1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2022 Analog Devices, Inc.
4 * Author: Cosmin Tanislav <cosmin.tanislav@analog.com>
5 */
6
7#include <linux/bitfield.h>
8#include <linux/bitops.h>
9#include <linux/clk.h>
10#include <linux/clk-provider.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/err.h>
14#include <linux/gpio/driver.h>
15#include <linux/interrupt.h>
16#include <linux/irq.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/property.h>
20#include <linux/regmap.h>
21#include <linux/regulator/consumer.h>
22#include <linux/spi/spi.h>
23#include <linux/units.h>
24
25#include <asm/div64.h>
26#include <asm/unaligned.h>
27
28#include <linux/iio/buffer.h>
29#include <linux/iio/iio.h>
30#include <linux/iio/kfifo_buf.h>
31#include <linux/iio/sysfs.h>
32
33#define AD4130_NAME				"ad4130"
34
35#define AD4130_COMMS_READ_MASK			BIT(6)
36
37#define AD4130_STATUS_REG			0x00
38
39#define AD4130_ADC_CONTROL_REG			0x01
40#define AD4130_ADC_CONTROL_BIPOLAR_MASK		BIT(14)
41#define AD4130_ADC_CONTROL_INT_REF_VAL_MASK	BIT(13)
42#define AD4130_INT_REF_2_5V			2500000
43#define AD4130_INT_REF_1_25V			1250000
44#define AD4130_ADC_CONTROL_CSB_EN_MASK		BIT(9)
45#define AD4130_ADC_CONTROL_INT_REF_EN_MASK	BIT(8)
46#define AD4130_ADC_CONTROL_MODE_MASK		GENMASK(5, 2)
47#define AD4130_ADC_CONTROL_MCLK_SEL_MASK	GENMASK(1, 0)
48#define AD4130_MCLK_FREQ_76_8KHZ		76800
49#define AD4130_MCLK_FREQ_153_6KHZ		153600
50
51#define AD4130_DATA_REG				0x02
52
53#define AD4130_IO_CONTROL_REG			0x03
54#define AD4130_IO_CONTROL_INT_PIN_SEL_MASK	GENMASK(9, 8)
55#define AD4130_IO_CONTROL_GPIO_DATA_MASK	GENMASK(7, 4)
56#define AD4130_IO_CONTROL_GPIO_CTRL_MASK	GENMASK(3, 0)
57
58#define AD4130_VBIAS_REG			0x04
59
60#define AD4130_ID_REG				0x05
61
62#define AD4130_ERROR_REG			0x06
63
64#define AD4130_ERROR_EN_REG			0x07
65
66#define AD4130_MCLK_COUNT_REG			0x08
67
68#define AD4130_CHANNEL_X_REG(x)			(0x09 + (x))
69#define AD4130_CHANNEL_EN_MASK			BIT(23)
70#define AD4130_CHANNEL_SETUP_MASK		GENMASK(22, 20)
71#define AD4130_CHANNEL_AINP_MASK		GENMASK(17, 13)
72#define AD4130_CHANNEL_AINM_MASK		GENMASK(12, 8)
73#define AD4130_CHANNEL_IOUT1_MASK		GENMASK(7, 4)
74#define AD4130_CHANNEL_IOUT2_MASK		GENMASK(3, 0)
75
76#define AD4130_CONFIG_X_REG(x)			(0x19 + (x))
77#define AD4130_CONFIG_IOUT1_VAL_MASK		GENMASK(15, 13)
78#define AD4130_CONFIG_IOUT2_VAL_MASK		GENMASK(12, 10)
79#define AD4130_CONFIG_BURNOUT_MASK		GENMASK(9, 8)
80#define AD4130_CONFIG_REF_BUFP_MASK		BIT(7)
81#define AD4130_CONFIG_REF_BUFM_MASK		BIT(6)
82#define AD4130_CONFIG_REF_SEL_MASK		GENMASK(5, 4)
83#define AD4130_CONFIG_PGA_MASK			GENMASK(3, 1)
84
85#define AD4130_FILTER_X_REG(x)			(0x21 + (x))
86#define AD4130_FILTER_MODE_MASK			GENMASK(15, 12)
87#define AD4130_FILTER_SELECT_MASK		GENMASK(10, 0)
88#define AD4130_FILTER_SELECT_MIN		1
89
90#define AD4130_OFFSET_X_REG(x)			(0x29 + (x))
91
92#define AD4130_GAIN_X_REG(x)			(0x31 + (x))
93
94#define AD4130_MISC_REG				0x39
95
96#define AD4130_FIFO_CONTROL_REG			0x3a
97#define AD4130_FIFO_CONTROL_HEADER_MASK		BIT(18)
98#define AD4130_FIFO_CONTROL_MODE_MASK		GENMASK(17, 16)
99#define AD4130_FIFO_CONTROL_WM_INT_EN_MASK	BIT(9)
100#define AD4130_FIFO_CONTROL_WM_MASK		GENMASK(7, 0)
101#define AD4130_WATERMARK_256			0
102
103#define AD4130_FIFO_STATUS_REG			0x3b
104
105#define AD4130_FIFO_THRESHOLD_REG		0x3c
106
107#define AD4130_FIFO_DATA_REG			0x3d
108#define AD4130_FIFO_SIZE			256
109#define AD4130_FIFO_MAX_SAMPLE_SIZE		3
110
111#define AD4130_MAX_ANALOG_PINS			16
112#define AD4130_MAX_CHANNELS			16
113#define AD4130_MAX_DIFF_INPUTS			30
114#define AD4130_MAX_GPIOS			4
115#define AD4130_MAX_ODR				2400
116#define AD4130_MAX_PGA				8
117#define AD4130_MAX_SETUPS			8
118
119#define AD4130_AIN2_P1				0x2
120#define AD4130_AIN3_P2				0x3
121
122#define AD4130_RESET_BUF_SIZE			8
123#define AD4130_RESET_SLEEP_US			(160 * MICRO / AD4130_MCLK_FREQ_76_8KHZ)
124
125#define AD4130_INVALID_SLOT			-1
126
127static const unsigned int ad4130_reg_size[] = {
128	[AD4130_STATUS_REG] = 1,
129	[AD4130_ADC_CONTROL_REG] = 2,
130	[AD4130_DATA_REG] = 3,
131	[AD4130_IO_CONTROL_REG] = 2,
132	[AD4130_VBIAS_REG] = 2,
133	[AD4130_ID_REG] = 1,
134	[AD4130_ERROR_REG] = 2,
135	[AD4130_ERROR_EN_REG] = 2,
136	[AD4130_MCLK_COUNT_REG] = 1,
137	[AD4130_CHANNEL_X_REG(0) ... AD4130_CHANNEL_X_REG(AD4130_MAX_CHANNELS - 1)] = 3,
138	[AD4130_CONFIG_X_REG(0) ... AD4130_CONFIG_X_REG(AD4130_MAX_SETUPS - 1)] = 2,
139	[AD4130_FILTER_X_REG(0) ... AD4130_FILTER_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
140	[AD4130_OFFSET_X_REG(0) ... AD4130_OFFSET_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
141	[AD4130_GAIN_X_REG(0) ... AD4130_GAIN_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
142	[AD4130_MISC_REG] = 2,
143	[AD4130_FIFO_CONTROL_REG] = 3,
144	[AD4130_FIFO_STATUS_REG] = 1,
145	[AD4130_FIFO_THRESHOLD_REG] = 3,
146	[AD4130_FIFO_DATA_REG] = 3,
147};
148
149enum ad4130_int_ref_val {
150	AD4130_INT_REF_VAL_2_5V,
151	AD4130_INT_REF_VAL_1_25V,
152};
153
154enum ad4130_mclk_sel {
155	AD4130_MCLK_76_8KHZ,
156	AD4130_MCLK_76_8KHZ_OUT,
157	AD4130_MCLK_76_8KHZ_EXT,
158	AD4130_MCLK_153_6KHZ_EXT,
159};
160
161enum ad4130_int_pin_sel {
162	AD4130_INT_PIN_INT,
163	AD4130_INT_PIN_CLK,
164	AD4130_INT_PIN_P2,
165	AD4130_INT_PIN_DOUT,
166};
167
168enum ad4130_iout {
169	AD4130_IOUT_OFF,
170	AD4130_IOUT_10000NA,
171	AD4130_IOUT_20000NA,
172	AD4130_IOUT_50000NA,
173	AD4130_IOUT_100000NA,
174	AD4130_IOUT_150000NA,
175	AD4130_IOUT_200000NA,
176	AD4130_IOUT_100NA,
177	AD4130_IOUT_MAX
178};
179
180enum ad4130_burnout {
181	AD4130_BURNOUT_OFF,
182	AD4130_BURNOUT_500NA,
183	AD4130_BURNOUT_2000NA,
184	AD4130_BURNOUT_4000NA,
185	AD4130_BURNOUT_MAX
186};
187
188enum ad4130_ref_sel {
189	AD4130_REF_REFIN1,
190	AD4130_REF_REFIN2,
191	AD4130_REF_REFOUT_AVSS,
192	AD4130_REF_AVDD_AVSS,
193	AD4130_REF_SEL_MAX
194};
195
196enum ad4130_fifo_mode {
197	AD4130_FIFO_MODE_DISABLED = 0b00,
198	AD4130_FIFO_MODE_WM = 0b01,
199};
200
201enum ad4130_mode {
202	AD4130_MODE_CONTINUOUS = 0b0000,
203	AD4130_MODE_IDLE = 0b0100,
204};
205
206enum ad4130_filter_mode {
207	AD4130_FILTER_SINC4,
208	AD4130_FILTER_SINC4_SINC1,
209	AD4130_FILTER_SINC3,
210	AD4130_FILTER_SINC3_REJ60,
211	AD4130_FILTER_SINC3_SINC1,
212	AD4130_FILTER_SINC3_PF1,
213	AD4130_FILTER_SINC3_PF2,
214	AD4130_FILTER_SINC3_PF3,
215	AD4130_FILTER_SINC3_PF4,
216};
217
218enum ad4130_pin_function {
219	AD4130_PIN_FN_NONE,
220	AD4130_PIN_FN_SPECIAL = BIT(0),
221	AD4130_PIN_FN_DIFF = BIT(1),
222	AD4130_PIN_FN_EXCITATION = BIT(2),
223	AD4130_PIN_FN_VBIAS = BIT(3),
224};
225
226struct ad4130_setup_info {
227	unsigned int			iout0_val;
228	unsigned int			iout1_val;
229	unsigned int			burnout;
230	unsigned int			pga;
231	unsigned int			fs;
232	u32				ref_sel;
233	enum ad4130_filter_mode		filter_mode;
234	bool				ref_bufp;
235	bool				ref_bufm;
236};
237
238struct ad4130_slot_info {
239	struct ad4130_setup_info	setup;
240	unsigned int			enabled_channels;
241	unsigned int			channels;
242};
243
244struct ad4130_chan_info {
245	struct ad4130_setup_info	setup;
246	u32				iout0;
247	u32				iout1;
248	int				slot;
249	bool				enabled;
250	bool				initialized;
251};
252
253struct ad4130_filter_config {
254	enum ad4130_filter_mode		filter_mode;
255	unsigned int			odr_div;
256	unsigned int			fs_max;
257	enum iio_available_type		samp_freq_avail_type;
258	int				samp_freq_avail_len;
259	int				samp_freq_avail[3][2];
260};
261
262struct ad4130_state {
263	struct regmap			*regmap;
264	struct spi_device		*spi;
265	struct clk			*mclk;
266	struct regulator_bulk_data	regulators[4];
267	u32				irq_trigger;
268	u32				inv_irq_trigger;
269
270	/*
271	 * Synchronize access to members the of driver state, and ensure
272	 * atomicity of consecutive regmap operations.
273	 */
274	struct mutex			lock;
275	struct completion		completion;
276
277	struct iio_chan_spec		chans[AD4130_MAX_CHANNELS];
278	struct ad4130_chan_info		chans_info[AD4130_MAX_CHANNELS];
279	struct ad4130_slot_info		slots_info[AD4130_MAX_SETUPS];
280	enum ad4130_pin_function	pins_fn[AD4130_MAX_ANALOG_PINS];
281	u32				vbias_pins[AD4130_MAX_ANALOG_PINS];
282	u32				num_vbias_pins;
283	int				scale_tbls[AD4130_REF_SEL_MAX][AD4130_MAX_PGA][2];
284	struct gpio_chip		gc;
285	struct clk_hw			int_clk_hw;
286
287	u32			int_pin_sel;
288	u32			int_ref_uv;
289	u32			mclk_sel;
290	bool			int_ref_en;
291	bool			bipolar;
292
293	unsigned int		num_enabled_channels;
294	unsigned int		effective_watermark;
295	unsigned int		watermark;
296
297	struct spi_message	fifo_msg;
298	struct spi_transfer	fifo_xfer[2];
299
300	/*
301	 * DMA (thus cache coherency maintenance) requires any transfer
302	 * buffers to live in their own cache lines. As the use of these
303	 * buffers is synchronous, all of the buffers used for DMA in this
304	 * driver may share a cache line.
305	 */
306	u8			reset_buf[AD4130_RESET_BUF_SIZE] __aligned(IIO_DMA_MINALIGN);
307	u8			reg_write_tx_buf[4];
308	u8			reg_read_tx_buf[1];
309	u8			reg_read_rx_buf[3];
310	u8			fifo_tx_buf[2];
311	u8			fifo_rx_buf[AD4130_FIFO_SIZE *
312					    AD4130_FIFO_MAX_SAMPLE_SIZE];
313};
314
315static const char * const ad4130_int_pin_names[] = {
316	[AD4130_INT_PIN_INT] = "int",
317	[AD4130_INT_PIN_CLK] = "clk",
318	[AD4130_INT_PIN_P2] = "p2",
319	[AD4130_INT_PIN_DOUT] = "dout",
320};
321
322static const unsigned int ad4130_iout_current_na_tbl[AD4130_IOUT_MAX] = {
323	[AD4130_IOUT_OFF] = 0,
324	[AD4130_IOUT_100NA] = 100,
325	[AD4130_IOUT_10000NA] = 10000,
326	[AD4130_IOUT_20000NA] = 20000,
327	[AD4130_IOUT_50000NA] = 50000,
328	[AD4130_IOUT_100000NA] = 100000,
329	[AD4130_IOUT_150000NA] = 150000,
330	[AD4130_IOUT_200000NA] = 200000,
331};
332
333static const unsigned int ad4130_burnout_current_na_tbl[AD4130_BURNOUT_MAX] = {
334	[AD4130_BURNOUT_OFF] = 0,
335	[AD4130_BURNOUT_500NA] = 500,
336	[AD4130_BURNOUT_2000NA] = 2000,
337	[AD4130_BURNOUT_4000NA] = 4000,
338};
339
340#define AD4130_VARIABLE_ODR_CONFIG(_filter_mode, _odr_div, _fs_max)	\
341{									\
342		.filter_mode = (_filter_mode),				\
343		.odr_div = (_odr_div),					\
344		.fs_max = (_fs_max),					\
345		.samp_freq_avail_type = IIO_AVAIL_RANGE,		\
346		.samp_freq_avail = {					\
347			{ AD4130_MAX_ODR, (_odr_div) * (_fs_max) },	\
348			{ AD4130_MAX_ODR, (_odr_div) * (_fs_max) },	\
349			{ AD4130_MAX_ODR, (_odr_div) },			\
350		},							\
351}
352
353#define AD4130_FIXED_ODR_CONFIG(_filter_mode, _odr_div)			\
354{									\
355		.filter_mode = (_filter_mode),				\
356		.odr_div = (_odr_div),					\
357		.fs_max = AD4130_FILTER_SELECT_MIN,			\
358		.samp_freq_avail_type = IIO_AVAIL_LIST,			\
359		.samp_freq_avail_len = 1,				\
360		.samp_freq_avail = {					\
361			{ AD4130_MAX_ODR, (_odr_div) },			\
362		},							\
363}
364
365static const struct ad4130_filter_config ad4130_filter_configs[] = {
366	AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC4,       1,  10),
367	AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC4_SINC1, 11, 10),
368	AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3,       1,  2047),
369	AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3_REJ60, 1,  2047),
370	AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3_SINC1, 10, 2047),
371	AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF1,      92),
372	AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF2,      100),
373	AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF3,      124),
374	AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF4,      148),
375};
376
377static const char * const ad4130_filter_modes_str[] = {
378	[AD4130_FILTER_SINC4] = "sinc4",
379	[AD4130_FILTER_SINC4_SINC1] = "sinc4+sinc1",
380	[AD4130_FILTER_SINC3] = "sinc3",
381	[AD4130_FILTER_SINC3_REJ60] = "sinc3+rej60",
382	[AD4130_FILTER_SINC3_SINC1] = "sinc3+sinc1",
383	[AD4130_FILTER_SINC3_PF1] = "sinc3+pf1",
384	[AD4130_FILTER_SINC3_PF2] = "sinc3+pf2",
385	[AD4130_FILTER_SINC3_PF3] = "sinc3+pf3",
386	[AD4130_FILTER_SINC3_PF4] = "sinc3+pf4",
387};
388
389static int ad4130_get_reg_size(struct ad4130_state *st, unsigned int reg,
390			       unsigned int *size)
391{
392	if (reg >= ARRAY_SIZE(ad4130_reg_size))
393		return -EINVAL;
394
395	*size = ad4130_reg_size[reg];
396
397	return 0;
398}
399
400static unsigned int ad4130_data_reg_size(struct ad4130_state *st)
401{
402	unsigned int data_reg_size;
403	int ret;
404
405	ret = ad4130_get_reg_size(st, AD4130_DATA_REG, &data_reg_size);
406	if (ret)
407		return 0;
408
409	return data_reg_size;
410}
411
412static unsigned int ad4130_resolution(struct ad4130_state *st)
413{
414	return ad4130_data_reg_size(st) * BITS_PER_BYTE;
415}
416
417static int ad4130_reg_write(void *context, unsigned int reg, unsigned int val)
418{
419	struct ad4130_state *st = context;
420	unsigned int size;
421	int ret;
422
423	ret = ad4130_get_reg_size(st, reg, &size);
424	if (ret)
425		return ret;
426
427	st->reg_write_tx_buf[0] = reg;
428
429	switch (size) {
430	case 3:
431		put_unaligned_be24(val, &st->reg_write_tx_buf[1]);
432		break;
433	case 2:
434		put_unaligned_be16(val, &st->reg_write_tx_buf[1]);
435		break;
436	case 1:
437		st->reg_write_tx_buf[1] = val;
438		break;
439	default:
440		return -EINVAL;
441	}
442
443	return spi_write(st->spi, st->reg_write_tx_buf, size + 1);
444}
445
446static int ad4130_reg_read(void *context, unsigned int reg, unsigned int *val)
447{
448	struct ad4130_state *st = context;
449	struct spi_transfer t[] = {
450		{
451			.tx_buf = st->reg_read_tx_buf,
452			.len = sizeof(st->reg_read_tx_buf),
453		},
454		{
455			.rx_buf = st->reg_read_rx_buf,
456		},
457	};
458	unsigned int size;
459	int ret;
460
461	ret = ad4130_get_reg_size(st, reg, &size);
462	if (ret)
463		return ret;
464
465	st->reg_read_tx_buf[0] = AD4130_COMMS_READ_MASK | reg;
466	t[1].len = size;
467
468	ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
469	if (ret)
470		return ret;
471
472	switch (size) {
473	case 3:
474		*val = get_unaligned_be24(st->reg_read_rx_buf);
475		break;
476	case 2:
477		*val = get_unaligned_be16(st->reg_read_rx_buf);
478		break;
479	case 1:
480		*val = st->reg_read_rx_buf[0];
481		break;
482	default:
483		return -EINVAL;
484	}
485
486	return 0;
487}
488
489static const struct regmap_config ad4130_regmap_config = {
490	.reg_read = ad4130_reg_read,
491	.reg_write = ad4130_reg_write,
492};
493
494static int ad4130_gpio_init_valid_mask(struct gpio_chip *gc,
495				       unsigned long *valid_mask,
496				       unsigned int ngpios)
497{
498	struct ad4130_state *st = gpiochip_get_data(gc);
499	unsigned int i;
500
501	/*
502	 * Output-only GPIO functionality is available on pins AIN2 through
503	 * AIN5. If these pins are used for anything else, do not expose them.
504	 */
505	for (i = 0; i < ngpios; i++) {
506		unsigned int pin = i + AD4130_AIN2_P1;
507		bool valid = st->pins_fn[pin] == AD4130_PIN_FN_NONE;
508
509		__assign_bit(i, valid_mask, valid);
510	}
511
512	return 0;
513}
514
515static int ad4130_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
516{
517	return GPIO_LINE_DIRECTION_OUT;
518}
519
520static void ad4130_gpio_set(struct gpio_chip *gc, unsigned int offset,
521			    int value)
522{
523	struct ad4130_state *st = gpiochip_get_data(gc);
524	unsigned int mask = FIELD_PREP(AD4130_IO_CONTROL_GPIO_DATA_MASK,
525				       BIT(offset));
526
527	regmap_update_bits(st->regmap, AD4130_IO_CONTROL_REG, mask,
528			   value ? mask : 0);
529}
530
531static int ad4130_set_mode(struct ad4130_state *st, enum ad4130_mode mode)
532{
533	return regmap_update_bits(st->regmap, AD4130_ADC_CONTROL_REG,
534				  AD4130_ADC_CONTROL_MODE_MASK,
535				  FIELD_PREP(AD4130_ADC_CONTROL_MODE_MASK, mode));
536}
537
538static int ad4130_set_watermark_interrupt_en(struct ad4130_state *st, bool en)
539{
540	return regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
541				  AD4130_FIFO_CONTROL_WM_INT_EN_MASK,
542				  FIELD_PREP(AD4130_FIFO_CONTROL_WM_INT_EN_MASK, en));
543}
544
545static unsigned int ad4130_watermark_reg_val(unsigned int val)
546{
547	if (val == AD4130_FIFO_SIZE)
548		val = AD4130_WATERMARK_256;
549
550	return val;
551}
552
553static int ad4130_set_fifo_mode(struct ad4130_state *st,
554				enum ad4130_fifo_mode mode)
555{
556	return regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
557				  AD4130_FIFO_CONTROL_MODE_MASK,
558				  FIELD_PREP(AD4130_FIFO_CONTROL_MODE_MASK, mode));
559}
560
561static void ad4130_push_fifo_data(struct iio_dev *indio_dev)
562{
563	struct ad4130_state *st = iio_priv(indio_dev);
564	unsigned int data_reg_size = ad4130_data_reg_size(st);
565	unsigned int transfer_len = st->effective_watermark * data_reg_size;
566	unsigned int set_size = st->num_enabled_channels * data_reg_size;
567	unsigned int i;
568	int ret;
569
570	st->fifo_tx_buf[1] = ad4130_watermark_reg_val(st->effective_watermark);
571	st->fifo_xfer[1].len = transfer_len;
572
573	ret = spi_sync(st->spi, &st->fifo_msg);
574	if (ret)
575		return;
576
577	for (i = 0; i < transfer_len; i += set_size)
578		iio_push_to_buffers(indio_dev, &st->fifo_rx_buf[i]);
579}
580
581static irqreturn_t ad4130_irq_handler(int irq, void *private)
582{
583	struct iio_dev *indio_dev = private;
584	struct ad4130_state *st = iio_priv(indio_dev);
585
586	if (iio_buffer_enabled(indio_dev))
587		ad4130_push_fifo_data(indio_dev);
588	else
589		complete(&st->completion);
590
591	return IRQ_HANDLED;
592}
593
594static int ad4130_find_slot(struct ad4130_state *st,
595			    struct ad4130_setup_info *target_setup_info,
596			    unsigned int *slot, bool *overwrite)
597{
598	unsigned int i;
599
600	*slot = AD4130_INVALID_SLOT;
601	*overwrite = false;
602
603	for (i = 0; i < AD4130_MAX_SETUPS; i++) {
604		struct ad4130_slot_info *slot_info = &st->slots_info[i];
605
606		/* Immediately accept a matching setup info. */
607		if (!memcmp(target_setup_info, &slot_info->setup,
608			    sizeof(*target_setup_info))) {
609			*slot = i;
610			return 0;
611		}
612
613		/* Ignore all setups which are used by enabled channels. */
614		if (slot_info->enabled_channels)
615			continue;
616
617		/* Find the least used slot. */
618		if (*slot == AD4130_INVALID_SLOT ||
619		    slot_info->channels < st->slots_info[*slot].channels)
620			*slot = i;
621	}
622
623	if (*slot == AD4130_INVALID_SLOT)
624		return -EINVAL;
625
626	*overwrite = true;
627
628	return 0;
629}
630
631static void ad4130_unlink_channel(struct ad4130_state *st, unsigned int channel)
632{
633	struct ad4130_chan_info *chan_info = &st->chans_info[channel];
634	struct ad4130_slot_info *slot_info = &st->slots_info[chan_info->slot];
635
636	chan_info->slot = AD4130_INVALID_SLOT;
637	slot_info->channels--;
638}
639
640static int ad4130_unlink_slot(struct ad4130_state *st, unsigned int slot)
641{
642	unsigned int i;
643
644	for (i = 0; i < AD4130_MAX_CHANNELS; i++) {
645		struct ad4130_chan_info *chan_info = &st->chans_info[i];
646
647		if (!chan_info->initialized || chan_info->slot != slot)
648			continue;
649
650		ad4130_unlink_channel(st, i);
651	}
652
653	return 0;
654}
655
656static int ad4130_link_channel_slot(struct ad4130_state *st,
657				    unsigned int channel, unsigned int slot)
658{
659	struct ad4130_slot_info *slot_info = &st->slots_info[slot];
660	struct ad4130_chan_info *chan_info = &st->chans_info[channel];
661	int ret;
662
663	ret = regmap_update_bits(st->regmap, AD4130_CHANNEL_X_REG(channel),
664				 AD4130_CHANNEL_SETUP_MASK,
665				 FIELD_PREP(AD4130_CHANNEL_SETUP_MASK, slot));
666	if (ret)
667		return ret;
668
669	chan_info->slot = slot;
670	slot_info->channels++;
671
672	return 0;
673}
674
675static int ad4130_write_slot_setup(struct ad4130_state *st,
676				   unsigned int slot,
677				   struct ad4130_setup_info *setup_info)
678{
679	unsigned int val;
680	int ret;
681
682	val = FIELD_PREP(AD4130_CONFIG_IOUT1_VAL_MASK, setup_info->iout0_val) |
683	      FIELD_PREP(AD4130_CONFIG_IOUT1_VAL_MASK, setup_info->iout1_val) |
684	      FIELD_PREP(AD4130_CONFIG_BURNOUT_MASK, setup_info->burnout) |
685	      FIELD_PREP(AD4130_CONFIG_REF_BUFP_MASK, setup_info->ref_bufp) |
686	      FIELD_PREP(AD4130_CONFIG_REF_BUFM_MASK, setup_info->ref_bufm) |
687	      FIELD_PREP(AD4130_CONFIG_REF_SEL_MASK, setup_info->ref_sel) |
688	      FIELD_PREP(AD4130_CONFIG_PGA_MASK, setup_info->pga);
689
690	ret = regmap_write(st->regmap, AD4130_CONFIG_X_REG(slot), val);
691	if (ret)
692		return ret;
693
694	val = FIELD_PREP(AD4130_FILTER_MODE_MASK, setup_info->filter_mode) |
695	      FIELD_PREP(AD4130_FILTER_SELECT_MASK, setup_info->fs);
696
697	ret = regmap_write(st->regmap, AD4130_FILTER_X_REG(slot), val);
698	if (ret)
699		return ret;
700
701	memcpy(&st->slots_info[slot].setup, setup_info, sizeof(*setup_info));
702
703	return 0;
704}
705
706static int ad4130_write_channel_setup(struct ad4130_state *st,
707				      unsigned int channel, bool on_enable)
708{
709	struct ad4130_chan_info *chan_info = &st->chans_info[channel];
710	struct ad4130_setup_info *setup_info = &chan_info->setup;
711	bool overwrite;
712	int slot;
713	int ret;
714
715	/*
716	 * The following cases need to be handled.
717	 *
718	 * 1. Enabled and linked channel with setup changes:
719	 *    - Find a slot. If not possible, return error.
720	 *    - Unlink channel from current slot.
721	 *    - If the slot has channels linked to it, unlink all channels, and
722	 *      write the new setup to it.
723	 *    - Link channel to new slot.
724	 *
725	 * 2. Soon to be enabled and unlinked channel:
726	 *    - Find a slot. If not possible, return error.
727	 *    - If the slot has channels linked to it, unlink all channels, and
728	 *      write the new setup to it.
729	 *    - Link channel to the slot.
730	 *
731	 * 3. Disabled and linked channel with setup changes:
732	 *    - Unlink channel from current slot.
733	 *
734	 * 4. Soon to be enabled and linked channel:
735	 * 5. Disabled and unlinked channel with setup changes:
736	 *    - Do nothing.
737	 */
738
739	/* Case 4 */
740	if (on_enable && chan_info->slot != AD4130_INVALID_SLOT)
741		return 0;
742
743	if (!on_enable && !chan_info->enabled) {
744		if (chan_info->slot != AD4130_INVALID_SLOT)
745			/* Case 3 */
746			ad4130_unlink_channel(st, channel);
747
748		/* Cases 3 & 5 */
749		return 0;
750	}
751
752	/* Cases 1 & 2 */
753	ret = ad4130_find_slot(st, setup_info, &slot, &overwrite);
754	if (ret)
755		return ret;
756
757	if (chan_info->slot != AD4130_INVALID_SLOT)
758		/* Case 1 */
759		ad4130_unlink_channel(st, channel);
760
761	if (overwrite) {
762		ret = ad4130_unlink_slot(st, slot);
763		if (ret)
764			return ret;
765
766		ret = ad4130_write_slot_setup(st, slot, setup_info);
767		if (ret)
768			return ret;
769	}
770
771	return ad4130_link_channel_slot(st, channel, slot);
772}
773
774static int ad4130_set_channel_enable(struct ad4130_state *st,
775				     unsigned int channel, bool status)
776{
777	struct ad4130_chan_info *chan_info = &st->chans_info[channel];
778	struct ad4130_slot_info *slot_info;
779	int ret;
780
781	if (chan_info->enabled == status)
782		return 0;
783
784	if (status) {
785		ret = ad4130_write_channel_setup(st, channel, true);
786		if (ret)
787			return ret;
788	}
789
790	slot_info = &st->slots_info[chan_info->slot];
791
792	ret = regmap_update_bits(st->regmap, AD4130_CHANNEL_X_REG(channel),
793				 AD4130_CHANNEL_EN_MASK,
794				 FIELD_PREP(AD4130_CHANNEL_EN_MASK, status));
795	if (ret)
796		return ret;
797
798	slot_info->enabled_channels += status ? 1 : -1;
799	chan_info->enabled = status;
800
801	return 0;
802}
803
804/*
805 * Table 58. FILTER_MODE_n bits and Filter Types of the datasheet describes
806 * the relation between filter mode, ODR and FS.
807 *
808 * Notice that the max ODR of each filter mode is not necessarily the
809 * absolute max ODR supported by the chip.
810 *
811 * The ODR divider is not explicitly specified, but it can be deduced based
812 * on the ODR range of each filter mode.
813 *
814 * For example, for Sinc4+Sinc1, max ODR is 218.18. That means that the
815 * absolute max ODR is divided by 11 to achieve the max ODR of this filter
816 * mode.
817 *
818 * The formulas for converting between ODR and FS for a specific filter
819 * mode can be deduced from the same table.
820 *
821 * Notice that FS = 1 actually means max ODR, and that ODR decreases by
822 * (maximum ODR / maximum FS) for each increment of FS.
823 *
824 * odr = MAX_ODR / odr_div * (1 - (fs - 1) / fs_max) <=>
825 * odr = MAX_ODR * (1 - (fs - 1) / fs_max) / odr_div <=>
826 * odr = MAX_ODR * (1 - (fs - 1) / fs_max) / odr_div <=>
827 * odr = MAX_ODR * (fs_max - fs + 1) / (fs_max * odr_div)
828 * (used in ad4130_fs_to_freq)
829 *
830 * For the opposite formula, FS can be extracted from the last one.
831 *
832 * MAX_ODR * (fs_max - fs + 1) = fs_max * odr_div * odr <=>
833 * fs_max - fs + 1 = fs_max * odr_div * odr / MAX_ODR <=>
834 * fs = 1 + fs_max - fs_max * odr_div * odr / MAX_ODR
835 * (used in ad4130_fs_to_freq)
836 */
837
838static void ad4130_freq_to_fs(enum ad4130_filter_mode filter_mode,
839			      int val, int val2, unsigned int *fs)
840{
841	const struct ad4130_filter_config *filter_config =
842		&ad4130_filter_configs[filter_mode];
843	u64 dividend, divisor;
844	int temp;
845
846	dividend = filter_config->fs_max * filter_config->odr_div *
847		   ((u64)val * NANO + val2);
848	divisor = (u64)AD4130_MAX_ODR * NANO;
849
850	temp = AD4130_FILTER_SELECT_MIN + filter_config->fs_max -
851	       DIV64_U64_ROUND_CLOSEST(dividend, divisor);
852
853	if (temp < AD4130_FILTER_SELECT_MIN)
854		temp = AD4130_FILTER_SELECT_MIN;
855	else if (temp > filter_config->fs_max)
856		temp = filter_config->fs_max;
857
858	*fs = temp;
859}
860
861static void ad4130_fs_to_freq(enum ad4130_filter_mode filter_mode,
862			      unsigned int fs, int *val, int *val2)
863{
864	const struct ad4130_filter_config *filter_config =
865		&ad4130_filter_configs[filter_mode];
866	unsigned int dividend, divisor;
867	u64 temp;
868
869	dividend = (filter_config->fs_max - fs + AD4130_FILTER_SELECT_MIN) *
870		   AD4130_MAX_ODR;
871	divisor = filter_config->fs_max * filter_config->odr_div;
872
873	temp = div_u64((u64)dividend * NANO, divisor);
874	*val = div_u64_rem(temp, NANO, val2);
875}
876
877static int ad4130_set_filter_mode(struct iio_dev *indio_dev,
878				  const struct iio_chan_spec *chan,
879				  unsigned int val)
880{
881	struct ad4130_state *st = iio_priv(indio_dev);
882	unsigned int channel = chan->scan_index;
883	struct ad4130_chan_info *chan_info = &st->chans_info[channel];
884	struct ad4130_setup_info *setup_info = &chan_info->setup;
885	enum ad4130_filter_mode old_filter_mode;
886	int freq_val, freq_val2;
887	unsigned int old_fs;
888	int ret = 0;
889
890	guard(mutex)(&st->lock);
891	if (setup_info->filter_mode == val)
892		return 0;
893
894	old_fs = setup_info->fs;
895	old_filter_mode = setup_info->filter_mode;
896
897	/*
898	 * When switching between filter modes, try to match the ODR as
899	 * close as possible. To do this, convert the current FS into ODR
900	 * using the old filter mode, then convert it back into FS using
901	 * the new filter mode.
902	 */
903	ad4130_fs_to_freq(setup_info->filter_mode, setup_info->fs,
904			  &freq_val, &freq_val2);
905
906	ad4130_freq_to_fs(val, freq_val, freq_val2, &setup_info->fs);
907
908	setup_info->filter_mode = val;
909
910	ret = ad4130_write_channel_setup(st, channel, false);
911	if (ret) {
912		setup_info->fs = old_fs;
913		setup_info->filter_mode = old_filter_mode;
914		return ret;
915	}
916
917	return 0;
918}
919
920static int ad4130_get_filter_mode(struct iio_dev *indio_dev,
921				  const struct iio_chan_spec *chan)
922{
923	struct ad4130_state *st = iio_priv(indio_dev);
924	unsigned int channel = chan->scan_index;
925	struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
926	enum ad4130_filter_mode filter_mode;
927
928	guard(mutex)(&st->lock);
929	filter_mode = setup_info->filter_mode;
930
931	return filter_mode;
932}
933
934static const struct iio_enum ad4130_filter_mode_enum = {
935	.items = ad4130_filter_modes_str,
936	.num_items = ARRAY_SIZE(ad4130_filter_modes_str),
937	.set = ad4130_set_filter_mode,
938	.get = ad4130_get_filter_mode,
939};
940
941static const struct iio_chan_spec_ext_info ad4130_filter_mode_ext_info[] = {
942	IIO_ENUM("filter_mode", IIO_SEPARATE, &ad4130_filter_mode_enum),
943	IIO_ENUM_AVAILABLE("filter_mode", IIO_SHARED_BY_TYPE,
944			   &ad4130_filter_mode_enum),
945	{ }
946};
947
948static const struct iio_chan_spec ad4130_channel_template = {
949	.type = IIO_VOLTAGE,
950	.indexed = 1,
951	.differential = 1,
952	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
953			      BIT(IIO_CHAN_INFO_SCALE) |
954			      BIT(IIO_CHAN_INFO_OFFSET) |
955			      BIT(IIO_CHAN_INFO_SAMP_FREQ),
956	.info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE) |
957					BIT(IIO_CHAN_INFO_SAMP_FREQ),
958	.ext_info = ad4130_filter_mode_ext_info,
959	.scan_type = {
960		.sign = 'u',
961		.endianness = IIO_BE,
962	},
963};
964
965static int ad4130_set_channel_pga(struct ad4130_state *st, unsigned int channel,
966				  int val, int val2)
967{
968	struct ad4130_chan_info *chan_info = &st->chans_info[channel];
969	struct ad4130_setup_info *setup_info = &chan_info->setup;
970	unsigned int pga, old_pga;
971	int ret;
972
973	for (pga = 0; pga < AD4130_MAX_PGA; pga++)
974		if (val == st->scale_tbls[setup_info->ref_sel][pga][0] &&
975		    val2 == st->scale_tbls[setup_info->ref_sel][pga][1])
976			break;
977
978	if (pga == AD4130_MAX_PGA)
979		return -EINVAL;
980
981	guard(mutex)(&st->lock);
982	if (pga == setup_info->pga)
983		return 0;
984
985	old_pga = setup_info->pga;
986	setup_info->pga = pga;
987
988	ret = ad4130_write_channel_setup(st, channel, false);
989	if (ret) {
990		setup_info->pga = old_pga;
991		return ret;
992	}
993
994	return 0;
995}
996
997static int ad4130_set_channel_freq(struct ad4130_state *st,
998				   unsigned int channel, int val, int val2)
999{
1000	struct ad4130_chan_info *chan_info = &st->chans_info[channel];
1001	struct ad4130_setup_info *setup_info = &chan_info->setup;
1002	unsigned int fs, old_fs;
1003	int ret;
1004
1005	guard(mutex)(&st->lock);
1006	old_fs = setup_info->fs;
1007
1008	ad4130_freq_to_fs(setup_info->filter_mode, val, val2, &fs);
1009
1010	if (fs == setup_info->fs)
1011		return 0;
1012
1013	setup_info->fs = fs;
1014
1015	ret = ad4130_write_channel_setup(st, channel, false);
1016	if (ret) {
1017		setup_info->fs = old_fs;
1018		return ret;
1019	}
1020
1021	return 0;
1022}
1023
1024static int _ad4130_read_sample(struct iio_dev *indio_dev, unsigned int channel,
1025			       int *val)
1026{
1027	struct ad4130_state *st = iio_priv(indio_dev);
1028	int ret;
1029
1030	ret = ad4130_set_channel_enable(st, channel, true);
1031	if (ret)
1032		return ret;
1033
1034	reinit_completion(&st->completion);
1035
1036	ret = ad4130_set_mode(st, AD4130_MODE_CONTINUOUS);
1037	if (ret)
1038		return ret;
1039
1040	ret = wait_for_completion_timeout(&st->completion,
1041					  msecs_to_jiffies(1000));
1042	if (!ret)
1043		return -ETIMEDOUT;
1044
1045	ret = ad4130_set_mode(st, AD4130_MODE_IDLE);
1046	if (ret)
1047		return ret;
1048
1049	ret = regmap_read(st->regmap, AD4130_DATA_REG, val);
1050	if (ret)
1051		return ret;
1052
1053	ret = ad4130_set_channel_enable(st, channel, false);
1054	if (ret)
1055		return ret;
1056
1057	return IIO_VAL_INT;
1058}
1059
1060static int ad4130_read_sample(struct iio_dev *indio_dev, unsigned int channel,
1061			      int *val)
1062{
1063	iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
1064		struct ad4130_state *st = iio_priv(indio_dev);
1065
1066		guard(mutex)(&st->lock);
1067		return _ad4130_read_sample(indio_dev, channel, val);
1068	}
1069	unreachable();
1070}
1071
1072static int ad4130_read_raw(struct iio_dev *indio_dev,
1073			   struct iio_chan_spec const *chan,
1074			   int *val, int *val2, long info)
1075{
1076	struct ad4130_state *st = iio_priv(indio_dev);
1077	unsigned int channel = chan->scan_index;
1078	struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
1079
1080	switch (info) {
1081	case IIO_CHAN_INFO_RAW:
1082		return ad4130_read_sample(indio_dev, channel, val);
1083	case IIO_CHAN_INFO_SCALE: {
1084		guard(mutex)(&st->lock);
1085		*val = st->scale_tbls[setup_info->ref_sel][setup_info->pga][0];
1086		*val2 = st->scale_tbls[setup_info->ref_sel][setup_info->pga][1];
1087
1088		return IIO_VAL_INT_PLUS_NANO;
1089	}
1090	case IIO_CHAN_INFO_OFFSET:
1091		*val = st->bipolar ? -BIT(chan->scan_type.realbits - 1) : 0;
1092
1093		return IIO_VAL_INT;
1094	case IIO_CHAN_INFO_SAMP_FREQ: {
1095		guard(mutex)(&st->lock);
1096		ad4130_fs_to_freq(setup_info->filter_mode, setup_info->fs,
1097				  val, val2);
1098
1099		return IIO_VAL_INT_PLUS_NANO;
1100	}
1101	default:
1102		return -EINVAL;
1103	}
1104}
1105
1106static int ad4130_read_avail(struct iio_dev *indio_dev,
1107			     struct iio_chan_spec const *chan,
1108			     const int **vals, int *type, int *length,
1109			     long info)
1110{
1111	struct ad4130_state *st = iio_priv(indio_dev);
1112	unsigned int channel = chan->scan_index;
1113	struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
1114	const struct ad4130_filter_config *filter_config;
1115
1116	switch (info) {
1117	case IIO_CHAN_INFO_SCALE:
1118		*vals = (int *)st->scale_tbls[setup_info->ref_sel];
1119		*length = ARRAY_SIZE(st->scale_tbls[setup_info->ref_sel]) * 2;
1120
1121		*type = IIO_VAL_INT_PLUS_NANO;
1122
1123		return IIO_AVAIL_LIST;
1124	case IIO_CHAN_INFO_SAMP_FREQ:
1125		scoped_guard(mutex, &st->lock) {
1126			filter_config = &ad4130_filter_configs[setup_info->filter_mode];
1127		}
1128
1129		*vals = (int *)filter_config->samp_freq_avail;
1130		*length = filter_config->samp_freq_avail_len * 2;
1131		*type = IIO_VAL_FRACTIONAL;
1132
1133		return filter_config->samp_freq_avail_type;
1134	default:
1135		return -EINVAL;
1136	}
1137}
1138
1139static int ad4130_write_raw_get_fmt(struct iio_dev *indio_dev,
1140				    struct iio_chan_spec const *chan,
1141				    long info)
1142{
1143	switch (info) {
1144	case IIO_CHAN_INFO_SCALE:
1145	case IIO_CHAN_INFO_SAMP_FREQ:
1146		return IIO_VAL_INT_PLUS_NANO;
1147	default:
1148		return -EINVAL;
1149	}
1150}
1151
1152static int ad4130_write_raw(struct iio_dev *indio_dev,
1153			    struct iio_chan_spec const *chan,
1154			    int val, int val2, long info)
1155{
1156	struct ad4130_state *st = iio_priv(indio_dev);
1157	unsigned int channel = chan->scan_index;
1158
1159	switch (info) {
1160	case IIO_CHAN_INFO_SCALE:
1161		return ad4130_set_channel_pga(st, channel, val, val2);
1162	case IIO_CHAN_INFO_SAMP_FREQ:
1163		return ad4130_set_channel_freq(st, channel, val, val2);
1164	default:
1165		return -EINVAL;
1166	}
1167}
1168
1169static int ad4130_reg_access(struct iio_dev *indio_dev, unsigned int reg,
1170			     unsigned int writeval, unsigned int *readval)
1171{
1172	struct ad4130_state *st = iio_priv(indio_dev);
1173
1174	if (readval)
1175		return regmap_read(st->regmap, reg, readval);
1176
1177	return regmap_write(st->regmap, reg, writeval);
1178}
1179
1180static int ad4130_update_scan_mode(struct iio_dev *indio_dev,
1181				   const unsigned long *scan_mask)
1182{
1183	struct ad4130_state *st = iio_priv(indio_dev);
1184	unsigned int channel;
1185	unsigned int val = 0;
1186	int ret;
1187
1188	guard(mutex)(&st->lock);
1189
1190	for_each_set_bit(channel, scan_mask, indio_dev->num_channels) {
1191		ret = ad4130_set_channel_enable(st, channel, true);
1192		if (ret)
1193			return ret;
1194
1195		val++;
1196	}
1197
1198	st->num_enabled_channels = val;
1199
1200	return 0;
1201}
1202
1203static int ad4130_set_fifo_watermark(struct iio_dev *indio_dev, unsigned int val)
1204{
1205	struct ad4130_state *st = iio_priv(indio_dev);
1206	unsigned int eff;
1207	int ret;
1208
1209	if (val > AD4130_FIFO_SIZE)
1210		return -EINVAL;
1211
1212	eff = val * st->num_enabled_channels;
1213	if (eff > AD4130_FIFO_SIZE)
1214		/*
1215		 * Always set watermark to a multiple of the number of
1216		 * enabled channels to avoid making the FIFO unaligned.
1217		 */
1218		eff = rounddown(AD4130_FIFO_SIZE, st->num_enabled_channels);
1219
1220	guard(mutex)(&st->lock);
1221
1222	ret = regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
1223				 AD4130_FIFO_CONTROL_WM_MASK,
1224				 FIELD_PREP(AD4130_FIFO_CONTROL_WM_MASK,
1225					    ad4130_watermark_reg_val(eff)));
1226	if (ret)
1227		return ret;
1228
1229	st->effective_watermark = eff;
1230	st->watermark = val;
1231
1232	return 0;
1233}
1234
1235static const struct iio_info ad4130_info = {
1236	.read_raw = ad4130_read_raw,
1237	.read_avail = ad4130_read_avail,
1238	.write_raw_get_fmt = ad4130_write_raw_get_fmt,
1239	.write_raw = ad4130_write_raw,
1240	.update_scan_mode = ad4130_update_scan_mode,
1241	.hwfifo_set_watermark = ad4130_set_fifo_watermark,
1242	.debugfs_reg_access = ad4130_reg_access,
1243};
1244
1245static int ad4130_buffer_postenable(struct iio_dev *indio_dev)
1246{
1247	struct ad4130_state *st = iio_priv(indio_dev);
1248	int ret;
1249
1250	guard(mutex)(&st->lock);
1251
1252	ret = ad4130_set_watermark_interrupt_en(st, true);
1253	if (ret)
1254		return ret;
1255
1256	ret = irq_set_irq_type(st->spi->irq, st->inv_irq_trigger);
1257	if (ret)
1258		return ret;
1259
1260	ret = ad4130_set_fifo_mode(st, AD4130_FIFO_MODE_WM);
1261	if (ret)
1262		return ret;
1263
1264	return ad4130_set_mode(st, AD4130_MODE_CONTINUOUS);
1265}
1266
1267static int ad4130_buffer_predisable(struct iio_dev *indio_dev)
1268{
1269	struct ad4130_state *st = iio_priv(indio_dev);
1270	unsigned int i;
1271	int ret;
1272
1273	guard(mutex)(&st->lock);
1274
1275	ret = ad4130_set_mode(st, AD4130_MODE_IDLE);
1276	if (ret)
1277		return ret;
1278
1279	ret = irq_set_irq_type(st->spi->irq, st->irq_trigger);
1280	if (ret)
1281		return ret;
1282
1283	ret = ad4130_set_fifo_mode(st, AD4130_FIFO_MODE_DISABLED);
1284	if (ret)
1285		return ret;
1286
1287	ret = ad4130_set_watermark_interrupt_en(st, false);
1288	if (ret)
1289		return ret;
1290
1291	/*
1292	 * update_scan_mode() is not called in the disable path, disable all
1293	 * channels here.
1294	 */
1295	for (i = 0; i < indio_dev->num_channels; i++) {
1296		ret = ad4130_set_channel_enable(st, i, false);
1297		if (ret)
1298			return ret;
1299	}
1300
1301	return 0;
1302}
1303
1304static const struct iio_buffer_setup_ops ad4130_buffer_ops = {
1305	.postenable = ad4130_buffer_postenable,
1306	.predisable = ad4130_buffer_predisable,
1307};
1308
1309static ssize_t hwfifo_watermark_show(struct device *dev,
1310				     struct device_attribute *attr, char *buf)
1311{
1312	struct ad4130_state *st = iio_priv(dev_to_iio_dev(dev));
1313	unsigned int val;
1314
1315	guard(mutex)(&st->lock);
1316	val = st->watermark;
1317
1318	return sysfs_emit(buf, "%d\n", val);
1319}
1320
1321static ssize_t hwfifo_enabled_show(struct device *dev,
1322				   struct device_attribute *attr, char *buf)
1323{
1324	struct ad4130_state *st = iio_priv(dev_to_iio_dev(dev));
1325	unsigned int val;
1326	int ret;
1327
1328	ret = regmap_read(st->regmap, AD4130_FIFO_CONTROL_REG, &val);
1329	if (ret)
1330		return ret;
1331
1332	val = FIELD_GET(AD4130_FIFO_CONTROL_MODE_MASK, val);
1333
1334	return sysfs_emit(buf, "%d\n", val != AD4130_FIFO_MODE_DISABLED);
1335}
1336
1337static ssize_t hwfifo_watermark_min_show(struct device *dev,
1338					 struct device_attribute *attr,
1339					 char *buf)
1340{
1341	return sysfs_emit(buf, "%s\n", "1");
1342}
1343
1344static ssize_t hwfifo_watermark_max_show(struct device *dev,
1345					 struct device_attribute *attr,
1346					 char *buf)
1347{
1348	return sysfs_emit(buf, "%s\n", __stringify(AD4130_FIFO_SIZE));
1349}
1350
1351static IIO_DEVICE_ATTR_RO(hwfifo_watermark_min, 0);
1352static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0);
1353static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0);
1354static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0);
1355
1356static const struct iio_dev_attr *ad4130_fifo_attributes[] = {
1357	&iio_dev_attr_hwfifo_watermark_min,
1358	&iio_dev_attr_hwfifo_watermark_max,
1359	&iio_dev_attr_hwfifo_watermark,
1360	&iio_dev_attr_hwfifo_enabled,
1361	NULL
1362};
1363
1364static int _ad4130_find_table_index(const unsigned int *tbl, size_t len,
1365				    unsigned int val)
1366{
1367	unsigned int i;
1368
1369	for (i = 0; i < len; i++)
1370		if (tbl[i] == val)
1371			return i;
1372
1373	return -EINVAL;
1374}
1375
1376#define ad4130_find_table_index(table, val) \
1377	_ad4130_find_table_index(table, ARRAY_SIZE(table), val)
1378
1379static int ad4130_get_ref_voltage(struct ad4130_state *st,
1380				  enum ad4130_ref_sel ref_sel)
1381{
1382	switch (ref_sel) {
1383	case AD4130_REF_REFIN1:
1384		return regulator_get_voltage(st->regulators[2].consumer);
1385	case AD4130_REF_REFIN2:
1386		return regulator_get_voltage(st->regulators[3].consumer);
1387	case AD4130_REF_AVDD_AVSS:
1388		return regulator_get_voltage(st->regulators[0].consumer);
1389	case AD4130_REF_REFOUT_AVSS:
1390		return st->int_ref_uv;
1391	default:
1392		return -EINVAL;
1393	}
1394}
1395
1396static int ad4130_parse_fw_setup(struct ad4130_state *st,
1397				 struct fwnode_handle *child,
1398				 struct ad4130_setup_info *setup_info)
1399{
1400	struct device *dev = &st->spi->dev;
1401	u32 tmp;
1402	int ret;
1403
1404	tmp = 0;
1405	fwnode_property_read_u32(child, "adi,excitation-current-0-nanoamp", &tmp);
1406	ret = ad4130_find_table_index(ad4130_iout_current_na_tbl, tmp);
1407	if (ret < 0)
1408		return dev_err_probe(dev, ret,
1409				     "Invalid excitation current %unA\n", tmp);
1410	setup_info->iout0_val = ret;
1411
1412	tmp = 0;
1413	fwnode_property_read_u32(child, "adi,excitation-current-1-nanoamp", &tmp);
1414	ret = ad4130_find_table_index(ad4130_iout_current_na_tbl, tmp);
1415	if (ret < 0)
1416		return dev_err_probe(dev, ret,
1417				     "Invalid excitation current %unA\n", tmp);
1418	setup_info->iout1_val = ret;
1419
1420	tmp = 0;
1421	fwnode_property_read_u32(child, "adi,burnout-current-nanoamp", &tmp);
1422	ret = ad4130_find_table_index(ad4130_burnout_current_na_tbl, tmp);
1423	if (ret < 0)
1424		return dev_err_probe(dev, ret,
1425				     "Invalid burnout current %unA\n", tmp);
1426	setup_info->burnout = ret;
1427
1428	setup_info->ref_bufp = fwnode_property_read_bool(child, "adi,buffered-positive");
1429	setup_info->ref_bufm = fwnode_property_read_bool(child, "adi,buffered-negative");
1430
1431	setup_info->ref_sel = AD4130_REF_REFIN1;
1432	fwnode_property_read_u32(child, "adi,reference-select",
1433				 &setup_info->ref_sel);
1434	if (setup_info->ref_sel >= AD4130_REF_SEL_MAX)
1435		return dev_err_probe(dev, -EINVAL,
1436				     "Invalid reference selected %u\n",
1437				     setup_info->ref_sel);
1438
1439	if (setup_info->ref_sel == AD4130_REF_REFOUT_AVSS)
1440		st->int_ref_en = true;
1441
1442	ret = ad4130_get_ref_voltage(st, setup_info->ref_sel);
1443	if (ret < 0)
1444		return dev_err_probe(dev, ret, "Cannot use reference %u\n",
1445				     setup_info->ref_sel);
1446
1447	return 0;
1448}
1449
1450static int ad4130_validate_diff_channel(struct ad4130_state *st, u32 pin)
1451{
1452	struct device *dev = &st->spi->dev;
1453
1454	if (pin >= AD4130_MAX_DIFF_INPUTS)
1455		return dev_err_probe(dev, -EINVAL,
1456				     "Invalid differential channel %u\n", pin);
1457
1458	if (pin >= AD4130_MAX_ANALOG_PINS)
1459		return 0;
1460
1461	if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
1462		return dev_err_probe(dev, -EINVAL,
1463				     "Pin %u already used with fn %u\n", pin,
1464				     st->pins_fn[pin]);
1465
1466	st->pins_fn[pin] |= AD4130_PIN_FN_DIFF;
1467
1468	return 0;
1469}
1470
1471static int ad4130_validate_diff_channels(struct ad4130_state *st,
1472					 u32 *pins, unsigned int len)
1473{
1474	unsigned int i;
1475	int ret;
1476
1477	for (i = 0; i < len; i++) {
1478		ret = ad4130_validate_diff_channel(st, pins[i]);
1479		if (ret)
1480			return ret;
1481	}
1482
1483	return 0;
1484}
1485
1486static int ad4130_validate_excitation_pin(struct ad4130_state *st, u32 pin)
1487{
1488	struct device *dev = &st->spi->dev;
1489
1490	if (pin >= AD4130_MAX_ANALOG_PINS)
1491		return dev_err_probe(dev, -EINVAL,
1492				     "Invalid excitation pin %u\n", pin);
1493
1494	if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
1495		return dev_err_probe(dev, -EINVAL,
1496				     "Pin %u already used with fn %u\n", pin,
1497				     st->pins_fn[pin]);
1498
1499	st->pins_fn[pin] |= AD4130_PIN_FN_EXCITATION;
1500
1501	return 0;
1502}
1503
1504static int ad4130_validate_vbias_pin(struct ad4130_state *st, u32 pin)
1505{
1506	struct device *dev = &st->spi->dev;
1507
1508	if (pin >= AD4130_MAX_ANALOG_PINS)
1509		return dev_err_probe(dev, -EINVAL, "Invalid vbias pin %u\n",
1510				     pin);
1511
1512	if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
1513		return dev_err_probe(dev, -EINVAL,
1514				     "Pin %u already used with fn %u\n", pin,
1515				     st->pins_fn[pin]);
1516
1517	st->pins_fn[pin] |= AD4130_PIN_FN_VBIAS;
1518
1519	return 0;
1520}
1521
1522static int ad4130_validate_vbias_pins(struct ad4130_state *st,
1523				      u32 *pins, unsigned int len)
1524{
1525	unsigned int i;
1526	int ret;
1527
1528	for (i = 0; i < st->num_vbias_pins; i++) {
1529		ret = ad4130_validate_vbias_pin(st, pins[i]);
1530		if (ret)
1531			return ret;
1532	}
1533
1534	return 0;
1535}
1536
1537static int ad4130_parse_fw_channel(struct iio_dev *indio_dev,
1538				   struct fwnode_handle *child)
1539{
1540	struct ad4130_state *st = iio_priv(indio_dev);
1541	unsigned int resolution = ad4130_resolution(st);
1542	unsigned int index = indio_dev->num_channels++;
1543	struct device *dev = &st->spi->dev;
1544	struct ad4130_chan_info *chan_info;
1545	struct iio_chan_spec *chan;
1546	u32 pins[2];
1547	int ret;
1548
1549	if (index >= AD4130_MAX_CHANNELS)
1550		return dev_err_probe(dev, -EINVAL, "Too many channels\n");
1551
1552	chan = &st->chans[index];
1553	chan_info = &st->chans_info[index];
1554
1555	*chan = ad4130_channel_template;
1556	chan->scan_type.realbits = resolution;
1557	chan->scan_type.storagebits = resolution;
1558	chan->scan_index = index;
1559
1560	chan_info->slot = AD4130_INVALID_SLOT;
1561	chan_info->setup.fs = AD4130_FILTER_SELECT_MIN;
1562	chan_info->initialized = true;
1563
1564	ret = fwnode_property_read_u32_array(child, "diff-channels", pins,
1565					     ARRAY_SIZE(pins));
1566	if (ret)
1567		return ret;
1568
1569	ret = ad4130_validate_diff_channels(st, pins, ARRAY_SIZE(pins));
1570	if (ret)
1571		return ret;
1572
1573	chan->channel = pins[0];
1574	chan->channel2 = pins[1];
1575
1576	ret = ad4130_parse_fw_setup(st, child, &chan_info->setup);
1577	if (ret)
1578		return ret;
1579
1580	fwnode_property_read_u32(child, "adi,excitation-pin-0",
1581				 &chan_info->iout0);
1582	if (chan_info->setup.iout0_val != AD4130_IOUT_OFF) {
1583		ret = ad4130_validate_excitation_pin(st, chan_info->iout0);
1584		if (ret)
1585			return ret;
1586	}
1587
1588	fwnode_property_read_u32(child, "adi,excitation-pin-1",
1589				 &chan_info->iout1);
1590	if (chan_info->setup.iout1_val != AD4130_IOUT_OFF) {
1591		ret = ad4130_validate_excitation_pin(st, chan_info->iout1);
1592		if (ret)
1593			return ret;
1594	}
1595
1596	return 0;
1597}
1598
1599static int ad4130_parse_fw_children(struct iio_dev *indio_dev)
1600{
1601	struct ad4130_state *st = iio_priv(indio_dev);
1602	struct device *dev = &st->spi->dev;
1603	struct fwnode_handle *child;
1604	int ret;
1605
1606	indio_dev->channels = st->chans;
1607
1608	device_for_each_child_node(dev, child) {
1609		ret = ad4130_parse_fw_channel(indio_dev, child);
1610		if (ret) {
1611			fwnode_handle_put(child);
1612			return ret;
1613		}
1614	}
1615
1616	return 0;
1617}
1618
1619static int ad4310_parse_fw(struct iio_dev *indio_dev)
1620{
1621	struct ad4130_state *st = iio_priv(indio_dev);
1622	struct device *dev = &st->spi->dev;
1623	u32 ext_clk_freq = AD4130_MCLK_FREQ_76_8KHZ;
1624	unsigned int i;
1625	int avdd_uv;
1626	int irq;
1627	int ret;
1628
1629	st->mclk = devm_clk_get_optional(dev, "mclk");
1630	if (IS_ERR(st->mclk))
1631		return dev_err_probe(dev, PTR_ERR(st->mclk),
1632				     "Failed to get mclk\n");
1633
1634	st->int_pin_sel = AD4130_INT_PIN_INT;
1635
1636	for (i = 0; i < ARRAY_SIZE(ad4130_int_pin_names); i++) {
1637		irq = fwnode_irq_get_byname(dev_fwnode(dev),
1638					    ad4130_int_pin_names[i]);
1639		if (irq > 0) {
1640			st->int_pin_sel = i;
1641			break;
1642		}
1643	}
1644
1645	if (st->int_pin_sel == AD4130_INT_PIN_DOUT)
1646		return dev_err_probe(dev, -EINVAL,
1647				     "Cannot use DOUT as interrupt pin\n");
1648
1649	if (st->int_pin_sel == AD4130_INT_PIN_P2)
1650		st->pins_fn[AD4130_AIN3_P2] = AD4130_PIN_FN_SPECIAL;
1651
1652	device_property_read_u32(dev, "adi,ext-clk-freq-hz", &ext_clk_freq);
1653	if (ext_clk_freq != AD4130_MCLK_FREQ_153_6KHZ &&
1654	    ext_clk_freq != AD4130_MCLK_FREQ_76_8KHZ)
1655		return dev_err_probe(dev, -EINVAL,
1656				     "Invalid external clock frequency %u\n",
1657				     ext_clk_freq);
1658
1659	if (st->mclk && ext_clk_freq == AD4130_MCLK_FREQ_153_6KHZ)
1660		st->mclk_sel = AD4130_MCLK_153_6KHZ_EXT;
1661	else if (st->mclk)
1662		st->mclk_sel = AD4130_MCLK_76_8KHZ_EXT;
1663	else
1664		st->mclk_sel = AD4130_MCLK_76_8KHZ;
1665
1666	if (st->int_pin_sel == AD4130_INT_PIN_CLK &&
1667	    st->mclk_sel != AD4130_MCLK_76_8KHZ)
1668		return dev_err_probe(dev, -EINVAL,
1669				     "Invalid clock %u for interrupt pin %u\n",
1670				     st->mclk_sel, st->int_pin_sel);
1671
1672	st->int_ref_uv = AD4130_INT_REF_2_5V;
1673
1674	/*
1675	 * When the AVDD supply is set to below 2.5V the internal reference of
1676	 * 1.25V should be selected.
1677	 * See datasheet page 37, section ADC REFERENCE.
1678	 */
1679	avdd_uv = regulator_get_voltage(st->regulators[0].consumer);
1680	if (avdd_uv > 0 && avdd_uv < AD4130_INT_REF_2_5V)
1681		st->int_ref_uv = AD4130_INT_REF_1_25V;
1682
1683	st->bipolar = device_property_read_bool(dev, "adi,bipolar");
1684
1685	ret = device_property_count_u32(dev, "adi,vbias-pins");
1686	if (ret > 0) {
1687		if (ret > AD4130_MAX_ANALOG_PINS)
1688			return dev_err_probe(dev, -EINVAL,
1689					     "Too many vbias pins %u\n", ret);
1690
1691		st->num_vbias_pins = ret;
1692
1693		ret = device_property_read_u32_array(dev, "adi,vbias-pins",
1694						     st->vbias_pins,
1695						     st->num_vbias_pins);
1696		if (ret)
1697			return dev_err_probe(dev, ret,
1698					     "Failed to read vbias pins\n");
1699
1700		ret = ad4130_validate_vbias_pins(st, st->vbias_pins,
1701						 st->num_vbias_pins);
1702		if (ret)
1703			return ret;
1704	}
1705
1706	ret = ad4130_parse_fw_children(indio_dev);
1707	if (ret)
1708		return ret;
1709
1710	return 0;
1711}
1712
1713static void ad4130_fill_scale_tbls(struct ad4130_state *st)
1714{
1715	unsigned int pow = ad4130_resolution(st) - st->bipolar;
1716	unsigned int i, j;
1717
1718	for (i = 0; i < AD4130_REF_SEL_MAX; i++) {
1719		int ret;
1720		u64 nv;
1721
1722		ret = ad4130_get_ref_voltage(st, i);
1723		if (ret < 0)
1724			continue;
1725
1726		nv = (u64)ret * NANO;
1727
1728		for (j = 0; j < AD4130_MAX_PGA; j++)
1729			st->scale_tbls[i][j][1] = div_u64(nv >> (pow + j), MILLI);
1730	}
1731}
1732
1733static void ad4130_clk_disable_unprepare(void *clk)
1734{
1735	clk_disable_unprepare(clk);
1736}
1737
1738static int ad4130_set_mclk_sel(struct ad4130_state *st,
1739			       enum ad4130_mclk_sel mclk_sel)
1740{
1741	return regmap_update_bits(st->regmap, AD4130_ADC_CONTROL_REG,
1742				 AD4130_ADC_CONTROL_MCLK_SEL_MASK,
1743				 FIELD_PREP(AD4130_ADC_CONTROL_MCLK_SEL_MASK,
1744					    mclk_sel));
1745}
1746
1747static unsigned long ad4130_int_clk_recalc_rate(struct clk_hw *hw,
1748						unsigned long parent_rate)
1749{
1750	return AD4130_MCLK_FREQ_76_8KHZ;
1751}
1752
1753static int ad4130_int_clk_is_enabled(struct clk_hw *hw)
1754{
1755	struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
1756
1757	return st->mclk_sel == AD4130_MCLK_76_8KHZ_OUT;
1758}
1759
1760static int ad4130_int_clk_prepare(struct clk_hw *hw)
1761{
1762	struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
1763	int ret;
1764
1765	ret = ad4130_set_mclk_sel(st, AD4130_MCLK_76_8KHZ_OUT);
1766	if (ret)
1767		return ret;
1768
1769	st->mclk_sel = AD4130_MCLK_76_8KHZ_OUT;
1770
1771	return 0;
1772}
1773
1774static void ad4130_int_clk_unprepare(struct clk_hw *hw)
1775{
1776	struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
1777	int ret;
1778
1779	ret = ad4130_set_mclk_sel(st, AD4130_MCLK_76_8KHZ);
1780	if (ret)
1781		return;
1782
1783	st->mclk_sel = AD4130_MCLK_76_8KHZ;
1784}
1785
1786static const struct clk_ops ad4130_int_clk_ops = {
1787	.recalc_rate = ad4130_int_clk_recalc_rate,
1788	.is_enabled = ad4130_int_clk_is_enabled,
1789	.prepare = ad4130_int_clk_prepare,
1790	.unprepare = ad4130_int_clk_unprepare,
1791};
1792
1793static int ad4130_setup_int_clk(struct ad4130_state *st)
1794{
1795	struct device *dev = &st->spi->dev;
1796	struct device_node *of_node = dev_of_node(dev);
1797	struct clk_init_data init = {};
1798	const char *clk_name;
1799	int ret;
1800
1801	if (st->int_pin_sel == AD4130_INT_PIN_CLK ||
1802	    st->mclk_sel != AD4130_MCLK_76_8KHZ)
1803		return 0;
1804
1805	if (!of_node)
1806		return 0;
1807
1808	clk_name = of_node->name;
1809	of_property_read_string(of_node, "clock-output-names", &clk_name);
1810
1811	init.name = clk_name;
1812	init.ops = &ad4130_int_clk_ops;
1813
1814	st->int_clk_hw.init = &init;
1815	ret = devm_clk_hw_register(dev, &st->int_clk_hw);
1816	if (ret)
1817		return ret;
1818
1819	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
1820					   &st->int_clk_hw);
1821}
1822
1823static int ad4130_setup(struct iio_dev *indio_dev)
1824{
1825	struct ad4130_state *st = iio_priv(indio_dev);
1826	struct device *dev = &st->spi->dev;
1827	unsigned int int_ref_val;
1828	unsigned long rate = AD4130_MCLK_FREQ_76_8KHZ;
1829	unsigned int val;
1830	unsigned int i;
1831	int ret;
1832
1833	if (st->mclk_sel == AD4130_MCLK_153_6KHZ_EXT)
1834		rate = AD4130_MCLK_FREQ_153_6KHZ;
1835
1836	ret = clk_set_rate(st->mclk, rate);
1837	if (ret)
1838		return ret;
1839
1840	ret = clk_prepare_enable(st->mclk);
1841	if (ret)
1842		return ret;
1843
1844	ret = devm_add_action_or_reset(dev, ad4130_clk_disable_unprepare,
1845				       st->mclk);
1846	if (ret)
1847		return ret;
1848
1849	if (st->int_ref_uv == AD4130_INT_REF_2_5V)
1850		int_ref_val = AD4130_INT_REF_VAL_2_5V;
1851	else
1852		int_ref_val = AD4130_INT_REF_VAL_1_25V;
1853
1854	/* Switch to SPI 4-wire mode. */
1855	val =  FIELD_PREP(AD4130_ADC_CONTROL_CSB_EN_MASK, 1);
1856	val |= FIELD_PREP(AD4130_ADC_CONTROL_BIPOLAR_MASK, st->bipolar);
1857	val |= FIELD_PREP(AD4130_ADC_CONTROL_INT_REF_EN_MASK, st->int_ref_en);
1858	val |= FIELD_PREP(AD4130_ADC_CONTROL_MODE_MASK, AD4130_MODE_IDLE);
1859	val |= FIELD_PREP(AD4130_ADC_CONTROL_MCLK_SEL_MASK, st->mclk_sel);
1860	val |= FIELD_PREP(AD4130_ADC_CONTROL_INT_REF_VAL_MASK, int_ref_val);
1861
1862	ret = regmap_write(st->regmap, AD4130_ADC_CONTROL_REG, val);
1863	if (ret)
1864		return ret;
1865
1866	/*
1867	 * Configure unused GPIOs for output. If configured, the interrupt
1868	 * function of P2 takes priority over the GPIO out function.
1869	 */
1870	val = 0;
1871	for (i = 0; i < AD4130_MAX_GPIOS; i++)
1872		if (st->pins_fn[i + AD4130_AIN2_P1] == AD4130_PIN_FN_NONE)
1873			val |= FIELD_PREP(AD4130_IO_CONTROL_GPIO_CTRL_MASK, BIT(i));
1874
1875	val |= FIELD_PREP(AD4130_IO_CONTROL_INT_PIN_SEL_MASK, st->int_pin_sel);
1876
1877	ret = regmap_write(st->regmap, AD4130_IO_CONTROL_REG, val);
1878	if (ret)
1879		return ret;
1880
1881	val = 0;
1882	for (i = 0; i < st->num_vbias_pins; i++)
1883		val |= BIT(st->vbias_pins[i]);
1884
1885	ret = regmap_write(st->regmap, AD4130_VBIAS_REG, val);
1886	if (ret)
1887		return ret;
1888
1889	ret = regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
1890				 AD4130_FIFO_CONTROL_HEADER_MASK, 0);
1891	if (ret)
1892		return ret;
1893
1894	/* FIFO watermark interrupt starts out as enabled, disable it. */
1895	ret = ad4130_set_watermark_interrupt_en(st, false);
1896	if (ret)
1897		return ret;
1898
1899	/* Setup channels. */
1900	for (i = 0; i < indio_dev->num_channels; i++) {
1901		struct ad4130_chan_info *chan_info = &st->chans_info[i];
1902		struct iio_chan_spec *chan = &st->chans[i];
1903		unsigned int val;
1904
1905		val = FIELD_PREP(AD4130_CHANNEL_AINP_MASK, chan->channel) |
1906		      FIELD_PREP(AD4130_CHANNEL_AINM_MASK, chan->channel2) |
1907		      FIELD_PREP(AD4130_CHANNEL_IOUT1_MASK, chan_info->iout0) |
1908		      FIELD_PREP(AD4130_CHANNEL_IOUT2_MASK, chan_info->iout1);
1909
1910		ret = regmap_write(st->regmap, AD4130_CHANNEL_X_REG(i), val);
1911		if (ret)
1912			return ret;
1913	}
1914
1915	return 0;
1916}
1917
1918static int ad4130_soft_reset(struct ad4130_state *st)
1919{
1920	int ret;
1921
1922	ret = spi_write(st->spi, st->reset_buf, sizeof(st->reset_buf));
1923	if (ret)
1924		return ret;
1925
1926	fsleep(AD4130_RESET_SLEEP_US);
1927
1928	return 0;
1929}
1930
1931static void ad4130_disable_regulators(void *data)
1932{
1933	struct ad4130_state *st = data;
1934
1935	regulator_bulk_disable(ARRAY_SIZE(st->regulators), st->regulators);
1936}
1937
1938static int ad4130_probe(struct spi_device *spi)
1939{
1940	struct device *dev = &spi->dev;
1941	struct iio_dev *indio_dev;
1942	struct ad4130_state *st;
1943	int ret;
1944
1945	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1946	if (!indio_dev)
1947		return -ENOMEM;
1948
1949	st = iio_priv(indio_dev);
1950
1951	memset(st->reset_buf, 0xff, sizeof(st->reset_buf));
1952	init_completion(&st->completion);
1953	mutex_init(&st->lock);
1954	st->spi = spi;
1955
1956	/*
1957	 * Xfer:   [ XFR1 ] [         XFR2         ]
1958	 * Master:  0x7D N   ......................
1959	 * Slave:   ......   DATA1 DATA2 ... DATAN
1960	 */
1961	st->fifo_tx_buf[0] = AD4130_COMMS_READ_MASK | AD4130_FIFO_DATA_REG;
1962	st->fifo_xfer[0].tx_buf = st->fifo_tx_buf;
1963	st->fifo_xfer[0].len = sizeof(st->fifo_tx_buf);
1964	st->fifo_xfer[1].rx_buf = st->fifo_rx_buf;
1965	spi_message_init_with_transfers(&st->fifo_msg, st->fifo_xfer,
1966					ARRAY_SIZE(st->fifo_xfer));
1967
1968	indio_dev->name = AD4130_NAME;
1969	indio_dev->modes = INDIO_DIRECT_MODE;
1970	indio_dev->info = &ad4130_info;
1971
1972	st->regmap = devm_regmap_init(dev, NULL, st, &ad4130_regmap_config);
1973	if (IS_ERR(st->regmap))
1974		return PTR_ERR(st->regmap);
1975
1976	st->regulators[0].supply = "avdd";
1977	st->regulators[1].supply = "iovdd";
1978	st->regulators[2].supply = "refin1";
1979	st->regulators[3].supply = "refin2";
1980
1981	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(st->regulators),
1982				      st->regulators);
1983	if (ret)
1984		return dev_err_probe(dev, ret, "Failed to get regulators\n");
1985
1986	ret = regulator_bulk_enable(ARRAY_SIZE(st->regulators), st->regulators);
1987	if (ret)
1988		return dev_err_probe(dev, ret, "Failed to enable regulators\n");
1989
1990	ret = devm_add_action_or_reset(dev, ad4130_disable_regulators, st);
1991	if (ret)
1992		return dev_err_probe(dev, ret,
1993				     "Failed to add regulators disable action\n");
1994
1995	ret = ad4130_soft_reset(st);
1996	if (ret)
1997		return ret;
1998
1999	ret = ad4310_parse_fw(indio_dev);
2000	if (ret)
2001		return ret;
2002
2003	ret = ad4130_setup(indio_dev);
2004	if (ret)
2005		return ret;
2006
2007	ret = ad4130_setup_int_clk(st);
2008	if (ret)
2009		return ret;
2010
2011	ad4130_fill_scale_tbls(st);
2012
2013	st->gc.owner = THIS_MODULE;
2014	st->gc.label = AD4130_NAME;
2015	st->gc.base = -1;
2016	st->gc.ngpio = AD4130_MAX_GPIOS;
2017	st->gc.parent = dev;
2018	st->gc.can_sleep = true;
2019	st->gc.init_valid_mask = ad4130_gpio_init_valid_mask;
2020	st->gc.get_direction = ad4130_gpio_get_direction;
2021	st->gc.set = ad4130_gpio_set;
2022
2023	ret = devm_gpiochip_add_data(dev, &st->gc, st);
2024	if (ret)
2025		return ret;
2026
2027	ret = devm_iio_kfifo_buffer_setup_ext(dev, indio_dev,
2028					      &ad4130_buffer_ops,
2029					      ad4130_fifo_attributes);
2030	if (ret)
2031		return ret;
2032
2033	ret = devm_request_threaded_irq(dev, spi->irq, NULL,
2034					ad4130_irq_handler, IRQF_ONESHOT,
2035					indio_dev->name, indio_dev);
2036	if (ret)
2037		return dev_err_probe(dev, ret, "Failed to request irq\n");
2038
2039	/*
2040	 * When the chip enters FIFO mode, IRQ polarity is inverted.
2041	 * When the chip exits FIFO mode, IRQ polarity returns to normal.
2042	 * See datasheet pages: 65, FIFO Watermark Interrupt section,
2043	 * and 71, Bit Descriptions for STATUS Register, RDYB.
2044	 * Cache the normal and inverted IRQ triggers to set them when
2045	 * entering and exiting FIFO mode.
2046	 */
2047	st->irq_trigger = irq_get_trigger_type(spi->irq);
2048	if (st->irq_trigger & IRQF_TRIGGER_RISING)
2049		st->inv_irq_trigger = IRQF_TRIGGER_FALLING;
2050	else if (st->irq_trigger & IRQF_TRIGGER_FALLING)
2051		st->inv_irq_trigger = IRQF_TRIGGER_RISING;
2052	else
2053		return dev_err_probe(dev, -EINVAL, "Invalid irq flags: %u\n",
2054				     st->irq_trigger);
2055
2056	return devm_iio_device_register(dev, indio_dev);
2057}
2058
2059static const struct of_device_id ad4130_of_match[] = {
2060	{
2061		.compatible = "adi,ad4130",
2062	},
2063	{ }
2064};
2065MODULE_DEVICE_TABLE(of, ad4130_of_match);
2066
2067static struct spi_driver ad4130_driver = {
2068	.driver = {
2069		.name = AD4130_NAME,
2070		.of_match_table = ad4130_of_match,
2071	},
2072	.probe = ad4130_probe,
2073};
2074module_spi_driver(ad4130_driver);
2075
2076MODULE_AUTHOR("Cosmin Tanislav <cosmin.tanislav@analog.com>");
2077MODULE_DESCRIPTION("Analog Devices AD4130 SPI driver");
2078MODULE_LICENSE("GPL");
2079