(&p->l);
1395		kfree(p);
1396	}
1397}
1398
1399static ssize_t name_show(struct device *dev, struct device_attribute *attr,
1400			 char *buf)
1401{
1402	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1403
1404	return sysfs_emit(buf, "%s\n", indio_dev->name);
1405}
1406
1407static DEVICE_ATTR_RO(name);
1408
1409static ssize_t label_show(struct device *dev, struct device_attribute *attr,
1410			  char *buf)
1411{
1412	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1413
1414	return sysfs_emit(buf, "%s\n", indio_dev->label);
1415}
1416
1417static DEVICE_ATTR_RO(label);
1418
1419static const char * const clock_names[] = {
1420	[CLOCK_REALTIME]	 	= "realtime",
1421	[CLOCK_MONOTONIC]	 	= "monotonic",
1422	[CLOCK_PROCESS_CPUTIME_ID]	= "process_cputime_id",
1423	[CLOCK_THREAD_CPUTIME_ID]	= "thread_cputime_id",
1424	[CLOCK_MONOTONIC_RAW]	 	= "monotonic_raw",
1425	[CLOCK_REALTIME_COARSE]	 	= "realtime_coarse",
1426	[CLOCK_MONOTONIC_COARSE] 	= "monotonic_coarse",
1427	[CLOCK_BOOTTIME]	 	= "boottime",
1428	[CLOCK_REALTIME_ALARM]		= "realtime_alarm",
1429	[CLOCK_BOOTTIME_ALARM]		= "boottime_alarm",
1430	[CLOCK_SGI_CYCLE]		= "sgi_cycle",
1431	[CLOCK_TAI]		 	= "tai",
1432};
1433
1434static ssize_t current_timestamp_clock_show(struct device *dev,
1435					    struct device_attribute *attr,
1436					    char *buf)
1437{
1438	const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1439	const clockid_t clk = iio_device_get_clock(indio_dev);
1440
1441	switch (clk) {
1442	case CLOCK_REALTIME:
1443	case CLOCK_MONOTONIC:
1444	case CLOCK_MONOTONIC_RAW:
1445	case CLOCK_REALTIME_COARSE:
1446	case CLOCK_MONOTONIC_COARSE:
1447	case CLOCK_BOOTTIME:
1448	case CLOCK_TAI:
1449		break;
1450	default:
1451		BUG();
1452	}
1453
1454	return sysfs_emit(buf, "%s\n", clock_names[clk]);
1455}
1456
1457static ssize_t current_timestamp_clock_store(struct device *dev,
1458					     struct device_attribute *attr,
1459					     const char *buf, size_t len)
1460{
1461	clockid_t clk;
1462	int ret;
1463
1464	ret = sysfs_match_string(clock_names, buf);
1465	if (ret < 0)
1466		return ret;
1467	clk = ret;
1468
1469	switch (clk) {
1470	case CLOCK_REALTIME:
1471	case CLOCK_MONOTONIC:
1472	case CLOCK_MONOTONIC_RAW:
1473	case CLOCK_REALTIME_COARSE:
1474	case CLOCK_MONOTONIC_COARSE:
1475	case CLOCK_BOOTTIME:
1476	case CLOCK_TAI:
1477		break;
1478	default:
1479		return -EINVAL;
1480	}
1481
1482	ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1483	if (ret)
1484		return ret;
1485
1486	return len;
1487}
1488
1489int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1490				    const struct attribute_group *group)
1491{
1492	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1493	const struct attribute_group **new, **old = iio_dev_opaque->groups;
1494	unsigned int cnt = iio_dev_opaque->groupcounter;
1495
1496	new = krealloc_array(old, cnt + 2, sizeof(*new), GFP_KERNEL);
1497	if (!new)
1498		return -ENOMEM;
1499
1500	new[iio_dev_opaque->groupcounter++] = group;
1501	new[iio_dev_opaque->groupcounter] = NULL;
1502
1503	iio_dev_opaque->groups = new;
1504
1505	return 0;
1506}
1507
1508static DEVICE_ATTR_RW(current_timestamp_clock);
1509
1510static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1511{
1512	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1513	int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1514	struct iio_dev_attr *p;
1515	struct attribute **attr, *clk = NULL;
1516
1517	/* First count elements in any existing group */
1518	if (indio_dev->info->attrs) {
1519		attr = indio_dev->info->attrs->attrs;
1520		while (*attr++ != NULL)
1521			attrcount_orig++;
1522	}
1523	attrcount = attrcount_orig;
1524	/*
1525	 * New channel registration method - relies on the fact a group does
1526	 * not need to be initialized if its name is NULL.
1527	 */
1528	if (indio_dev->channels)
1529		for (i = 0; i < indio_dev->num_channels; i++) {
1530			const struct iio_chan_spec *chan =
1531				&indio_dev->channels[i];
1532
1533			if (chan->type == IIO_TIMESTAMP)
1534				clk = &dev_attr_current_timestamp_clock.attr;
1535
1536			ret = iio_device_add_channel_sysfs(indio_dev, chan);
1537			if (ret < 0)
1538				goto error_clear_attrs;
1539			attrcount += ret;
1540		}
1541
1542	if (iio_dev_opaque->event_interface)
1543		clk = &dev_attr_current_timestamp_clock.attr;
1544
1545	if (indio_dev->name)
1546		attrcount++;
1547	if (indio_dev->label)
1548		attrcount++;
1549	if (clk)
1550		attrcount++;
1551
1552	iio_dev_opaque->chan_attr_group.attrs =
1553		kcalloc(attrcount + 1,
1554			sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1555			GFP_KERNEL);
1556	if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1557		ret = -ENOMEM;
1558		goto error_clear_attrs;
1559	}
1560	/* Copy across original attributes, and point to original binary attributes */
1561	if (indio_dev->info->attrs) {
1562		memcpy(iio_dev_opaque->chan_attr_group.attrs,
1563		       indio_dev->info->attrs->attrs,
1564		       sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1565		       *attrcount_orig);
1566		iio_dev_opaque->chan_attr_group.is_visible =
1567			indio_dev->info->attrs->is_visible;
1568		iio_dev_opaque->chan_attr_group.bin_attrs =
1569			indio_dev->info->attrs->bin_attrs;
1570	}
1571	attrn = attrcount_orig;
1572	/* Add all elements from the list. */
1573	list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1574		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1575	if (indio_dev->name)
1576		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1577	if (indio_dev->label)
1578		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1579	if (clk)
1580		iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1581
1582	ret = iio_device_register_sysfs_group(indio_dev,
1583					      &iio_dev_opaque->chan_attr_group);
1584	if (ret)
1585		goto error_free_chan_attrs;
1586
1587	return 0;
1588
1589error_free_chan_attrs:
1590	kfree(iio_dev_opaque->chan_attr_group.attrs);
1591	iio_dev_opaque->chan_attr_group.attrs = NULL;
1592error_clear_attrs:
1593	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1594
1595	return ret;
1596}
1597
1598static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1599{
1600	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1601
1602	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1603	kfree(iio_dev_opaque->chan_attr_group.attrs);
1604	iio_dev_opaque->chan_attr_group.attrs = NULL;
1605	kfree(iio_dev_opaque->groups);
1606	iio_dev_opaque->groups = NULL;
1607}
1608
1609static void iio_dev_release(struct device *device)
1610{
1611	struct iio_dev *indio_dev = dev_to_iio_dev(device);
1612	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1613
1614	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1615		iio_device_unregister_trigger_consumer(indio_dev);
1616	iio_device_unregister_eventset(indio_dev);
1617	iio_device_unregister_sysfs(indio_dev);
1618
1619	iio_device_detach_buffers(indio_dev);
1620
1621	lockdep_unregister_key(&iio_dev_opaque->mlock_key);
1622
1623	ida_free(&iio_ida, iio_dev_opaque->id);
1624	kfree(iio_dev_opaque);
1625}
1626
1627const struct device_type iio_device_type = {
1628	.name = "iio_device",
1629	.release = iio_dev_release,
1630};
1631
1632/**
1633 * iio_device_alloc() - allocate an iio_dev from a driver
1634 * @parent:		Parent device.
1635 * @sizeof_priv:	Space to allocate for private structure.
1636 *
1637 * Returns:
1638 * Pointer to allocated iio_dev on success, NULL on failure.
1639 */
1640struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1641{
1642	struct iio_dev_opaque *iio_dev_opaque;
1643	struct iio_dev *indio_dev;
1644	size_t alloc_size;
1645
1646	alloc_size = sizeof(struct iio_dev_opaque);
1647	if (sizeof_priv) {
1648		alloc_size = ALIGN(alloc_size, IIO_DMA_MINALIGN);
1649		alloc_size += sizeof_priv;
1650	}
1651
1652	iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1653	if (!iio_dev_opaque)
1654		return NULL;
1655
1656	indio_dev = &iio_dev_opaque->indio_dev;
1657	indio_dev->priv = (char *)iio_dev_opaque +
1658		ALIGN(sizeof(struct iio_dev_opaque), IIO_DMA_MINALIGN);
1659
1660	indio_dev->dev.parent = parent;
1661	indio_dev->dev.type = &iio_device_type;
1662	indio_dev->dev.bus = &iio_bus_type;
1663	device_initialize(&indio_dev->dev);
1664	mutex_init(&iio_dev_opaque->mlock);
1665	mutex_init(&iio_dev_opaque->info_exist_lock);
1666	INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1667
1668	iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL);
1669	if (iio_dev_opaque->id < 0) {
1670		/* cannot use a dev_err as the name isn't available */
1671		pr_err("failed to get device id\n");
1672		kfree(iio_dev_opaque);
1673		return NULL;
1674	}
1675
1676	if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
1677		ida_free(&iio_ida, iio_dev_opaque->id);
1678		kfree(iio_dev_opaque);
1679		return NULL;
1680	}
1681
1682	INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1683	INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1684
1685	lockdep_register_key(&iio_dev_opaque->mlock_key);
1686	lockdep_set_class(&iio_dev_opaque->mlock, &iio_dev_opaque->mlock_key);
1687
1688	return indio_dev;
1689}
1690EXPORT_SYMBOL(iio_device_alloc);
1691
1692/**
1693 * iio_device_free() - free an iio_dev from a driver
1694 * @dev:		the iio_dev associated with the device
1695 */
1696void iio_device_free(struct iio_dev *dev)
1697{
1698	if (dev)
1699		put_device(&dev->dev);
1700}
1701EXPORT_SYMBOL(iio_device_free);
1702
1703static void devm_iio_device_release(void *iio_dev)
1704{
1705	iio_device_free(iio_dev);
1706}
1707
1708/**
1709 * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1710 * @parent:		Device to allocate iio_dev for, and parent for this IIO device
1711 * @sizeof_priv:	Space to allocate for private structure.
1712 *
1713 * Managed iio_device_alloc. iio_dev allocated with this function is
1714 * automatically freed on driver detach.
1715 *
1716 * Returns:
1717 * Pointer to allocated iio_dev on success, NULL on failure.
1718 */
1719struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1720{
1721	struct iio_dev *iio_dev;
1722	int ret;
1723
1724	iio_dev = iio_device_alloc(parent, sizeof_priv);
1725	if (!iio_dev)
1726		return NULL;
1727
1728	ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1729				       iio_dev);
1730	if (ret)
1731		return NULL;
1732
1733	return iio_dev;
1734}
1735EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1736
1737/**
1738 * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1739 * @inode:	Inode structure for identifying the device in the file system
1740 * @filp:	File structure for iio device used to keep and later access
1741 *		private data
1742 *
1743 * Returns: 0 on success or -EBUSY if the device is already opened
1744 */
1745static int iio_chrdev_open(struct inode *inode, struct file *filp)
1746{
1747	struct iio_dev_opaque *iio_dev_opaque =
1748		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1749	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1750	struct iio_dev_buffer_pair *ib;
1751
1752	if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1753		return -EBUSY;
1754
1755	iio_device_get(indio_dev);
1756
1757	ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1758	if (!ib) {
1759		iio_device_put(indio_dev);
1760		clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1761		return -ENOMEM;
1762	}
1763
1764	ib->indio_dev = indio_dev;
1765	ib->buffer = indio_dev->buffer;
1766
1767	filp->private_data = ib;
1768
1769	return 0;
1770}
1771
1772/**
1773 * iio_chrdev_release() - chrdev file close buffer access and ioctls
1774 * @inode:	Inode structure pointer for the char device
1775 * @filp:	File structure pointer for the char device
1776 *
1777 * Returns: 0 for successful release.
1778 */
1779static int iio_chrdev_release(struct inode *inode, struct file *filp)
1780{
1781	struct iio_dev_buffer_pair *ib = filp->private_data;
1782	struct iio_dev_opaque *iio_dev_opaque =
1783		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1784	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1785
1786	kfree(ib);
1787	clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1788	iio_device_put(indio_dev);
1789
1790	return 0;
1791}
1792
1793void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1794				       struct iio_ioctl_handler *h)
1795{
1796	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1797
1798	list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1799}
1800
1801void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1802{
1803	list_del(&h->entry);
1804}
1805
1806static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1807{
1808	struct iio_dev_buffer_pair *ib = filp->private_data;
1809	struct iio_dev *indio_dev = ib->indio_dev;
1810	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1811	struct iio_ioctl_handler *h;
1812	int ret = -ENODEV;
1813
1814	mutex_lock(&iio_dev_opaque->info_exist_lock);
1815
1816	/*
1817	 * The NULL check here is required to prevent crashing when a device
1818	 * is being removed while userspace would still have open file handles
1819	 * to try to access this device.
1820	 */
1821	if (!indio_dev->info)
1822		goto out_unlock;
1823
1824	list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1825		ret = h->ioctl(indio_dev, filp, cmd, arg);
1826		if (ret != IIO_IOCTL_UNHANDLED)
1827			break;
1828	}
1829
1830	if (ret == IIO_IOCTL_UNHANDLED)
1831		ret = -ENODEV;
1832
1833out_unlock:
1834	mutex_unlock(&iio_dev_opaque->info_exist_lock);
1835
1836	return ret;
1837}
1838
1839static const struct file_operations iio_buffer_fileops = {
1840	.owner = THIS_MODULE,
1841	.llseek = noop_llseek,
1842	.read = iio_buffer_read_outer_addr,
1843	.write = iio_buffer_write_outer_addr,
1844	.poll = iio_buffer_poll_addr,
1845	.unlocked_ioctl = iio_ioctl,
1846	.compat_ioctl = compat_ptr_ioctl,
1847	.open = iio_chrdev_open,
1848	.release = iio_chrdev_release,
1849};
1850
1851static const struct file_operations iio_event_fileops = {
1852	.owner = THIS_MODULE,
1853	.llseek = noop_llseek,
1854	.unlocked_ioctl = iio_ioctl,
1855	.compat_ioctl = compat_ptr_ioctl,
1856	.open = iio_chrdev_open,
1857	.release = iio_chrdev_release,
1858};
1859
1860static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1861{
1862	int i, j;
1863	const struct iio_chan_spec *channels = indio_dev->channels;
1864
1865	if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1866		return 0;
1867
1868	for (i = 0; i < indio_dev->num_channels - 1; i++) {
1869		if (channels[i].scan_index < 0)
1870			continue;
1871		for (j = i + 1; j < indio_dev->num_channels; j++)
1872			if (channels[i].scan_index == channels[j].scan_index) {
1873				dev_err(&indio_dev->dev,
1874					"Duplicate scan index %d\n",
1875					channels[i].scan_index);
1876				return -EINVAL;
1877			}
1878	}
1879
1880	return 0;
1881}
1882
1883static int iio_check_extended_name(const struct iio_dev *indio_dev)
1884{
1885	unsigned int i;
1886
1887	if (!indio_dev->info->read_label)
1888		return 0;
1889
1890	for (i = 0; i < indio_dev->num_channels; i++) {
1891		if (indio_dev->channels[i].extend_name) {
1892			dev_err(&indio_dev->dev,
1893				"Cannot use labels and extend_name at the same time\n");
1894			return -EINVAL;
1895		}
1896	}
1897
1898	return 0;
1899}
1900
1901static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1902
1903static void iio_sanity_check_avail_scan_masks(struct iio_dev *indio_dev)
1904{
1905	unsigned int num_masks, masklength, longs_per_mask;
1906	const unsigned long *av_masks;
1907	int i;
1908
1909	av_masks = indio_dev->available_scan_masks;
1910	masklength = indio_dev->masklength;
1911	longs_per_mask = BITS_TO_LONGS(masklength);
1912
1913	/*
1914	 * The code determining how many available_scan_masks is in the array
1915	 * will be assuming the end of masks when first long with all bits
1916	 * zeroed is encountered. This is incorrect for masks where mask
1917	 * consists of more than one long, and where some of the available masks
1918	 * has long worth of bits zeroed (but has subsequent bit(s) set). This
1919	 * is a safety measure against bug where array of masks is terminated by
1920	 * a single zero while mask width is greater than width of a long.
1921	 */
1922	if (longs_per_mask > 1)
1923		dev_warn(indio_dev->dev.parent,
1924			 "multi long available scan masks not fully supported\n");
1925
1926	if (bitmap_empty(av_masks, masklength))
1927		dev_warn(indio_dev->dev.parent, "empty scan mask\n");
1928
1929	for (num_masks = 0; *av_masks; num_masks++)
1930		av_masks += longs_per_mask;
1931
1932	if (num_masks < 2)
1933		return;
1934
1935	av_masks = indio_dev->available_scan_masks;
1936
1937	/*
1938	 * Go through all the masks from first to one before the last, and see
1939	 * that no mask found later from the available_scan_masks array is a
1940	 * subset of mask found earlier. If this happens, then the mask found
1941	 * later will never get used because scanning the array is stopped when
1942	 * the first suitable mask is found. Drivers should order the array of
1943	 * available masks in the order of preference (presumably the least
1944	 * costy to access masks first).
1945	 */
1946	for (i = 0; i < num_masks - 1; i++) {
1947		const unsigned long *mask1;
1948		int j;
1949
1950		mask1 = av_masks + i * longs_per_mask;
1951		for (j = i + 1; j < num_masks; j++) {
1952			const unsigned long *mask2;
1953
1954			mask2 = av_masks + j * longs_per_mask;
1955			if (bitmap_subset(mask2, mask1, masklength))
1956				dev_warn(indio_dev->dev.parent,
1957					 "available_scan_mask %d subset of %d. Never used\n",
1958					 j, i);
1959		}
1960	}
1961}
1962
1963int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
1964{
1965	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1966	struct fwnode_handle *fwnode = NULL;
1967	int ret;
1968
1969	if (!indio_dev->info)
1970		return -EINVAL;
1971
1972	iio_dev_opaque->driver_module = this_mod;
1973
1974	/* If the calling driver did not initialize firmware node, do it here */
1975	if (dev_fwnode(&indio_dev->dev))
1976		fwnode = dev_fwnode(&indio_dev->dev);
1977	/* The default dummy IIO device has no parent */
1978	else if (indio_dev->dev.parent)
1979		fwnode = dev_fwnode(indio_dev->dev.parent);
1980	device_set_node(&indio_dev->dev, fwnode);
1981
1982	fwnode_property_read_string(fwnode, "label", &indio_dev->label);
1983
1984	ret = iio_check_unique_scan_index(indio_dev);
1985	if (ret < 0)
1986		return ret;
1987
1988	ret = iio_check_extended_name(indio_dev);
1989	if (ret < 0)
1990		return ret;
1991
1992	iio_device_register_debugfs(indio_dev);
1993
1994	ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
1995	if (ret) {
1996		dev_err(indio_dev->dev.parent,
1997			"Failed to create buffer sysfs interfaces\n");
1998		goto error_unreg_debugfs;
1999	}
2000
2001	if (indio_dev->available_scan_masks)
2002		iio_sanity_check_avail_scan_masks(indio_dev);
2003
2004	ret = iio_device_register_sysfs(indio_dev);
2005	if (ret) {
2006		dev_err(indio_dev->dev.parent,
2007			"Failed to register sysfs interfaces\n");
2008		goto error_buffer_free_sysfs;
2009	}
2010	ret = iio_device_register_eventset(indio_dev);
2011	if (ret) {
2012		dev_err(indio_dev->dev.parent,
2013			"Failed to register event set\n");
2014		goto error_free_sysfs;
2015	}
2016	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
2017		iio_device_register_trigger_consumer(indio_dev);
2018
2019	if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
2020		indio_dev->setup_ops == NULL)
2021		indio_dev->setup_ops = &noop_ring_setup_ops;
2022
2023	if (iio_dev_opaque->attached_buffers_cnt)
2024		cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
2025	else if (iio_dev_opaque->event_interface)
2026		cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
2027
2028	if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
2029		indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
2030		iio_dev_opaque->chrdev.owner = this_mod;
2031	}
2032
2033	/* assign device groups now; they should be all registered now */
2034	indio_dev->dev.groups = iio_dev_opaque->groups;
2035
2036	ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
2037	if (ret < 0)
2038		goto error_unreg_eventset;
2039
2040	return 0;
2041
2042error_unreg_eventset:
2043	iio_device_unregister_eventset(indio_dev);
2044error_free_sysfs:
2045	iio_device_unregister_sysfs(indio_dev);
2046error_buffer_free_sysfs:
2047	iio_buffers_free_sysfs_and_mask(indio_dev);
2048error_unreg_debugfs:
2049	iio_device_unregister_debugfs(indio_dev);
2050	return ret;
2051}
2052EXPORT_SYMBOL(__iio_device_register);
2053
2054/**
2055 * iio_device_unregister() - unregister a device from the IIO subsystem
2056 * @indio_dev:		Device structure representing the device.
2057 */
2058void iio_device_unregister(struct iio_dev *indio_dev)
2059{
2060	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2061
2062	cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
2063
2064	mutex_lock(&iio_dev_opaque->info_exist_lock);
2065
2066	iio_device_unregister_debugfs(indio_dev);
2067
2068	iio_disable_all_buffers(indio_dev);
2069
2070	indio_dev->info = NULL;
2071
2072	iio_device_wakeup_eventset(indio_dev);
2073	iio_buffer_wakeup_poll(indio_dev);
2074
2075	mutex_unlock(&iio_dev_opaque->info_exist_lock);
2076
2077	iio_buffers_free_sysfs_and_mask(indio_dev);
2078}
2079EXPORT_SYMBOL(iio_device_unregister);
2080
2081static void devm_iio_device_unreg(void *indio_dev)
2082{
2083	iio_device_unregister(indio_dev);
2084}
2085
2086int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
2087			       struct module *this_mod)
2088{
2089	int ret;
2090
2091	ret = __iio_device_register(indio_dev, this_mod);
2092	if (ret)
2093		return ret;
2094
2095	return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
2096}
2097EXPORT_SYMBOL_GPL(__devm_iio_device_register);
2098
2099/**
2100 * iio_device_claim_direct_mode - Keep device in direct mode
2101 * @indio_dev:	the iio_dev associated with the device
2102 *
2103 * If the device is in direct mode it is guaranteed to stay
2104 * that way until iio_device_release_direct_mode() is called.
2105 *
2106 * Use with iio_device_release_direct_mode()
2107 *
2108 * Returns: 0 on success, -EBUSY on failure.
2109 */
2110int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
2111{
2112	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2113
2114	mutex_lock(&iio_dev_opaque->mlock);
2115
2116	if (iio_buffer_enabled(indio_dev)) {
2117		mutex_unlock(&iio_dev_opaque->mlock);
2118		return -EBUSY;
2119	}
2120	return 0;
2121}
2122EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
2123
2124/**
2125 * iio_device_release_direct_mode - releases claim on direct mode
2126 * @indio_dev:	the iio_dev associated with the device
2127 *
2128 * Release the claim. Device is no longer guaranteed to stay
2129 * in direct mode.
2130 *
2131 * Use with iio_device_claim_direct_mode()
2132 */
2133void iio_device_release_direct_mode(struct iio_dev *indio_dev)
2134{
2135	mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2136}
2137EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
2138
2139/**
2140 * iio_device_claim_buffer_mode - Keep device in buffer mode
2141 * @indio_dev:	the iio_dev associated with the device
2142 *
2143 * If the device is in buffer mode it is guaranteed to stay
2144 * that way until iio_device_release_buffer_mode() is called.
2145 *
2146 * Use with iio_device_release_buffer_mode().
2147 *
2148 * Returns: 0 on success, -EBUSY on failure.
2149 */
2150int iio_device_claim_buffer_mode(struct iio_dev *indio_dev)
2151{
2152	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2153
2154	mutex_lock(&iio_dev_opaque->mlock);
2155
2156	if (iio_buffer_enabled(indio_dev))
2157		return 0;
2158
2159	mutex_unlock(&iio_dev_opaque->mlock);
2160	return -EBUSY;
2161}
2162EXPORT_SYMBOL_GPL(iio_device_claim_buffer_mode);
2163
2164/**
2165 * iio_device_release_buffer_mode - releases claim on buffer mode
2166 * @indio_dev:	the iio_dev associated with the device
2167 *
2168 * Release the claim. Device is no longer guaranteed to stay
2169 * in buffer mode.
2170 *
2171 * Use with iio_device_claim_buffer_mode().
2172 */
2173void iio_device_release_buffer_mode(struct iio_dev *indio_dev)
2174{
2175	mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2176}
2177EXPORT_SYMBOL_GPL(iio_device_release_buffer_mode);
2178
2179/**
2180 * iio_device_get_current_mode() - helper function providing read-only access to
2181 *				   the opaque @currentmode variable
2182 * @indio_dev:			   IIO device structure for device
2183 */
2184int iio_device_get_current_mode(struct iio_dev *indio_dev)
2185{
2186	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2187
2188	return iio_dev_opaque->currentmode;
2189}
2190EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
2191
2192subsys_initcall(iio_init);
2193module_exit(iio_exit);
2194
2195MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2196MODULE_DESCRIPTION("Industrial I/O core");
2197MODULE_LICENSE("GPL");
2198