1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
8
9#include <linux/clk.h>
10#include <linux/debugfs.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/iio/iio.h>
15#include <linux/iio/buffer.h>
16#include <linux/iio/timer/stm32-lptim-trigger.h>
17#include <linux/iio/timer/stm32-timer-trigger.h>
18#include <linux/iio/trigger.h>
19#include <linux/iio/trigger_consumer.h>
20#include <linux/iio/triggered_buffer.h>
21#include <linux/interrupt.h>
22#include <linux/io.h>
23#include <linux/iopoll.h>
24#include <linux/module.h>
25#include <linux/mod_devicetable.h>
26#include <linux/nvmem-consumer.h>
27#include <linux/platform_device.h>
28#include <linux/pm_runtime.h>
29#include <linux/property.h>
30
31#include "stm32-adc-core.h"
32
33/* Number of linear calibration shadow registers / LINCALRDYW control bits */
34#define STM32H7_LINCALFACT_NUM		6
35
36/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
37#define STM32H7_BOOST_CLKRATE		20000000UL
38
39#define STM32_ADC_CH_MAX		20	/* max number of channels */
40#define STM32_ADC_CH_SZ			16	/* max channel name size */
41#define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
42#define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
43#define STM32_ADC_TIMEOUT_US		100000
44#define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
45#define STM32_ADC_HW_STOP_DELAY_MS	100
46#define STM32_ADC_VREFINT_VOLTAGE	3300
47
48#define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
49
50/* External trigger enable */
51enum stm32_adc_exten {
52	STM32_EXTEN_SWTRIG,
53	STM32_EXTEN_HWTRIG_RISING_EDGE,
54	STM32_EXTEN_HWTRIG_FALLING_EDGE,
55	STM32_EXTEN_HWTRIG_BOTH_EDGES,
56};
57
58/* extsel - trigger mux selection value */
59enum stm32_adc_extsel {
60	STM32_EXT0,
61	STM32_EXT1,
62	STM32_EXT2,
63	STM32_EXT3,
64	STM32_EXT4,
65	STM32_EXT5,
66	STM32_EXT6,
67	STM32_EXT7,
68	STM32_EXT8,
69	STM32_EXT9,
70	STM32_EXT10,
71	STM32_EXT11,
72	STM32_EXT12,
73	STM32_EXT13,
74	STM32_EXT14,
75	STM32_EXT15,
76	STM32_EXT16,
77	STM32_EXT17,
78	STM32_EXT18,
79	STM32_EXT19,
80	STM32_EXT20,
81};
82
83enum stm32_adc_int_ch {
84	STM32_ADC_INT_CH_NONE = -1,
85	STM32_ADC_INT_CH_VDDCORE,
86	STM32_ADC_INT_CH_VDDCPU,
87	STM32_ADC_INT_CH_VDDQ_DDR,
88	STM32_ADC_INT_CH_VREFINT,
89	STM32_ADC_INT_CH_VBAT,
90	STM32_ADC_INT_CH_NB,
91};
92
93/**
94 * struct stm32_adc_ic - ADC internal channels
95 * @name:	name of the internal channel
96 * @idx:	internal channel enum index
97 */
98struct stm32_adc_ic {
99	const char *name;
100	u32 idx;
101};
102
103static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = {
104	{ "vddcore", STM32_ADC_INT_CH_VDDCORE },
105	{ "vddcpu", STM32_ADC_INT_CH_VDDCPU },
106	{ "vddq_ddr", STM32_ADC_INT_CH_VDDQ_DDR },
107	{ "vrefint", STM32_ADC_INT_CH_VREFINT },
108	{ "vbat", STM32_ADC_INT_CH_VBAT },
109};
110
111/**
112 * struct stm32_adc_trig_info - ADC trigger info
113 * @name:		name of the trigger, corresponding to its source
114 * @extsel:		trigger selection
115 */
116struct stm32_adc_trig_info {
117	const char *name;
118	enum stm32_adc_extsel extsel;
119};
120
121/**
122 * struct stm32_adc_calib - optional adc calibration data
123 * @lincalfact: Linearity calibration factor
124 * @lincal_saved: Indicates that linear calibration factors are saved
125 */
126struct stm32_adc_calib {
127	u32			lincalfact[STM32H7_LINCALFACT_NUM];
128	bool			lincal_saved;
129};
130
131/**
132 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
133 * @reg:		register offset
134 * @mask:		bitfield mask
135 * @shift:		left shift
136 */
137struct stm32_adc_regs {
138	int reg;
139	int mask;
140	int shift;
141};
142
143/**
144 * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data
145 * @vrefint_cal:	vrefint calibration value from nvmem
146 * @vrefint_data:	vrefint actual value
147 */
148struct stm32_adc_vrefint {
149	u32 vrefint_cal;
150	u32 vrefint_data;
151};
152
153/**
154 * struct stm32_adc_regspec - stm32 registers definition
155 * @dr:			data register offset
156 * @ier_eoc:		interrupt enable register & eocie bitfield
157 * @ier_ovr:		interrupt enable register & overrun bitfield
158 * @isr_eoc:		interrupt status register & eoc bitfield
159 * @isr_ovr:		interrupt status register & overrun bitfield
160 * @sqr:		reference to sequence registers array
161 * @exten:		trigger control register & bitfield
162 * @extsel:		trigger selection register & bitfield
163 * @res:		resolution selection register & bitfield
164 * @difsel:		differential mode selection register & bitfield
165 * @smpr:		smpr1 & smpr2 registers offset array
166 * @smp_bits:		smpr1 & smpr2 index and bitfields
167 * @or_vddcore:		option register & vddcore bitfield
168 * @or_vddcpu:		option register & vddcpu bitfield
169 * @or_vddq_ddr:	option register & vddq_ddr bitfield
170 * @ccr_vbat:		common register & vbat bitfield
171 * @ccr_vref:		common register & vrefint bitfield
172 */
173struct stm32_adc_regspec {
174	const u32 dr;
175	const struct stm32_adc_regs ier_eoc;
176	const struct stm32_adc_regs ier_ovr;
177	const struct stm32_adc_regs isr_eoc;
178	const struct stm32_adc_regs isr_ovr;
179	const struct stm32_adc_regs *sqr;
180	const struct stm32_adc_regs exten;
181	const struct stm32_adc_regs extsel;
182	const struct stm32_adc_regs res;
183	const struct stm32_adc_regs difsel;
184	const u32 smpr[2];
185	const struct stm32_adc_regs *smp_bits;
186	const struct stm32_adc_regs or_vddcore;
187	const struct stm32_adc_regs or_vddcpu;
188	const struct stm32_adc_regs or_vddq_ddr;
189	const struct stm32_adc_regs ccr_vbat;
190	const struct stm32_adc_regs ccr_vref;
191};
192
193struct stm32_adc;
194
195/**
196 * struct stm32_adc_cfg - stm32 compatible configuration data
197 * @regs:		registers descriptions
198 * @adc_info:		per instance input channels definitions
199 * @trigs:		external trigger sources
200 * @clk_required:	clock is required
201 * @has_vregready:	vregready status flag presence
202 * @has_boostmode:	boost mode support flag
203 * @has_linearcal:	linear calibration support flag
204 * @has_presel:		channel preselection support flag
205 * @prepare:		optional prepare routine (power-up, enable)
206 * @start_conv:		routine to start conversions
207 * @stop_conv:		routine to stop conversions
208 * @unprepare:		optional unprepare routine (disable, power-down)
209 * @irq_clear:		routine to clear irqs
210 * @smp_cycles:		programmable sampling time (ADC clock cycles)
211 * @ts_int_ch:		pointer to array of internal channels minimum sampling time in ns
212 */
213struct stm32_adc_cfg {
214	const struct stm32_adc_regspec	*regs;
215	const struct stm32_adc_info	*adc_info;
216	struct stm32_adc_trig_info	*trigs;
217	bool clk_required;
218	bool has_vregready;
219	bool has_boostmode;
220	bool has_linearcal;
221	bool has_presel;
222	int (*prepare)(struct iio_dev *);
223	void (*start_conv)(struct iio_dev *, bool dma);
224	void (*stop_conv)(struct iio_dev *);
225	void (*unprepare)(struct iio_dev *);
226	void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
227	const unsigned int *smp_cycles;
228	const unsigned int *ts_int_ch;
229};
230
231/**
232 * struct stm32_adc - private data of each ADC IIO instance
233 * @common:		reference to ADC block common data
234 * @offset:		ADC instance register offset in ADC block
235 * @cfg:		compatible configuration data
236 * @completion:		end of single conversion completion
237 * @buffer:		data buffer + 8 bytes for timestamp if enabled
238 * @clk:		clock for this adc instance
239 * @irq:		interrupt for this adc instance
240 * @lock:		spinlock
241 * @bufi:		data buffer index
242 * @num_conv:		expected number of scan conversions
243 * @res:		data resolution (e.g. RES bitfield value)
244 * @trigger_polarity:	external trigger polarity (e.g. exten)
245 * @dma_chan:		dma channel
246 * @rx_buf:		dma rx buffer cpu address
247 * @rx_dma_buf:		dma rx buffer bus address
248 * @rx_buf_sz:		dma rx buffer size
249 * @difsel:		bitmask to set single-ended/differential channel
250 * @pcsel:		bitmask to preselect channels on some devices
251 * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
252 * @cal:		optional calibration data on some devices
253 * @vrefint:		internal reference voltage data
254 * @chan_name:		channel name array
255 * @num_diff:		number of differential channels
256 * @int_ch:		internal channel indexes array
257 * @nsmps:		number of channels with optional sample time
258 */
259struct stm32_adc {
260	struct stm32_adc_common	*common;
261	u32			offset;
262	const struct stm32_adc_cfg	*cfg;
263	struct completion	completion;
264	u16			buffer[STM32_ADC_MAX_SQ + 4] __aligned(8);
265	struct clk		*clk;
266	int			irq;
267	spinlock_t		lock;		/* interrupt lock */
268	unsigned int		bufi;
269	unsigned int		num_conv;
270	u32			res;
271	u32			trigger_polarity;
272	struct dma_chan		*dma_chan;
273	u8			*rx_buf;
274	dma_addr_t		rx_dma_buf;
275	unsigned int		rx_buf_sz;
276	u32			difsel;
277	u32			pcsel;
278	u32			smpr_val[2];
279	struct stm32_adc_calib	cal;
280	struct stm32_adc_vrefint vrefint;
281	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
282	u32			num_diff;
283	int			int_ch[STM32_ADC_INT_CH_NB];
284	int			nsmps;
285};
286
287struct stm32_adc_diff_channel {
288	u32 vinp;
289	u32 vinn;
290};
291
292/**
293 * struct stm32_adc_info - stm32 ADC, per instance config data
294 * @max_channels:	Number of channels
295 * @resolutions:	available resolutions
296 * @num_res:		number of available resolutions
297 */
298struct stm32_adc_info {
299	int max_channels;
300	const unsigned int *resolutions;
301	const unsigned int num_res;
302};
303
304static const unsigned int stm32f4_adc_resolutions[] = {
305	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
306	12, 10, 8, 6,
307};
308
309/* stm32f4 can have up to 16 channels */
310static const struct stm32_adc_info stm32f4_adc_info = {
311	.max_channels = 16,
312	.resolutions = stm32f4_adc_resolutions,
313	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
314};
315
316static const unsigned int stm32h7_adc_resolutions[] = {
317	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
318	16, 14, 12, 10, 8,
319};
320
321/* stm32h7 can have up to 20 channels */
322static const struct stm32_adc_info stm32h7_adc_info = {
323	.max_channels = STM32_ADC_CH_MAX,
324	.resolutions = stm32h7_adc_resolutions,
325	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
326};
327
328/* stm32mp13 can have up to 19 channels */
329static const struct stm32_adc_info stm32mp13_adc_info = {
330	.max_channels = 19,
331	.resolutions = stm32f4_adc_resolutions,
332	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
333};
334
335/*
336 * stm32f4_sq - describe regular sequence registers
337 * - L: sequence len (register & bit field)
338 * - SQ1..SQ16: sequence entries (register & bit field)
339 */
340static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
341	/* L: len bit field description to be kept as first element */
342	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
343	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
344	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
345	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
346	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
347	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
348	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
349	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
350	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
351	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
352	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
353	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
354	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
355	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
356	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
357	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
358	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
359	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
360};
361
362/* STM32F4 external trigger sources for all instances */
363static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
364	{ TIM1_CH1, STM32_EXT0 },
365	{ TIM1_CH2, STM32_EXT1 },
366	{ TIM1_CH3, STM32_EXT2 },
367	{ TIM2_CH2, STM32_EXT3 },
368	{ TIM2_CH3, STM32_EXT4 },
369	{ TIM2_CH4, STM32_EXT5 },
370	{ TIM2_TRGO, STM32_EXT6 },
371	{ TIM3_CH1, STM32_EXT7 },
372	{ TIM3_TRGO, STM32_EXT8 },
373	{ TIM4_CH4, STM32_EXT9 },
374	{ TIM5_CH1, STM32_EXT10 },
375	{ TIM5_CH2, STM32_EXT11 },
376	{ TIM5_CH3, STM32_EXT12 },
377	{ TIM8_CH1, STM32_EXT13 },
378	{ TIM8_TRGO, STM32_EXT14 },
379	{}, /* sentinel */
380};
381
382/*
383 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
384 * Sorted so it can be indexed by channel number.
385 */
386static const struct stm32_adc_regs stm32f4_smp_bits[] = {
387	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
388	{ 1, GENMASK(2, 0), 0 },
389	{ 1, GENMASK(5, 3), 3 },
390	{ 1, GENMASK(8, 6), 6 },
391	{ 1, GENMASK(11, 9), 9 },
392	{ 1, GENMASK(14, 12), 12 },
393	{ 1, GENMASK(17, 15), 15 },
394	{ 1, GENMASK(20, 18), 18 },
395	{ 1, GENMASK(23, 21), 21 },
396	{ 1, GENMASK(26, 24), 24 },
397	{ 1, GENMASK(29, 27), 27 },
398	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
399	{ 0, GENMASK(2, 0), 0 },
400	{ 0, GENMASK(5, 3), 3 },
401	{ 0, GENMASK(8, 6), 6 },
402	{ 0, GENMASK(11, 9), 9 },
403	{ 0, GENMASK(14, 12), 12 },
404	{ 0, GENMASK(17, 15), 15 },
405	{ 0, GENMASK(20, 18), 18 },
406	{ 0, GENMASK(23, 21), 21 },
407	{ 0, GENMASK(26, 24), 24 },
408};
409
410/* STM32F4 programmable sampling time (ADC clock cycles) */
411static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
412	3, 15, 28, 56, 84, 112, 144, 480,
413};
414
415static const struct stm32_adc_regspec stm32f4_adc_regspec = {
416	.dr = STM32F4_ADC_DR,
417	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
418	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
419	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
420	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
421	.sqr = stm32f4_sq,
422	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
423	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
424		    STM32F4_EXTSEL_SHIFT },
425	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
426	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
427	.smp_bits = stm32f4_smp_bits,
428};
429
430static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
431	/* L: len bit field description to be kept as first element */
432	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
433	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
434	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
435	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
436	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
437	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
438	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
439	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
440	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
441	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
442	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
443	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
444	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
445	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
446	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
447	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
448	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
449	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
450};
451
452/* STM32H7 external trigger sources for all instances */
453static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
454	{ TIM1_CH1, STM32_EXT0 },
455	{ TIM1_CH2, STM32_EXT1 },
456	{ TIM1_CH3, STM32_EXT2 },
457	{ TIM2_CH2, STM32_EXT3 },
458	{ TIM3_TRGO, STM32_EXT4 },
459	{ TIM4_CH4, STM32_EXT5 },
460	{ TIM8_TRGO, STM32_EXT7 },
461	{ TIM8_TRGO2, STM32_EXT8 },
462	{ TIM1_TRGO, STM32_EXT9 },
463	{ TIM1_TRGO2, STM32_EXT10 },
464	{ TIM2_TRGO, STM32_EXT11 },
465	{ TIM4_TRGO, STM32_EXT12 },
466	{ TIM6_TRGO, STM32_EXT13 },
467	{ TIM15_TRGO, STM32_EXT14 },
468	{ TIM3_CH4, STM32_EXT15 },
469	{ LPTIM1_OUT, STM32_EXT18 },
470	{ LPTIM2_OUT, STM32_EXT19 },
471	{ LPTIM3_OUT, STM32_EXT20 },
472	{},
473};
474
475/*
476 * stm32h7_smp_bits - describe sampling time register index & bit fields
477 * Sorted so it can be indexed by channel number.
478 */
479static const struct stm32_adc_regs stm32h7_smp_bits[] = {
480	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
481	{ 0, GENMASK(2, 0), 0 },
482	{ 0, GENMASK(5, 3), 3 },
483	{ 0, GENMASK(8, 6), 6 },
484	{ 0, GENMASK(11, 9), 9 },
485	{ 0, GENMASK(14, 12), 12 },
486	{ 0, GENMASK(17, 15), 15 },
487	{ 0, GENMASK(20, 18), 18 },
488	{ 0, GENMASK(23, 21), 21 },
489	{ 0, GENMASK(26, 24), 24 },
490	{ 0, GENMASK(29, 27), 27 },
491	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
492	{ 1, GENMASK(2, 0), 0 },
493	{ 1, GENMASK(5, 3), 3 },
494	{ 1, GENMASK(8, 6), 6 },
495	{ 1, GENMASK(11, 9), 9 },
496	{ 1, GENMASK(14, 12), 12 },
497	{ 1, GENMASK(17, 15), 15 },
498	{ 1, GENMASK(20, 18), 18 },
499	{ 1, GENMASK(23, 21), 21 },
500	{ 1, GENMASK(26, 24), 24 },
501	{ 1, GENMASK(29, 27), 27 },
502};
503
504/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
505static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
506	1, 2, 8, 16, 32, 64, 387, 810,
507};
508
509static const struct stm32_adc_regspec stm32h7_adc_regspec = {
510	.dr = STM32H7_ADC_DR,
511	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
512	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
513	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
514	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
515	.sqr = stm32h7_sq,
516	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
517	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
518		    STM32H7_EXTSEL_SHIFT },
519	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
520	.difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK},
521	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
522	.smp_bits = stm32h7_smp_bits,
523};
524
525/* STM32MP13 programmable sampling time (ADC clock cycles, rounded down) */
526static const unsigned int stm32mp13_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
527	2, 6, 12, 24, 47, 92, 247, 640,
528};
529
530static const struct stm32_adc_regspec stm32mp13_adc_regspec = {
531	.dr = STM32H7_ADC_DR,
532	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
533	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
534	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
535	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
536	.sqr = stm32h7_sq,
537	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
538	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
539		    STM32H7_EXTSEL_SHIFT },
540	.res = { STM32H7_ADC_CFGR, STM32MP13_RES_MASK, STM32MP13_RES_SHIFT },
541	.difsel = { STM32MP13_ADC_DIFSEL, STM32MP13_DIFSEL_MASK},
542	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
543	.smp_bits = stm32h7_smp_bits,
544	.or_vddcore = { STM32MP13_ADC2_OR, STM32MP13_OP0 },
545	.or_vddcpu = { STM32MP13_ADC2_OR, STM32MP13_OP1 },
546	.or_vddq_ddr = { STM32MP13_ADC2_OR, STM32MP13_OP2 },
547	.ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
548	.ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
549};
550
551static const struct stm32_adc_regspec stm32mp1_adc_regspec = {
552	.dr = STM32H7_ADC_DR,
553	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
554	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
555	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
556	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
557	.sqr = stm32h7_sq,
558	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
559	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
560		    STM32H7_EXTSEL_SHIFT },
561	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
562	.difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK},
563	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
564	.smp_bits = stm32h7_smp_bits,
565	.or_vddcore = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN },
566	.ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
567	.ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
568};
569
570/*
571 * STM32 ADC registers access routines
572 * @adc: stm32 adc instance
573 * @reg: reg offset in adc instance
574 *
575 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
576 * for adc1, adc2 and adc3.
577 */
578static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
579{
580	return readl_relaxed(adc->common->base + adc->offset + reg);
581}
582
583#define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
584
585#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
586	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
587			   cond, sleep_us, timeout_us)
588
589static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
590{
591	return readw_relaxed(adc->common->base + adc->offset + reg);
592}
593
594static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
595{
596	writel_relaxed(val, adc->common->base + adc->offset + reg);
597}
598
599static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
600{
601	unsigned long flags;
602
603	spin_lock_irqsave(&adc->lock, flags);
604	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
605	spin_unlock_irqrestore(&adc->lock, flags);
606}
607
608static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
609{
610	spin_lock(&adc->common->lock);
611	writel_relaxed(readl_relaxed(adc->common->base + reg) | bits,
612		       adc->common->base + reg);
613	spin_unlock(&adc->common->lock);
614}
615
616static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
617{
618	unsigned long flags;
619
620	spin_lock_irqsave(&adc->lock, flags);
621	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
622	spin_unlock_irqrestore(&adc->lock, flags);
623}
624
625static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
626{
627	spin_lock(&adc->common->lock);
628	writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits,
629		       adc->common->base + reg);
630	spin_unlock(&adc->common->lock);
631}
632
633/**
634 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
635 * @adc: stm32 adc instance
636 */
637static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
638{
639	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
640			   adc->cfg->regs->ier_eoc.mask);
641};
642
643/**
644 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
645 * @adc: stm32 adc instance
646 */
647static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
648{
649	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
650			   adc->cfg->regs->ier_eoc.mask);
651}
652
653static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
654{
655	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
656			   adc->cfg->regs->ier_ovr.mask);
657}
658
659static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
660{
661	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
662			   adc->cfg->regs->ier_ovr.mask);
663}
664
665static void stm32_adc_set_res(struct stm32_adc *adc)
666{
667	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
668	u32 val;
669
670	val = stm32_adc_readl(adc, res->reg);
671	val = (val & ~res->mask) | (adc->res << res->shift);
672	stm32_adc_writel(adc, res->reg, val);
673}
674
675static int stm32_adc_hw_stop(struct device *dev)
676{
677	struct iio_dev *indio_dev = dev_get_drvdata(dev);
678	struct stm32_adc *adc = iio_priv(indio_dev);
679
680	if (adc->cfg->unprepare)
681		adc->cfg->unprepare(indio_dev);
682
683	clk_disable_unprepare(adc->clk);
684
685	return 0;
686}
687
688static int stm32_adc_hw_start(struct device *dev)
689{
690	struct iio_dev *indio_dev = dev_get_drvdata(dev);
691	struct stm32_adc *adc = iio_priv(indio_dev);
692	int ret;
693
694	ret = clk_prepare_enable(adc->clk);
695	if (ret)
696		return ret;
697
698	stm32_adc_set_res(adc);
699
700	if (adc->cfg->prepare) {
701		ret = adc->cfg->prepare(indio_dev);
702		if (ret)
703			goto err_clk_dis;
704	}
705
706	return 0;
707
708err_clk_dis:
709	clk_disable_unprepare(adc->clk);
710
711	return ret;
712}
713
714static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev)
715{
716	struct stm32_adc *adc = iio_priv(indio_dev);
717	u32 i;
718
719	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
720		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
721			continue;
722
723		switch (i) {
724		case STM32_ADC_INT_CH_VDDCORE:
725			dev_dbg(&indio_dev->dev, "Enable VDDCore\n");
726			stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcore.reg,
727					   adc->cfg->regs->or_vddcore.mask);
728			break;
729		case STM32_ADC_INT_CH_VDDCPU:
730			dev_dbg(&indio_dev->dev, "Enable VDDCPU\n");
731			stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcpu.reg,
732					   adc->cfg->regs->or_vddcpu.mask);
733			break;
734		case STM32_ADC_INT_CH_VDDQ_DDR:
735			dev_dbg(&indio_dev->dev, "Enable VDDQ_DDR\n");
736			stm32_adc_set_bits(adc, adc->cfg->regs->or_vddq_ddr.reg,
737					   adc->cfg->regs->or_vddq_ddr.mask);
738			break;
739		case STM32_ADC_INT_CH_VREFINT:
740			dev_dbg(&indio_dev->dev, "Enable VREFInt\n");
741			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
742						  adc->cfg->regs->ccr_vref.mask);
743			break;
744		case STM32_ADC_INT_CH_VBAT:
745			dev_dbg(&indio_dev->dev, "Enable VBAT\n");
746			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
747						  adc->cfg->regs->ccr_vbat.mask);
748			break;
749		}
750	}
751}
752
753static void stm32_adc_int_ch_disable(struct stm32_adc *adc)
754{
755	u32 i;
756
757	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
758		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
759			continue;
760
761		switch (i) {
762		case STM32_ADC_INT_CH_VDDCORE:
763			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcore.reg,
764					   adc->cfg->regs->or_vddcore.mask);
765			break;
766		case STM32_ADC_INT_CH_VDDCPU:
767			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcpu.reg,
768					   adc->cfg->regs->or_vddcpu.mask);
769			break;
770		case STM32_ADC_INT_CH_VDDQ_DDR:
771			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddq_ddr.reg,
772					   adc->cfg->regs->or_vddq_ddr.mask);
773			break;
774		case STM32_ADC_INT_CH_VREFINT:
775			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
776						  adc->cfg->regs->ccr_vref.mask);
777			break;
778		case STM32_ADC_INT_CH_VBAT:
779			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
780						  adc->cfg->regs->ccr_vbat.mask);
781			break;
782		}
783	}
784}
785
786/**
787 * stm32f4_adc_start_conv() - Start conversions for regular channels.
788 * @indio_dev: IIO device instance
789 * @dma: use dma to transfer conversion result
790 *
791 * Start conversions for regular channels.
792 * Also take care of normal or DMA mode. Circular DMA may be used for regular
793 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
794 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
795 */
796static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
797{
798	struct stm32_adc *adc = iio_priv(indio_dev);
799
800	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
801
802	if (dma)
803		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
804				   STM32F4_DMA | STM32F4_DDS);
805
806	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
807
808	/* Wait for Power-up time (tSTAB from datasheet) */
809	usleep_range(2, 3);
810
811	/* Software start ? (e.g. trigger detection disabled ?) */
812	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
813		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
814}
815
816static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
817{
818	struct stm32_adc *adc = iio_priv(indio_dev);
819
820	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
821	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
822
823	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
824	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
825			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
826}
827
828static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
829{
830	struct stm32_adc *adc = iio_priv(indio_dev);
831
832	stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
833}
834
835static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
836{
837	struct stm32_adc *adc = iio_priv(indio_dev);
838	enum stm32h7_adc_dmngt dmngt;
839	unsigned long flags;
840	u32 val;
841
842	if (dma)
843		dmngt = STM32H7_DMNGT_DMA_CIRC;
844	else
845		dmngt = STM32H7_DMNGT_DR_ONLY;
846
847	spin_lock_irqsave(&adc->lock, flags);
848	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
849	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
850	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
851	spin_unlock_irqrestore(&adc->lock, flags);
852
853	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
854}
855
856static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
857{
858	struct stm32_adc *adc = iio_priv(indio_dev);
859	int ret;
860	u32 val;
861
862	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
863
864	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
865					   !(val & (STM32H7_ADSTART)),
866					   100, STM32_ADC_TIMEOUT_US);
867	if (ret)
868		dev_warn(&indio_dev->dev, "stop failed\n");
869
870	/* STM32H7_DMNGT_MASK covers STM32MP13_DMAEN & STM32MP13_DMACFG */
871	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
872}
873
874static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
875{
876	struct stm32_adc *adc = iio_priv(indio_dev);
877	/* On STM32H7 IRQs are cleared by writing 1 into ISR register */
878	stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
879}
880
881static void stm32mp13_adc_start_conv(struct iio_dev *indio_dev, bool dma)
882{
883	struct stm32_adc *adc = iio_priv(indio_dev);
884
885	if (dma)
886		stm32_adc_set_bits(adc, STM32H7_ADC_CFGR,
887				   STM32MP13_DMAEN | STM32MP13_DMACFG);
888
889	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
890}
891
892static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
893{
894	struct stm32_adc *adc = iio_priv(indio_dev);
895	int ret;
896	u32 val;
897
898	/* Exit deep power down, then enable ADC voltage regulator */
899	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
900	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
901
902	if (adc->cfg->has_boostmode &&
903	    adc->common->rate > STM32H7_BOOST_CLKRATE)
904		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
905
906	/* Wait for startup time */
907	if (!adc->cfg->has_vregready) {
908		usleep_range(10, 20);
909		return 0;
910	}
911
912	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
913					   val & STM32MP1_VREGREADY, 100,
914					   STM32_ADC_TIMEOUT_US);
915	if (ret) {
916		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
917		dev_err(&indio_dev->dev, "Failed to exit power down\n");
918	}
919
920	return ret;
921}
922
923static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
924{
925	if (adc->cfg->has_boostmode)
926		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
927
928	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
929	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
930}
931
932static int stm32h7_adc_enable(struct iio_dev *indio_dev)
933{
934	struct stm32_adc *adc = iio_priv(indio_dev);
935	int ret;
936	u32 val;
937
938	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
939
940	/* Poll for ADRDY to be set (after adc startup time) */
941	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
942					   val & STM32H7_ADRDY,
943					   100, STM32_ADC_TIMEOUT_US);
944	if (ret) {
945		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
946		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
947	} else {
948		/* Clear ADRDY by writing one */
949		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
950	}
951
952	return ret;
953}
954
955static void stm32h7_adc_disable(struct iio_dev *indio_dev)
956{
957	struct stm32_adc *adc = iio_priv(indio_dev);
958	int ret;
959	u32 val;
960
961	if (!(stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_ADEN))
962		return;
963
964	/* Disable ADC and wait until it's effectively disabled */
965	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
966	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
967					   !(val & STM32H7_ADEN), 100,
968					   STM32_ADC_TIMEOUT_US);
969	if (ret)
970		dev_warn(&indio_dev->dev, "Failed to disable\n");
971}
972
973/**
974 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
975 * @indio_dev: IIO device instance
976 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
977 */
978static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
979{
980	struct stm32_adc *adc = iio_priv(indio_dev);
981	int i, ret;
982	u32 lincalrdyw_mask, val;
983
984	/* Read linearity calibration */
985	lincalrdyw_mask = STM32H7_LINCALRDYW6;
986	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
987		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
988		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
989
990		/* Poll: wait calib data to be ready in CALFACT2 register */
991		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
992						   !(val & lincalrdyw_mask),
993						   100, STM32_ADC_TIMEOUT_US);
994		if (ret) {
995			dev_err(&indio_dev->dev, "Failed to read calfact\n");
996			return ret;
997		}
998
999		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
1000		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
1001		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
1002
1003		lincalrdyw_mask >>= 1;
1004	}
1005	adc->cal.lincal_saved = true;
1006
1007	return 0;
1008}
1009
1010/**
1011 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
1012 * @indio_dev: IIO device instance
1013 * Note: ADC must be enabled, with no on-going conversions.
1014 */
1015static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
1016{
1017	struct stm32_adc *adc = iio_priv(indio_dev);
1018	int i, ret;
1019	u32 lincalrdyw_mask, val;
1020
1021	lincalrdyw_mask = STM32H7_LINCALRDYW6;
1022	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
1023		/*
1024		 * Write saved calibration data to shadow registers:
1025		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
1026		 * data write. Then poll to wait for complete transfer.
1027		 */
1028		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
1029		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
1030		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
1031		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1032						   val & lincalrdyw_mask,
1033						   100, STM32_ADC_TIMEOUT_US);
1034		if (ret) {
1035			dev_err(&indio_dev->dev, "Failed to write calfact\n");
1036			return ret;
1037		}
1038
1039		/*
1040		 * Read back calibration data, has two effects:
1041		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
1042		 *   for next time calibration needs to be restored.
1043		 * - BTW, bit clear triggers a read, then check data has been
1044		 *   correctly written.
1045		 */
1046		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
1047		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1048						   !(val & lincalrdyw_mask),
1049						   100, STM32_ADC_TIMEOUT_US);
1050		if (ret) {
1051			dev_err(&indio_dev->dev, "Failed to read calfact\n");
1052			return ret;
1053		}
1054		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
1055		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
1056			dev_err(&indio_dev->dev, "calfact not consistent\n");
1057			return -EIO;
1058		}
1059
1060		lincalrdyw_mask >>= 1;
1061	}
1062
1063	return 0;
1064}
1065
1066/*
1067 * Fixed timeout value for ADC calibration.
1068 * worst cases:
1069 * - low clock frequency
1070 * - maximum prescalers
1071 * Calibration requires:
1072 * - 131,072 ADC clock cycle for the linear calibration
1073 * - 20 ADC clock cycle for the offset calibration
1074 *
1075 * Set to 100ms for now
1076 */
1077#define STM32H7_ADC_CALIB_TIMEOUT_US		100000
1078
1079/**
1080 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
1081 * @indio_dev: IIO device instance
1082 * @do_lincal: linear calibration request flag
1083 * Note: Must be called once ADC is out of power down.
1084 *
1085 * Run offset calibration unconditionally.
1086 * Run linear calibration if requested & supported.
1087 */
1088static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev, int do_lincal)
1089{
1090	struct stm32_adc *adc = iio_priv(indio_dev);
1091	int ret;
1092	u32 msk = STM32H7_ADCALDIF;
1093	u32 val;
1094
1095	if (adc->cfg->has_linearcal && do_lincal)
1096		msk |= STM32H7_ADCALLIN;
1097	/* ADC must be disabled for calibration */
1098	stm32h7_adc_disable(indio_dev);
1099
1100	/*
1101	 * Select calibration mode:
1102	 * - Offset calibration for single ended inputs
1103	 * - No linearity calibration (do it later, before reading it)
1104	 */
1105	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk);
1106
1107	/* Start calibration, then wait for completion */
1108	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1109	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1110					   !(val & STM32H7_ADCAL), 100,
1111					   STM32H7_ADC_CALIB_TIMEOUT_US);
1112	if (ret) {
1113		dev_err(&indio_dev->dev, "calibration (single-ended) error %d\n", ret);
1114		goto out;
1115	}
1116
1117	/*
1118	 * Select calibration mode, then start calibration:
1119	 * - Offset calibration for differential input
1120	 * - Linearity calibration (needs to be done only once for single/diff)
1121	 *   will run simultaneously with offset calibration.
1122	 */
1123	stm32_adc_set_bits(adc, STM32H7_ADC_CR, msk);
1124	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1125	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1126					   !(val & STM32H7_ADCAL), 100,
1127					   STM32H7_ADC_CALIB_TIMEOUT_US);
1128	if (ret) {
1129		dev_err(&indio_dev->dev, "calibration (diff%s) error %d\n",
1130			(msk & STM32H7_ADCALLIN) ? "+linear" : "", ret);
1131		goto out;
1132	}
1133
1134out:
1135	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk);
1136
1137	return ret;
1138}
1139
1140/**
1141 * stm32h7_adc_check_selfcalib() - Check linear calibration status
1142 * @indio_dev: IIO device instance
1143 *
1144 * Used to check if linear calibration has been done.
1145 * Return true if linear calibration factors are already saved in private data
1146 * or if a linear calibration has been done at boot stage.
1147 */
1148static int stm32h7_adc_check_selfcalib(struct iio_dev *indio_dev)
1149{
1150	struct stm32_adc *adc = iio_priv(indio_dev);
1151	u32 val;
1152
1153	if (adc->cal.lincal_saved)
1154		return true;
1155
1156	/*
1157	 * Check if linear calibration factors are available in ADC registers,
1158	 * by checking that all LINCALRDYWx bits are set.
1159	 */
1160	val = stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_LINCALRDYW_MASK;
1161	if (val == STM32H7_LINCALRDYW_MASK)
1162		return true;
1163
1164	return false;
1165}
1166
1167/**
1168 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
1169 * @indio_dev: IIO device instance
1170 * Leave power down mode.
1171 * Configure channels as single ended or differential before enabling ADC.
1172 * Enable ADC.
1173 * Restore calibration data.
1174 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1175 * - Only one input is selected for single ended (e.g. 'vinp')
1176 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1177 */
1178static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
1179{
1180	struct stm32_adc *adc = iio_priv(indio_dev);
1181	int lincal_done = false;
1182	int ret;
1183
1184	ret = stm32h7_adc_exit_pwr_down(indio_dev);
1185	if (ret)
1186		return ret;
1187
1188	if (adc->cfg->has_linearcal)
1189		lincal_done = stm32h7_adc_check_selfcalib(indio_dev);
1190
1191	/* Always run offset calibration. Run linear calibration only once */
1192	ret = stm32h7_adc_selfcalib(indio_dev, !lincal_done);
1193	if (ret < 0)
1194		goto pwr_dwn;
1195
1196	stm32_adc_int_ch_enable(indio_dev);
1197
1198	stm32_adc_writel(adc, adc->cfg->regs->difsel.reg, adc->difsel);
1199
1200	ret = stm32h7_adc_enable(indio_dev);
1201	if (ret)
1202		goto ch_disable;
1203
1204	if (adc->cfg->has_linearcal) {
1205		if (!adc->cal.lincal_saved)
1206			ret = stm32h7_adc_read_selfcalib(indio_dev);
1207		else
1208			ret = stm32h7_adc_restore_selfcalib(indio_dev);
1209
1210		if (ret)
1211			goto disable;
1212	}
1213
1214	if (adc->cfg->has_presel)
1215		stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1216
1217	return 0;
1218
1219disable:
1220	stm32h7_adc_disable(indio_dev);
1221ch_disable:
1222	stm32_adc_int_ch_disable(adc);
1223pwr_dwn:
1224	stm32h7_adc_enter_pwr_down(adc);
1225
1226	return ret;
1227}
1228
1229static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
1230{
1231	struct stm32_adc *adc = iio_priv(indio_dev);
1232
1233	if (adc->cfg->has_presel)
1234		stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
1235	stm32h7_adc_disable(indio_dev);
1236	stm32_adc_int_ch_disable(adc);
1237	stm32h7_adc_enter_pwr_down(adc);
1238}
1239
1240/**
1241 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1242 * @indio_dev: IIO device
1243 * @scan_mask: channels to be converted
1244 *
1245 * Conversion sequence :
1246 * Apply sampling time settings for all channels.
1247 * Configure ADC scan sequence based on selected channels in scan_mask.
1248 * Add channels to SQR registers, from scan_mask LSB to MSB, then
1249 * program sequence len.
1250 */
1251static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1252				   const unsigned long *scan_mask)
1253{
1254	struct stm32_adc *adc = iio_priv(indio_dev);
1255	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1256	const struct iio_chan_spec *chan;
1257	u32 val, bit;
1258	int i = 0;
1259
1260	/* Apply sampling time settings */
1261	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1262	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1263
1264	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1265		chan = indio_dev->channels + bit;
1266		/*
1267		 * Assign one channel per SQ entry in regular
1268		 * sequence, starting with SQ1.
1269		 */
1270		i++;
1271		if (i > STM32_ADC_MAX_SQ)
1272			return -EINVAL;
1273
1274		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1275			__func__, chan->channel, i);
1276
1277		val = stm32_adc_readl(adc, sqr[i].reg);
1278		val &= ~sqr[i].mask;
1279		val |= chan->channel << sqr[i].shift;
1280		stm32_adc_writel(adc, sqr[i].reg, val);
1281	}
1282
1283	if (!i)
1284		return -EINVAL;
1285
1286	/* Sequence len */
1287	val = stm32_adc_readl(adc, sqr[0].reg);
1288	val &= ~sqr[0].mask;
1289	val |= ((i - 1) << sqr[0].shift);
1290	stm32_adc_writel(adc, sqr[0].reg, val);
1291
1292	return 0;
1293}
1294
1295/**
1296 * stm32_adc_get_trig_extsel() - Get external trigger selection
1297 * @indio_dev: IIO device structure
1298 * @trig: trigger
1299 *
1300 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1301 */
1302static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1303				     struct iio_trigger *trig)
1304{
1305	struct stm32_adc *adc = iio_priv(indio_dev);
1306	int i;
1307
1308	/* lookup triggers registered by stm32 timer trigger driver */
1309	for (i = 0; adc->cfg->trigs[i].name; i++) {
1310		/**
1311		 * Checking both stm32 timer trigger type and trig name
1312		 * should be safe against arbitrary trigger names.
1313		 */
1314		if ((is_stm32_timer_trigger(trig) ||
1315		     is_stm32_lptim_trigger(trig)) &&
1316		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1317			return adc->cfg->trigs[i].extsel;
1318		}
1319	}
1320
1321	return -EINVAL;
1322}
1323
1324/**
1325 * stm32_adc_set_trig() - Set a regular trigger
1326 * @indio_dev: IIO device
1327 * @trig: IIO trigger
1328 *
1329 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1330 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1331 * - if HW trigger enabled, set source & polarity
1332 */
1333static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1334			      struct iio_trigger *trig)
1335{
1336	struct stm32_adc *adc = iio_priv(indio_dev);
1337	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1338	unsigned long flags;
1339	int ret;
1340
1341	if (trig) {
1342		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1343		if (ret < 0)
1344			return ret;
1345
1346		/* set trigger source and polarity (default to rising edge) */
1347		extsel = ret;
1348		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1349	}
1350
1351	spin_lock_irqsave(&adc->lock, flags);
1352	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1353	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1354	val |= exten << adc->cfg->regs->exten.shift;
1355	val |= extsel << adc->cfg->regs->extsel.shift;
1356	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1357	spin_unlock_irqrestore(&adc->lock, flags);
1358
1359	return 0;
1360}
1361
1362static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1363				  const struct iio_chan_spec *chan,
1364				  unsigned int type)
1365{
1366	struct stm32_adc *adc = iio_priv(indio_dev);
1367
1368	adc->trigger_polarity = type;
1369
1370	return 0;
1371}
1372
1373static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1374				  const struct iio_chan_spec *chan)
1375{
1376	struct stm32_adc *adc = iio_priv(indio_dev);
1377
1378	return adc->trigger_polarity;
1379}
1380
1381static const char * const stm32_trig_pol_items[] = {
1382	"rising-edge", "falling-edge", "both-edges",
1383};
1384
1385static const struct iio_enum stm32_adc_trig_pol = {
1386	.items = stm32_trig_pol_items,
1387	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1388	.get = stm32_adc_get_trig_pol,
1389	.set = stm32_adc_set_trig_pol,
1390};
1391
1392/**
1393 * stm32_adc_single_conv() - Performs a single conversion
1394 * @indio_dev: IIO device
1395 * @chan: IIO channel
1396 * @res: conversion result
1397 *
1398 * The function performs a single conversion on a given channel:
1399 * - Apply sampling time settings
1400 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1401 * - Use SW trigger
1402 * - Start conversion, then wait for interrupt completion.
1403 */
1404static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1405				 const struct iio_chan_spec *chan,
1406				 int *res)
1407{
1408	struct stm32_adc *adc = iio_priv(indio_dev);
1409	struct device *dev = indio_dev->dev.parent;
1410	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1411	long timeout;
1412	u32 val;
1413	int ret;
1414
1415	reinit_completion(&adc->completion);
1416
1417	adc->bufi = 0;
1418
1419	ret = pm_runtime_resume_and_get(dev);
1420	if (ret < 0)
1421		return ret;
1422
1423	/* Apply sampling time settings */
1424	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1425	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1426
1427	/* Program chan number in regular sequence (SQ1) */
1428	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1429	val &= ~regs->sqr[1].mask;
1430	val |= chan->channel << regs->sqr[1].shift;
1431	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1432
1433	/* Set regular sequence len (0 for 1 conversion) */
1434	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1435
1436	/* Trigger detection disabled (conversion can be launched in SW) */
1437	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1438
1439	stm32_adc_conv_irq_enable(adc);
1440
1441	adc->cfg->start_conv(indio_dev, false);
1442
1443	timeout = wait_for_completion_interruptible_timeout(
1444					&adc->completion, STM32_ADC_TIMEOUT);
1445	if (timeout == 0) {
1446		ret = -ETIMEDOUT;
1447	} else if (timeout < 0) {
1448		ret = timeout;
1449	} else {
1450		*res = adc->buffer[0];
1451		ret = IIO_VAL_INT;
1452	}
1453
1454	adc->cfg->stop_conv(indio_dev);
1455
1456	stm32_adc_conv_irq_disable(adc);
1457
1458	pm_runtime_mark_last_busy(dev);
1459	pm_runtime_put_autosuspend(dev);
1460
1461	return ret;
1462}
1463
1464static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1465			      struct iio_chan_spec const *chan,
1466			      int *val, int *val2, long mask)
1467{
1468	struct stm32_adc *adc = iio_priv(indio_dev);
1469	int ret;
1470
1471	switch (mask) {
1472	case IIO_CHAN_INFO_RAW:
1473	case IIO_CHAN_INFO_PROCESSED:
1474		ret = iio_device_claim_direct_mode(indio_dev);
1475		if (ret)
1476			return ret;
1477		if (chan->type == IIO_VOLTAGE)
1478			ret = stm32_adc_single_conv(indio_dev, chan, val);
1479		else
1480			ret = -EINVAL;
1481
1482		if (mask == IIO_CHAN_INFO_PROCESSED)
1483			*val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val;
1484
1485		iio_device_release_direct_mode(indio_dev);
1486		return ret;
1487
1488	case IIO_CHAN_INFO_SCALE:
1489		if (chan->differential) {
1490			*val = adc->common->vref_mv * 2;
1491			*val2 = chan->scan_type.realbits;
1492		} else {
1493			*val = adc->common->vref_mv;
1494			*val2 = chan->scan_type.realbits;
1495		}
1496		return IIO_VAL_FRACTIONAL_LOG2;
1497
1498	case IIO_CHAN_INFO_OFFSET:
1499		if (chan->differential)
1500			/* ADC_full_scale / 2 */
1501			*val = -((1 << chan->scan_type.realbits) / 2);
1502		else
1503			*val = 0;
1504		return IIO_VAL_INT;
1505
1506	default:
1507		return -EINVAL;
1508	}
1509}
1510
1511static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1512{
1513	struct stm32_adc *adc = iio_priv(indio_dev);
1514
1515	adc->cfg->irq_clear(indio_dev, msk);
1516}
1517
1518static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1519{
1520	struct iio_dev *indio_dev = data;
1521	struct stm32_adc *adc = iio_priv(indio_dev);
1522	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1523	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1524
1525	/* Check ovr status right now, as ovr mask should be already disabled */
1526	if (status & regs->isr_ovr.mask) {
1527		/*
1528		 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1529		 * This requires to stop ADC first. OVR bit state in ISR,
1530		 * is propaged to CSR register by hardware.
1531		 */
1532		adc->cfg->stop_conv(indio_dev);
1533		stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1534		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1535		return IRQ_HANDLED;
1536	}
1537
1538	return IRQ_NONE;
1539}
1540
1541static irqreturn_t stm32_adc_isr(int irq, void *data)
1542{
1543	struct iio_dev *indio_dev = data;
1544	struct stm32_adc *adc = iio_priv(indio_dev);
1545	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1546	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1547
1548	if (status & regs->isr_ovr.mask) {
1549		/*
1550		 * Overrun occurred on regular conversions: data for wrong
1551		 * channel may be read. Unconditionally disable interrupts
1552		 * to stop processing data and print error message.
1553		 * Restarting the capture can be done by disabling, then
1554		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1555		 */
1556		stm32_adc_ovr_irq_disable(adc);
1557		stm32_adc_conv_irq_disable(adc);
1558		return IRQ_WAKE_THREAD;
1559	}
1560
1561	if (status & regs->isr_eoc.mask) {
1562		/* Reading DR also clears EOC status flag */
1563		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1564		if (iio_buffer_enabled(indio_dev)) {
1565			adc->bufi++;
1566			if (adc->bufi >= adc->num_conv) {
1567				stm32_adc_conv_irq_disable(adc);
1568				iio_trigger_poll(indio_dev->trig);
1569			}
1570		} else {
1571			complete(&adc->completion);
1572		}
1573		return IRQ_HANDLED;
1574	}
1575
1576	return IRQ_NONE;
1577}
1578
1579/**
1580 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1581 * @indio_dev: IIO device
1582 * @trig: new trigger
1583 *
1584 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1585 * driver, -EINVAL otherwise.
1586 */
1587static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1588				      struct iio_trigger *trig)
1589{
1590	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1591}
1592
1593static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1594{
1595	struct stm32_adc *adc = iio_priv(indio_dev);
1596	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1597	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1598
1599	/*
1600	 * dma cyclic transfers are used, buffer is split into two periods.
1601	 * There should be :
1602	 * - always one buffer (period) dma is working on
1603	 * - one buffer (period) driver can push data.
1604	 */
1605	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1606	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1607
1608	return 0;
1609}
1610
1611static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1612				      const unsigned long *scan_mask)
1613{
1614	struct stm32_adc *adc = iio_priv(indio_dev);
1615	struct device *dev = indio_dev->dev.parent;
1616	int ret;
1617
1618	ret = pm_runtime_resume_and_get(dev);
1619	if (ret < 0)
1620		return ret;
1621
1622	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1623
1624	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1625	pm_runtime_mark_last_busy(dev);
1626	pm_runtime_put_autosuspend(dev);
1627
1628	return ret;
1629}
1630
1631static int stm32_adc_fwnode_xlate(struct iio_dev *indio_dev,
1632				  const struct fwnode_reference_args *iiospec)
1633{
1634	int i;
1635
1636	for (i = 0; i < indio_dev->num_channels; i++)
1637		if (indio_dev->channels[i].channel == iiospec->args[0])
1638			return i;
1639
1640	return -EINVAL;
1641}
1642
1643/**
1644 * stm32_adc_debugfs_reg_access - read or write register value
1645 * @indio_dev: IIO device structure
1646 * @reg: register offset
1647 * @writeval: value to write
1648 * @readval: value to read
1649 *
1650 * To read a value from an ADC register:
1651 *   echo [ADC reg offset] > direct_reg_access
1652 *   cat direct_reg_access
1653 *
1654 * To write a value in a ADC register:
1655 *   echo [ADC_reg_offset] [value] > direct_reg_access
1656 */
1657static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1658					unsigned reg, unsigned writeval,
1659					unsigned *readval)
1660{
1661	struct stm32_adc *adc = iio_priv(indio_dev);
1662	struct device *dev = indio_dev->dev.parent;
1663	int ret;
1664
1665	ret = pm_runtime_resume_and_get(dev);
1666	if (ret < 0)
1667		return ret;
1668
1669	if (!readval)
1670		stm32_adc_writel(adc, reg, writeval);
1671	else
1672		*readval = stm32_adc_readl(adc, reg);
1673
1674	pm_runtime_mark_last_busy(dev);
1675	pm_runtime_put_autosuspend(dev);
1676
1677	return 0;
1678}
1679
1680static const struct iio_info stm32_adc_iio_info = {
1681	.read_raw = stm32_adc_read_raw,
1682	.validate_trigger = stm32_adc_validate_trigger,
1683	.hwfifo_set_watermark = stm32_adc_set_watermark,
1684	.update_scan_mode = stm32_adc_update_scan_mode,
1685	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1686	.fwnode_xlate = stm32_adc_fwnode_xlate,
1687};
1688
1689static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1690{
1691	struct dma_tx_state state;
1692	enum dma_status status;
1693
1694	status = dmaengine_tx_status(adc->dma_chan,
1695				     adc->dma_chan->cookie,
1696				     &state);
1697	if (status == DMA_IN_PROGRESS) {
1698		/* Residue is size in bytes from end of buffer */
1699		unsigned int i = adc->rx_buf_sz - state.residue;
1700		unsigned int size;
1701
1702		/* Return available bytes */
1703		if (i >= adc->bufi)
1704			size = i - adc->bufi;
1705		else
1706			size = adc->rx_buf_sz + i - adc->bufi;
1707
1708		return size;
1709	}
1710
1711	return 0;
1712}
1713
1714static void stm32_adc_dma_buffer_done(void *data)
1715{
1716	struct iio_dev *indio_dev = data;
1717	struct stm32_adc *adc = iio_priv(indio_dev);
1718	int residue = stm32_adc_dma_residue(adc);
1719
1720	/*
1721	 * In DMA mode the trigger services of IIO are not used
1722	 * (e.g. no call to iio_trigger_poll).
1723	 * Calling irq handler associated to the hardware trigger is not
1724	 * relevant as the conversions have already been done. Data
1725	 * transfers are performed directly in DMA callback instead.
1726	 * This implementation avoids to call trigger irq handler that
1727	 * may sleep, in an atomic context (DMA irq handler context).
1728	 */
1729	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1730
1731	while (residue >= indio_dev->scan_bytes) {
1732		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1733
1734		iio_push_to_buffers(indio_dev, buffer);
1735
1736		residue -= indio_dev->scan_bytes;
1737		adc->bufi += indio_dev->scan_bytes;
1738		if (adc->bufi >= adc->rx_buf_sz)
1739			adc->bufi = 0;
1740	}
1741}
1742
1743static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1744{
1745	struct stm32_adc *adc = iio_priv(indio_dev);
1746	struct dma_async_tx_descriptor *desc;
1747	dma_cookie_t cookie;
1748	int ret;
1749
1750	if (!adc->dma_chan)
1751		return 0;
1752
1753	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1754		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1755
1756	/* Prepare a DMA cyclic transaction */
1757	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1758					 adc->rx_dma_buf,
1759					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1760					 DMA_DEV_TO_MEM,
1761					 DMA_PREP_INTERRUPT);
1762	if (!desc)
1763		return -EBUSY;
1764
1765	desc->callback = stm32_adc_dma_buffer_done;
1766	desc->callback_param = indio_dev;
1767
1768	cookie = dmaengine_submit(desc);
1769	ret = dma_submit_error(cookie);
1770	if (ret) {
1771		dmaengine_terminate_sync(adc->dma_chan);
1772		return ret;
1773	}
1774
1775	/* Issue pending DMA requests */
1776	dma_async_issue_pending(adc->dma_chan);
1777
1778	return 0;
1779}
1780
1781static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1782{
1783	struct stm32_adc *adc = iio_priv(indio_dev);
1784	struct device *dev = indio_dev->dev.parent;
1785	int ret;
1786
1787	ret = pm_runtime_resume_and_get(dev);
1788	if (ret < 0)
1789		return ret;
1790
1791	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1792	if (ret) {
1793		dev_err(&indio_dev->dev, "Can't set trigger\n");
1794		goto err_pm_put;
1795	}
1796
1797	ret = stm32_adc_dma_start(indio_dev);
1798	if (ret) {
1799		dev_err(&indio_dev->dev, "Can't start dma\n");
1800		goto err_clr_trig;
1801	}
1802
1803	/* Reset adc buffer index */
1804	adc->bufi = 0;
1805
1806	stm32_adc_ovr_irq_enable(adc);
1807
1808	if (!adc->dma_chan)
1809		stm32_adc_conv_irq_enable(adc);
1810
1811	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1812
1813	return 0;
1814
1815err_clr_trig:
1816	stm32_adc_set_trig(indio_dev, NULL);
1817err_pm_put:
1818	pm_runtime_mark_last_busy(dev);
1819	pm_runtime_put_autosuspend(dev);
1820
1821	return ret;
1822}
1823
1824static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1825{
1826	struct stm32_adc *adc = iio_priv(indio_dev);
1827	struct device *dev = indio_dev->dev.parent;
1828
1829	adc->cfg->stop_conv(indio_dev);
1830	if (!adc->dma_chan)
1831		stm32_adc_conv_irq_disable(adc);
1832
1833	stm32_adc_ovr_irq_disable(adc);
1834
1835	if (adc->dma_chan)
1836		dmaengine_terminate_sync(adc->dma_chan);
1837
1838	if (stm32_adc_set_trig(indio_dev, NULL))
1839		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1840
1841	pm_runtime_mark_last_busy(dev);
1842	pm_runtime_put_autosuspend(dev);
1843
1844	return 0;
1845}
1846
1847static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1848	.postenable = &stm32_adc_buffer_postenable,
1849	.predisable = &stm32_adc_buffer_predisable,
1850};
1851
1852static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1853{
1854	struct iio_poll_func *pf = p;
1855	struct iio_dev *indio_dev = pf->indio_dev;
1856	struct stm32_adc *adc = iio_priv(indio_dev);
1857
1858	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1859
1860	/* reset buffer index */
1861	adc->bufi = 0;
1862	iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1863					   pf->timestamp);
1864	iio_trigger_notify_done(indio_dev->trig);
1865
1866	/* re-enable eoc irq */
1867	stm32_adc_conv_irq_enable(adc);
1868
1869	return IRQ_HANDLED;
1870}
1871
1872static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1873	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1874	{
1875		.name = "trigger_polarity_available",
1876		.shared = IIO_SHARED_BY_ALL,
1877		.read = iio_enum_available_read,
1878		.private = (uintptr_t)&stm32_adc_trig_pol,
1879	},
1880	{},
1881};
1882
1883static void stm32_adc_debugfs_init(struct iio_dev *indio_dev)
1884{
1885	struct stm32_adc *adc = iio_priv(indio_dev);
1886	struct dentry *d = iio_get_debugfs_dentry(indio_dev);
1887	struct stm32_adc_calib *cal = &adc->cal;
1888	char buf[16];
1889	unsigned int i;
1890
1891	if (!adc->cfg->has_linearcal)
1892		return;
1893
1894	for (i = 0; i < STM32H7_LINCALFACT_NUM; i++) {
1895		snprintf(buf, sizeof(buf), "lincalfact%d", i + 1);
1896		debugfs_create_u32(buf, 0444, d, &cal->lincalfact[i]);
1897	}
1898}
1899
1900static int stm32_adc_fw_get_resolution(struct iio_dev *indio_dev)
1901{
1902	struct device *dev = &indio_dev->dev;
1903	struct stm32_adc *adc = iio_priv(indio_dev);
1904	unsigned int i;
1905	u32 res;
1906
1907	if (device_property_read_u32(dev, "assigned-resolution-bits", &res))
1908		res = adc->cfg->adc_info->resolutions[0];
1909
1910	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1911		if (res == adc->cfg->adc_info->resolutions[i])
1912			break;
1913	if (i >= adc->cfg->adc_info->num_res) {
1914		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1915		return -EINVAL;
1916	}
1917
1918	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1919	adc->res = i;
1920
1921	return 0;
1922}
1923
1924static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1925{
1926	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1927	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1928	unsigned int i, smp, r = smpr->reg;
1929
1930	/*
1931	 * For internal channels, ensure that the sampling time cannot
1932	 * be lower than the one specified in the datasheet
1933	 */
1934	for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
1935		if (channel == adc->int_ch[i] && adc->int_ch[i] != STM32_ADC_INT_CH_NONE)
1936			smp_ns = max(smp_ns, adc->cfg->ts_int_ch[i]);
1937
1938	/* Determine sampling time (ADC clock cycles) */
1939	period_ns = NSEC_PER_SEC / adc->common->rate;
1940	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1941		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1942			break;
1943	if (smp > STM32_ADC_MAX_SMP)
1944		smp = STM32_ADC_MAX_SMP;
1945
1946	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1947	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1948}
1949
1950static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1951				    struct iio_chan_spec *chan, u32 vinp,
1952				    u32 vinn, int scan_index, bool differential)
1953{
1954	struct stm32_adc *adc = iio_priv(indio_dev);
1955	char *name = adc->chan_name[vinp];
1956
1957	chan->type = IIO_VOLTAGE;
1958	chan->channel = vinp;
1959	if (differential) {
1960		chan->differential = 1;
1961		chan->channel2 = vinn;
1962		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1963	} else {
1964		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1965	}
1966	chan->datasheet_name = name;
1967	chan->scan_index = scan_index;
1968	chan->indexed = 1;
1969	if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1970		chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
1971	else
1972		chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1973	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1974					 BIT(IIO_CHAN_INFO_OFFSET);
1975	chan->scan_type.sign = 'u';
1976	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1977	chan->scan_type.storagebits = 16;
1978	chan->ext_info = stm32_adc_ext_info;
1979
1980	/* pre-build selected channels mask */
1981	adc->pcsel |= BIT(chan->channel);
1982	if (differential) {
1983		/* pre-build diff channels mask */
1984		adc->difsel |= BIT(chan->channel) & adc->cfg->regs->difsel.mask;
1985		/* Also add negative input to pre-selected channels */
1986		adc->pcsel |= BIT(chan->channel2);
1987	}
1988}
1989
1990static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc)
1991{
1992	struct device *dev = &indio_dev->dev;
1993	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1994	int num_channels = 0, ret;
1995
1996	dev_dbg(&indio_dev->dev, "using legacy channel config\n");
1997
1998	ret = device_property_count_u32(dev, "st,adc-channels");
1999	if (ret > adc_info->max_channels) {
2000		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
2001		return -EINVAL;
2002	} else if (ret > 0) {
2003		num_channels += ret;
2004	}
2005
2006	/*
2007	 * each st,adc-diff-channels is a group of 2 u32 so we divide @ret
2008	 * to get the *real* number of channels.
2009	 */
2010	ret = device_property_count_u32(dev, "st,adc-diff-channels");
2011	if (ret > 0) {
2012		ret /= (int)(sizeof(struct stm32_adc_diff_channel) / sizeof(u32));
2013		if (ret > adc_info->max_channels) {
2014			dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
2015			return -EINVAL;
2016		} else if (ret > 0) {
2017			adc->num_diff = ret;
2018			num_channels += ret;
2019		}
2020	}
2021
2022	/* Optional sample time is provided either for each, or all channels */
2023	adc->nsmps = device_property_count_u32(dev, "st,min-sample-time-nsecs");
2024	if (adc->nsmps > 1 && adc->nsmps != num_channels) {
2025		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
2026		return -EINVAL;
2027	}
2028
2029	return num_channels;
2030}
2031
2032static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev,
2033				      struct stm32_adc *adc,
2034				      struct iio_chan_spec *channels,
2035				      int nchans)
2036{
2037	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2038	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
2039	struct device *dev = &indio_dev->dev;
2040	u32 num_diff = adc->num_diff;
2041	int num_se = nchans - num_diff;
2042	int size = num_diff * sizeof(*diff) / sizeof(u32);
2043	int scan_index = 0, ret, i, c;
2044	u32 smp = 0, smps[STM32_ADC_CH_MAX], chans[STM32_ADC_CH_MAX];
2045
2046	if (num_diff) {
2047		ret = device_property_read_u32_array(dev, "st,adc-diff-channels",
2048						     (u32 *)diff, size);
2049		if (ret) {
2050			dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret);
2051			return ret;
2052		}
2053
2054		for (i = 0; i < num_diff; i++) {
2055			if (diff[i].vinp >= adc_info->max_channels ||
2056			    diff[i].vinn >= adc_info->max_channels) {
2057				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2058					diff[i].vinp, diff[i].vinn);
2059				return -EINVAL;
2060			}
2061
2062			stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
2063						diff[i].vinp, diff[i].vinn,
2064						scan_index, true);
2065			scan_index++;
2066		}
2067	}
2068	if (num_se > 0) {
2069		ret = device_property_read_u32_array(dev, "st,adc-channels", chans, num_se);
2070		if (ret) {
2071			dev_err(&indio_dev->dev, "Failed to get st,adc-channels %d\n", ret);
2072			return ret;
2073		}
2074
2075		for (c = 0; c < num_se; c++) {
2076			if (chans[c] >= adc_info->max_channels) {
2077				dev_err(&indio_dev->dev, "Invalid channel %d\n",
2078					chans[c]);
2079				return -EINVAL;
2080			}
2081
2082			/* Channel can't be configured both as single-ended & diff */
2083			for (i = 0; i < num_diff; i++) {
2084				if (chans[c] == diff[i].vinp) {
2085					dev_err(&indio_dev->dev, "channel %d misconfigured\n",
2086						chans[c]);
2087					return -EINVAL;
2088				}
2089			}
2090			stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
2091						chans[c], 0, scan_index, false);
2092			scan_index++;
2093		}
2094	}
2095
2096	if (adc->nsmps > 0) {
2097		ret = device_property_read_u32_array(dev, "st,min-sample-time-nsecs",
2098						     smps, adc->nsmps);
2099		if (ret)
2100			return ret;
2101	}
2102
2103	for (i = 0; i < scan_index; i++) {
2104		/*
2105		 * This check is used with the above logic so that smp value
2106		 * will only be modified if valid u32 value can be decoded. This
2107		 * allows to get either no value, 1 shared value for all indexes,
2108		 * or one value per channel. The point is to have the same
2109		 * behavior as 'of_property_read_u32_index()'.
2110		 */
2111		if (i < adc->nsmps)
2112			smp = smps[i];
2113
2114		/* Prepare sampling time settings */
2115		stm32_adc_smpr_init(adc, channels[i].channel, smp);
2116	}
2117
2118	return scan_index;
2119}
2120
2121static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name,
2122				     int chan)
2123{
2124	struct stm32_adc *adc = iio_priv(indio_dev);
2125	u16 vrefint;
2126	int i, ret;
2127
2128	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
2129		if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) {
2130			/* Check internal channel availability */
2131			switch (i) {
2132			case STM32_ADC_INT_CH_VDDCORE:
2133				if (!adc->cfg->regs->or_vddcore.reg)
2134					dev_warn(&indio_dev->dev,
2135						 "%s channel not available\n", ch_name);
2136				break;
2137			case STM32_ADC_INT_CH_VDDCPU:
2138				if (!adc->cfg->regs->or_vddcpu.reg)
2139					dev_warn(&indio_dev->dev,
2140						 "%s channel not available\n", ch_name);
2141				break;
2142			case STM32_ADC_INT_CH_VDDQ_DDR:
2143				if (!adc->cfg->regs->or_vddq_ddr.reg)
2144					dev_warn(&indio_dev->dev,
2145						 "%s channel not available\n", ch_name);
2146				break;
2147			case STM32_ADC_INT_CH_VREFINT:
2148				if (!adc->cfg->regs->ccr_vref.reg)
2149					dev_warn(&indio_dev->dev,
2150						 "%s channel not available\n", ch_name);
2151				break;
2152			case STM32_ADC_INT_CH_VBAT:
2153				if (!adc->cfg->regs->ccr_vbat.reg)
2154					dev_warn(&indio_dev->dev,
2155						 "%s channel not available\n", ch_name);
2156				break;
2157			}
2158
2159			if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT) {
2160				adc->int_ch[i] = chan;
2161				break;
2162			}
2163
2164			/* Get calibration data for vrefint channel */
2165			ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint);
2166			if (ret && ret != -ENOENT) {
2167				return dev_err_probe(indio_dev->dev.parent, ret,
2168						     "nvmem access error\n");
2169			}
2170			if (ret == -ENOENT) {
2171				dev_dbg(&indio_dev->dev, "vrefint calibration not found. Skip vrefint channel\n");
2172				return ret;
2173			} else if (!vrefint) {
2174				dev_dbg(&indio_dev->dev, "Null vrefint calibration value. Skip vrefint channel\n");
2175				return -ENOENT;
2176			}
2177			adc->int_ch[i] = chan;
2178			adc->vrefint.vrefint_cal = vrefint;
2179		}
2180	}
2181
2182	return 0;
2183}
2184
2185static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev,
2186				       struct stm32_adc *adc,
2187				       struct iio_chan_spec *channels)
2188{
2189	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2190	struct fwnode_handle *child;
2191	const char *name;
2192	int val, scan_index = 0, ret;
2193	bool differential;
2194	u32 vin[2];
2195
2196	device_for_each_child_node(&indio_dev->dev, child) {
2197		ret = fwnode_property_read_u32(child, "reg", &val);
2198		if (ret) {
2199			dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
2200			goto err;
2201		}
2202
2203		ret = fwnode_property_read_string(child, "label", &name);
2204		/* label is optional */
2205		if (!ret) {
2206			if (strlen(name) >= STM32_ADC_CH_SZ) {
2207				dev_err(&indio_dev->dev, "Label %s exceeds %d characters\n",
2208					name, STM32_ADC_CH_SZ);
2209				ret = -EINVAL;
2210				goto err;
2211			}
2212			strscpy(adc->chan_name[val], name, STM32_ADC_CH_SZ);
2213			ret = stm32_adc_populate_int_ch(indio_dev, name, val);
2214			if (ret == -ENOENT)
2215				continue;
2216			else if (ret)
2217				goto err;
2218		} else if (ret != -EINVAL) {
2219			dev_err(&indio_dev->dev, "Invalid label %d\n", ret);
2220			goto err;
2221		}
2222
2223		if (val >= adc_info->max_channels) {
2224			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
2225			ret = -EINVAL;
2226			goto err;
2227		}
2228
2229		differential = false;
2230		ret = fwnode_property_read_u32_array(child, "diff-channels", vin, 2);
2231		/* diff-channels is optional */
2232		if (!ret) {
2233			differential = true;
2234			if (vin[0] != val || vin[1] >= adc_info->max_channels) {
2235				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2236					vin[0], vin[1]);
2237				goto err;
2238			}
2239		} else if (ret != -EINVAL) {
2240			dev_err(&indio_dev->dev, "Invalid diff-channels property %d\n", ret);
2241			goto err;
2242		}
2243
2244		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
2245					vin[1], scan_index, differential);
2246
2247		val = 0;
2248		ret = fwnode_property_read_u32(child, "st,min-sample-time-ns", &val);
2249		/* st,min-sample-time-ns is optional */
2250		if (ret && ret != -EINVAL) {
2251			dev_err(&indio_dev->dev, "Invalid st,min-sample-time-ns property %d\n",
2252				ret);
2253			goto err;
2254		}
2255
2256		stm32_adc_smpr_init(adc, channels[scan_index].channel, val);
2257		if (differential)
2258			stm32_adc_smpr_init(adc, vin[1], val);
2259
2260		scan_index++;
2261	}
2262
2263	return scan_index;
2264
2265err:
2266	fwnode_handle_put(child);
2267
2268	return ret;
2269}
2270
2271static int stm32_adc_chan_fw_init(struct iio_dev *indio_dev, bool timestamping)
2272{
2273	struct stm32_adc *adc = iio_priv(indio_dev);
2274	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2275	struct iio_chan_spec *channels;
2276	int scan_index = 0, num_channels = 0, ret, i;
2277	bool legacy = false;
2278
2279	for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
2280		adc->int_ch[i] = STM32_ADC_INT_CH_NONE;
2281
2282	num_channels = device_get_child_node_count(&indio_dev->dev);
2283	/* If no channels have been found, fallback to channels legacy properties. */
2284	if (!num_channels) {
2285		legacy = true;
2286
2287		ret = stm32_adc_get_legacy_chan_count(indio_dev, adc);
2288		if (!ret) {
2289			dev_err(indio_dev->dev.parent, "No channel found\n");
2290			return -ENODATA;
2291		} else if (ret < 0) {
2292			return ret;
2293		}
2294
2295		num_channels = ret;
2296	}
2297
2298	if (num_channels > adc_info->max_channels) {
2299		dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n",
2300			num_channels, adc_info->max_channels);
2301		return -EINVAL;
2302	}
2303
2304	if (timestamping)
2305		num_channels++;
2306
2307	channels = devm_kcalloc(&indio_dev->dev, num_channels,
2308				sizeof(struct iio_chan_spec), GFP_KERNEL);
2309	if (!channels)
2310		return -ENOMEM;
2311
2312	if (legacy)
2313		ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels,
2314						 timestamping ? num_channels - 1 : num_channels);
2315	else
2316		ret = stm32_adc_generic_chan_init(indio_dev, adc, channels);
2317	if (ret < 0)
2318		return ret;
2319	scan_index = ret;
2320
2321	if (timestamping) {
2322		struct iio_chan_spec *timestamp = &channels[scan_index];
2323
2324		timestamp->type = IIO_TIMESTAMP;
2325		timestamp->channel = -1;
2326		timestamp->scan_index = scan_index;
2327		timestamp->scan_type.sign = 's';
2328		timestamp->scan_type.realbits = 64;
2329		timestamp->scan_type.storagebits = 64;
2330
2331		scan_index++;
2332	}
2333
2334	indio_dev->num_channels = scan_index;
2335	indio_dev->channels = channels;
2336
2337	return 0;
2338}
2339
2340static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
2341{
2342	struct stm32_adc *adc = iio_priv(indio_dev);
2343	struct dma_slave_config config;
2344	int ret;
2345
2346	adc->dma_chan = dma_request_chan(dev, "rx");
2347	if (IS_ERR(adc->dma_chan)) {
2348		ret = PTR_ERR(adc->dma_chan);
2349		if (ret != -ENODEV)
2350			return dev_err_probe(dev, ret,
2351					     "DMA channel request failed with\n");
2352
2353		/* DMA is optional: fall back to IRQ mode */
2354		adc->dma_chan = NULL;
2355		return 0;
2356	}
2357
2358	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
2359					 STM32_DMA_BUFFER_SIZE,
2360					 &adc->rx_dma_buf, GFP_KERNEL);
2361	if (!adc->rx_buf) {
2362		ret = -ENOMEM;
2363		goto err_release;
2364	}
2365
2366	/* Configure DMA channel to read data register */
2367	memset(&config, 0, sizeof(config));
2368	config.src_addr = (dma_addr_t)adc->common->phys_base;
2369	config.src_addr += adc->offset + adc->cfg->regs->dr;
2370	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2371
2372	ret = dmaengine_slave_config(adc->dma_chan, &config);
2373	if (ret)
2374		goto err_free;
2375
2376	return 0;
2377
2378err_free:
2379	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
2380			  adc->rx_buf, adc->rx_dma_buf);
2381err_release:
2382	dma_release_channel(adc->dma_chan);
2383
2384	return ret;
2385}
2386
2387static int stm32_adc_probe(struct platform_device *pdev)
2388{
2389	struct iio_dev *indio_dev;
2390	struct device *dev = &pdev->dev;
2391	irqreturn_t (*handler)(int irq, void *p) = NULL;
2392	struct stm32_adc *adc;
2393	bool timestamping = false;
2394	int ret;
2395
2396	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
2397	if (!indio_dev)
2398		return -ENOMEM;
2399
2400	adc = iio_priv(indio_dev);
2401	adc->common = dev_get_drvdata(pdev->dev.parent);
2402	spin_lock_init(&adc->lock);
2403	init_completion(&adc->completion);
2404	adc->cfg = device_get_match_data(dev);
2405
2406	indio_dev->name = dev_name(&pdev->dev);
2407	device_set_node(&indio_dev->dev, dev_fwnode(&pdev->dev));
2408	indio_dev->info = &stm32_adc_iio_info;
2409	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
2410
2411	platform_set_drvdata(pdev, indio_dev);
2412
2413	ret = device_property_read_u32(dev, "reg", &adc->offset);
2414	if (ret != 0) {
2415		dev_err(&pdev->dev, "missing reg property\n");
2416		return -EINVAL;
2417	}
2418
2419	adc->irq = platform_get_irq(pdev, 0);
2420	if (adc->irq < 0)
2421		return adc->irq;
2422
2423	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
2424					stm32_adc_threaded_isr,
2425					0, pdev->name, indio_dev);
2426	if (ret) {
2427		dev_err(&pdev->dev, "failed to request IRQ\n");
2428		return ret;
2429	}
2430
2431	adc->clk = devm_clk_get(&pdev->dev, NULL);
2432	if (IS_ERR(adc->clk)) {
2433		ret = PTR_ERR(adc->clk);
2434		if (ret == -ENOENT && !adc->cfg->clk_required) {
2435			adc->clk = NULL;
2436		} else {
2437			dev_err(&pdev->dev, "Can't get clock\n");
2438			return ret;
2439		}
2440	}
2441
2442	ret = stm32_adc_fw_get_resolution(indio_dev);
2443	if (ret < 0)
2444		return ret;
2445
2446	ret = stm32_adc_dma_request(dev, indio_dev);
2447	if (ret < 0)
2448		return ret;
2449
2450	if (!adc->dma_chan) {
2451		/* For PIO mode only, iio_pollfunc_store_time stores a timestamp
2452		 * in the primary trigger IRQ handler and stm32_adc_trigger_handler
2453		 * runs in the IRQ thread to push out buffer along with timestamp.
2454		 */
2455		handler = &stm32_adc_trigger_handler;
2456		timestamping = true;
2457	}
2458
2459	ret = stm32_adc_chan_fw_init(indio_dev, timestamping);
2460	if (ret < 0)
2461		goto err_dma_disable;
2462
2463	ret = iio_triggered_buffer_setup(indio_dev,
2464					 &iio_pollfunc_store_time, handler,
2465					 &stm32_adc_buffer_setup_ops);
2466	if (ret) {
2467		dev_err(&pdev->dev, "buffer setup failed\n");
2468		goto err_dma_disable;
2469	}
2470
2471	/* Get stm32-adc-core PM online */
2472	pm_runtime_get_noresume(dev);
2473	pm_runtime_set_active(dev);
2474	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
2475	pm_runtime_use_autosuspend(dev);
2476	pm_runtime_enable(dev);
2477
2478	ret = stm32_adc_hw_start(dev);
2479	if (ret)
2480		goto err_buffer_cleanup;
2481
2482	ret = iio_device_register(indio_dev);
2483	if (ret) {
2484		dev_err(&pdev->dev, "iio dev register failed\n");
2485		goto err_hw_stop;
2486	}
2487
2488	pm_runtime_mark_last_busy(dev);
2489	pm_runtime_put_autosuspend(dev);
2490
2491	if (IS_ENABLED(CONFIG_DEBUG_FS))
2492		stm32_adc_debugfs_init(indio_dev);
2493
2494	return 0;
2495
2496err_hw_stop:
2497	stm32_adc_hw_stop(dev);
2498
2499err_buffer_cleanup:
2500	pm_runtime_disable(dev);
2501	pm_runtime_set_suspended(dev);
2502	pm_runtime_put_noidle(dev);
2503	iio_triggered_buffer_cleanup(indio_dev);
2504
2505err_dma_disable:
2506	if (adc->dma_chan) {
2507		dma_free_coherent(adc->dma_chan->device->dev,
2508				  STM32_DMA_BUFFER_SIZE,
2509				  adc->rx_buf, adc->rx_dma_buf);
2510		dma_release_channel(adc->dma_chan);
2511	}
2512
2513	return ret;
2514}
2515
2516static void stm32_adc_remove(struct platform_device *pdev)
2517{
2518	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2519	struct stm32_adc *adc = iio_priv(indio_dev);
2520
2521	pm_runtime_get_sync(&pdev->dev);
2522	/* iio_device_unregister() also removes debugfs entries */
2523	iio_device_unregister(indio_dev);
2524	stm32_adc_hw_stop(&pdev->dev);
2525	pm_runtime_disable(&pdev->dev);
2526	pm_runtime_set_suspended(&pdev->dev);
2527	pm_runtime_put_noidle(&pdev->dev);
2528	iio_triggered_buffer_cleanup(indio_dev);
2529	if (adc->dma_chan) {
2530		dma_free_coherent(adc->dma_chan->device->dev,
2531				  STM32_DMA_BUFFER_SIZE,
2532				  adc->rx_buf, adc->rx_dma_buf);
2533		dma_release_channel(adc->dma_chan);
2534	}
2535}
2536
2537static int stm32_adc_suspend(struct device *dev)
2538{
2539	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2540
2541	if (iio_buffer_enabled(indio_dev))
2542		stm32_adc_buffer_predisable(indio_dev);
2543
2544	return pm_runtime_force_suspend(dev);
2545}
2546
2547static int stm32_adc_resume(struct device *dev)
2548{
2549	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2550	int ret;
2551
2552	ret = pm_runtime_force_resume(dev);
2553	if (ret < 0)
2554		return ret;
2555
2556	if (!iio_buffer_enabled(indio_dev))
2557		return 0;
2558
2559	ret = stm32_adc_update_scan_mode(indio_dev,
2560					 indio_dev->active_scan_mask);
2561	if (ret < 0)
2562		return ret;
2563
2564	return stm32_adc_buffer_postenable(indio_dev);
2565}
2566
2567static int stm32_adc_runtime_suspend(struct device *dev)
2568{
2569	return stm32_adc_hw_stop(dev);
2570}
2571
2572static int stm32_adc_runtime_resume(struct device *dev)
2573{
2574	return stm32_adc_hw_start(dev);
2575}
2576
2577static const struct dev_pm_ops stm32_adc_pm_ops = {
2578	SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2579	RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2580		       NULL)
2581};
2582
2583static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2584	.regs = &stm32f4_adc_regspec,
2585	.adc_info = &stm32f4_adc_info,
2586	.trigs = stm32f4_adc_trigs,
2587	.clk_required = true,
2588	.start_conv = stm32f4_adc_start_conv,
2589	.stop_conv = stm32f4_adc_stop_conv,
2590	.smp_cycles = stm32f4_adc_smp_cycles,
2591	.irq_clear = stm32f4_adc_irq_clear,
2592};
2593
2594static const unsigned int stm32_adc_min_ts_h7[] = { 0, 0, 0, 4300, 9000 };
2595static_assert(ARRAY_SIZE(stm32_adc_min_ts_h7) == STM32_ADC_INT_CH_NB);
2596
2597static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2598	.regs = &stm32h7_adc_regspec,
2599	.adc_info = &stm32h7_adc_info,
2600	.trigs = stm32h7_adc_trigs,
2601	.has_boostmode = true,
2602	.has_linearcal = true,
2603	.has_presel = true,
2604	.start_conv = stm32h7_adc_start_conv,
2605	.stop_conv = stm32h7_adc_stop_conv,
2606	.prepare = stm32h7_adc_prepare,
2607	.unprepare = stm32h7_adc_unprepare,
2608	.smp_cycles = stm32h7_adc_smp_cycles,
2609	.irq_clear = stm32h7_adc_irq_clear,
2610	.ts_int_ch = stm32_adc_min_ts_h7,
2611};
2612
2613static const unsigned int stm32_adc_min_ts_mp1[] = { 100, 100, 100, 4300, 9800 };
2614static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp1) == STM32_ADC_INT_CH_NB);
2615
2616static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2617	.regs = &stm32mp1_adc_regspec,
2618	.adc_info = &stm32h7_adc_info,
2619	.trigs = stm32h7_adc_trigs,
2620	.has_vregready = true,
2621	.has_boostmode = true,
2622	.has_linearcal = true,
2623	.has_presel = true,
2624	.start_conv = stm32h7_adc_start_conv,
2625	.stop_conv = stm32h7_adc_stop_conv,
2626	.prepare = stm32h7_adc_prepare,
2627	.unprepare = stm32h7_adc_unprepare,
2628	.smp_cycles = stm32h7_adc_smp_cycles,
2629	.irq_clear = stm32h7_adc_irq_clear,
2630	.ts_int_ch = stm32_adc_min_ts_mp1,
2631};
2632
2633static const unsigned int stm32_adc_min_ts_mp13[] = { 100, 0, 0, 4300, 9800 };
2634static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp13) == STM32_ADC_INT_CH_NB);
2635
2636static const struct stm32_adc_cfg stm32mp13_adc_cfg = {
2637	.regs = &stm32mp13_adc_regspec,
2638	.adc_info = &stm32mp13_adc_info,
2639	.trigs = stm32h7_adc_trigs,
2640	.start_conv = stm32mp13_adc_start_conv,
2641	.stop_conv = stm32h7_adc_stop_conv,
2642	.prepare = stm32h7_adc_prepare,
2643	.unprepare = stm32h7_adc_unprepare,
2644	.smp_cycles = stm32mp13_adc_smp_cycles,
2645	.irq_clear = stm32h7_adc_irq_clear,
2646	.ts_int_ch = stm32_adc_min_ts_mp13,
2647};
2648
2649static const struct of_device_id stm32_adc_of_match[] = {
2650	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2651	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2652	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2653	{ .compatible = "st,stm32mp13-adc", .data = (void *)&stm32mp13_adc_cfg },
2654	{},
2655};
2656MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2657
2658static struct platform_driver stm32_adc_driver = {
2659	.probe = stm32_adc_probe,
2660	.remove_new = stm32_adc_remove,
2661	.driver = {
2662		.name = "stm32-adc",
2663		.of_match_table = stm32_adc_of_match,
2664		.pm = pm_ptr(&stm32_adc_pm_ops),
2665	},
2666};
2667module_platform_driver(stm32_adc_driver);
2668
2669MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2670MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2671MODULE_LICENSE("GPL v2");
2672MODULE_ALIAS("platform:stm32-adc");
2673