1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Xilinx AMS driver
4 *
5 *  Copyright (C) 2021 Xilinx, Inc.
6 *
7 *  Manish Narani <mnarani@xilinx.com>
8 *  Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
9 */
10
11#include <linux/bits.h>
12#include <linux/bitfield.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/devm-helpers.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
18#include <linux/iopoll.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/mod_devicetable.h>
22#include <linux/overflow.h>
23#include <linux/platform_device.h>
24#include <linux/property.h>
25#include <linux/slab.h>
26
27#include <linux/iio/events.h>
28#include <linux/iio/iio.h>
29
30/* AMS registers definitions */
31#define AMS_ISR_0			0x010
32#define AMS_ISR_1			0x014
33#define AMS_IER_0			0x020
34#define AMS_IER_1			0x024
35#define AMS_IDR_0			0x028
36#define AMS_IDR_1			0x02C
37#define AMS_PS_CSTS			0x040
38#define AMS_PL_CSTS			0x044
39
40#define AMS_VCC_PSPLL0			0x060
41#define AMS_VCC_PSPLL3			0x06C
42#define AMS_VCCINT			0x078
43#define AMS_VCCBRAM			0x07C
44#define AMS_VCCAUX			0x080
45#define AMS_PSDDRPLL			0x084
46#define AMS_PSINTFPDDR			0x09C
47
48#define AMS_VCC_PSPLL0_CH		48
49#define AMS_VCC_PSPLL3_CH		51
50#define AMS_VCCINT_CH			54
51#define AMS_VCCBRAM_CH			55
52#define AMS_VCCAUX_CH			56
53#define AMS_PSDDRPLL_CH			57
54#define AMS_PSINTFPDDR_CH		63
55
56#define AMS_REG_CONFIG0			0x100
57#define AMS_REG_CONFIG1			0x104
58#define AMS_REG_CONFIG3			0x10C
59#define AMS_REG_CONFIG4			0x110
60#define AMS_REG_SEQ_CH0			0x120
61#define AMS_REG_SEQ_CH1			0x124
62#define AMS_REG_SEQ_CH2			0x118
63
64#define AMS_VUSER0_MASK			BIT(0)
65#define AMS_VUSER1_MASK			BIT(1)
66#define AMS_VUSER2_MASK			BIT(2)
67#define AMS_VUSER3_MASK			BIT(3)
68
69#define AMS_TEMP			0x000
70#define AMS_SUPPLY1			0x004
71#define AMS_SUPPLY2			0x008
72#define AMS_VP_VN			0x00C
73#define AMS_VREFP			0x010
74#define AMS_VREFN			0x014
75#define AMS_SUPPLY3			0x018
76#define AMS_SUPPLY4			0x034
77#define AMS_SUPPLY5			0x038
78#define AMS_SUPPLY6			0x03C
79#define AMS_SUPPLY7			0x200
80#define AMS_SUPPLY8			0x204
81#define AMS_SUPPLY9			0x208
82#define AMS_SUPPLY10			0x20C
83#define AMS_VCCAMS			0x210
84#define AMS_TEMP_REMOTE			0x214
85
86#define AMS_REG_VAUX(x)			(0x40 + 4 * (x))
87
88#define AMS_PS_RESET_VALUE		0xFFFF
89#define AMS_PL_RESET_VALUE		0xFFFF
90
91#define AMS_CONF0_CHANNEL_NUM_MASK	GENMASK(6, 0)
92
93#define AMS_CONF1_SEQ_MASK		GENMASK(15, 12)
94#define AMS_CONF1_SEQ_DEFAULT		FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
95#define AMS_CONF1_SEQ_CONTINUOUS	FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
96#define AMS_CONF1_SEQ_SINGLE_CHANNEL	FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
97
98#define AMS_REG_SEQ0_MASK		GENMASK(15, 0)
99#define AMS_REG_SEQ2_MASK		GENMASK(21, 16)
100#define AMS_REG_SEQ1_MASK		GENMASK_ULL(37, 22)
101
102#define AMS_PS_SEQ_MASK			GENMASK(21, 0)
103#define AMS_PL_SEQ_MASK			GENMASK_ULL(59, 22)
104
105#define AMS_ALARM_TEMP			0x140
106#define AMS_ALARM_SUPPLY1		0x144
107#define AMS_ALARM_SUPPLY2		0x148
108#define AMS_ALARM_SUPPLY3		0x160
109#define AMS_ALARM_SUPPLY4		0x164
110#define AMS_ALARM_SUPPLY5		0x168
111#define AMS_ALARM_SUPPLY6		0x16C
112#define AMS_ALARM_SUPPLY7		0x180
113#define AMS_ALARM_SUPPLY8		0x184
114#define AMS_ALARM_SUPPLY9		0x188
115#define AMS_ALARM_SUPPLY10		0x18C
116#define AMS_ALARM_VCCAMS		0x190
117#define AMS_ALARM_TEMP_REMOTE		0x194
118#define AMS_ALARM_THRESHOLD_OFF_10	0x10
119#define AMS_ALARM_THRESHOLD_OFF_20	0x20
120
121#define AMS_ALARM_THR_DIRECT_MASK	BIT(1)
122#define AMS_ALARM_THR_MIN		0x0000
123#define AMS_ALARM_THR_MAX		(BIT(16) - 1)
124
125#define AMS_ALARM_MASK			GENMASK_ULL(63, 0)
126#define AMS_NO_OF_ALARMS		32
127#define AMS_PL_ALARM_START		16
128#define AMS_PL_ALARM_MASK		GENMASK(31, 16)
129#define AMS_ISR0_ALARM_MASK		GENMASK(31, 0)
130#define AMS_ISR1_ALARM_MASK		(GENMASK(31, 29) | GENMASK(4, 0))
131#define AMS_ISR1_EOC_MASK		BIT(3)
132#define AMS_ISR1_INTR_MASK		GENMASK_ULL(63, 32)
133#define AMS_ISR0_ALARM_2_TO_0_MASK	GENMASK(2, 0)
134#define AMS_ISR0_ALARM_6_TO_3_MASK	GENMASK(6, 3)
135#define AMS_ISR0_ALARM_12_TO_7_MASK	GENMASK(13, 8)
136#define AMS_CONF1_ALARM_2_TO_0_MASK	GENMASK(3, 1)
137#define AMS_CONF1_ALARM_6_TO_3_MASK	GENMASK(11, 8)
138#define AMS_CONF1_ALARM_12_TO_7_MASK	GENMASK(5, 0)
139#define AMS_REGCFG1_ALARM_MASK  \
140	(AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
141#define AMS_REGCFG3_ALARM_MASK		AMS_CONF1_ALARM_12_TO_7_MASK
142
143#define AMS_PS_CSTS_PS_READY		(BIT(27) | BIT(16))
144#define AMS_PL_CSTS_ACCESS_MASK		BIT(1)
145
146#define AMS_PL_MAX_FIXED_CHANNEL	10
147#define AMS_PL_MAX_EXT_CHANNEL		20
148
149#define AMS_INIT_POLL_TIME_US		200
150#define AMS_INIT_TIMEOUT_US		10000
151#define AMS_UNMASK_TIMEOUT_MS		500
152
153/*
154 * Following scale and offset value is derived from
155 * UG580 (v1.7) December 20, 2016
156 */
157#define AMS_SUPPLY_SCALE_1VOLT_mV		1000
158#define AMS_SUPPLY_SCALE_3VOLT_mV		3000
159#define AMS_SUPPLY_SCALE_6VOLT_mV		6000
160#define AMS_SUPPLY_SCALE_DIV_BIT	16
161
162#define AMS_TEMP_SCALE			509314
163#define AMS_TEMP_SCALE_DIV_BIT		16
164#define AMS_TEMP_OFFSET			-((280230LL << 16) / 509314)
165
166enum ams_alarm_bit {
167	AMS_ALARM_BIT_TEMP = 0,
168	AMS_ALARM_BIT_SUPPLY1 = 1,
169	AMS_ALARM_BIT_SUPPLY2 = 2,
170	AMS_ALARM_BIT_SUPPLY3 = 3,
171	AMS_ALARM_BIT_SUPPLY4 = 4,
172	AMS_ALARM_BIT_SUPPLY5 = 5,
173	AMS_ALARM_BIT_SUPPLY6 = 6,
174	AMS_ALARM_BIT_RESERVED = 7,
175	AMS_ALARM_BIT_SUPPLY7 = 8,
176	AMS_ALARM_BIT_SUPPLY8 = 9,
177	AMS_ALARM_BIT_SUPPLY9 = 10,
178	AMS_ALARM_BIT_SUPPLY10 = 11,
179	AMS_ALARM_BIT_VCCAMS = 12,
180	AMS_ALARM_BIT_TEMP_REMOTE = 13,
181};
182
183enum ams_seq {
184	AMS_SEQ_VCC_PSPLL = 0,
185	AMS_SEQ_VCC_PSBATT = 1,
186	AMS_SEQ_VCCINT = 2,
187	AMS_SEQ_VCCBRAM = 3,
188	AMS_SEQ_VCCAUX = 4,
189	AMS_SEQ_PSDDRPLL = 5,
190	AMS_SEQ_INTDDR = 6,
191};
192
193enum ams_ps_pl_seq {
194	AMS_SEQ_CALIB = 0,
195	AMS_SEQ_RSVD_1 = 1,
196	AMS_SEQ_RSVD_2 = 2,
197	AMS_SEQ_TEST = 3,
198	AMS_SEQ_RSVD_4 = 4,
199	AMS_SEQ_SUPPLY4 = 5,
200	AMS_SEQ_SUPPLY5 = 6,
201	AMS_SEQ_SUPPLY6 = 7,
202	AMS_SEQ_TEMP = 8,
203	AMS_SEQ_SUPPLY2 = 9,
204	AMS_SEQ_SUPPLY1 = 10,
205	AMS_SEQ_VP_VN = 11,
206	AMS_SEQ_VREFP = 12,
207	AMS_SEQ_VREFN = 13,
208	AMS_SEQ_SUPPLY3 = 14,
209	AMS_SEQ_CURRENT_MON = 15,
210	AMS_SEQ_SUPPLY7 = 16,
211	AMS_SEQ_SUPPLY8 = 17,
212	AMS_SEQ_SUPPLY9 = 18,
213	AMS_SEQ_SUPPLY10 = 19,
214	AMS_SEQ_VCCAMS = 20,
215	AMS_SEQ_TEMP_REMOTE = 21,
216	AMS_SEQ_MAX = 22
217};
218
219#define AMS_PS_SEQ_MAX		AMS_SEQ_MAX
220#define AMS_SEQ(x)		(AMS_SEQ_MAX + (x))
221#define PS_SEQ(x)		(x)
222#define PL_SEQ(x)		(AMS_PS_SEQ_MAX + (x))
223#define AMS_CTRL_SEQ_BASE	(AMS_PS_SEQ_MAX * 3)
224
225#define AMS_CHAN_TEMP(_scan_index, _addr) { \
226	.type = IIO_TEMP, \
227	.indexed = 1, \
228	.address = (_addr), \
229	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
230		BIT(IIO_CHAN_INFO_SCALE) | \
231		BIT(IIO_CHAN_INFO_OFFSET), \
232	.event_spec = ams_temp_events, \
233	.scan_index = _scan_index, \
234	.num_event_specs = ARRAY_SIZE(ams_temp_events), \
235}
236
237#define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm) { \
238	.type = IIO_VOLTAGE, \
239	.indexed = 1, \
240	.address = (_addr), \
241	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
242		BIT(IIO_CHAN_INFO_SCALE), \
243	.event_spec = (_alarm) ? ams_voltage_events : NULL, \
244	.scan_index = _scan_index, \
245	.num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
246}
247
248#define AMS_PS_CHAN_TEMP(_scan_index, _addr) \
249	AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr)
250#define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr) \
251	AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true)
252
253#define AMS_PL_CHAN_TEMP(_scan_index, _addr) \
254	AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr)
255#define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm) \
256	AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm)
257#define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
258	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false)
259#define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr) \
260	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false)
261
262/**
263 * struct ams - This structure contains necessary state for xilinx-ams to operate
264 * @base: physical base address of device
265 * @ps_base: physical base address of PS device
266 * @pl_base: physical base address of PL device
267 * @clk: clocks associated with the device
268 * @dev: pointer to device struct
269 * @lock: to handle multiple user interaction
270 * @intr_lock: to protect interrupt mask values
271 * @alarm_mask: alarm configuration
272 * @current_masked_alarm: currently masked due to alarm
273 * @intr_mask: interrupt configuration
274 * @ams_unmask_work: re-enables event once the event condition disappears
275 *
276 */
277struct ams {
278	void __iomem *base;
279	void __iomem *ps_base;
280	void __iomem *pl_base;
281	struct clk *clk;
282	struct device *dev;
283	struct mutex lock;
284	spinlock_t intr_lock;
285	unsigned int alarm_mask;
286	unsigned int current_masked_alarm;
287	u64 intr_mask;
288	struct delayed_work ams_unmask_work;
289};
290
291static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
292				     u32 mask, u32 data)
293{
294	u32 val, regval;
295
296	val = readl(ams->ps_base + offset);
297	regval = (val & ~mask) | (data & mask);
298	writel(regval, ams->ps_base + offset);
299}
300
301static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
302				     u32 mask, u32 data)
303{
304	u32 val, regval;
305
306	val = readl(ams->pl_base + offset);
307	regval = (val & ~mask) | (data & mask);
308	writel(regval, ams->pl_base + offset);
309}
310
311static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
312{
313	u32 regval;
314
315	ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
316
317	regval = ~(ams->intr_mask | ams->current_masked_alarm);
318	writel(regval, ams->base + AMS_IER_0);
319
320	regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
321	writel(regval, ams->base + AMS_IER_1);
322
323	regval = ams->intr_mask | ams->current_masked_alarm;
324	writel(regval, ams->base + AMS_IDR_0);
325
326	regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
327	writel(regval, ams->base + AMS_IDR_1);
328}
329
330static void ams_disable_all_alarms(struct ams *ams)
331{
332	/* disable PS module alarm */
333	if (ams->ps_base) {
334		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
335				  AMS_REGCFG1_ALARM_MASK);
336		ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
337				  AMS_REGCFG3_ALARM_MASK);
338	}
339
340	/* disable PL module alarm */
341	if (ams->pl_base) {
342		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
343				  AMS_REGCFG1_ALARM_MASK);
344		ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
345				  AMS_REGCFG3_ALARM_MASK);
346	}
347}
348
349static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
350{
351	u32 cfg;
352	u32 val;
353
354	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
355	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
356
357	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
358	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
359
360	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
361
362	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
363	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
364	ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
365}
366
367static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
368{
369	unsigned long pl_alarm_mask;
370	u32 cfg;
371	u32 val;
372
373	pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
374
375	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
376	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
377
378	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
379	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
380
381	ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
382
383	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
384	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
385	ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
386}
387
388static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
389{
390	unsigned long flags;
391
392	if (ams->ps_base)
393		ams_update_ps_alarm(ams, alarm_mask);
394
395	if (ams->pl_base)
396		ams_update_pl_alarm(ams, alarm_mask);
397
398	spin_lock_irqsave(&ams->intr_lock, flags);
399	ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
400	spin_unlock_irqrestore(&ams->intr_lock, flags);
401}
402
403static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
404{
405	struct ams *ams = iio_priv(indio_dev);
406	unsigned long long scan_mask;
407	int i;
408	u32 regval;
409
410	/*
411	 * Enable channel sequence. First 22 bits of scan_mask represent
412	 * PS channels, and next remaining bits represent PL channels.
413	 */
414
415	/* Run calibration of PS & PL as part of the sequence */
416	scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
417	for (i = 0; i < indio_dev->num_channels; i++)
418		scan_mask |= BIT_ULL(indio_dev->channels[i].scan_index);
419
420	if (ams->ps_base) {
421		/* put sysmon in a soft reset to change the sequence */
422		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
423				  AMS_CONF1_SEQ_DEFAULT);
424
425		/* configure basic channels */
426		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
427		writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
428
429		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
430		writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
431
432		/* set continuous sequence mode */
433		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
434				  AMS_CONF1_SEQ_CONTINUOUS);
435	}
436
437	if (ams->pl_base) {
438		/* put sysmon in a soft reset to change the sequence */
439		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
440				  AMS_CONF1_SEQ_DEFAULT);
441
442		/* configure basic channels */
443		scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
444
445		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
446		writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
447
448		regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
449		writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
450
451		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
452		writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
453
454		/* set continuous sequence mode */
455		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
456				  AMS_CONF1_SEQ_CONTINUOUS);
457	}
458}
459
460static int ams_init_device(struct ams *ams)
461{
462	u32 expect = AMS_PS_CSTS_PS_READY;
463	u32 reg, value;
464	int ret;
465
466	/* reset AMS */
467	if (ams->ps_base) {
468		writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
469
470		ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
471					 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
472		if (ret)
473			return ret;
474
475		/* put sysmon in a default state */
476		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
477				  AMS_CONF1_SEQ_DEFAULT);
478	}
479
480	if (ams->pl_base) {
481		value = readl(ams->base + AMS_PL_CSTS);
482		if (value == 0)
483			return 0;
484
485		writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
486
487		/* put sysmon in a default state */
488		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
489				  AMS_CONF1_SEQ_DEFAULT);
490	}
491
492	ams_disable_all_alarms(ams);
493
494	/* Disable interrupt */
495	ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
496
497	/* Clear any pending interrupt */
498	writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
499	writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
500
501	return 0;
502}
503
504static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
505{
506	u8 channel_num;
507
508	switch (offset) {
509	case AMS_VCC_PSPLL0:
510		channel_num = AMS_VCC_PSPLL0_CH;
511		break;
512	case AMS_VCC_PSPLL3:
513		channel_num = AMS_VCC_PSPLL3_CH;
514		break;
515	case AMS_VCCINT:
516		channel_num = AMS_VCCINT_CH;
517		break;
518	case AMS_VCCBRAM:
519		channel_num = AMS_VCCBRAM_CH;
520		break;
521	case AMS_VCCAUX:
522		channel_num = AMS_VCCAUX_CH;
523		break;
524	case AMS_PSDDRPLL:
525		channel_num = AMS_PSDDRPLL_CH;
526		break;
527	case AMS_PSINTFPDDR:
528		channel_num = AMS_PSINTFPDDR_CH;
529		break;
530	default:
531		return -EINVAL;
532	}
533
534	/* put sysmon in a soft reset to change the sequence */
535	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
536			  AMS_CONF1_SEQ_DEFAULT);
537
538	/* write the channel number */
539	ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
540			  channel_num);
541
542	/* set single channel, sequencer off mode */
543	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
544			  AMS_CONF1_SEQ_SINGLE_CHANNEL);
545
546	return 0;
547}
548
549static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
550{
551	u32 expect = AMS_ISR1_EOC_MASK;
552	u32 reg;
553	int ret;
554
555	ret = ams_enable_single_channel(ams, offset);
556	if (ret)
557		return ret;
558
559	/* clear end-of-conversion flag, wait for next conversion to complete */
560	writel(expect, ams->base + AMS_ISR_1);
561	ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
562				 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
563	if (ret)
564		return ret;
565
566	*data = readl(ams->base + offset);
567
568	return 0;
569}
570
571static int ams_get_ps_scale(int address)
572{
573	int val;
574
575	switch (address) {
576	case AMS_SUPPLY1:
577	case AMS_SUPPLY2:
578	case AMS_SUPPLY3:
579	case AMS_SUPPLY4:
580	case AMS_SUPPLY9:
581	case AMS_SUPPLY10:
582	case AMS_VCCAMS:
583		val = AMS_SUPPLY_SCALE_3VOLT_mV;
584		break;
585	case AMS_SUPPLY5:
586	case AMS_SUPPLY6:
587	case AMS_SUPPLY7:
588	case AMS_SUPPLY8:
589		val = AMS_SUPPLY_SCALE_6VOLT_mV;
590		break;
591	default:
592		val = AMS_SUPPLY_SCALE_1VOLT_mV;
593		break;
594	}
595
596	return val;
597}
598
599static int ams_get_pl_scale(struct ams *ams, int address)
600{
601	int val, regval;
602
603	switch (address) {
604	case AMS_SUPPLY1:
605	case AMS_SUPPLY2:
606	case AMS_SUPPLY3:
607	case AMS_SUPPLY4:
608	case AMS_SUPPLY5:
609	case AMS_SUPPLY6:
610	case AMS_VCCAMS:
611	case AMS_VREFP:
612	case AMS_VREFN:
613		val = AMS_SUPPLY_SCALE_3VOLT_mV;
614		break;
615	case AMS_SUPPLY7:
616		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
617		if (FIELD_GET(AMS_VUSER0_MASK, regval))
618			val = AMS_SUPPLY_SCALE_6VOLT_mV;
619		else
620			val = AMS_SUPPLY_SCALE_3VOLT_mV;
621		break;
622	case AMS_SUPPLY8:
623		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
624		if (FIELD_GET(AMS_VUSER1_MASK, regval))
625			val = AMS_SUPPLY_SCALE_6VOLT_mV;
626		else
627			val = AMS_SUPPLY_SCALE_3VOLT_mV;
628		break;
629	case AMS_SUPPLY9:
630		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
631		if (FIELD_GET(AMS_VUSER2_MASK, regval))
632			val = AMS_SUPPLY_SCALE_6VOLT_mV;
633		else
634			val = AMS_SUPPLY_SCALE_3VOLT_mV;
635		break;
636	case AMS_SUPPLY10:
637		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
638		if (FIELD_GET(AMS_VUSER3_MASK, regval))
639			val = AMS_SUPPLY_SCALE_6VOLT_mV;
640		else
641			val = AMS_SUPPLY_SCALE_3VOLT_mV;
642		break;
643	case AMS_VP_VN:
644	case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
645		val = AMS_SUPPLY_SCALE_1VOLT_mV;
646		break;
647	default:
648		val = AMS_SUPPLY_SCALE_1VOLT_mV;
649		break;
650	}
651
652	return val;
653}
654
655static int ams_get_ctrl_scale(int address)
656{
657	int val;
658
659	switch (address) {
660	case AMS_VCC_PSPLL0:
661	case AMS_VCC_PSPLL3:
662	case AMS_VCCINT:
663	case AMS_VCCBRAM:
664	case AMS_VCCAUX:
665	case AMS_PSDDRPLL:
666	case AMS_PSINTFPDDR:
667		val = AMS_SUPPLY_SCALE_3VOLT_mV;
668		break;
669	default:
670		val = AMS_SUPPLY_SCALE_1VOLT_mV;
671		break;
672	}
673
674	return val;
675}
676
677static int ams_read_raw(struct iio_dev *indio_dev,
678			struct iio_chan_spec const *chan,
679			int *val, int *val2, long mask)
680{
681	struct ams *ams = iio_priv(indio_dev);
682	int ret;
683
684	switch (mask) {
685	case IIO_CHAN_INFO_RAW:
686		mutex_lock(&ams->lock);
687		if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
688			ret = ams_read_vcc_reg(ams, chan->address, val);
689			if (ret)
690				goto unlock_mutex;
691			ams_enable_channel_sequence(indio_dev);
692		} else if (chan->scan_index >= AMS_PS_SEQ_MAX)
693			*val = readl(ams->pl_base + chan->address);
694		else
695			*val = readl(ams->ps_base + chan->address);
696
697		ret = IIO_VAL_INT;
698unlock_mutex:
699		mutex_unlock(&ams->lock);
700		return ret;
701	case IIO_CHAN_INFO_SCALE:
702		switch (chan->type) {
703		case IIO_VOLTAGE:
704			if (chan->scan_index < AMS_PS_SEQ_MAX)
705				*val = ams_get_ps_scale(chan->address);
706			else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
707				 chan->scan_index < AMS_CTRL_SEQ_BASE)
708				*val = ams_get_pl_scale(ams, chan->address);
709			else
710				*val = ams_get_ctrl_scale(chan->address);
711
712			*val2 = AMS_SUPPLY_SCALE_DIV_BIT;
713			return IIO_VAL_FRACTIONAL_LOG2;
714		case IIO_TEMP:
715			*val = AMS_TEMP_SCALE;
716			*val2 = AMS_TEMP_SCALE_DIV_BIT;
717			return IIO_VAL_FRACTIONAL_LOG2;
718		default:
719			return -EINVAL;
720		}
721	case IIO_CHAN_INFO_OFFSET:
722		/* Only the temperature channel has an offset */
723		*val = AMS_TEMP_OFFSET;
724		return IIO_VAL_INT;
725	default:
726		return -EINVAL;
727	}
728}
729
730static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
731{
732	int offset;
733
734	if (scan_index >= AMS_PS_SEQ_MAX)
735		scan_index -= AMS_PS_SEQ_MAX;
736
737	if (dir == IIO_EV_DIR_FALLING) {
738		if (scan_index < AMS_SEQ_SUPPLY7)
739			offset = AMS_ALARM_THRESHOLD_OFF_10;
740		else
741			offset = AMS_ALARM_THRESHOLD_OFF_20;
742	} else {
743		offset = 0;
744	}
745
746	switch (scan_index) {
747	case AMS_SEQ_TEMP:
748		return AMS_ALARM_TEMP + offset;
749	case AMS_SEQ_SUPPLY1:
750		return AMS_ALARM_SUPPLY1 + offset;
751	case AMS_SEQ_SUPPLY2:
752		return AMS_ALARM_SUPPLY2 + offset;
753	case AMS_SEQ_SUPPLY3:
754		return AMS_ALARM_SUPPLY3 + offset;
755	case AMS_SEQ_SUPPLY4:
756		return AMS_ALARM_SUPPLY4 + offset;
757	case AMS_SEQ_SUPPLY5:
758		return AMS_ALARM_SUPPLY5 + offset;
759	case AMS_SEQ_SUPPLY6:
760		return AMS_ALARM_SUPPLY6 + offset;
761	case AMS_SEQ_SUPPLY7:
762		return AMS_ALARM_SUPPLY7 + offset;
763	case AMS_SEQ_SUPPLY8:
764		return AMS_ALARM_SUPPLY8 + offset;
765	case AMS_SEQ_SUPPLY9:
766		return AMS_ALARM_SUPPLY9 + offset;
767	case AMS_SEQ_SUPPLY10:
768		return AMS_ALARM_SUPPLY10 + offset;
769	case AMS_SEQ_VCCAMS:
770		return AMS_ALARM_VCCAMS + offset;
771	case AMS_SEQ_TEMP_REMOTE:
772		return AMS_ALARM_TEMP_REMOTE + offset;
773	default:
774		return 0;
775	}
776}
777
778static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
779							u32 event)
780{
781	int scan_index = 0, i;
782
783	if (event >= AMS_PL_ALARM_START) {
784		event -= AMS_PL_ALARM_START;
785		scan_index = AMS_PS_SEQ_MAX;
786	}
787
788	switch (event) {
789	case AMS_ALARM_BIT_TEMP:
790		scan_index += AMS_SEQ_TEMP;
791		break;
792	case AMS_ALARM_BIT_SUPPLY1:
793		scan_index += AMS_SEQ_SUPPLY1;
794		break;
795	case AMS_ALARM_BIT_SUPPLY2:
796		scan_index += AMS_SEQ_SUPPLY2;
797		break;
798	case AMS_ALARM_BIT_SUPPLY3:
799		scan_index += AMS_SEQ_SUPPLY3;
800		break;
801	case AMS_ALARM_BIT_SUPPLY4:
802		scan_index += AMS_SEQ_SUPPLY4;
803		break;
804	case AMS_ALARM_BIT_SUPPLY5:
805		scan_index += AMS_SEQ_SUPPLY5;
806		break;
807	case AMS_ALARM_BIT_SUPPLY6:
808		scan_index += AMS_SEQ_SUPPLY6;
809		break;
810	case AMS_ALARM_BIT_SUPPLY7:
811		scan_index += AMS_SEQ_SUPPLY7;
812		break;
813	case AMS_ALARM_BIT_SUPPLY8:
814		scan_index += AMS_SEQ_SUPPLY8;
815		break;
816	case AMS_ALARM_BIT_SUPPLY9:
817		scan_index += AMS_SEQ_SUPPLY9;
818		break;
819	case AMS_ALARM_BIT_SUPPLY10:
820		scan_index += AMS_SEQ_SUPPLY10;
821		break;
822	case AMS_ALARM_BIT_VCCAMS:
823		scan_index += AMS_SEQ_VCCAMS;
824		break;
825	case AMS_ALARM_BIT_TEMP_REMOTE:
826		scan_index += AMS_SEQ_TEMP_REMOTE;
827		break;
828	default:
829		break;
830	}
831
832	for (i = 0; i < dev->num_channels; i++)
833		if (dev->channels[i].scan_index == scan_index)
834			break;
835
836	return &dev->channels[i];
837}
838
839static int ams_get_alarm_mask(int scan_index)
840{
841	int bit = 0;
842
843	if (scan_index >= AMS_PS_SEQ_MAX) {
844		bit = AMS_PL_ALARM_START;
845		scan_index -= AMS_PS_SEQ_MAX;
846	}
847
848	switch (scan_index) {
849	case AMS_SEQ_TEMP:
850		return BIT(AMS_ALARM_BIT_TEMP + bit);
851	case AMS_SEQ_SUPPLY1:
852		return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
853	case AMS_SEQ_SUPPLY2:
854		return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
855	case AMS_SEQ_SUPPLY3:
856		return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
857	case AMS_SEQ_SUPPLY4:
858		return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
859	case AMS_SEQ_SUPPLY5:
860		return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
861	case AMS_SEQ_SUPPLY6:
862		return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
863	case AMS_SEQ_SUPPLY7:
864		return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
865	case AMS_SEQ_SUPPLY8:
866		return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
867	case AMS_SEQ_SUPPLY9:
868		return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
869	case AMS_SEQ_SUPPLY10:
870		return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
871	case AMS_SEQ_VCCAMS:
872		return BIT(AMS_ALARM_BIT_VCCAMS + bit);
873	case AMS_SEQ_TEMP_REMOTE:
874		return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
875	default:
876		return 0;
877	}
878}
879
880static int ams_read_event_config(struct iio_dev *indio_dev,
881				 const struct iio_chan_spec *chan,
882				 enum iio_event_type type,
883				 enum iio_event_direction dir)
884{
885	struct ams *ams = iio_priv(indio_dev);
886
887	return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
888}
889
890static int ams_write_event_config(struct iio_dev *indio_dev,
891				  const struct iio_chan_spec *chan,
892				  enum iio_event_type type,
893				  enum iio_event_direction dir,
894				  int state)
895{
896	struct ams *ams = iio_priv(indio_dev);
897	unsigned int alarm;
898
899	alarm = ams_get_alarm_mask(chan->scan_index);
900
901	mutex_lock(&ams->lock);
902
903	if (state)
904		ams->alarm_mask |= alarm;
905	else
906		ams->alarm_mask &= ~alarm;
907
908	ams_update_alarm(ams, ams->alarm_mask);
909
910	mutex_unlock(&ams->lock);
911
912	return 0;
913}
914
915static int ams_read_event_value(struct iio_dev *indio_dev,
916				const struct iio_chan_spec *chan,
917				enum iio_event_type type,
918				enum iio_event_direction dir,
919				enum iio_event_info info, int *val, int *val2)
920{
921	struct ams *ams = iio_priv(indio_dev);
922	unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
923
924	mutex_lock(&ams->lock);
925
926	if (chan->scan_index >= AMS_PS_SEQ_MAX)
927		*val = readl(ams->pl_base + offset);
928	else
929		*val = readl(ams->ps_base + offset);
930
931	mutex_unlock(&ams->lock);
932
933	return IIO_VAL_INT;
934}
935
936static int ams_write_event_value(struct iio_dev *indio_dev,
937				 const struct iio_chan_spec *chan,
938				 enum iio_event_type type,
939				 enum iio_event_direction dir,
940				 enum iio_event_info info, int val, int val2)
941{
942	struct ams *ams = iio_priv(indio_dev);
943	unsigned int offset;
944
945	mutex_lock(&ams->lock);
946
947	/* Set temperature channel threshold to direct threshold */
948	if (chan->type == IIO_TEMP) {
949		offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
950
951		if (chan->scan_index >= AMS_PS_SEQ_MAX)
952			ams_pl_update_reg(ams, offset,
953					  AMS_ALARM_THR_DIRECT_MASK,
954					  AMS_ALARM_THR_DIRECT_MASK);
955		else
956			ams_ps_update_reg(ams, offset,
957					  AMS_ALARM_THR_DIRECT_MASK,
958					  AMS_ALARM_THR_DIRECT_MASK);
959	}
960
961	offset = ams_get_alarm_offset(chan->scan_index, dir);
962	if (chan->scan_index >= AMS_PS_SEQ_MAX)
963		writel(val, ams->pl_base + offset);
964	else
965		writel(val, ams->ps_base + offset);
966
967	mutex_unlock(&ams->lock);
968
969	return 0;
970}
971
972static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
973{
974	const struct iio_chan_spec *chan;
975
976	chan = ams_event_to_channel(indio_dev, event);
977
978	if (chan->type == IIO_TEMP) {
979		/*
980		 * The temperature channel only supports over-temperature
981		 * events.
982		 */
983		iio_push_event(indio_dev,
984			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
985						    IIO_EV_TYPE_THRESH,
986						    IIO_EV_DIR_RISING),
987			       iio_get_time_ns(indio_dev));
988	} else {
989		/*
990		 * For other channels we don't know whether it is a upper or
991		 * lower threshold event. Userspace will have to check the
992		 * channel value if it wants to know.
993		 */
994		iio_push_event(indio_dev,
995			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
996						    IIO_EV_TYPE_THRESH,
997						    IIO_EV_DIR_EITHER),
998			       iio_get_time_ns(indio_dev));
999	}
1000}
1001
1002static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
1003{
1004	unsigned int bit;
1005
1006	for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
1007		ams_handle_event(indio_dev, bit);
1008}
1009
1010/**
1011 * ams_unmask_worker - ams alarm interrupt unmask worker
1012 * @work: work to be done
1013 *
1014 * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
1015 * threshold condition go way from within the interrupt handler, this means as
1016 * soon as a threshold condition is present we would enter the interrupt handler
1017 * again and again. To work around this we mask all active threshold interrupts
1018 * in the interrupt handler and start a timer. In this timer we poll the
1019 * interrupt status and only if the interrupt is inactive we unmask it again.
1020 */
1021static void ams_unmask_worker(struct work_struct *work)
1022{
1023	struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
1024	unsigned int status, unmask;
1025
1026	spin_lock_irq(&ams->intr_lock);
1027
1028	status = readl(ams->base + AMS_ISR_0);
1029
1030	/* Clear those bits which are not active anymore */
1031	unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
1032
1033	/* Clear status of disabled alarm */
1034	unmask |= ams->intr_mask;
1035
1036	ams->current_masked_alarm &= status;
1037
1038	/* Also clear those which are masked out anyway */
1039	ams->current_masked_alarm &= ~ams->intr_mask;
1040
1041	/* Clear the interrupts before we unmask them */
1042	writel(unmask, ams->base + AMS_ISR_0);
1043
1044	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1045
1046	spin_unlock_irq(&ams->intr_lock);
1047
1048	/* If still pending some alarm re-trigger the timer */
1049	if (ams->current_masked_alarm)
1050		schedule_delayed_work(&ams->ams_unmask_work,
1051				      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1052}
1053
1054static irqreturn_t ams_irq(int irq, void *data)
1055{
1056	struct iio_dev *indio_dev = data;
1057	struct ams *ams = iio_priv(indio_dev);
1058	u32 isr0;
1059
1060	spin_lock(&ams->intr_lock);
1061
1062	isr0 = readl(ams->base + AMS_ISR_0);
1063
1064	/* Only process alarms that are not masked */
1065	isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
1066	if (!isr0) {
1067		spin_unlock(&ams->intr_lock);
1068		return IRQ_NONE;
1069	}
1070
1071	/* Clear interrupt */
1072	writel(isr0, ams->base + AMS_ISR_0);
1073
1074	/* Mask the alarm interrupts until cleared */
1075	ams->current_masked_alarm |= isr0;
1076	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1077
1078	ams_handle_events(indio_dev, isr0);
1079
1080	schedule_delayed_work(&ams->ams_unmask_work,
1081			      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1082
1083	spin_unlock(&ams->intr_lock);
1084
1085	return IRQ_HANDLED;
1086}
1087
1088static const struct iio_event_spec ams_temp_events[] = {
1089	{
1090		.type = IIO_EV_TYPE_THRESH,
1091		.dir = IIO_EV_DIR_RISING,
1092		.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
1093	},
1094};
1095
1096static const struct iio_event_spec ams_voltage_events[] = {
1097	{
1098		.type = IIO_EV_TYPE_THRESH,
1099		.dir = IIO_EV_DIR_RISING,
1100		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1101	},
1102	{
1103		.type = IIO_EV_TYPE_THRESH,
1104		.dir = IIO_EV_DIR_FALLING,
1105		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1106	},
1107	{
1108		.type = IIO_EV_TYPE_THRESH,
1109		.dir = IIO_EV_DIR_EITHER,
1110		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1111	},
1112};
1113
1114static const struct iio_chan_spec ams_ps_channels[] = {
1115	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
1116	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE),
1117	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1),
1118	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2),
1119	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3),
1120	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4),
1121	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5),
1122	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6),
1123	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7),
1124	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8),
1125	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9),
1126	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10),
1127	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS),
1128};
1129
1130static const struct iio_chan_spec ams_pl_channels[] = {
1131	AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
1132	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true),
1133	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true),
1134	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false),
1135	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false),
1136	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true),
1137	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true),
1138	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true),
1139	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true),
1140	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true),
1141	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false),
1142	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true),
1143	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true),
1144	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true),
1145	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true),
1146	AMS_PL_AUX_CHAN_VOLTAGE(0),
1147	AMS_PL_AUX_CHAN_VOLTAGE(1),
1148	AMS_PL_AUX_CHAN_VOLTAGE(2),
1149	AMS_PL_AUX_CHAN_VOLTAGE(3),
1150	AMS_PL_AUX_CHAN_VOLTAGE(4),
1151	AMS_PL_AUX_CHAN_VOLTAGE(5),
1152	AMS_PL_AUX_CHAN_VOLTAGE(6),
1153	AMS_PL_AUX_CHAN_VOLTAGE(7),
1154	AMS_PL_AUX_CHAN_VOLTAGE(8),
1155	AMS_PL_AUX_CHAN_VOLTAGE(9),
1156	AMS_PL_AUX_CHAN_VOLTAGE(10),
1157	AMS_PL_AUX_CHAN_VOLTAGE(11),
1158	AMS_PL_AUX_CHAN_VOLTAGE(12),
1159	AMS_PL_AUX_CHAN_VOLTAGE(13),
1160	AMS_PL_AUX_CHAN_VOLTAGE(14),
1161	AMS_PL_AUX_CHAN_VOLTAGE(15),
1162};
1163
1164static const struct iio_chan_spec ams_ctrl_channels[] = {
1165	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0),
1166	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3),
1167	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT),
1168	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM),
1169	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX),
1170	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL),
1171	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR),
1172};
1173
1174static int ams_get_ext_chan(struct fwnode_handle *chan_node,
1175			    struct iio_chan_spec *channels, int num_channels)
1176{
1177	struct iio_chan_spec *chan;
1178	struct fwnode_handle *child;
1179	unsigned int reg, ext_chan;
1180	int ret;
1181
1182	fwnode_for_each_child_node(chan_node, child) {
1183		ret = fwnode_property_read_u32(child, "reg", &reg);
1184		if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
1185			continue;
1186
1187		chan = &channels[num_channels];
1188		ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
1189		memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
1190
1191		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1192			chan->scan_type.sign = 's';
1193
1194		num_channels++;
1195	}
1196
1197	return num_channels;
1198}
1199
1200static void ams_iounmap_ps(void *data)
1201{
1202	struct ams *ams = data;
1203
1204	iounmap(ams->ps_base);
1205}
1206
1207static void ams_iounmap_pl(void *data)
1208{
1209	struct ams *ams = data;
1210
1211	iounmap(ams->pl_base);
1212}
1213
1214static int ams_init_module(struct iio_dev *indio_dev,
1215			   struct fwnode_handle *fwnode,
1216			   struct iio_chan_spec *channels)
1217{
1218	struct device *dev = indio_dev->dev.parent;
1219	struct ams *ams = iio_priv(indio_dev);
1220	int num_channels = 0;
1221	int ret;
1222
1223	if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-ps")) {
1224		ams->ps_base = fwnode_iomap(fwnode, 0);
1225		if (!ams->ps_base)
1226			return -ENXIO;
1227		ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
1228		if (ret < 0)
1229			return ret;
1230
1231		/* add PS channels to iio device channels */
1232		memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
1233		num_channels = ARRAY_SIZE(ams_ps_channels);
1234	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-pl")) {
1235		ams->pl_base = fwnode_iomap(fwnode, 0);
1236		if (!ams->pl_base)
1237			return -ENXIO;
1238
1239		ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
1240		if (ret < 0)
1241			return ret;
1242
1243		/* Copy only first 10 fix channels */
1244		memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
1245		num_channels += AMS_PL_MAX_FIXED_CHANNEL;
1246		num_channels = ams_get_ext_chan(fwnode, channels,
1247						num_channels);
1248	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams")) {
1249		/* add AMS channels to iio device channels */
1250		memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
1251		num_channels += ARRAY_SIZE(ams_ctrl_channels);
1252	} else {
1253		return -EINVAL;
1254	}
1255
1256	return num_channels;
1257}
1258
1259static int ams_parse_firmware(struct iio_dev *indio_dev)
1260{
1261	struct ams *ams = iio_priv(indio_dev);
1262	struct iio_chan_spec *ams_channels, *dev_channels;
1263	struct device *dev = indio_dev->dev.parent;
1264	struct fwnode_handle *child = NULL;
1265	struct fwnode_handle *fwnode = dev_fwnode(dev);
1266	size_t ams_size;
1267	int ret, ch_cnt = 0, i, rising_off, falling_off;
1268	unsigned int num_channels = 0;
1269
1270	ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
1271		ARRAY_SIZE(ams_ctrl_channels);
1272
1273	/* Initialize buffer for channel specification */
1274	ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
1275	if (!ams_channels)
1276		return -ENOMEM;
1277
1278	if (fwnode_device_is_available(fwnode)) {
1279		ret = ams_init_module(indio_dev, fwnode, ams_channels);
1280		if (ret < 0)
1281			return ret;
1282
1283		num_channels += ret;
1284	}
1285
1286	fwnode_for_each_child_node(fwnode, child) {
1287		if (fwnode_device_is_available(child)) {
1288			ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
1289			if (ret < 0) {
1290				fwnode_handle_put(child);
1291				return ret;
1292			}
1293
1294			num_channels += ret;
1295		}
1296	}
1297
1298	for (i = 0; i < num_channels; i++) {
1299		ams_channels[i].channel = ch_cnt++;
1300
1301		if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
1302			/* set threshold to max and min for each channel */
1303			falling_off =
1304				ams_get_alarm_offset(ams_channels[i].scan_index,
1305						     IIO_EV_DIR_FALLING);
1306			rising_off =
1307				ams_get_alarm_offset(ams_channels[i].scan_index,
1308						     IIO_EV_DIR_RISING);
1309			if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
1310				writel(AMS_ALARM_THR_MIN,
1311				       ams->pl_base + falling_off);
1312				writel(AMS_ALARM_THR_MAX,
1313				       ams->pl_base + rising_off);
1314			} else {
1315				writel(AMS_ALARM_THR_MIN,
1316				       ams->ps_base + falling_off);
1317				writel(AMS_ALARM_THR_MAX,
1318				       ams->ps_base + rising_off);
1319			}
1320		}
1321	}
1322
1323	dev_channels = devm_krealloc_array(dev, ams_channels, num_channels,
1324					   sizeof(*dev_channels), GFP_KERNEL);
1325	if (!dev_channels)
1326		return -ENOMEM;
1327
1328	indio_dev->channels = dev_channels;
1329	indio_dev->num_channels = num_channels;
1330
1331	return 0;
1332}
1333
1334static const struct iio_info iio_ams_info = {
1335	.read_raw = &ams_read_raw,
1336	.read_event_config = &ams_read_event_config,
1337	.write_event_config = &ams_write_event_config,
1338	.read_event_value = &ams_read_event_value,
1339	.write_event_value = &ams_write_event_value,
1340};
1341
1342static const struct of_device_id ams_of_match_table[] = {
1343	{ .compatible = "xlnx,zynqmp-ams" },
1344	{ }
1345};
1346MODULE_DEVICE_TABLE(of, ams_of_match_table);
1347
1348static int ams_probe(struct platform_device *pdev)
1349{
1350	struct iio_dev *indio_dev;
1351	struct ams *ams;
1352	int ret;
1353	int irq;
1354
1355	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
1356	if (!indio_dev)
1357		return -ENOMEM;
1358
1359	ams = iio_priv(indio_dev);
1360	mutex_init(&ams->lock);
1361	spin_lock_init(&ams->intr_lock);
1362
1363	indio_dev->name = "xilinx-ams";
1364
1365	indio_dev->info = &iio_ams_info;
1366	indio_dev->modes = INDIO_DIRECT_MODE;
1367
1368	ams->base = devm_platform_ioremap_resource(pdev, 0);
1369	if (IS_ERR(ams->base))
1370		return PTR_ERR(ams->base);
1371
1372	ams->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1373	if (IS_ERR(ams->clk))
1374		return PTR_ERR(ams->clk);
1375
1376	ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
1377					   ams_unmask_worker);
1378	if (ret < 0)
1379		return ret;
1380
1381	ret = ams_parse_firmware(indio_dev);
1382	if (ret)
1383		return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
1384
1385	ret = ams_init_device(ams);
1386	if (ret)
1387		return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
1388
1389	ams_enable_channel_sequence(indio_dev);
1390
1391	irq = platform_get_irq(pdev, 0);
1392	if (irq < 0)
1393		return irq;
1394
1395	ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
1396			       indio_dev);
1397	if (ret < 0)
1398		return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
1399
1400	platform_set_drvdata(pdev, indio_dev);
1401
1402	return devm_iio_device_register(&pdev->dev, indio_dev);
1403}
1404
1405static int ams_suspend(struct device *dev)
1406{
1407	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1408
1409	clk_disable_unprepare(ams->clk);
1410
1411	return 0;
1412}
1413
1414static int ams_resume(struct device *dev)
1415{
1416	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1417
1418	return clk_prepare_enable(ams->clk);
1419}
1420
1421static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
1422
1423static struct platform_driver ams_driver = {
1424	.probe = ams_probe,
1425	.driver = {
1426		.name = "xilinx-ams",
1427		.pm = pm_sleep_ptr(&ams_pm_ops),
1428		.of_match_table = ams_of_match_table,
1429	},
1430};
1431module_platform_driver(ams_driver);
1432
1433MODULE_LICENSE("GPL v2");
1434MODULE_AUTHOR("Xilinx, Inc.");
1435