1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Aspeed AST2400/2500/2600 ADC
4 *
5 * Copyright (C) 2017 Google, Inc.
6 * Copyright (C) 2021 Aspeed Technology Inc.
7 *
8 * ADC clock formula:
9 * Ast2400/Ast2500:
10 * clock period = period of PCLK * 2 * (ADC0C[31:17] + 1) * (ADC0C[9:0] + 1)
11 * Ast2600:
12 * clock period = period of PCLK * 2 * (ADC0C[15:0] + 1)
13 */
14
15#include <linux/clk.h>
16#include <linux/clk-provider.h>
17#include <linux/err.h>
18#include <linux/errno.h>
19#include <linux/io.h>
20#include <linux/module.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/regulator/consumer.h>
24#include <linux/reset.h>
25#include <linux/spinlock.h>
26#include <linux/types.h>
27#include <linux/bitfield.h>
28#include <linux/regmap.h>
29#include <linux/mfd/syscon.h>
30
31#include <linux/iio/iio.h>
32#include <linux/iio/driver.h>
33#include <linux/iopoll.h>
34
35#define ASPEED_RESOLUTION_BITS		10
36#define ASPEED_CLOCKS_PER_SAMPLE	12
37
38#define ASPEED_REG_ENGINE_CONTROL	0x00
39#define ASPEED_REG_INTERRUPT_CONTROL	0x04
40#define ASPEED_REG_VGA_DETECT_CONTROL	0x08
41#define ASPEED_REG_CLOCK_CONTROL	0x0C
42#define ASPEED_REG_COMPENSATION_TRIM	0xC4
43/*
44 * The register offset between 0xC8~0xCC can be read and won't affect the
45 * hardware logic in each version of ADC.
46 */
47#define ASPEED_REG_MAX			0xD0
48
49#define ASPEED_ADC_ENGINE_ENABLE		BIT(0)
50#define ASPEED_ADC_OP_MODE			GENMASK(3, 1)
51#define ASPEED_ADC_OP_MODE_PWR_DOWN		0
52#define ASPEED_ADC_OP_MODE_STANDBY		1
53#define ASPEED_ADC_OP_MODE_NORMAL		7
54#define ASPEED_ADC_CTRL_COMPENSATION		BIT(4)
55#define ASPEED_ADC_AUTO_COMPENSATION		BIT(5)
56/*
57 * Bit 6 determines not only the reference voltage range but also the dividing
58 * circuit for battery sensing.
59 */
60#define ASPEED_ADC_REF_VOLTAGE			GENMASK(7, 6)
61#define ASPEED_ADC_REF_VOLTAGE_2500mV		0
62#define ASPEED_ADC_REF_VOLTAGE_1200mV		1
63#define ASPEED_ADC_REF_VOLTAGE_EXT_HIGH		2
64#define ASPEED_ADC_REF_VOLTAGE_EXT_LOW		3
65#define ASPEED_ADC_BAT_SENSING_DIV		BIT(6)
66#define ASPEED_ADC_BAT_SENSING_DIV_2_3		0
67#define ASPEED_ADC_BAT_SENSING_DIV_1_3		1
68#define ASPEED_ADC_CTRL_INIT_RDY		BIT(8)
69#define ASPEED_ADC_CH7_MODE			BIT(12)
70#define ASPEED_ADC_CH7_NORMAL			0
71#define ASPEED_ADC_CH7_BAT			1
72#define ASPEED_ADC_BAT_SENSING_ENABLE		BIT(13)
73#define ASPEED_ADC_CTRL_CHANNEL			GENMASK(31, 16)
74#define ASPEED_ADC_CTRL_CHANNEL_ENABLE(ch)	FIELD_PREP(ASPEED_ADC_CTRL_CHANNEL, BIT(ch))
75
76#define ASPEED_ADC_INIT_POLLING_TIME	500
77#define ASPEED_ADC_INIT_TIMEOUT		500000
78/*
79 * When the sampling rate is too high, the ADC may not have enough charging
80 * time, resulting in a low voltage value. Thus, the default uses a slow
81 * sampling rate for most use cases.
82 */
83#define ASPEED_ADC_DEF_SAMPLING_RATE	65000
84
85struct aspeed_adc_trim_locate {
86	const unsigned int offset;
87	const unsigned int field;
88};
89
90struct aspeed_adc_model_data {
91	const char *model_name;
92	unsigned int min_sampling_rate;	// Hz
93	unsigned int max_sampling_rate;	// Hz
94	unsigned int vref_fixed_mv;
95	bool wait_init_sequence;
96	bool need_prescaler;
97	bool bat_sense_sup;
98	u8 scaler_bit_width;
99	unsigned int num_channels;
100	const struct aspeed_adc_trim_locate *trim_locate;
101};
102
103struct adc_gain {
104	u8 mult;
105	u8 div;
106};
107
108struct aspeed_adc_data {
109	struct device		*dev;
110	const struct aspeed_adc_model_data *model_data;
111	struct regulator	*regulator;
112	void __iomem		*base;
113	spinlock_t		clk_lock;
114	struct clk_hw		*fixed_div_clk;
115	struct clk_hw		*clk_prescaler;
116	struct clk_hw		*clk_scaler;
117	struct reset_control	*rst;
118	int			vref_mv;
119	u32			sample_period_ns;
120	int			cv;
121	bool			battery_sensing;
122	struct adc_gain		battery_mode_gain;
123};
124
125#define ASPEED_CHAN(_idx, _data_reg_addr) {			\
126	.type = IIO_VOLTAGE,					\
127	.indexed = 1,						\
128	.channel = (_idx),					\
129	.address = (_data_reg_addr),				\
130	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
131	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
132				BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
133				BIT(IIO_CHAN_INFO_OFFSET),	\
134}
135
136static const struct iio_chan_spec aspeed_adc_iio_channels[] = {
137	ASPEED_CHAN(0, 0x10),
138	ASPEED_CHAN(1, 0x12),
139	ASPEED_CHAN(2, 0x14),
140	ASPEED_CHAN(3, 0x16),
141	ASPEED_CHAN(4, 0x18),
142	ASPEED_CHAN(5, 0x1A),
143	ASPEED_CHAN(6, 0x1C),
144	ASPEED_CHAN(7, 0x1E),
145	ASPEED_CHAN(8, 0x20),
146	ASPEED_CHAN(9, 0x22),
147	ASPEED_CHAN(10, 0x24),
148	ASPEED_CHAN(11, 0x26),
149	ASPEED_CHAN(12, 0x28),
150	ASPEED_CHAN(13, 0x2A),
151	ASPEED_CHAN(14, 0x2C),
152	ASPEED_CHAN(15, 0x2E),
153};
154
155#define ASPEED_BAT_CHAN(_idx, _data_reg_addr) {					\
156		.type = IIO_VOLTAGE,						\
157		.indexed = 1,							\
158		.channel = (_idx),						\
159		.address = (_data_reg_addr),					\
160		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
161				      BIT(IIO_CHAN_INFO_OFFSET),		\
162		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
163					    BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
164}
165static const struct iio_chan_spec aspeed_adc_iio_bat_channels[] = {
166	ASPEED_CHAN(0, 0x10),
167	ASPEED_CHAN(1, 0x12),
168	ASPEED_CHAN(2, 0x14),
169	ASPEED_CHAN(3, 0x16),
170	ASPEED_CHAN(4, 0x18),
171	ASPEED_CHAN(5, 0x1A),
172	ASPEED_CHAN(6, 0x1C),
173	ASPEED_BAT_CHAN(7, 0x1E),
174};
175
176static int aspeed_adc_set_trim_data(struct iio_dev *indio_dev)
177{
178	struct device_node *syscon;
179	struct regmap *scu;
180	u32 scu_otp, trimming_val;
181	struct aspeed_adc_data *data = iio_priv(indio_dev);
182
183	syscon = of_find_node_by_name(NULL, "syscon");
184	if (syscon == NULL) {
185		dev_warn(data->dev, "Couldn't find syscon node\n");
186		return -EOPNOTSUPP;
187	}
188	scu = syscon_node_to_regmap(syscon);
189	of_node_put(syscon);
190	if (IS_ERR(scu)) {
191		dev_warn(data->dev, "Failed to get syscon regmap\n");
192		return -EOPNOTSUPP;
193	}
194	if (data->model_data->trim_locate) {
195		if (regmap_read(scu, data->model_data->trim_locate->offset,
196				&scu_otp)) {
197			dev_warn(data->dev,
198				 "Failed to get adc trimming data\n");
199			trimming_val = 0x8;
200		} else {
201			trimming_val =
202				((scu_otp) &
203				 (data->model_data->trim_locate->field)) >>
204				__ffs(data->model_data->trim_locate->field);
205			if (!trimming_val)
206				trimming_val = 0x8;
207		}
208		dev_dbg(data->dev,
209			"trimming val = %d, offset = %08x, fields = %08x\n",
210			trimming_val, data->model_data->trim_locate->offset,
211			data->model_data->trim_locate->field);
212		writel(trimming_val, data->base + ASPEED_REG_COMPENSATION_TRIM);
213	}
214	return 0;
215}
216
217static int aspeed_adc_compensation(struct iio_dev *indio_dev)
218{
219	struct aspeed_adc_data *data = iio_priv(indio_dev);
220	u32 index, adc_raw = 0;
221	u32 adc_engine_control_reg_val;
222
223	adc_engine_control_reg_val =
224		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
225	adc_engine_control_reg_val &= ~ASPEED_ADC_OP_MODE;
226	adc_engine_control_reg_val |=
227		(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
228		 ASPEED_ADC_ENGINE_ENABLE);
229	/*
230	 * Enable compensating sensing:
231	 * After that, the input voltage of ADC will force to half of the reference
232	 * voltage. So the expected reading raw data will become half of the max
233	 * value. We can get compensating value = 0x200 - ADC read raw value.
234	 * It is recommended to average at least 10 samples to get a final CV.
235	 */
236	writel(adc_engine_control_reg_val | ASPEED_ADC_CTRL_COMPENSATION |
237		       ASPEED_ADC_CTRL_CHANNEL_ENABLE(0),
238	       data->base + ASPEED_REG_ENGINE_CONTROL);
239	/*
240	 * After enable compensating sensing mode need to wait some time for ADC stable
241	 * Experiment result is 1ms.
242	 */
243	mdelay(1);
244
245	for (index = 0; index < 16; index++) {
246		/*
247		 * Waiting for the sampling period ensures that the value acquired
248		 * is fresh each time.
249		 */
250		ndelay(data->sample_period_ns);
251		adc_raw += readw(data->base + aspeed_adc_iio_channels[0].address);
252	}
253	adc_raw >>= 4;
254	data->cv = BIT(ASPEED_RESOLUTION_BITS - 1) - adc_raw;
255	writel(adc_engine_control_reg_val,
256	       data->base + ASPEED_REG_ENGINE_CONTROL);
257	dev_dbg(data->dev, "Compensating value = %d\n", data->cv);
258
259	return 0;
260}
261
262static int aspeed_adc_set_sampling_rate(struct iio_dev *indio_dev, u32 rate)
263{
264	struct aspeed_adc_data *data = iio_priv(indio_dev);
265
266	if (rate < data->model_data->min_sampling_rate ||
267	    rate > data->model_data->max_sampling_rate)
268		return -EINVAL;
269	/* Each sampling needs 12 clocks to convert.*/
270	clk_set_rate(data->clk_scaler->clk, rate * ASPEED_CLOCKS_PER_SAMPLE);
271	rate = clk_get_rate(data->clk_scaler->clk);
272	data->sample_period_ns = DIV_ROUND_UP_ULL(
273		(u64)NSEC_PER_SEC * ASPEED_CLOCKS_PER_SAMPLE, rate);
274	dev_dbg(data->dev, "Adc clock = %d sample period = %d ns", rate,
275		data->sample_period_ns);
276
277	return 0;
278}
279
280static int aspeed_adc_read_raw(struct iio_dev *indio_dev,
281			       struct iio_chan_spec const *chan,
282			       int *val, int *val2, long mask)
283{
284	struct aspeed_adc_data *data = iio_priv(indio_dev);
285	u32 adc_engine_control_reg_val;
286
287	switch (mask) {
288	case IIO_CHAN_INFO_RAW:
289		if (data->battery_sensing && chan->channel == 7) {
290			adc_engine_control_reg_val =
291				readl(data->base + ASPEED_REG_ENGINE_CONTROL);
292			writel(adc_engine_control_reg_val |
293				       FIELD_PREP(ASPEED_ADC_CH7_MODE,
294						  ASPEED_ADC_CH7_BAT) |
295				       ASPEED_ADC_BAT_SENSING_ENABLE,
296			       data->base + ASPEED_REG_ENGINE_CONTROL);
297			/*
298			 * After enable battery sensing mode need to wait some time for adc stable
299			 * Experiment result is 1ms.
300			 */
301			mdelay(1);
302			*val = readw(data->base + chan->address);
303			*val = (*val * data->battery_mode_gain.mult) /
304			       data->battery_mode_gain.div;
305			/* Restore control register value */
306			writel(adc_engine_control_reg_val,
307			       data->base + ASPEED_REG_ENGINE_CONTROL);
308		} else
309			*val = readw(data->base + chan->address);
310		return IIO_VAL_INT;
311
312	case IIO_CHAN_INFO_OFFSET:
313		if (data->battery_sensing && chan->channel == 7)
314			*val = (data->cv * data->battery_mode_gain.mult) /
315			       data->battery_mode_gain.div;
316		else
317			*val = data->cv;
318		return IIO_VAL_INT;
319
320	case IIO_CHAN_INFO_SCALE:
321		*val = data->vref_mv;
322		*val2 = ASPEED_RESOLUTION_BITS;
323		return IIO_VAL_FRACTIONAL_LOG2;
324
325	case IIO_CHAN_INFO_SAMP_FREQ:
326		*val = clk_get_rate(data->clk_scaler->clk) /
327				ASPEED_CLOCKS_PER_SAMPLE;
328		return IIO_VAL_INT;
329
330	default:
331		return -EINVAL;
332	}
333}
334
335static int aspeed_adc_write_raw(struct iio_dev *indio_dev,
336				struct iio_chan_spec const *chan,
337				int val, int val2, long mask)
338{
339	switch (mask) {
340	case IIO_CHAN_INFO_SAMP_FREQ:
341		return aspeed_adc_set_sampling_rate(indio_dev, val);
342
343	case IIO_CHAN_INFO_SCALE:
344	case IIO_CHAN_INFO_RAW:
345		/*
346		 * Technically, these could be written but the only reasons
347		 * for doing so seem better handled in userspace.  EPERM is
348		 * returned to signal this is a policy choice rather than a
349		 * hardware limitation.
350		 */
351		return -EPERM;
352
353	default:
354		return -EINVAL;
355	}
356}
357
358static int aspeed_adc_reg_access(struct iio_dev *indio_dev,
359				 unsigned int reg, unsigned int writeval,
360				 unsigned int *readval)
361{
362	struct aspeed_adc_data *data = iio_priv(indio_dev);
363
364	if (!readval || reg % 4 || reg > ASPEED_REG_MAX)
365		return -EINVAL;
366
367	*readval = readl(data->base + reg);
368
369	return 0;
370}
371
372static const struct iio_info aspeed_adc_iio_info = {
373	.read_raw = aspeed_adc_read_raw,
374	.write_raw = aspeed_adc_write_raw,
375	.debugfs_reg_access = aspeed_adc_reg_access,
376};
377
378static void aspeed_adc_unregister_fixed_divider(void *data)
379{
380	struct clk_hw *clk = data;
381
382	clk_hw_unregister_fixed_factor(clk);
383}
384
385static void aspeed_adc_reset_assert(void *data)
386{
387	struct reset_control *rst = data;
388
389	reset_control_assert(rst);
390}
391
392static void aspeed_adc_clk_disable_unprepare(void *data)
393{
394	struct clk *clk = data;
395
396	clk_disable_unprepare(clk);
397}
398
399static void aspeed_adc_power_down(void *data)
400{
401	struct aspeed_adc_data *priv_data = data;
402
403	writel(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_PWR_DOWN),
404	       priv_data->base + ASPEED_REG_ENGINE_CONTROL);
405}
406
407static void aspeed_adc_reg_disable(void *data)
408{
409	struct regulator *reg = data;
410
411	regulator_disable(reg);
412}
413
414static int aspeed_adc_vref_config(struct iio_dev *indio_dev)
415{
416	struct aspeed_adc_data *data = iio_priv(indio_dev);
417	int ret;
418	u32 adc_engine_control_reg_val;
419
420	if (data->model_data->vref_fixed_mv) {
421		data->vref_mv = data->model_data->vref_fixed_mv;
422		return 0;
423	}
424	adc_engine_control_reg_val =
425		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
426	data->regulator = devm_regulator_get_optional(data->dev, "vref");
427	if (!IS_ERR(data->regulator)) {
428		ret = regulator_enable(data->regulator);
429		if (ret)
430			return ret;
431		ret = devm_add_action_or_reset(
432			data->dev, aspeed_adc_reg_disable, data->regulator);
433		if (ret)
434			return ret;
435		data->vref_mv = regulator_get_voltage(data->regulator);
436		/* Conversion from uV to mV */
437		data->vref_mv /= 1000;
438		if ((data->vref_mv >= 1550) && (data->vref_mv <= 2700))
439			writel(adc_engine_control_reg_val |
440				FIELD_PREP(
441					ASPEED_ADC_REF_VOLTAGE,
442					ASPEED_ADC_REF_VOLTAGE_EXT_HIGH),
443			data->base + ASPEED_REG_ENGINE_CONTROL);
444		else if ((data->vref_mv >= 900) && (data->vref_mv <= 1650))
445			writel(adc_engine_control_reg_val |
446				FIELD_PREP(
447					ASPEED_ADC_REF_VOLTAGE,
448					ASPEED_ADC_REF_VOLTAGE_EXT_LOW),
449			data->base + ASPEED_REG_ENGINE_CONTROL);
450		else {
451			dev_err(data->dev, "Regulator voltage %d not support",
452				data->vref_mv);
453			return -EOPNOTSUPP;
454		}
455	} else {
456		if (PTR_ERR(data->regulator) != -ENODEV)
457			return PTR_ERR(data->regulator);
458		data->vref_mv = 2500000;
459		of_property_read_u32(data->dev->of_node,
460				     "aspeed,int-vref-microvolt",
461				     &data->vref_mv);
462		/* Conversion from uV to mV */
463		data->vref_mv /= 1000;
464		if (data->vref_mv == 2500)
465			writel(adc_engine_control_reg_val |
466				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
467						ASPEED_ADC_REF_VOLTAGE_2500mV),
468			data->base + ASPEED_REG_ENGINE_CONTROL);
469		else if (data->vref_mv == 1200)
470			writel(adc_engine_control_reg_val |
471				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
472						ASPEED_ADC_REF_VOLTAGE_1200mV),
473			data->base + ASPEED_REG_ENGINE_CONTROL);
474		else {
475			dev_err(data->dev, "Voltage %d not support", data->vref_mv);
476			return -EOPNOTSUPP;
477		}
478	}
479
480	return 0;
481}
482
483static int aspeed_adc_probe(struct platform_device *pdev)
484{
485	struct iio_dev *indio_dev;
486	struct aspeed_adc_data *data;
487	int ret;
488	u32 adc_engine_control_reg_val;
489	unsigned long scaler_flags = 0;
490	char clk_name[32], clk_parent_name[32];
491
492	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*data));
493	if (!indio_dev)
494		return -ENOMEM;
495
496	data = iio_priv(indio_dev);
497	data->dev = &pdev->dev;
498	data->model_data = of_device_get_match_data(&pdev->dev);
499	platform_set_drvdata(pdev, indio_dev);
500
501	data->base = devm_platform_ioremap_resource(pdev, 0);
502	if (IS_ERR(data->base))
503		return PTR_ERR(data->base);
504
505	/* Register ADC clock prescaler with source specified by device tree. */
506	spin_lock_init(&data->clk_lock);
507	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), "%s",
508		 of_clk_get_parent_name(pdev->dev.of_node, 0));
509	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-fixed-div",
510		 data->model_data->model_name);
511	data->fixed_div_clk = clk_hw_register_fixed_factor(
512		&pdev->dev, clk_name, clk_parent_name, 0, 1, 2);
513	if (IS_ERR(data->fixed_div_clk))
514		return PTR_ERR(data->fixed_div_clk);
515
516	ret = devm_add_action_or_reset(data->dev,
517				       aspeed_adc_unregister_fixed_divider,
518				       data->fixed_div_clk);
519	if (ret)
520		return ret;
521	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), clk_name);
522
523	if (data->model_data->need_prescaler) {
524		snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-prescaler",
525			 data->model_data->model_name);
526		data->clk_prescaler = devm_clk_hw_register_divider(
527			&pdev->dev, clk_name, clk_parent_name, 0,
528			data->base + ASPEED_REG_CLOCK_CONTROL, 17, 15, 0,
529			&data->clk_lock);
530		if (IS_ERR(data->clk_prescaler))
531			return PTR_ERR(data->clk_prescaler);
532		snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name),
533			 clk_name);
534		scaler_flags = CLK_SET_RATE_PARENT;
535	}
536	/*
537	 * Register ADC clock scaler downstream from the prescaler. Allow rate
538	 * setting to adjust the prescaler as well.
539	 */
540	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-scaler",
541		 data->model_data->model_name);
542	data->clk_scaler = devm_clk_hw_register_divider(
543		&pdev->dev, clk_name, clk_parent_name, scaler_flags,
544		data->base + ASPEED_REG_CLOCK_CONTROL, 0,
545		data->model_data->scaler_bit_width,
546		data->model_data->need_prescaler ? CLK_DIVIDER_ONE_BASED : 0,
547		&data->clk_lock);
548	if (IS_ERR(data->clk_scaler))
549		return PTR_ERR(data->clk_scaler);
550
551	data->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
552	if (IS_ERR(data->rst)) {
553		dev_err(&pdev->dev,
554			"invalid or missing reset controller device tree entry");
555		return PTR_ERR(data->rst);
556	}
557	reset_control_deassert(data->rst);
558
559	ret = devm_add_action_or_reset(data->dev, aspeed_adc_reset_assert,
560				       data->rst);
561	if (ret)
562		return ret;
563
564	ret = aspeed_adc_vref_config(indio_dev);
565	if (ret)
566		return ret;
567
568	ret = aspeed_adc_set_trim_data(indio_dev);
569	if (ret)
570		return ret;
571
572	if (of_find_property(data->dev->of_node, "aspeed,battery-sensing",
573			     NULL)) {
574		if (data->model_data->bat_sense_sup) {
575			data->battery_sensing = 1;
576			if (readl(data->base + ASPEED_REG_ENGINE_CONTROL) &
577			    ASPEED_ADC_BAT_SENSING_DIV) {
578				data->battery_mode_gain.mult = 3;
579				data->battery_mode_gain.div = 1;
580			} else {
581				data->battery_mode_gain.mult = 3;
582				data->battery_mode_gain.div = 2;
583			}
584		} else
585			dev_warn(&pdev->dev,
586				 "Failed to enable battery-sensing mode\n");
587	}
588
589	ret = clk_prepare_enable(data->clk_scaler->clk);
590	if (ret)
591		return ret;
592	ret = devm_add_action_or_reset(data->dev,
593				       aspeed_adc_clk_disable_unprepare,
594				       data->clk_scaler->clk);
595	if (ret)
596		return ret;
597	ret = aspeed_adc_set_sampling_rate(indio_dev,
598					   ASPEED_ADC_DEF_SAMPLING_RATE);
599	if (ret)
600		return ret;
601
602	adc_engine_control_reg_val =
603		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
604	adc_engine_control_reg_val |=
605		FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
606		ASPEED_ADC_ENGINE_ENABLE;
607	/* Enable engine in normal mode. */
608	writel(adc_engine_control_reg_val,
609	       data->base + ASPEED_REG_ENGINE_CONTROL);
610
611	ret = devm_add_action_or_reset(data->dev, aspeed_adc_power_down,
612					data);
613	if (ret)
614		return ret;
615
616	if (data->model_data->wait_init_sequence) {
617		/* Wait for initial sequence complete. */
618		ret = readl_poll_timeout(data->base + ASPEED_REG_ENGINE_CONTROL,
619					 adc_engine_control_reg_val,
620					 adc_engine_control_reg_val &
621					 ASPEED_ADC_CTRL_INIT_RDY,
622					 ASPEED_ADC_INIT_POLLING_TIME,
623					 ASPEED_ADC_INIT_TIMEOUT);
624		if (ret)
625			return ret;
626	}
627
628	aspeed_adc_compensation(indio_dev);
629	/* Start all channels in normal mode. */
630	adc_engine_control_reg_val =
631		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
632	adc_engine_control_reg_val |= ASPEED_ADC_CTRL_CHANNEL;
633	writel(adc_engine_control_reg_val,
634	       data->base + ASPEED_REG_ENGINE_CONTROL);
635
636	indio_dev->name = data->model_data->model_name;
637	indio_dev->info = &aspeed_adc_iio_info;
638	indio_dev->modes = INDIO_DIRECT_MODE;
639	indio_dev->channels = data->battery_sensing ?
640					    aspeed_adc_iio_bat_channels :
641					    aspeed_adc_iio_channels;
642	indio_dev->num_channels = data->model_data->num_channels;
643
644	ret = devm_iio_device_register(data->dev, indio_dev);
645	return ret;
646}
647
648static const struct aspeed_adc_trim_locate ast2500_adc_trim = {
649	.offset = 0x154,
650	.field = GENMASK(31, 28),
651};
652
653static const struct aspeed_adc_trim_locate ast2600_adc0_trim = {
654	.offset = 0x5d0,
655	.field = GENMASK(3, 0),
656};
657
658static const struct aspeed_adc_trim_locate ast2600_adc1_trim = {
659	.offset = 0x5d0,
660	.field = GENMASK(7, 4),
661};
662
663static const struct aspeed_adc_model_data ast2400_model_data = {
664	.model_name = "ast2400-adc",
665	.vref_fixed_mv = 2500,
666	.min_sampling_rate = 10000,
667	.max_sampling_rate = 500000,
668	.need_prescaler = true,
669	.scaler_bit_width = 10,
670	.num_channels = 16,
671};
672
673static const struct aspeed_adc_model_data ast2500_model_data = {
674	.model_name = "ast2500-adc",
675	.vref_fixed_mv = 1800,
676	.min_sampling_rate = 1,
677	.max_sampling_rate = 1000000,
678	.wait_init_sequence = true,
679	.need_prescaler = true,
680	.scaler_bit_width = 10,
681	.num_channels = 16,
682	.trim_locate = &ast2500_adc_trim,
683};
684
685static const struct aspeed_adc_model_data ast2600_adc0_model_data = {
686	.model_name = "ast2600-adc0",
687	.min_sampling_rate = 10000,
688	.max_sampling_rate = 500000,
689	.wait_init_sequence = true,
690	.bat_sense_sup = true,
691	.scaler_bit_width = 16,
692	.num_channels = 8,
693	.trim_locate = &ast2600_adc0_trim,
694};
695
696static const struct aspeed_adc_model_data ast2600_adc1_model_data = {
697	.model_name = "ast2600-adc1",
698	.min_sampling_rate = 10000,
699	.max_sampling_rate = 500000,
700	.wait_init_sequence = true,
701	.bat_sense_sup = true,
702	.scaler_bit_width = 16,
703	.num_channels = 8,
704	.trim_locate = &ast2600_adc1_trim,
705};
706
707static const struct of_device_id aspeed_adc_matches[] = {
708	{ .compatible = "aspeed,ast2400-adc", .data = &ast2400_model_data },
709	{ .compatible = "aspeed,ast2500-adc", .data = &ast2500_model_data },
710	{ .compatible = "aspeed,ast2600-adc0", .data = &ast2600_adc0_model_data },
711	{ .compatible = "aspeed,ast2600-adc1", .data = &ast2600_adc1_model_data },
712	{},
713};
714MODULE_DEVICE_TABLE(of, aspeed_adc_matches);
715
716static struct platform_driver aspeed_adc_driver = {
717	.probe = aspeed_adc_probe,
718	.driver = {
719		.name = KBUILD_MODNAME,
720		.of_match_table = aspeed_adc_matches,
721	}
722};
723
724module_platform_driver(aspeed_adc_driver);
725
726MODULE_AUTHOR("Rick Altherr <raltherr@google.com>");
727MODULE_DESCRIPTION("Aspeed AST2400/2500/2600 ADC Driver");
728MODULE_LICENSE("GPL");
729