1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
4 *
5 * Rewritten for Linux IIO framework with some code based on
6 * earlier driver found in the Motorola Linux kernel:
7 *
8 * Copyright (C) 2009-2010 Motorola, Inc.
9 */
10
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/err.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/mod_devicetable.h>
19#include <linux/platform_device.h>
20#include <linux/property.h>
21#include <linux/regmap.h>
22
23#include <linux/iio/buffer.h>
24#include <linux/iio/driver.h>
25#include <linux/iio/iio.h>
26#include <linux/iio/kfifo_buf.h>
27#include <linux/mfd/motorola-cpcap.h>
28
29/* Register CPCAP_REG_ADCC1 bits */
30#define CPCAP_BIT_ADEN_AUTO_CLR		BIT(15)	/* Currently unused */
31#define CPCAP_BIT_CAL_MODE		BIT(14) /* Set with BIT_RAND0 */
32#define CPCAP_BIT_ADC_CLK_SEL1		BIT(13)	/* Currently unused */
33#define CPCAP_BIT_ADC_CLK_SEL0		BIT(12)	/* Currently unused */
34#define CPCAP_BIT_ATOX			BIT(11)
35#define CPCAP_BIT_ATO3			BIT(10)
36#define CPCAP_BIT_ATO2			BIT(9)
37#define CPCAP_BIT_ATO1			BIT(8)
38#define CPCAP_BIT_ATO0			BIT(7)
39#define CPCAP_BIT_ADA2			BIT(6)
40#define CPCAP_BIT_ADA1			BIT(5)
41#define CPCAP_BIT_ADA0			BIT(4)
42#define CPCAP_BIT_AD_SEL1		BIT(3)	/* Set for bank1 */
43#define CPCAP_BIT_RAND1			BIT(2)	/* Set for channel 16 & 17 */
44#define CPCAP_BIT_RAND0			BIT(1)	/* Set with CAL_MODE */
45#define CPCAP_BIT_ADEN			BIT(0)	/* Currently unused */
46
47#define CPCAP_REG_ADCC1_DEFAULTS	(CPCAP_BIT_ADEN_AUTO_CLR | \
48					 CPCAP_BIT_ADC_CLK_SEL0 |  \
49					 CPCAP_BIT_RAND1)
50
51/* Register CPCAP_REG_ADCC2 bits */
52#define CPCAP_BIT_CAL_FACTOR_ENABLE	BIT(15)	/* Currently unused */
53#define CPCAP_BIT_BATDETB_EN		BIT(14)	/* Currently unused */
54#define CPCAP_BIT_ADTRIG_ONESHOT	BIT(13)	/* Set for !TIMING_IMM */
55#define CPCAP_BIT_ASC			BIT(12)	/* Set for TIMING_IMM */
56#define CPCAP_BIT_ATOX_PS_FACTOR	BIT(11)
57#define CPCAP_BIT_ADC_PS_FACTOR1	BIT(10)
58#define CPCAP_BIT_ADC_PS_FACTOR0	BIT(9)
59#define CPCAP_BIT_AD4_SELECT		BIT(8)	/* Currently unused */
60#define CPCAP_BIT_ADC_BUSY		BIT(7)	/* Currently unused */
61#define CPCAP_BIT_THERMBIAS_EN		BIT(6)	/* Bias for AD0_BATTDETB */
62#define CPCAP_BIT_ADTRIG_DIS		BIT(5)	/* Disable interrupt */
63#define CPCAP_BIT_LIADC			BIT(4)	/* Currently unused */
64#define CPCAP_BIT_TS_REFEN		BIT(3)	/* Currently unused */
65#define CPCAP_BIT_TS_M2			BIT(2)	/* Currently unused */
66#define CPCAP_BIT_TS_M1			BIT(1)	/* Currently unused */
67#define CPCAP_BIT_TS_M0			BIT(0)	/* Currently unused */
68
69#define CPCAP_REG_ADCC2_DEFAULTS	(CPCAP_BIT_AD4_SELECT | \
70					 CPCAP_BIT_ADTRIG_DIS | \
71					 CPCAP_BIT_LIADC | \
72					 CPCAP_BIT_TS_M2 | \
73					 CPCAP_BIT_TS_M1)
74
75#define CPCAP_MAX_TEMP_LVL		27
76#define CPCAP_FOUR_POINT_TWO_ADC	801
77#define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD	530
78#define ST_ADC_CAL_CHRGI_LOW_THRESHOLD	494
79#define ST_ADC_CAL_BATTI_HIGH_THRESHOLD	530
80#define ST_ADC_CAL_BATTI_LOW_THRESHOLD	494
81#define ST_ADC_CALIBRATE_DIFF_THRESHOLD	3
82
83#define CPCAP_ADC_MAX_RETRIES		5	/* Calibration */
84
85/*
86 * struct cpcap_adc_ato - timing settings for cpcap adc
87 *
88 * Unfortunately no cpcap documentation available, please document when
89 * using these.
90 */
91struct cpcap_adc_ato {
92	unsigned short ato_in;
93	unsigned short atox_in;
94	unsigned short adc_ps_factor_in;
95	unsigned short atox_ps_factor_in;
96	unsigned short ato_out;
97	unsigned short atox_out;
98	unsigned short adc_ps_factor_out;
99	unsigned short atox_ps_factor_out;
100};
101
102/**
103 * struct cpcap_adc - cpcap adc device driver data
104 * @reg: cpcap regmap
105 * @dev: struct device
106 * @vendor: cpcap vendor
107 * @irq: interrupt
108 * @lock: mutex
109 * @ato: request timings
110 * @wq_data_avail: work queue
111 * @done: work done
112 */
113struct cpcap_adc {
114	struct regmap *reg;
115	struct device *dev;
116	u16 vendor;
117	int irq;
118	struct mutex lock;	/* ADC register access lock */
119	const struct cpcap_adc_ato *ato;
120	wait_queue_head_t wq_data_avail;
121	bool done;
122};
123
124/*
125 * enum cpcap_adc_channel - cpcap adc channels
126 */
127enum cpcap_adc_channel {
128	/* Bank0 channels */
129	CPCAP_ADC_AD0,		/* Battery temperature */
130	CPCAP_ADC_BATTP,	/* Battery voltage */
131	CPCAP_ADC_VBUS,		/* USB VBUS voltage */
132	CPCAP_ADC_AD3,		/* Die temperature when charging */
133	CPCAP_ADC_BPLUS_AD4,	/* Another battery or system voltage */
134	CPCAP_ADC_CHG_ISENSE,	/* Calibrated charge current */
135	CPCAP_ADC_BATTI,	/* Calibrated system current */
136	CPCAP_ADC_USB_ID,	/* USB OTG ID, unused on droid 4? */
137
138	/* Bank1 channels */
139	CPCAP_ADC_AD8,		/* Seems unused */
140	CPCAP_ADC_AD9,		/* Seems unused */
141	CPCAP_ADC_LICELL,	/* Maybe system voltage? Always 3V */
142	CPCAP_ADC_HV_BATTP,	/* Another battery detection? */
143	CPCAP_ADC_TSX1_AD12,	/* Seems unused, for touchscreen? */
144	CPCAP_ADC_TSX2_AD13,	/* Seems unused, for touchscreen? */
145	CPCAP_ADC_TSY1_AD14,	/* Seems unused, for touchscreen? */
146	CPCAP_ADC_TSY2_AD15,	/* Seems unused, for touchscreen? */
147
148	/* Remuxed channels using bank0 entries */
149	CPCAP_ADC_BATTP_PI16,	/* Alternative mux mode for BATTP */
150	CPCAP_ADC_BATTI_PI17,	/* Alternative mux mode for BATTI */
151
152	CPCAP_ADC_CHANNEL_NUM,
153};
154
155/*
156 * enum cpcap_adc_timing - cpcap adc timing options
157 *
158 * CPCAP_ADC_TIMING_IMM seems to be immediate with no timings.
159 * Please document when using.
160 */
161enum cpcap_adc_timing {
162	CPCAP_ADC_TIMING_IMM,
163	CPCAP_ADC_TIMING_IN,
164	CPCAP_ADC_TIMING_OUT,
165};
166
167/**
168 * struct cpcap_adc_phasing_tbl - cpcap phasing table
169 * @offset: offset in the phasing table
170 * @multiplier: multiplier in the phasing table
171 * @divider: divider in the phasing table
172 * @min: minimum value
173 * @max: maximum value
174 */
175struct cpcap_adc_phasing_tbl {
176	short offset;
177	unsigned short multiplier;
178	unsigned short divider;
179	short min;
180	short max;
181};
182
183/**
184 * struct cpcap_adc_conversion_tbl - cpcap conversion table
185 * @conv_type: conversion type
186 * @align_offset: align offset
187 * @conv_offset: conversion offset
188 * @cal_offset: calibration offset
189 * @multiplier: conversion multiplier
190 * @divider: conversion divider
191 */
192struct cpcap_adc_conversion_tbl {
193	enum iio_chan_info_enum conv_type;
194	int align_offset;
195	int conv_offset;
196	int cal_offset;
197	int multiplier;
198	int divider;
199};
200
201/**
202 * struct cpcap_adc_request - cpcap adc request
203 * @channel: request channel
204 * @phase_tbl: channel phasing table
205 * @conv_tbl: channel conversion table
206 * @bank_index: channel index within the bank
207 * @timing: timing settings
208 * @result: result
209 */
210struct cpcap_adc_request {
211	int channel;
212	const struct cpcap_adc_phasing_tbl *phase_tbl;
213	const struct cpcap_adc_conversion_tbl *conv_tbl;
214	int bank_index;
215	enum cpcap_adc_timing timing;
216	int result;
217};
218
219/* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */
220static const struct cpcap_adc_phasing_tbl bank_phasing[] = {
221	/* Bank0 */
222	[CPCAP_ADC_AD0] =          {0, 0x80, 0x80,    0, 1023},
223	[CPCAP_ADC_BATTP] =        {0, 0x80, 0x80,    0, 1023},
224	[CPCAP_ADC_VBUS] =         {0, 0x80, 0x80,    0, 1023},
225	[CPCAP_ADC_AD3] =          {0, 0x80, 0x80,    0, 1023},
226	[CPCAP_ADC_BPLUS_AD4] =    {0, 0x80, 0x80,    0, 1023},
227	[CPCAP_ADC_CHG_ISENSE] =   {0, 0x80, 0x80, -512,  511},
228	[CPCAP_ADC_BATTI] =        {0, 0x80, 0x80, -512,  511},
229	[CPCAP_ADC_USB_ID] =       {0, 0x80, 0x80,    0, 1023},
230
231	/* Bank1 */
232	[CPCAP_ADC_AD8] =          {0, 0x80, 0x80,    0, 1023},
233	[CPCAP_ADC_AD9] =          {0, 0x80, 0x80,    0, 1023},
234	[CPCAP_ADC_LICELL] =       {0, 0x80, 0x80,    0, 1023},
235	[CPCAP_ADC_HV_BATTP] =     {0, 0x80, 0x80,    0, 1023},
236	[CPCAP_ADC_TSX1_AD12] =    {0, 0x80, 0x80,    0, 1023},
237	[CPCAP_ADC_TSX2_AD13] =    {0, 0x80, 0x80,    0, 1023},
238	[CPCAP_ADC_TSY1_AD14] =    {0, 0x80, 0x80,    0, 1023},
239	[CPCAP_ADC_TSY2_AD15] =    {0, 0x80, 0x80,    0, 1023},
240};
241
242/*
243 * Conversion table for channels. Updated during init based on calibration.
244 * Here too channels 16 & 17 use BATTP and BATTI.
245 */
246static struct cpcap_adc_conversion_tbl bank_conversion[] = {
247	/* Bank0 */
248	[CPCAP_ADC_AD0] = {
249		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,     1,    1,
250	},
251	[CPCAP_ADC_BATTP] = {
252		IIO_CHAN_INFO_PROCESSED,    0, 2400, 0,  2300, 1023,
253	},
254	[CPCAP_ADC_VBUS] = {
255		IIO_CHAN_INFO_PROCESSED,    0,    0, 0, 10000, 1023,
256	},
257	[CPCAP_ADC_AD3] = {
258		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,     1,    1,
259		},
260	[CPCAP_ADC_BPLUS_AD4] = {
261		IIO_CHAN_INFO_PROCESSED,    0, 2400, 0,  2300, 1023,
262	},
263	[CPCAP_ADC_CHG_ISENSE] = {
264		IIO_CHAN_INFO_PROCESSED, -512,    2, 0,  5000, 1023,
265	},
266	[CPCAP_ADC_BATTI] = {
267		IIO_CHAN_INFO_PROCESSED, -512,    2, 0,  5000, 1023,
268	},
269	[CPCAP_ADC_USB_ID] = {
270		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
271	},
272
273	/* Bank1 */
274	[CPCAP_ADC_AD8] = {
275		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
276	},
277	[CPCAP_ADC_AD9] = {
278		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
279	},
280	[CPCAP_ADC_LICELL] = {
281		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,  3400, 1023,
282	},
283	[CPCAP_ADC_HV_BATTP] = {
284		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
285	},
286	[CPCAP_ADC_TSX1_AD12] = {
287		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
288	},
289	[CPCAP_ADC_TSX2_AD13] = {
290		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
291	},
292	[CPCAP_ADC_TSY1_AD14] = {
293		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
294	},
295	[CPCAP_ADC_TSY2_AD15] = {
296		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
297	},
298};
299
300/*
301 * Temperature lookup table of register values to milliCelcius.
302 * REVISIT: Check the duplicate 0x3ff entry in a freezer
303 */
304static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = {
305	{ 0x03ff, -40000 },
306	{ 0x03ff, -35000 },
307	{ 0x03ef, -30000 },
308	{ 0x03b2, -25000 },
309	{ 0x036c, -20000 },
310	{ 0x0320, -15000 },
311	{ 0x02d0, -10000 },
312	{ 0x027f, -5000 },
313	{ 0x022f, 0 },
314	{ 0x01e4, 5000 },
315	{ 0x019f, 10000 },
316	{ 0x0161, 15000 },
317	{ 0x012b, 20000 },
318	{ 0x00fc, 25000 },
319	{ 0x00d4, 30000 },
320	{ 0x00b2, 35000 },
321	{ 0x0095, 40000 },
322	{ 0x007d, 45000 },
323	{ 0x0069, 50000 },
324	{ 0x0059, 55000 },
325	{ 0x004b, 60000 },
326	{ 0x003f, 65000 },
327	{ 0x0036, 70000 },
328	{ 0x002e, 75000 },
329	{ 0x0027, 80000 },
330	{ 0x0022, 85000 },
331	{ 0x001d, 90000 },
332};
333
334#define CPCAP_CHAN(_type, _index, _address, _datasheet_name) {	\
335	.type = (_type), \
336	.address = (_address), \
337	.indexed = 1, \
338	.channel = (_index), \
339	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
340			      BIT(IIO_CHAN_INFO_PROCESSED), \
341	.scan_index = (_index), \
342	.scan_type = { \
343		.sign = 'u', \
344		.realbits = 10, \
345		.storagebits = 16, \
346		.endianness = IIO_CPU, \
347	}, \
348	.datasheet_name = (_datasheet_name), \
349}
350
351/*
352 * The datasheet names are from Motorola mapphone Linux kernel except
353 * for the last two which might be uncalibrated charge voltage and
354 * current.
355 */
356static const struct iio_chan_spec cpcap_adc_channels[] = {
357	/* Bank0 */
358	CPCAP_CHAN(IIO_TEMP,    0, CPCAP_REG_ADCD0,  "battdetb"),
359	CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1,  "battp"),
360	CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2,  "vbus"),
361	CPCAP_CHAN(IIO_TEMP,    3, CPCAP_REG_ADCD3,  "ad3"),
362	CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4,  "ad4"),
363	CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5,  "chg_isense"),
364	CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6,  "batti"),
365	CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7,  "usb_id"),
366
367	/* Bank1 */
368	CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0,  "ad8"),
369	CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1,  "ad9"),
370	CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"),
371	CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"),
372	CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"),
373	CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"),
374	CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"),
375	CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"),
376
377	/* There are two registers with multiplexed functionality */
378	CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"),
379	CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"),
380};
381
382static irqreturn_t cpcap_adc_irq_thread(int irq, void *data)
383{
384	struct iio_dev *indio_dev = data;
385	struct cpcap_adc *ddata = iio_priv(indio_dev);
386	int error;
387
388	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
389				   CPCAP_BIT_ADTRIG_DIS,
390				   CPCAP_BIT_ADTRIG_DIS);
391	if (error)
392		return IRQ_NONE;
393
394	ddata->done = true;
395	wake_up_interruptible(&ddata->wq_data_avail);
396
397	return IRQ_HANDLED;
398}
399
400/* ADC calibration functions */
401static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata,
402				      enum cpcap_adc_channel chan)
403{
404	unsigned int value = 0;
405	unsigned long timeout = jiffies + msecs_to_jiffies(3000);
406	int error;
407
408	if ((chan != CPCAP_ADC_CHG_ISENSE) &&
409	    (chan != CPCAP_ADC_BATTI))
410		return;
411
412	value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0;
413	value |= ((chan << 4) &
414		  (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0));
415
416	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
417				   CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
418				   CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
419				   CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
420				   CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
421				   CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
422				   CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
423				   value);
424	if (error)
425		return;
426
427	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
428				   CPCAP_BIT_ATOX_PS_FACTOR |
429				   CPCAP_BIT_ADC_PS_FACTOR1 |
430				   CPCAP_BIT_ADC_PS_FACTOR0,
431				   0);
432	if (error)
433		return;
434
435	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
436				   CPCAP_BIT_ADTRIG_DIS,
437				   CPCAP_BIT_ADTRIG_DIS);
438	if (error)
439		return;
440
441	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
442				   CPCAP_BIT_ASC,
443				   CPCAP_BIT_ASC);
444	if (error)
445		return;
446
447	do {
448		schedule_timeout_uninterruptible(1);
449		error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value);
450		if (error)
451			return;
452	} while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout));
453
454	if (value & CPCAP_BIT_ASC)
455		dev_err(ddata->dev,
456			"Timeout waiting for calibration to complete\n");
457
458	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
459				   CPCAP_BIT_CAL_MODE, 0);
460	if (error)
461		return;
462}
463
464static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata,
465				   int channel,
466				   u16 calibration_register,
467				   int lower_threshold,
468				   int upper_threshold)
469{
470	unsigned int calibration_data[2];
471	unsigned short cal_data_diff;
472	int i, error;
473
474	for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
475		calibration_data[0]  = 0;
476		calibration_data[1]  = 0;
477
478		cpcap_adc_setup_calibrate(ddata, channel);
479		error = regmap_read(ddata->reg, calibration_register,
480				    &calibration_data[0]);
481		if (error)
482			return error;
483		cpcap_adc_setup_calibrate(ddata, channel);
484		error = regmap_read(ddata->reg, calibration_register,
485				    &calibration_data[1]);
486		if (error)
487			return error;
488
489		if (calibration_data[0] > calibration_data[1])
490			cal_data_diff =
491				calibration_data[0] - calibration_data[1];
492		else
493			cal_data_diff =
494				calibration_data[1] - calibration_data[0];
495
496		if (((calibration_data[1] >= lower_threshold) &&
497		     (calibration_data[1] <= upper_threshold) &&
498		     (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) ||
499		    (ddata->vendor == CPCAP_VENDOR_TI)) {
500			bank_conversion[channel].cal_offset =
501				((short)calibration_data[1] * -1) + 512;
502			dev_dbg(ddata->dev, "ch%i calibration complete: %i\n",
503				channel, bank_conversion[channel].cal_offset);
504			break;
505		}
506		usleep_range(5000, 10000);
507	}
508
509	return 0;
510}
511
512static int cpcap_adc_calibrate(struct cpcap_adc *ddata)
513{
514	int error;
515
516	error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE,
517					CPCAP_REG_ADCAL1,
518					ST_ADC_CAL_CHRGI_LOW_THRESHOLD,
519					ST_ADC_CAL_CHRGI_HIGH_THRESHOLD);
520	if (error)
521		return error;
522
523	error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI,
524					CPCAP_REG_ADCAL2,
525					ST_ADC_CAL_BATTI_LOW_THRESHOLD,
526					ST_ADC_CAL_BATTI_HIGH_THRESHOLD);
527	if (error)
528		return error;
529
530	return 0;
531}
532
533/* ADC setup, read and scale functions */
534static void cpcap_adc_setup_bank(struct cpcap_adc *ddata,
535				 struct cpcap_adc_request *req)
536{
537	const struct cpcap_adc_ato *ato = ddata->ato;
538	unsigned short value1 = 0;
539	unsigned short value2 = 0;
540	int error;
541
542	if (!ato)
543		return;
544
545	switch (req->channel) {
546	case CPCAP_ADC_AD0:
547		value2 |= CPCAP_BIT_THERMBIAS_EN;
548		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
549					   CPCAP_BIT_THERMBIAS_EN,
550					   value2);
551		if (error)
552			return;
553		usleep_range(800, 1000);
554		break;
555	case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
556		value1 |= CPCAP_BIT_AD_SEL1;
557		break;
558	case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17:
559		value1 |= CPCAP_BIT_RAND1;
560		break;
561	default:
562		break;
563	}
564
565	switch (req->timing) {
566	case CPCAP_ADC_TIMING_IN:
567		value1 |= ato->ato_in;
568		value1 |= ato->atox_in;
569		value2 |= ato->adc_ps_factor_in;
570		value2 |= ato->atox_ps_factor_in;
571		break;
572	case CPCAP_ADC_TIMING_OUT:
573		value1 |= ato->ato_out;
574		value1 |= ato->atox_out;
575		value2 |= ato->adc_ps_factor_out;
576		value2 |= ato->atox_ps_factor_out;
577		break;
578
579	case CPCAP_ADC_TIMING_IMM:
580	default:
581		break;
582	}
583
584	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
585				   CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
586				   CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
587				   CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
588				   CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
589				   CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
590				   CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
591				   value1);
592	if (error)
593		return;
594
595	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
596				   CPCAP_BIT_ATOX_PS_FACTOR |
597				   CPCAP_BIT_ADC_PS_FACTOR1 |
598				   CPCAP_BIT_ADC_PS_FACTOR0 |
599				   CPCAP_BIT_THERMBIAS_EN,
600				   value2);
601	if (error)
602		return;
603
604	if (req->timing == CPCAP_ADC_TIMING_IMM) {
605		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
606					   CPCAP_BIT_ADTRIG_DIS,
607					   CPCAP_BIT_ADTRIG_DIS);
608		if (error)
609			return;
610
611		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
612					   CPCAP_BIT_ASC,
613					   CPCAP_BIT_ASC);
614		if (error)
615			return;
616	} else {
617		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
618					   CPCAP_BIT_ADTRIG_ONESHOT,
619					   CPCAP_BIT_ADTRIG_ONESHOT);
620		if (error)
621			return;
622
623		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
624					   CPCAP_BIT_ADTRIG_DIS, 0);
625		if (error)
626			return;
627	}
628}
629
630static int cpcap_adc_start_bank(struct cpcap_adc *ddata,
631				struct cpcap_adc_request *req)
632{
633	int i, error;
634
635	req->timing = CPCAP_ADC_TIMING_IMM;
636	ddata->done = false;
637
638	for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
639		cpcap_adc_setup_bank(ddata, req);
640		error = wait_event_interruptible_timeout(ddata->wq_data_avail,
641							 ddata->done,
642							 msecs_to_jiffies(50));
643		if (error > 0)
644			return 0;
645
646		if (error == 0) {
647			error = -ETIMEDOUT;
648			continue;
649		}
650
651		if (error < 0)
652			return error;
653	}
654
655	return error;
656}
657
658static int cpcap_adc_stop_bank(struct cpcap_adc *ddata)
659{
660	int error;
661
662	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
663				   0xffff,
664				   CPCAP_REG_ADCC1_DEFAULTS);
665	if (error)
666		return error;
667
668	return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
669				  0xffff,
670				  CPCAP_REG_ADCC2_DEFAULTS);
671}
672
673static void cpcap_adc_phase(struct cpcap_adc_request *req)
674{
675	const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
676	const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl;
677	int index = req->channel;
678
679	/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
680	switch (req->channel) {
681	case CPCAP_ADC_BATTP:
682	case CPCAP_ADC_BATTP_PI16:
683		index = req->bank_index;
684		req->result -= phase_tbl[index].offset;
685		req->result -= CPCAP_FOUR_POINT_TWO_ADC;
686		req->result *= phase_tbl[index].multiplier;
687		if (phase_tbl[index].divider == 0)
688			return;
689		req->result /= phase_tbl[index].divider;
690		req->result += CPCAP_FOUR_POINT_TWO_ADC;
691		break;
692	case CPCAP_ADC_BATTI_PI17:
693		index = req->bank_index;
694		fallthrough;
695	default:
696		req->result += conv_tbl[index].cal_offset;
697		req->result += conv_tbl[index].align_offset;
698		req->result *= phase_tbl[index].multiplier;
699		if (phase_tbl[index].divider == 0)
700			return;
701		req->result /= phase_tbl[index].divider;
702		req->result += phase_tbl[index].offset;
703		break;
704	}
705
706	if (req->result < phase_tbl[index].min)
707		req->result = phase_tbl[index].min;
708	else if (req->result > phase_tbl[index].max)
709		req->result = phase_tbl[index].max;
710}
711
712/* Looks up temperatures in a table and calculates averages if needed */
713static int cpcap_adc_table_to_millicelcius(unsigned short value)
714{
715	int i, result = 0, alpha;
716
717	if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0])
718		return temp_map[CPCAP_MAX_TEMP_LVL - 1][1];
719
720	if (value >= temp_map[0][0])
721		return temp_map[0][1];
722
723	for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) {
724		if ((value <= temp_map[i][0]) &&
725		    (value >= temp_map[i + 1][0])) {
726			if (value == temp_map[i][0]) {
727				result = temp_map[i][1];
728			} else if (value == temp_map[i + 1][0]) {
729				result = temp_map[i + 1][1];
730			} else {
731				alpha = ((value - temp_map[i][0]) * 1000) /
732					(temp_map[i + 1][0] - temp_map[i][0]);
733
734				result = temp_map[i][1] +
735					((alpha * (temp_map[i + 1][1] -
736						 temp_map[i][1])) / 1000);
737			}
738			break;
739		}
740	}
741
742	return result;
743}
744
745static void cpcap_adc_convert(struct cpcap_adc_request *req)
746{
747	const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
748	int index = req->channel;
749
750	/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
751	switch (req->channel) {
752	case CPCAP_ADC_BATTP_PI16:
753		index = CPCAP_ADC_BATTP;
754		break;
755	case CPCAP_ADC_BATTI_PI17:
756		index = CPCAP_ADC_BATTI;
757		break;
758	default:
759		break;
760	}
761
762	/* No conversion for raw channels */
763	if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW)
764		return;
765
766	/* Temperatures use a lookup table instead of conversion table */
767	if ((req->channel == CPCAP_ADC_AD0) ||
768	    (req->channel == CPCAP_ADC_AD3)) {
769		req->result =
770			cpcap_adc_table_to_millicelcius(req->result);
771
772		return;
773	}
774
775	/* All processed channels use a conversion table */
776	req->result *= conv_tbl[index].multiplier;
777	if (conv_tbl[index].divider == 0)
778		return;
779	req->result /= conv_tbl[index].divider;
780	req->result += conv_tbl[index].conv_offset;
781}
782
783/*
784 * REVISIT: Check if timed sampling can use multiple channels at the
785 * same time. If not, replace channel_mask with just channel.
786 */
787static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata,
788				      struct cpcap_adc_request *req)
789{
790	int calibration_data, error, addr;
791
792	if (ddata->vendor == CPCAP_VENDOR_TI) {
793		error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1,
794				    &calibration_data);
795		if (error)
796			return error;
797		bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset =
798			((short)calibration_data * -1) + 512;
799
800		error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2,
801				    &calibration_data);
802		if (error)
803			return error;
804		bank_conversion[CPCAP_ADC_BATTI].cal_offset =
805			((short)calibration_data * -1) + 512;
806	}
807
808	addr = CPCAP_REG_ADCD0 + req->bank_index * 4;
809
810	error = regmap_read(ddata->reg, addr, &req->result);
811	if (error)
812		return error;
813
814	req->result &= 0x3ff;
815	cpcap_adc_phase(req);
816	cpcap_adc_convert(req);
817
818	return 0;
819}
820
821static int cpcap_adc_init_request(struct cpcap_adc_request *req,
822				  int channel)
823{
824	req->channel = channel;
825	req->phase_tbl = bank_phasing;
826	req->conv_tbl = bank_conversion;
827
828	switch (channel) {
829	case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID:
830		req->bank_index = channel;
831		break;
832	case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
833		req->bank_index = channel - 8;
834		break;
835	case CPCAP_ADC_BATTP_PI16:
836		req->bank_index = CPCAP_ADC_BATTP;
837		break;
838	case CPCAP_ADC_BATTI_PI17:
839		req->bank_index = CPCAP_ADC_BATTI;
840		break;
841	default:
842		return -EINVAL;
843	}
844
845	return 0;
846}
847
848static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata,
849				      int addr, int *val)
850{
851	int error;
852
853	error = regmap_read(ddata->reg, addr, val);
854	if (error)
855		return error;
856
857	*val -= 282;
858	*val *= 114;
859	*val += 25000;
860
861	return 0;
862}
863
864static int cpcap_adc_read(struct iio_dev *indio_dev,
865			  struct iio_chan_spec const *chan,
866			  int *val, int *val2, long mask)
867{
868	struct cpcap_adc *ddata = iio_priv(indio_dev);
869	struct cpcap_adc_request req;
870	int error;
871
872	error = cpcap_adc_init_request(&req, chan->channel);
873	if (error)
874		return error;
875
876	switch (mask) {
877	case IIO_CHAN_INFO_RAW:
878		mutex_lock(&ddata->lock);
879		error = cpcap_adc_start_bank(ddata, &req);
880		if (error)
881			goto err_unlock;
882		error = regmap_read(ddata->reg, chan->address, val);
883		if (error)
884			goto err_unlock;
885		error = cpcap_adc_stop_bank(ddata);
886		if (error)
887			goto err_unlock;
888		mutex_unlock(&ddata->lock);
889		break;
890	case IIO_CHAN_INFO_PROCESSED:
891		mutex_lock(&ddata->lock);
892		error = cpcap_adc_start_bank(ddata, &req);
893		if (error)
894			goto err_unlock;
895		if ((ddata->vendor == CPCAP_VENDOR_ST) &&
896		    (chan->channel == CPCAP_ADC_AD3)) {
897			error = cpcap_adc_read_st_die_temp(ddata,
898							   chan->address,
899							   &req.result);
900			if (error)
901				goto err_unlock;
902		} else {
903			error = cpcap_adc_read_bank_scaled(ddata, &req);
904			if (error)
905				goto err_unlock;
906		}
907		error = cpcap_adc_stop_bank(ddata);
908		if (error)
909			goto err_unlock;
910		mutex_unlock(&ddata->lock);
911		*val = req.result;
912		break;
913	default:
914		return -EINVAL;
915	}
916
917	return IIO_VAL_INT;
918
919err_unlock:
920	mutex_unlock(&ddata->lock);
921	dev_err(ddata->dev, "error reading ADC: %i\n", error);
922
923	return error;
924}
925
926static const struct iio_info cpcap_adc_info = {
927	.read_raw = &cpcap_adc_read,
928};
929
930/*
931 * Configuration for Motorola mapphone series such as droid 4.
932 * Copied from the Motorola mapphone kernel tree.
933 */
934static const struct cpcap_adc_ato mapphone_adc = {
935	.ato_in = 0x0480,
936	.atox_in = 0,
937	.adc_ps_factor_in = 0x0200,
938	.atox_ps_factor_in = 0,
939	.ato_out = 0,
940	.atox_out = 0,
941	.adc_ps_factor_out = 0,
942	.atox_ps_factor_out = 0,
943};
944
945static const struct of_device_id cpcap_adc_id_table[] = {
946	{
947		.compatible = "motorola,cpcap-adc",
948	},
949	{
950		.compatible = "motorola,mapphone-cpcap-adc",
951		.data = &mapphone_adc,
952	},
953	{ /* sentinel */ },
954};
955MODULE_DEVICE_TABLE(of, cpcap_adc_id_table);
956
957static int cpcap_adc_probe(struct platform_device *pdev)
958{
959	struct cpcap_adc *ddata;
960	struct iio_dev *indio_dev;
961	int error;
962
963	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata));
964	if (!indio_dev) {
965		dev_err(&pdev->dev, "failed to allocate iio device\n");
966
967		return -ENOMEM;
968	}
969	ddata = iio_priv(indio_dev);
970	ddata->ato = device_get_match_data(&pdev->dev);
971	if (!ddata->ato)
972		return -ENODEV;
973	ddata->dev = &pdev->dev;
974
975	mutex_init(&ddata->lock);
976	init_waitqueue_head(&ddata->wq_data_avail);
977
978	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
979	indio_dev->channels = cpcap_adc_channels;
980	indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels);
981	indio_dev->name = dev_name(&pdev->dev);
982	indio_dev->info = &cpcap_adc_info;
983
984	ddata->reg = dev_get_regmap(pdev->dev.parent, NULL);
985	if (!ddata->reg)
986		return -ENODEV;
987
988	error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
989	if (error)
990		return error;
991
992	platform_set_drvdata(pdev, indio_dev);
993
994	ddata->irq = platform_get_irq_byname(pdev, "adcdone");
995	if (ddata->irq < 0)
996		return -ENODEV;
997
998	error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL,
999					  cpcap_adc_irq_thread,
1000					  IRQF_TRIGGER_NONE | IRQF_ONESHOT,
1001					  "cpcap-adc", indio_dev);
1002	if (error) {
1003		dev_err(&pdev->dev, "could not get irq: %i\n",
1004			error);
1005
1006		return error;
1007	}
1008
1009	error = cpcap_adc_calibrate(ddata);
1010	if (error)
1011		return error;
1012
1013	dev_info(&pdev->dev, "CPCAP ADC device probed\n");
1014
1015	return devm_iio_device_register(&pdev->dev, indio_dev);
1016}
1017
1018static struct platform_driver cpcap_adc_driver = {
1019	.driver = {
1020		.name = "cpcap_adc",
1021		.of_match_table = cpcap_adc_id_table,
1022	},
1023	.probe = cpcap_adc_probe,
1024};
1025
1026module_platform_driver(cpcap_adc_driver);
1027
1028MODULE_ALIAS("platform:cpcap_adc");
1029MODULE_DESCRIPTION("CPCAP ADC driver");
1030MODULE_AUTHOR("Tony Lindgren <tony@atomide.com");
1031MODULE_LICENSE("GPL v2");
1032