1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2016-2017, 2019, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2022 Linaro Limited.
5 *  Author: Caleb Connolly <caleb.connolly@linaro.org>
6 *
7 * This driver is for the Round Robin ADC found in the pmi8998 and pm660 PMICs.
8 */
9
10#include <linux/bitfield.h>
11#include <linux/delay.h>
12#include <linux/kernel.h>
13#include <linux/math64.h>
14#include <linux/module.h>
15#include <linux/mod_devicetable.h>
16#include <linux/platform_device.h>
17#include <linux/property.h>
18#include <linux/regmap.h>
19#include <linux/spmi.h>
20#include <linux/types.h>
21#include <linux/units.h>
22
23#include <asm/unaligned.h>
24
25#include <linux/iio/iio.h>
26#include <linux/iio/types.h>
27
28#include <soc/qcom/qcom-spmi-pmic.h>
29
30#define DRIVER_NAME "qcom-spmi-rradc"
31
32#define RR_ADC_EN_CTL 0x46
33#define RR_ADC_SKIN_TEMP_LSB 0x50
34#define RR_ADC_SKIN_TEMP_MSB 0x51
35#define RR_ADC_CTL 0x52
36#define RR_ADC_CTL_CONTINUOUS_SEL BIT(3)
37#define RR_ADC_LOG 0x53
38#define RR_ADC_LOG_CLR_CTRL BIT(0)
39
40#define RR_ADC_FAKE_BATT_LOW_LSB 0x58
41#define RR_ADC_FAKE_BATT_LOW_MSB 0x59
42#define RR_ADC_FAKE_BATT_HIGH_LSB 0x5A
43#define RR_ADC_FAKE_BATT_HIGH_MSB 0x5B
44
45#define RR_ADC_BATT_ID_CTRL 0x60
46#define RR_ADC_BATT_ID_CTRL_CHANNEL_CONV BIT(0)
47#define RR_ADC_BATT_ID_TRIGGER 0x61
48#define RR_ADC_BATT_ID_STS 0x62
49#define RR_ADC_BATT_ID_CFG 0x63
50#define BATT_ID_SETTLE_MASK GENMASK(7, 5)
51#define RR_ADC_BATT_ID_5_LSB 0x66
52#define RR_ADC_BATT_ID_5_MSB 0x67
53#define RR_ADC_BATT_ID_15_LSB 0x68
54#define RR_ADC_BATT_ID_15_MSB 0x69
55#define RR_ADC_BATT_ID_150_LSB 0x6A
56#define RR_ADC_BATT_ID_150_MSB 0x6B
57
58#define RR_ADC_BATT_THERM_CTRL 0x70
59#define RR_ADC_BATT_THERM_TRIGGER 0x71
60#define RR_ADC_BATT_THERM_STS 0x72
61#define RR_ADC_BATT_THERM_CFG 0x73
62#define RR_ADC_BATT_THERM_LSB 0x74
63#define RR_ADC_BATT_THERM_MSB 0x75
64#define RR_ADC_BATT_THERM_FREQ 0x76
65
66#define RR_ADC_AUX_THERM_CTRL 0x80
67#define RR_ADC_AUX_THERM_TRIGGER 0x81
68#define RR_ADC_AUX_THERM_STS 0x82
69#define RR_ADC_AUX_THERM_CFG 0x83
70#define RR_ADC_AUX_THERM_LSB 0x84
71#define RR_ADC_AUX_THERM_MSB 0x85
72
73#define RR_ADC_SKIN_HOT 0x86
74#define RR_ADC_SKIN_TOO_HOT 0x87
75
76#define RR_ADC_AUX_THERM_C1 0x88
77#define RR_ADC_AUX_THERM_C2 0x89
78#define RR_ADC_AUX_THERM_C3 0x8A
79#define RR_ADC_AUX_THERM_HALF_RANGE 0x8B
80
81#define RR_ADC_USB_IN_V_CTRL 0x90
82#define RR_ADC_USB_IN_V_TRIGGER 0x91
83#define RR_ADC_USB_IN_V_STS 0x92
84#define RR_ADC_USB_IN_V_LSB 0x94
85#define RR_ADC_USB_IN_V_MSB 0x95
86#define RR_ADC_USB_IN_I_CTRL 0x98
87#define RR_ADC_USB_IN_I_TRIGGER 0x99
88#define RR_ADC_USB_IN_I_STS 0x9A
89#define RR_ADC_USB_IN_I_LSB 0x9C
90#define RR_ADC_USB_IN_I_MSB 0x9D
91
92#define RR_ADC_DC_IN_V_CTRL 0xA0
93#define RR_ADC_DC_IN_V_TRIGGER 0xA1
94#define RR_ADC_DC_IN_V_STS 0xA2
95#define RR_ADC_DC_IN_V_LSB 0xA4
96#define RR_ADC_DC_IN_V_MSB 0xA5
97#define RR_ADC_DC_IN_I_CTRL 0xA8
98#define RR_ADC_DC_IN_I_TRIGGER 0xA9
99#define RR_ADC_DC_IN_I_STS 0xAA
100#define RR_ADC_DC_IN_I_LSB 0xAC
101#define RR_ADC_DC_IN_I_MSB 0xAD
102
103#define RR_ADC_PMI_DIE_TEMP_CTRL 0xB0
104#define RR_ADC_PMI_DIE_TEMP_TRIGGER 0xB1
105#define RR_ADC_PMI_DIE_TEMP_STS 0xB2
106#define RR_ADC_PMI_DIE_TEMP_CFG 0xB3
107#define RR_ADC_PMI_DIE_TEMP_LSB 0xB4
108#define RR_ADC_PMI_DIE_TEMP_MSB 0xB5
109
110#define RR_ADC_CHARGER_TEMP_CTRL 0xB8
111#define RR_ADC_CHARGER_TEMP_TRIGGER 0xB9
112#define RR_ADC_CHARGER_TEMP_STS 0xBA
113#define RR_ADC_CHARGER_TEMP_CFG 0xBB
114#define RR_ADC_CHARGER_TEMP_LSB 0xBC
115#define RR_ADC_CHARGER_TEMP_MSB 0xBD
116#define RR_ADC_CHARGER_HOT 0xBE
117#define RR_ADC_CHARGER_TOO_HOT 0xBF
118
119#define RR_ADC_GPIO_CTRL 0xC0
120#define RR_ADC_GPIO_TRIGGER 0xC1
121#define RR_ADC_GPIO_STS 0xC2
122#define RR_ADC_GPIO_LSB 0xC4
123#define RR_ADC_GPIO_MSB 0xC5
124
125#define RR_ADC_ATEST_CTRL 0xC8
126#define RR_ADC_ATEST_TRIGGER 0xC9
127#define RR_ADC_ATEST_STS 0xCA
128#define RR_ADC_ATEST_LSB 0xCC
129#define RR_ADC_ATEST_MSB 0xCD
130#define RR_ADC_SEC_ACCESS 0xD0
131
132#define RR_ADC_PERPH_RESET_CTL2 0xD9
133#define RR_ADC_PERPH_RESET_CTL3 0xDA
134#define RR_ADC_PERPH_RESET_CTL4 0xDB
135#define RR_ADC_INT_TEST1 0xE0
136#define RR_ADC_INT_TEST_VAL 0xE1
137
138#define RR_ADC_TM_TRIGGER_CTRLS 0xE2
139#define RR_ADC_TM_ADC_CTRLS 0xE3
140#define RR_ADC_TM_CNL_CTRL 0xE4
141#define RR_ADC_TM_BATT_ID_CTRL 0xE5
142#define RR_ADC_TM_THERM_CTRL 0xE6
143#define RR_ADC_TM_CONV_STS 0xE7
144#define RR_ADC_TM_ADC_READ_LSB 0xE8
145#define RR_ADC_TM_ADC_READ_MSB 0xE9
146#define RR_ADC_TM_ATEST_MUX_1 0xEA
147#define RR_ADC_TM_ATEST_MUX_2 0xEB
148#define RR_ADC_TM_REFERENCES 0xED
149#define RR_ADC_TM_MISC_CTL 0xEE
150#define RR_ADC_TM_RR_CTRL 0xEF
151
152#define RR_ADC_TRIGGER_EVERY_CYCLE BIT(7)
153#define RR_ADC_TRIGGER_CTL BIT(0)
154
155#define RR_ADC_BATT_ID_RANGE 820
156
157#define RR_ADC_BITS 10
158#define RR_ADC_CHAN_MSB (1 << RR_ADC_BITS)
159#define RR_ADC_FS_VOLTAGE_MV 2500
160
161/* BATT_THERM 0.25K/LSB */
162#define RR_ADC_BATT_THERM_LSB_K 4
163
164#define RR_ADC_TEMP_FS_VOLTAGE_NUM 5000000
165#define RR_ADC_TEMP_FS_VOLTAGE_DEN 3
166#define RR_ADC_DIE_TEMP_OFFSET 601400
167#define RR_ADC_DIE_TEMP_SLOPE 2
168#define RR_ADC_DIE_TEMP_OFFSET_MILLI_DEGC 25000
169
170#define RR_ADC_CHG_TEMP_GF_OFFSET_UV 1303168
171#define RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C 3784
172#define RR_ADC_CHG_TEMP_SMIC_OFFSET_UV 1338433
173#define RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C 3655
174#define RR_ADC_CHG_TEMP_660_GF_OFFSET_UV 1309001
175#define RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C 3403
176#define RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV 1295898
177#define RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C 3596
178#define RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV 1314779
179#define RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C 3496
180#define RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC 25000
181#define RR_ADC_CHG_THRESHOLD_SCALE 4
182
183#define RR_ADC_VOLT_INPUT_FACTOR 8
184#define RR_ADC_CURR_INPUT_FACTOR 2000
185#define RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL 1886
186#define RR_ADC_CURR_USBIN_660_FACTOR_MIL 9
187#define RR_ADC_CURR_USBIN_660_UV_VAL 579500
188
189#define RR_ADC_GPIO_FS_RANGE 5000
190#define RR_ADC_COHERENT_CHECK_RETRY 5
191#define RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN 16
192
193#define RR_ADC_STS_CHANNEL_READING_MASK GENMASK(1, 0)
194#define RR_ADC_STS_CHANNEL_STS BIT(1)
195
196#define RR_ADC_TP_REV_VERSION1 21
197#define RR_ADC_TP_REV_VERSION2 29
198#define RR_ADC_TP_REV_VERSION3 32
199
200#define RRADC_BATT_ID_DELAY_MAX 8
201
202enum rradc_channel_id {
203	RR_ADC_BATT_ID = 0,
204	RR_ADC_BATT_THERM,
205	RR_ADC_SKIN_TEMP,
206	RR_ADC_USBIN_I,
207	RR_ADC_USBIN_V,
208	RR_ADC_DCIN_I,
209	RR_ADC_DCIN_V,
210	RR_ADC_DIE_TEMP,
211	RR_ADC_CHG_TEMP,
212	RR_ADC_GPIO,
213	RR_ADC_CHAN_MAX
214};
215
216struct rradc_chip;
217
218/**
219 * struct rradc_channel - rradc channel data
220 * @label:		channel label
221 * @lsb:		Channel least significant byte
222 * @status:		Channel status address
223 * @size:		number of bytes to read
224 * @trigger_addr:	Trigger address, trigger is only used on some channels
225 * @trigger_mask:	Trigger mask
226 * @scale_fn:		Post process callback for channels which can't be exposed
227 *			as offset + scale.
228 */
229struct rradc_channel {
230	const char *label;
231	u8 lsb;
232	u8 status;
233	int size;
234	int trigger_addr;
235	int trigger_mask;
236	int (*scale_fn)(struct rradc_chip *chip, u16 adc_code, int *result);
237};
238
239struct rradc_chip {
240	struct device *dev;
241	const struct qcom_spmi_pmic *pmic;
242	/*
243	 * Lock held while doing channel conversion
244	 * involving multiple register read/writes
245	 */
246	struct mutex conversion_lock;
247	struct regmap *regmap;
248	u32 base;
249	int batt_id_delay;
250	u16 batt_id_data;
251};
252
253static const int batt_id_delays[] = { 0, 1, 4, 12, 20, 40, 60, 80 };
254static const struct rradc_channel rradc_chans[RR_ADC_CHAN_MAX];
255static const struct iio_chan_spec rradc_iio_chans[RR_ADC_CHAN_MAX];
256
257static int rradc_read(struct rradc_chip *chip, u16 addr, __le16 *buf, int len)
258{
259	int ret, retry_cnt = 0;
260	__le16 data_check[RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN / 2];
261
262	if (len > RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN) {
263		dev_err(chip->dev,
264			"Can't read more than %d bytes, but asked to read %d bytes.\n",
265			RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN, len);
266		return -EINVAL;
267	}
268
269	while (retry_cnt < RR_ADC_COHERENT_CHECK_RETRY) {
270		ret = regmap_bulk_read(chip->regmap, chip->base + addr, buf,
271				       len);
272		if (ret < 0) {
273			dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr,
274				ret);
275			return ret;
276		}
277
278		ret = regmap_bulk_read(chip->regmap, chip->base + addr,
279				       data_check, len);
280		if (ret < 0) {
281			dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr,
282				ret);
283			return ret;
284		}
285
286		if (memcmp(buf, data_check, len) != 0) {
287			retry_cnt++;
288			dev_dbg(chip->dev,
289				"coherent read error, retry_cnt:%d\n",
290				retry_cnt);
291			continue;
292		}
293
294		break;
295	}
296
297	if (retry_cnt == RR_ADC_COHERENT_CHECK_RETRY)
298		dev_err(chip->dev, "Retry exceeded for coherency check\n");
299
300	return ret;
301}
302
303static int rradc_get_fab_coeff(struct rradc_chip *chip, int64_t *offset,
304			       int64_t *slope)
305{
306	if (chip->pmic->subtype == PM660_SUBTYPE) {
307		switch (chip->pmic->fab_id) {
308		case PM660_FAB_ID_GF:
309			*offset = RR_ADC_CHG_TEMP_660_GF_OFFSET_UV;
310			*slope = RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C;
311			return 0;
312		case PM660_FAB_ID_TSMC:
313			*offset = RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV;
314			*slope = RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C;
315			return 0;
316		default:
317			*offset = RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV;
318			*slope = RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C;
319		}
320	} else if (chip->pmic->subtype == PMI8998_SUBTYPE) {
321		switch (chip->pmic->fab_id) {
322		case PMI8998_FAB_ID_GF:
323			*offset = RR_ADC_CHG_TEMP_GF_OFFSET_UV;
324			*slope = RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C;
325			return 0;
326		case PMI8998_FAB_ID_SMIC:
327			*offset = RR_ADC_CHG_TEMP_SMIC_OFFSET_UV;
328			*slope = RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C;
329			return 0;
330		default:
331			return -EINVAL;
332		}
333	}
334
335	return -EINVAL;
336}
337
338/*
339 * These functions explicitly cast int64_t to int.
340 * They will never overflow, as the values are small enough.
341 */
342static int rradc_post_process_batt_id(struct rradc_chip *chip, u16 adc_code,
343				      int *result_ohms)
344{
345	uint32_t current_value;
346	int64_t r_id;
347
348	current_value = chip->batt_id_data;
349	r_id = ((int64_t)adc_code * RR_ADC_FS_VOLTAGE_MV);
350	r_id = div64_s64(r_id, (RR_ADC_CHAN_MSB * current_value));
351	*result_ohms = (int)(r_id * MILLI);
352
353	return 0;
354}
355
356static int rradc_enable_continuous_mode(struct rradc_chip *chip)
357{
358	int ret;
359
360	/* Clear channel log */
361	ret = regmap_update_bits(chip->regmap, chip->base + RR_ADC_LOG,
362				 RR_ADC_LOG_CLR_CTRL, RR_ADC_LOG_CLR_CTRL);
363	if (ret < 0) {
364		dev_err(chip->dev, "log ctrl update to clear failed:%d\n", ret);
365		return ret;
366	}
367
368	ret = regmap_update_bits(chip->regmap, chip->base + RR_ADC_LOG,
369				 RR_ADC_LOG_CLR_CTRL, 0);
370	if (ret < 0) {
371		dev_err(chip->dev, "log ctrl update to not clear failed:%d\n",
372			ret);
373		return ret;
374	}
375
376	/* Switch to continuous mode */
377	ret = regmap_update_bits(chip->regmap, chip->base + RR_ADC_CTL,
378				 RR_ADC_CTL_CONTINUOUS_SEL,
379				 RR_ADC_CTL_CONTINUOUS_SEL);
380	if (ret < 0)
381		dev_err(chip->dev, "Update to continuous mode failed:%d\n",
382			ret);
383
384	return ret;
385}
386
387static int rradc_disable_continuous_mode(struct rradc_chip *chip)
388{
389	int ret;
390
391	/* Switch to non continuous mode */
392	ret = regmap_update_bits(chip->regmap, chip->base + RR_ADC_CTL,
393				 RR_ADC_CTL_CONTINUOUS_SEL, 0);
394	if (ret < 0)
395		dev_err(chip->dev, "Update to non-continuous mode failed:%d\n",
396			ret);
397
398	return ret;
399}
400
401static bool rradc_is_ready(struct rradc_chip *chip,
402			   enum rradc_channel_id chan_address)
403{
404	const struct rradc_channel *chan = &rradc_chans[chan_address];
405	int ret;
406	unsigned int status, mask;
407
408	/* BATT_ID STS bit does not get set initially */
409	switch (chan_address) {
410	case RR_ADC_BATT_ID:
411		mask = RR_ADC_STS_CHANNEL_STS;
412		break;
413	default:
414		mask = RR_ADC_STS_CHANNEL_READING_MASK;
415		break;
416	}
417
418	ret = regmap_read(chip->regmap, chip->base + chan->status, &status);
419	if (ret < 0 || !(status & mask))
420		return false;
421
422	return true;
423}
424
425static int rradc_read_status_in_cont_mode(struct rradc_chip *chip,
426					  enum rradc_channel_id chan_address)
427{
428	const struct rradc_channel *chan = &rradc_chans[chan_address];
429	const struct iio_chan_spec *iio_chan = &rradc_iio_chans[chan_address];
430	int ret, i;
431
432	if (chan->trigger_mask == 0) {
433		dev_err(chip->dev, "Channel doesn't have a trigger mask\n");
434		return -EINVAL;
435	}
436
437	ret = regmap_update_bits(chip->regmap, chip->base + chan->trigger_addr,
438				 chan->trigger_mask, chan->trigger_mask);
439	if (ret < 0) {
440		dev_err(chip->dev,
441			"Failed to apply trigger for channel '%s' ret=%d\n",
442			iio_chan->extend_name, ret);
443		return ret;
444	}
445
446	ret = rradc_enable_continuous_mode(chip);
447	if (ret < 0) {
448		dev_err(chip->dev, "Failed to switch to continuous mode\n");
449		goto disable_trigger;
450	}
451
452	/*
453	 * The wait/sleep values were found through trial and error,
454	 * this is mostly for the battery ID channel which takes some
455	 * time to settle.
456	 */
457	for (i = 0; i < 5; i++) {
458		if (rradc_is_ready(chip, chan_address))
459			break;
460		usleep_range(50000, 50000 + 500);
461	}
462
463	if (i == 5) {
464		dev_err(chip->dev, "Channel '%s' is not ready\n",
465			iio_chan->extend_name);
466		ret = -ETIMEDOUT;
467	}
468
469	rradc_disable_continuous_mode(chip);
470
471disable_trigger:
472	regmap_update_bits(chip->regmap, chip->base + chan->trigger_addr,
473			   chan->trigger_mask, 0);
474
475	return ret;
476}
477
478static int rradc_prepare_batt_id_conversion(struct rradc_chip *chip,
479					    enum rradc_channel_id chan_address,
480					    u16 *data)
481{
482	int ret;
483
484	ret = regmap_update_bits(chip->regmap, chip->base + RR_ADC_BATT_ID_CTRL,
485				 RR_ADC_BATT_ID_CTRL_CHANNEL_CONV,
486				 RR_ADC_BATT_ID_CTRL_CHANNEL_CONV);
487	if (ret < 0) {
488		dev_err(chip->dev, "Enabling BATT ID channel failed:%d\n", ret);
489		return ret;
490	}
491
492	ret = regmap_update_bits(chip->regmap,
493				 chip->base + RR_ADC_BATT_ID_TRIGGER,
494				 RR_ADC_TRIGGER_CTL, RR_ADC_TRIGGER_CTL);
495	if (ret < 0) {
496		dev_err(chip->dev, "BATT_ID trigger set failed:%d\n", ret);
497		goto out_disable_batt_id;
498	}
499
500	ret = rradc_read_status_in_cont_mode(chip, chan_address);
501
502	/* Reset registers back to default values */
503	regmap_update_bits(chip->regmap, chip->base + RR_ADC_BATT_ID_TRIGGER,
504			   RR_ADC_TRIGGER_CTL, 0);
505
506out_disable_batt_id:
507	regmap_update_bits(chip->regmap, chip->base + RR_ADC_BATT_ID_CTRL,
508			   RR_ADC_BATT_ID_CTRL_CHANNEL_CONV, 0);
509
510	return ret;
511}
512
513static int rradc_do_conversion(struct rradc_chip *chip,
514			       enum rradc_channel_id chan_address, u16 *data)
515{
516	const struct rradc_channel *chan = &rradc_chans[chan_address];
517	const struct iio_chan_spec *iio_chan = &rradc_iio_chans[chan_address];
518	int ret;
519	__le16 buf[3];
520
521	mutex_lock(&chip->conversion_lock);
522
523	switch (chan_address) {
524	case RR_ADC_BATT_ID:
525		ret = rradc_prepare_batt_id_conversion(chip, chan_address, data);
526		if (ret < 0) {
527			dev_err(chip->dev, "Battery ID conversion failed:%d\n",
528				ret);
529			goto unlock_out;
530		}
531		break;
532
533	case RR_ADC_USBIN_V:
534	case RR_ADC_DIE_TEMP:
535		ret = rradc_read_status_in_cont_mode(chip, chan_address);
536		if (ret < 0) {
537			dev_err(chip->dev,
538				"Error reading in continuous mode:%d\n", ret);
539			goto unlock_out;
540		}
541		break;
542	default:
543		if (!rradc_is_ready(chip, chan_address)) {
544			/*
545			 * Usually this means the channel isn't attached, for example
546			 * the in_voltage_usbin_v_input channel will not be ready if
547			 * no USB cable is attached
548			 */
549			dev_dbg(chip->dev, "channel '%s' is not ready\n",
550				iio_chan->extend_name);
551			ret = -ENODATA;
552			goto unlock_out;
553		}
554		break;
555	}
556
557	ret = rradc_read(chip, chan->lsb, buf, chan->size);
558	if (ret) {
559		dev_err(chip->dev, "read data failed\n");
560		goto unlock_out;
561	}
562
563	/*
564	 * For the battery ID we read the register for every ID ADC and then
565	 * see which one is actually connected.
566	 */
567	if (chan_address == RR_ADC_BATT_ID) {
568		u16 batt_id_150 = le16_to_cpu(buf[2]);
569		u16 batt_id_15 = le16_to_cpu(buf[1]);
570		u16 batt_id_5 = le16_to_cpu(buf[0]);
571
572		if (!batt_id_150 && !batt_id_15 && !batt_id_5) {
573			dev_err(chip->dev,
574				"Invalid batt_id values with all zeros\n");
575			ret = -EINVAL;
576			goto unlock_out;
577		}
578
579		if (batt_id_150 <= RR_ADC_BATT_ID_RANGE) {
580			*data = batt_id_150;
581			chip->batt_id_data = 150;
582		} else if (batt_id_15 <= RR_ADC_BATT_ID_RANGE) {
583			*data = batt_id_15;
584			chip->batt_id_data = 15;
585		} else {
586			*data = batt_id_5;
587			chip->batt_id_data = 5;
588		}
589	} else {
590		/*
591		 * All of the other channels are either 1 or 2 bytes.
592		 * We can rely on the second byte being 0 for 1-byte channels.
593		 */
594		*data = le16_to_cpu(buf[0]);
595	}
596
597unlock_out:
598	mutex_unlock(&chip->conversion_lock);
599
600	return ret;
601}
602
603static int rradc_read_scale(struct rradc_chip *chip, int chan_address, int *val,
604			    int *val2)
605{
606	int64_t fab_offset, fab_slope;
607	int ret;
608
609	ret = rradc_get_fab_coeff(chip, &fab_offset, &fab_slope);
610	if (ret < 0) {
611		dev_err(chip->dev, "Unable to get fab id coefficients\n");
612		return -EINVAL;
613	}
614
615	switch (chan_address) {
616	case RR_ADC_SKIN_TEMP:
617		*val = MILLI;
618		*val2 = RR_ADC_BATT_THERM_LSB_K;
619		return IIO_VAL_FRACTIONAL;
620	case RR_ADC_USBIN_I:
621		*val = RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL *
622		       RR_ADC_FS_VOLTAGE_MV;
623		*val2 = RR_ADC_CHAN_MSB;
624		return IIO_VAL_FRACTIONAL;
625	case RR_ADC_DCIN_I:
626		*val = RR_ADC_CURR_INPUT_FACTOR * RR_ADC_FS_VOLTAGE_MV;
627		*val2 = RR_ADC_CHAN_MSB;
628		return IIO_VAL_FRACTIONAL;
629	case RR_ADC_USBIN_V:
630	case RR_ADC_DCIN_V:
631		*val = RR_ADC_VOLT_INPUT_FACTOR * RR_ADC_FS_VOLTAGE_MV * MILLI;
632		*val2 = RR_ADC_CHAN_MSB;
633		return IIO_VAL_FRACTIONAL;
634	case RR_ADC_GPIO:
635		*val = RR_ADC_GPIO_FS_RANGE;
636		*val2 = RR_ADC_CHAN_MSB;
637		return IIO_VAL_FRACTIONAL;
638	case RR_ADC_CHG_TEMP:
639		/*
640		 * We divide val2 by MILLI instead of multiplying val
641		 * to avoid an integer overflow.
642		 */
643		*val = -RR_ADC_TEMP_FS_VOLTAGE_NUM;
644		*val2 = div64_s64(RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
645					  fab_slope,
646				  MILLI);
647
648		return IIO_VAL_FRACTIONAL;
649	case RR_ADC_DIE_TEMP:
650		*val = RR_ADC_TEMP_FS_VOLTAGE_NUM;
651		*val2 = RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
652			RR_ADC_DIE_TEMP_SLOPE;
653
654		return IIO_VAL_FRACTIONAL;
655	default:
656		return -EINVAL;
657	}
658}
659
660static int rradc_read_offset(struct rradc_chip *chip, int chan_address, int *val)
661{
662	int64_t fab_offset, fab_slope;
663	int64_t offset1, offset2;
664	int ret;
665
666	switch (chan_address) {
667	case RR_ADC_SKIN_TEMP:
668		/*
669		 * Offset from kelvin to degC, divided by the
670		 * scale factor (250). We lose some precision here.
671		 * 273150 / 250 = 1092.6
672		 */
673		*val = div64_s64(ABSOLUTE_ZERO_MILLICELSIUS,
674				 (MILLI / RR_ADC_BATT_THERM_LSB_K));
675		return IIO_VAL_INT;
676	case RR_ADC_CHG_TEMP:
677		ret = rradc_get_fab_coeff(chip, &fab_offset, &fab_slope);
678		if (ret < 0) {
679			dev_err(chip->dev,
680				"Unable to get fab id coefficients\n");
681			return -EINVAL;
682		}
683		offset1 = -(fab_offset * RR_ADC_TEMP_FS_VOLTAGE_DEN *
684			    RR_ADC_CHAN_MSB);
685		offset1 += (int64_t)RR_ADC_TEMP_FS_VOLTAGE_NUM / 2ULL;
686		offset1 = div64_s64(offset1,
687				    (int64_t)(RR_ADC_TEMP_FS_VOLTAGE_NUM));
688
689		offset2 = (int64_t)RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC *
690			  RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
691			  (int64_t)fab_slope;
692		offset2 += ((int64_t)MILLI * RR_ADC_TEMP_FS_VOLTAGE_NUM) / 2;
693		offset2 = div64_s64(
694			offset2, ((int64_t)MILLI * RR_ADC_TEMP_FS_VOLTAGE_NUM));
695
696		/*
697		 * The -1 is to compensate for lost precision.
698		 * It should actually be -0.7906976744186046.
699		 * This works out to every value being off
700		 * by about +0.091 degrees C after applying offset and scale.
701		 */
702		*val = (int)(offset1 - offset2 - 1);
703		return IIO_VAL_INT;
704	case RR_ADC_DIE_TEMP:
705		offset1 = -RR_ADC_DIE_TEMP_OFFSET *
706			  (int64_t)RR_ADC_TEMP_FS_VOLTAGE_DEN *
707			  (int64_t)RR_ADC_CHAN_MSB;
708		offset1 = div64_s64(offset1, RR_ADC_TEMP_FS_VOLTAGE_NUM);
709
710		offset2 = -(int64_t)RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC *
711			  RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
712			  RR_ADC_DIE_TEMP_SLOPE;
713		offset2 = div64_s64(offset2,
714				    ((int64_t)RR_ADC_TEMP_FS_VOLTAGE_NUM));
715
716		/*
717		 * The result is -339, it should be -338.69789, this results
718		 * in the calculated die temp being off by
719		 * -0.004 - -0.0175 degrees C
720		 */
721		*val = (int)(offset1 - offset2);
722		return IIO_VAL_INT;
723	default:
724		break;
725	}
726	return -EINVAL;
727}
728
729static int rradc_read_raw(struct iio_dev *indio_dev,
730			  struct iio_chan_spec const *chan_spec, int *val,
731			  int *val2, long mask)
732{
733	struct rradc_chip *chip = iio_priv(indio_dev);
734	const struct rradc_channel *chan;
735	int ret;
736	u16 adc_code;
737
738	if (chan_spec->address >= RR_ADC_CHAN_MAX) {
739		dev_err(chip->dev, "Invalid channel index:%lu\n",
740			chan_spec->address);
741		return -EINVAL;
742	}
743
744	switch (mask) {
745	case IIO_CHAN_INFO_SCALE:
746		return rradc_read_scale(chip, chan_spec->address, val, val2);
747	case IIO_CHAN_INFO_OFFSET:
748		return rradc_read_offset(chip, chan_spec->address, val);
749	case IIO_CHAN_INFO_RAW:
750		ret = rradc_do_conversion(chip, chan_spec->address, &adc_code);
751		if (ret < 0)
752			return ret;
753
754		*val = adc_code;
755		return IIO_VAL_INT;
756	case IIO_CHAN_INFO_PROCESSED:
757		chan = &rradc_chans[chan_spec->address];
758		if (!chan->scale_fn)
759			return -EINVAL;
760		ret = rradc_do_conversion(chip, chan_spec->address, &adc_code);
761		if (ret < 0)
762			return ret;
763
764		*val = chan->scale_fn(chip, adc_code, val);
765		return IIO_VAL_INT;
766	default:
767		return -EINVAL;
768	}
769}
770
771static int rradc_read_label(struct iio_dev *indio_dev,
772			    struct iio_chan_spec const *chan, char *label)
773{
774	return snprintf(label, PAGE_SIZE, "%s\n",
775			rradc_chans[chan->address].label);
776}
777
778static const struct iio_info rradc_info = {
779	.read_raw = rradc_read_raw,
780	.read_label = rradc_read_label,
781};
782
783static const struct rradc_channel rradc_chans[RR_ADC_CHAN_MAX] = {
784	{
785		.label = "batt_id",
786		.scale_fn = rradc_post_process_batt_id,
787		.lsb = RR_ADC_BATT_ID_5_LSB,
788		.status = RR_ADC_BATT_ID_STS,
789		.size = 6,
790		.trigger_addr = RR_ADC_BATT_ID_TRIGGER,
791		.trigger_mask = BIT(0),
792	}, {
793		.label = "batt",
794		.lsb = RR_ADC_BATT_THERM_LSB,
795		.status = RR_ADC_BATT_THERM_STS,
796		.size = 2,
797		.trigger_addr = RR_ADC_BATT_THERM_TRIGGER,
798	}, {
799		.label = "pmi8998_skin",
800		.lsb = RR_ADC_SKIN_TEMP_LSB,
801		.status = RR_ADC_AUX_THERM_STS,
802		.size = 2,
803		.trigger_addr = RR_ADC_AUX_THERM_TRIGGER,
804	}, {
805		.label = "usbin_i",
806		.lsb = RR_ADC_USB_IN_I_LSB,
807		.status = RR_ADC_USB_IN_I_STS,
808		.size = 2,
809		.trigger_addr = RR_ADC_USB_IN_I_TRIGGER,
810	}, {
811		.label = "usbin_v",
812		.lsb = RR_ADC_USB_IN_V_LSB,
813		.status = RR_ADC_USB_IN_V_STS,
814		.size = 2,
815		.trigger_addr = RR_ADC_USB_IN_V_TRIGGER,
816		.trigger_mask = BIT(7),
817	}, {
818		.label = "dcin_i",
819		.lsb = RR_ADC_DC_IN_I_LSB,
820		.status = RR_ADC_DC_IN_I_STS,
821		.size = 2,
822		.trigger_addr = RR_ADC_DC_IN_I_TRIGGER,
823	}, {
824		.label = "dcin_v",
825		.lsb = RR_ADC_DC_IN_V_LSB,
826		.status = RR_ADC_DC_IN_V_STS,
827		.size = 2,
828		.trigger_addr = RR_ADC_DC_IN_V_TRIGGER,
829	}, {
830		.label = "pmi8998_die",
831		.lsb = RR_ADC_PMI_DIE_TEMP_LSB,
832		.status = RR_ADC_PMI_DIE_TEMP_STS,
833		.size = 2,
834		.trigger_addr = RR_ADC_PMI_DIE_TEMP_TRIGGER,
835		.trigger_mask = RR_ADC_TRIGGER_EVERY_CYCLE,
836	}, {
837		.label = "chg",
838		.lsb = RR_ADC_CHARGER_TEMP_LSB,
839		.status = RR_ADC_CHARGER_TEMP_STS,
840		.size = 2,
841		.trigger_addr = RR_ADC_CHARGER_TEMP_TRIGGER,
842	}, {
843		.label = "gpio",
844		.lsb = RR_ADC_GPIO_LSB,
845		.status = RR_ADC_GPIO_STS,
846		.size = 2,
847		.trigger_addr = RR_ADC_GPIO_TRIGGER,
848	},
849};
850
851static const struct iio_chan_spec rradc_iio_chans[RR_ADC_CHAN_MAX] = {
852	{
853		.type = IIO_RESISTANCE,
854		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
855		.address = RR_ADC_BATT_ID,
856		.channel = 0,
857		.indexed = 1,
858	}, {
859		.type = IIO_TEMP,
860		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
861		.address = RR_ADC_BATT_THERM,
862		.channel = 0,
863		.indexed = 1,
864	}, {
865		.type = IIO_TEMP,
866		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
867				      BIT(IIO_CHAN_INFO_SCALE) |
868				      BIT(IIO_CHAN_INFO_OFFSET),
869		.address = RR_ADC_SKIN_TEMP,
870		.channel = 1,
871		.indexed = 1,
872	}, {
873		.type = IIO_CURRENT,
874		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
875				      BIT(IIO_CHAN_INFO_SCALE),
876		.address = RR_ADC_USBIN_I,
877		.channel = 0,
878		.indexed = 1,
879	}, {
880		.type = IIO_VOLTAGE,
881		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
882				      BIT(IIO_CHAN_INFO_SCALE),
883		.address = RR_ADC_USBIN_V,
884		.channel = 0,
885		.indexed = 1,
886	}, {
887		.type = IIO_CURRENT,
888		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
889				      BIT(IIO_CHAN_INFO_SCALE),
890		.address = RR_ADC_DCIN_I,
891		.channel = 1,
892		.indexed = 1,
893	}, {
894		.type = IIO_VOLTAGE,
895		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
896				      BIT(IIO_CHAN_INFO_SCALE),
897		.address = RR_ADC_DCIN_V,
898		.channel = 1,
899		.indexed = 1,
900	}, {
901		.type = IIO_TEMP,
902		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
903				      BIT(IIO_CHAN_INFO_SCALE) |
904				      BIT(IIO_CHAN_INFO_OFFSET),
905		.address = RR_ADC_DIE_TEMP,
906		.channel = 2,
907		.indexed = 1,
908	}, {
909		.type = IIO_TEMP,
910		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
911				      BIT(IIO_CHAN_INFO_OFFSET) |
912				      BIT(IIO_CHAN_INFO_SCALE),
913		.address = RR_ADC_CHG_TEMP,
914		.channel = 3,
915		.indexed = 1,
916	}, {
917		.type = IIO_VOLTAGE,
918		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
919				      BIT(IIO_CHAN_INFO_SCALE),
920		.address = RR_ADC_GPIO,
921		.channel = 2,
922		.indexed = 1,
923	},
924};
925
926static int rradc_probe(struct platform_device *pdev)
927{
928	struct device *dev = &pdev->dev;
929	struct iio_dev *indio_dev;
930	struct rradc_chip *chip;
931	int ret, i, batt_id_delay;
932
933	indio_dev = devm_iio_device_alloc(dev, sizeof(*chip));
934	if (!indio_dev)
935		return -ENOMEM;
936
937	chip = iio_priv(indio_dev);
938	chip->regmap = dev_get_regmap(pdev->dev.parent, NULL);
939	if (!chip->regmap) {
940		dev_err(dev, "Couldn't get parent's regmap\n");
941		return -EINVAL;
942	}
943
944	chip->dev = dev;
945	mutex_init(&chip->conversion_lock);
946
947	ret = device_property_read_u32(dev, "reg", &chip->base);
948	if (ret < 0) {
949		dev_err(chip->dev, "Couldn't find reg address, ret = %d\n",
950			ret);
951		return ret;
952	}
953
954	batt_id_delay = -1;
955	ret = device_property_read_u32(dev, "qcom,batt-id-delay-ms",
956				       &batt_id_delay);
957	if (!ret) {
958		for (i = 0; i < RRADC_BATT_ID_DELAY_MAX; i++) {
959			if (batt_id_delay == batt_id_delays[i])
960				break;
961		}
962		if (i == RRADC_BATT_ID_DELAY_MAX)
963			batt_id_delay = -1;
964	}
965
966	if (batt_id_delay >= 0) {
967		batt_id_delay = FIELD_PREP(BATT_ID_SETTLE_MASK, batt_id_delay);
968		ret = regmap_update_bits(chip->regmap,
969					 chip->base + RR_ADC_BATT_ID_CFG,
970					 batt_id_delay, batt_id_delay);
971		if (ret < 0) {
972			dev_err(chip->dev,
973				"BATT_ID settling time config failed:%d\n",
974				ret);
975		}
976	}
977
978	/* Get the PMIC revision, we need it to handle some varying coefficients */
979	chip->pmic = qcom_pmic_get(chip->dev);
980	if (IS_ERR(chip->pmic)) {
981		dev_err(chip->dev, "Unable to get reference to PMIC device\n");
982		return PTR_ERR(chip->pmic);
983	}
984
985	switch (chip->pmic->subtype) {
986	case PMI8998_SUBTYPE:
987		indio_dev->name = "pmi8998-rradc";
988		break;
989	case PM660_SUBTYPE:
990		indio_dev->name = "pm660-rradc";
991		break;
992	default:
993		indio_dev->name = DRIVER_NAME;
994		break;
995	}
996	indio_dev->modes = INDIO_DIRECT_MODE;
997	indio_dev->info = &rradc_info;
998	indio_dev->channels = rradc_iio_chans;
999	indio_dev->num_channels = ARRAY_SIZE(rradc_iio_chans);
1000
1001	return devm_iio_device_register(dev, indio_dev);
1002}
1003
1004static const struct of_device_id rradc_match_table[] = {
1005	{ .compatible = "qcom,pm660-rradc" },
1006	{ .compatible = "qcom,pmi8998-rradc" },
1007	{}
1008};
1009MODULE_DEVICE_TABLE(of, rradc_match_table);
1010
1011static struct platform_driver rradc_driver = {
1012	.driver		= {
1013		.name		= DRIVER_NAME,
1014		.of_match_table	= rradc_match_table,
1015	},
1016	.probe = rradc_probe,
1017};
1018module_platform_driver(rradc_driver);
1019
1020MODULE_DESCRIPTION("QCOM SPMI PMIC RR ADC driver");
1021MODULE_AUTHOR("Caleb Connolly <caleb.connolly@linaro.org>");
1022MODULE_LICENSE("GPL");
1023