1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) ST-Ericsson SA 2010
4 *
5 * Author: Arun R Murthy <arun.murthy@stericsson.com>
6 * Author: Daniel Willerud <daniel.willerud@stericsson.com>
7 * Author: Johan Palsson <johan.palsson@stericsson.com>
8 * Author: M'boumba Cedric Madianga
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * AB8500 General Purpose ADC driver. The AB8500 uses reference voltages:
12 * VinVADC, and VADC relative to GND to do its job. It monitors main and backup
13 * battery voltages, AC (mains) voltage, USB cable voltage, as well as voltages
14 * representing the temperature of the chip die and battery, accessory
15 * detection by resistance measurements using relative voltages and GSM burst
16 * information.
17 *
18 * Some of the voltages are measured on external pins on the IC, such as
19 * battery temperature or "ADC aux" 1 and 2. Other voltages are internal rails
20 * from other parts of the ASIC such as main charger voltage, main and battery
21 * backup voltage or USB VBUS voltage. For this reason drivers for other
22 * parts of the system are required to obtain handles to the ADC to do work
23 * for them and the IIO driver provides arbitration among these consumers.
24 */
25#include <linux/init.h>
26#include <linux/bits.h>
27#include <linux/iio/iio.h>
28#include <linux/iio/sysfs.h>
29#include <linux/device.h>
30#include <linux/interrupt.h>
31#include <linux/spinlock.h>
32#include <linux/delay.h>
33#include <linux/pm_runtime.h>
34#include <linux/platform_device.h>
35#include <linux/completion.h>
36#include <linux/regulator/consumer.h>
37#include <linux/random.h>
38#include <linux/err.h>
39#include <linux/slab.h>
40#include <linux/mfd/abx500.h>
41#include <linux/mfd/abx500/ab8500.h>
42
43/* GPADC register offsets and bit definitions */
44
45#define AB8500_GPADC_CTRL1_REG		0x00
46/* GPADC control register 1 bits */
47#define AB8500_GPADC_CTRL1_DISABLE		0x00
48#define AB8500_GPADC_CTRL1_ENABLE		BIT(0)
49#define AB8500_GPADC_CTRL1_TRIG_ENA		BIT(1)
50#define AB8500_GPADC_CTRL1_START_SW_CONV	BIT(2)
51#define AB8500_GPADC_CTRL1_BTEMP_PULL_UP	BIT(3)
52/* 0 = use rising edge, 1 = use falling edge */
53#define AB8500_GPADC_CTRL1_TRIG_EDGE		BIT(4)
54/* 0 = use VTVOUT, 1 = use VRTC as pull-up supply for battery temp NTC */
55#define AB8500_GPADC_CTRL1_PUPSUPSEL		BIT(5)
56#define AB8500_GPADC_CTRL1_BUF_ENA		BIT(6)
57#define AB8500_GPADC_CTRL1_ICHAR_ENA		BIT(7)
58
59#define AB8500_GPADC_CTRL2_REG		0x01
60#define AB8500_GPADC_CTRL3_REG		0x02
61/*
62 * GPADC control register 2 and 3 bits
63 * the bit layout is the same for SW and HW conversion set-up
64 */
65#define AB8500_GPADC_CTRL2_AVG_1		0x00
66#define AB8500_GPADC_CTRL2_AVG_4		BIT(5)
67#define AB8500_GPADC_CTRL2_AVG_8		BIT(6)
68#define AB8500_GPADC_CTRL2_AVG_16		(BIT(5) | BIT(6))
69
70enum ab8500_gpadc_channel {
71	AB8500_GPADC_CHAN_UNUSED = 0x00,
72	AB8500_GPADC_CHAN_BAT_CTRL = 0x01,
73	AB8500_GPADC_CHAN_BAT_TEMP = 0x02,
74	/* This is not used on AB8505 */
75	AB8500_GPADC_CHAN_MAIN_CHARGER = 0x03,
76	AB8500_GPADC_CHAN_ACC_DET_1 = 0x04,
77	AB8500_GPADC_CHAN_ACC_DET_2 = 0x05,
78	AB8500_GPADC_CHAN_ADC_AUX_1 = 0x06,
79	AB8500_GPADC_CHAN_ADC_AUX_2 = 0x07,
80	AB8500_GPADC_CHAN_VBAT_A = 0x08,
81	AB8500_GPADC_CHAN_VBUS = 0x09,
82	AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT = 0x0a,
83	AB8500_GPADC_CHAN_USB_CHARGER_CURRENT = 0x0b,
84	AB8500_GPADC_CHAN_BACKUP_BAT = 0x0c,
85	/* Only on AB8505 */
86	AB8505_GPADC_CHAN_DIE_TEMP = 0x0d,
87	AB8500_GPADC_CHAN_ID = 0x0e,
88	AB8500_GPADC_CHAN_INTERNAL_TEST_1 = 0x0f,
89	AB8500_GPADC_CHAN_INTERNAL_TEST_2 = 0x10,
90	AB8500_GPADC_CHAN_INTERNAL_TEST_3 = 0x11,
91	/* FIXME: Applicable to all ASIC variants? */
92	AB8500_GPADC_CHAN_XTAL_TEMP = 0x12,
93	AB8500_GPADC_CHAN_VBAT_TRUE_MEAS = 0x13,
94	/* FIXME: Doesn't seem to work with pure AB8500 */
95	AB8500_GPADC_CHAN_BAT_CTRL_AND_IBAT = 0x1c,
96	AB8500_GPADC_CHAN_VBAT_MEAS_AND_IBAT = 0x1d,
97	AB8500_GPADC_CHAN_VBAT_TRUE_MEAS_AND_IBAT = 0x1e,
98	AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT = 0x1f,
99	/*
100	 * Virtual channel used only for ibat conversion to ampere.
101	 * Battery current conversion (ibat) cannot be requested as a
102	 * single conversion but it is always requested in combination
103	 * with other input requests.
104	 */
105	AB8500_GPADC_CHAN_IBAT_VIRTUAL = 0xFF,
106};
107
108#define AB8500_GPADC_AUTO_TIMER_REG	0x03
109
110#define AB8500_GPADC_STAT_REG		0x04
111#define AB8500_GPADC_STAT_BUSY		BIT(0)
112
113#define AB8500_GPADC_MANDATAL_REG	0x05
114#define AB8500_GPADC_MANDATAH_REG	0x06
115#define AB8500_GPADC_AUTODATAL_REG	0x07
116#define AB8500_GPADC_AUTODATAH_REG	0x08
117#define AB8500_GPADC_MUX_CTRL_REG	0x09
118#define AB8540_GPADC_MANDATA2L_REG	0x09
119#define AB8540_GPADC_MANDATA2H_REG	0x0A
120#define AB8540_GPADC_APEAAX_REG		0x10
121#define AB8540_GPADC_APEAAT_REG		0x11
122#define AB8540_GPADC_APEAAM_REG		0x12
123#define AB8540_GPADC_APEAAH_REG		0x13
124#define AB8540_GPADC_APEAAL_REG		0x14
125
126/*
127 * OTP register offsets
128 * Bank : 0x15
129 */
130#define AB8500_GPADC_CAL_1	0x0F
131#define AB8500_GPADC_CAL_2	0x10
132#define AB8500_GPADC_CAL_3	0x11
133#define AB8500_GPADC_CAL_4	0x12
134#define AB8500_GPADC_CAL_5	0x13
135#define AB8500_GPADC_CAL_6	0x14
136#define AB8500_GPADC_CAL_7	0x15
137/* New calibration for 8540 */
138#define AB8540_GPADC_OTP4_REG_7	0x38
139#define AB8540_GPADC_OTP4_REG_6	0x39
140#define AB8540_GPADC_OTP4_REG_5	0x3A
141
142#define AB8540_GPADC_DIS_ZERO	0x00
143#define AB8540_GPADC_EN_VBIAS_XTAL_TEMP	0x02
144
145/* GPADC constants from AB8500 spec, UM0836 */
146#define AB8500_ADC_RESOLUTION		1024
147#define AB8500_ADC_CH_BTEMP_MIN		0
148#define AB8500_ADC_CH_BTEMP_MAX		1350
149#define AB8500_ADC_CH_DIETEMP_MIN	0
150#define AB8500_ADC_CH_DIETEMP_MAX	1350
151#define AB8500_ADC_CH_CHG_V_MIN		0
152#define AB8500_ADC_CH_CHG_V_MAX		20030
153#define AB8500_ADC_CH_ACCDET2_MIN	0
154#define AB8500_ADC_CH_ACCDET2_MAX	2500
155#define AB8500_ADC_CH_VBAT_MIN		2300
156#define AB8500_ADC_CH_VBAT_MAX		4800
157#define AB8500_ADC_CH_CHG_I_MIN		0
158#define AB8500_ADC_CH_CHG_I_MAX		1500
159#define AB8500_ADC_CH_BKBAT_MIN		0
160#define AB8500_ADC_CH_BKBAT_MAX		3200
161
162/* GPADC constants from AB8540 spec */
163#define AB8500_ADC_CH_IBAT_MIN		(-6000) /* mA range measured by ADC for ibat */
164#define AB8500_ADC_CH_IBAT_MAX		6000
165#define AB8500_ADC_CH_IBAT_MIN_V	(-60)	/* mV range measured by ADC for ibat */
166#define AB8500_ADC_CH_IBAT_MAX_V	60
167#define AB8500_GPADC_IBAT_VDROP_L	(-56)  /* mV */
168#define AB8500_GPADC_IBAT_VDROP_H	56
169
170/* This is used to not lose precision when dividing to get gain and offset */
171#define AB8500_GPADC_CALIB_SCALE	1000
172/*
173 * Number of bits shift used to not lose precision
174 * when dividing to get ibat gain.
175 */
176#define AB8500_GPADC_CALIB_SHIFT_IBAT	20
177
178/* Time in ms before disabling regulator */
179#define AB8500_GPADC_AUTOSUSPEND_DELAY	1
180
181#define AB8500_GPADC_CONVERSION_TIME	500 /* ms */
182
183enum ab8500_cal_channels {
184	AB8500_CAL_VMAIN = 0,
185	AB8500_CAL_BTEMP,
186	AB8500_CAL_VBAT,
187	AB8500_CAL_IBAT,
188	AB8500_CAL_NR,
189};
190
191/**
192 * struct ab8500_adc_cal_data - Table for storing gain and offset for the
193 * calibrated ADC channels
194 * @gain: Gain of the ADC channel
195 * @offset: Offset of the ADC channel
196 * @otp_calib_hi: Calibration from OTP
197 * @otp_calib_lo: Calibration from OTP
198 */
199struct ab8500_adc_cal_data {
200	s64 gain;
201	s64 offset;
202	u16 otp_calib_hi;
203	u16 otp_calib_lo;
204};
205
206/**
207 * struct ab8500_gpadc_chan_info - per-channel GPADC info
208 * @name: name of the channel
209 * @id: the internal AB8500 ID number for the channel
210 * @hardware_control: indicate that we want to use hardware ADC control
211 * on this channel, the default is software ADC control. Hardware control
212 * is normally only used to test the battery voltage during GSM bursts
213 * and needs a hardware trigger on the GPADCTrig pin of the ASIC.
214 * @falling_edge: indicate that we want to trigger on falling edge
215 * rather than rising edge, rising edge is the default
216 * @avg_sample: how many samples to average: must be 1, 4, 8 or 16.
217 * @trig_timer: how long to wait for the trigger, in 32kHz periods:
218 * 0 .. 255 periods
219 */
220struct ab8500_gpadc_chan_info {
221	const char *name;
222	u8 id;
223	bool hardware_control;
224	bool falling_edge;
225	u8 avg_sample;
226	u8 trig_timer;
227};
228
229/**
230 * struct ab8500_gpadc - AB8500 GPADC device information
231 * @dev: pointer to the containing device
232 * @ab8500: pointer to the parent AB8500 device
233 * @chans: internal per-channel information container
234 * @nchans: number of channels
235 * @complete: pointer to the completion that indicates
236 * the completion of an gpadc conversion cycle
237 * @vddadc: pointer to the regulator supplying VDDADC
238 * @irq_sw: interrupt number that is used by gpadc for software ADC conversion
239 * @irq_hw: interrupt number that is used by gpadc for hardware ADC conversion
240 * @cal_data: array of ADC calibration data structs
241 */
242struct ab8500_gpadc {
243	struct device *dev;
244	struct ab8500 *ab8500;
245	struct ab8500_gpadc_chan_info *chans;
246	unsigned int nchans;
247	struct completion complete;
248	struct regulator *vddadc;
249	int irq_sw;
250	int irq_hw;
251	struct ab8500_adc_cal_data cal_data[AB8500_CAL_NR];
252};
253
254static struct ab8500_gpadc_chan_info *
255ab8500_gpadc_get_channel(struct ab8500_gpadc *gpadc, u8 chan)
256{
257	struct ab8500_gpadc_chan_info *ch;
258	int i;
259
260	for (i = 0; i < gpadc->nchans; i++) {
261		ch = &gpadc->chans[i];
262		if (ch->id == chan)
263			break;
264	}
265	if (i == gpadc->nchans)
266		return NULL;
267
268	return ch;
269}
270
271/**
272 * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage
273 * @gpadc: GPADC instance
274 * @ch: the sampled channel this raw value is coming from
275 * @ad_value: the raw value
276 */
277static int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc,
278				      enum ab8500_gpadc_channel ch,
279				      int ad_value)
280{
281	int res;
282
283	switch (ch) {
284	case AB8500_GPADC_CHAN_MAIN_CHARGER:
285		/* No calibration data available: just interpolate */
286		if (!gpadc->cal_data[AB8500_CAL_VMAIN].gain) {
287			res = AB8500_ADC_CH_CHG_V_MIN + (AB8500_ADC_CH_CHG_V_MAX -
288				AB8500_ADC_CH_CHG_V_MIN) * ad_value /
289				AB8500_ADC_RESOLUTION;
290			break;
291		}
292		/* Here we can use calibration */
293		res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_VMAIN].gain +
294			gpadc->cal_data[AB8500_CAL_VMAIN].offset) / AB8500_GPADC_CALIB_SCALE;
295		break;
296
297	case AB8500_GPADC_CHAN_BAT_CTRL:
298	case AB8500_GPADC_CHAN_BAT_TEMP:
299	case AB8500_GPADC_CHAN_ACC_DET_1:
300	case AB8500_GPADC_CHAN_ADC_AUX_1:
301	case AB8500_GPADC_CHAN_ADC_AUX_2:
302	case AB8500_GPADC_CHAN_XTAL_TEMP:
303		/* No calibration data available: just interpolate */
304		if (!gpadc->cal_data[AB8500_CAL_BTEMP].gain) {
305			res = AB8500_ADC_CH_BTEMP_MIN + (AB8500_ADC_CH_BTEMP_MAX -
306				AB8500_ADC_CH_BTEMP_MIN) * ad_value /
307				AB8500_ADC_RESOLUTION;
308			break;
309		}
310		/* Here we can use calibration */
311		res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_BTEMP].gain +
312			gpadc->cal_data[AB8500_CAL_BTEMP].offset) / AB8500_GPADC_CALIB_SCALE;
313		break;
314
315	case AB8500_GPADC_CHAN_VBAT_A:
316	case AB8500_GPADC_CHAN_VBAT_TRUE_MEAS:
317		/* No calibration data available: just interpolate */
318		if (!gpadc->cal_data[AB8500_CAL_VBAT].gain) {
319			res = AB8500_ADC_CH_VBAT_MIN + (AB8500_ADC_CH_VBAT_MAX -
320				AB8500_ADC_CH_VBAT_MIN) * ad_value /
321				AB8500_ADC_RESOLUTION;
322			break;
323		}
324		/* Here we can use calibration */
325		res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_VBAT].gain +
326			gpadc->cal_data[AB8500_CAL_VBAT].offset) / AB8500_GPADC_CALIB_SCALE;
327		break;
328
329	case AB8505_GPADC_CHAN_DIE_TEMP:
330		res = AB8500_ADC_CH_DIETEMP_MIN +
331			(AB8500_ADC_CH_DIETEMP_MAX - AB8500_ADC_CH_DIETEMP_MIN) * ad_value /
332			AB8500_ADC_RESOLUTION;
333		break;
334
335	case AB8500_GPADC_CHAN_ACC_DET_2:
336		res = AB8500_ADC_CH_ACCDET2_MIN +
337			(AB8500_ADC_CH_ACCDET2_MAX - AB8500_ADC_CH_ACCDET2_MIN) * ad_value /
338			AB8500_ADC_RESOLUTION;
339		break;
340
341	case AB8500_GPADC_CHAN_VBUS:
342		res = AB8500_ADC_CH_CHG_V_MIN +
343			(AB8500_ADC_CH_CHG_V_MAX - AB8500_ADC_CH_CHG_V_MIN) * ad_value /
344			AB8500_ADC_RESOLUTION;
345		break;
346
347	case AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT:
348	case AB8500_GPADC_CHAN_USB_CHARGER_CURRENT:
349		res = AB8500_ADC_CH_CHG_I_MIN +
350			(AB8500_ADC_CH_CHG_I_MAX - AB8500_ADC_CH_CHG_I_MIN) * ad_value /
351			AB8500_ADC_RESOLUTION;
352		break;
353
354	case AB8500_GPADC_CHAN_BACKUP_BAT:
355		res = AB8500_ADC_CH_BKBAT_MIN +
356			(AB8500_ADC_CH_BKBAT_MAX - AB8500_ADC_CH_BKBAT_MIN) * ad_value /
357			AB8500_ADC_RESOLUTION;
358		break;
359
360	case AB8500_GPADC_CHAN_IBAT_VIRTUAL:
361		/* No calibration data available: just interpolate */
362		if (!gpadc->cal_data[AB8500_CAL_IBAT].gain) {
363			res = AB8500_ADC_CH_IBAT_MIN + (AB8500_ADC_CH_IBAT_MAX -
364				AB8500_ADC_CH_IBAT_MIN) * ad_value /
365				AB8500_ADC_RESOLUTION;
366			break;
367		}
368		/* Here we can use calibration */
369		res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_IBAT].gain +
370				gpadc->cal_data[AB8500_CAL_IBAT].offset)
371				>> AB8500_GPADC_CALIB_SHIFT_IBAT;
372		break;
373
374	default:
375		dev_err(gpadc->dev,
376			"unknown channel ID: %d, not possible to convert\n",
377			ch);
378		res = -EINVAL;
379		break;
380
381	}
382
383	return res;
384}
385
386static int ab8500_gpadc_read(struct ab8500_gpadc *gpadc,
387			     const struct ab8500_gpadc_chan_info *ch,
388			     int *ibat)
389{
390	int ret;
391	int looplimit = 0;
392	unsigned long completion_timeout;
393	u8 val;
394	u8 low_data, high_data, low_data2, high_data2;
395	u8 ctrl1;
396	u8 ctrl23;
397	unsigned int delay_min = 0;
398	unsigned int delay_max = 0;
399	u8 data_low_addr, data_high_addr;
400
401	if (!gpadc)
402		return -ENODEV;
403
404	/* check if conversion is supported */
405	if ((gpadc->irq_sw <= 0) && !ch->hardware_control)
406		return -ENOTSUPP;
407	if ((gpadc->irq_hw <= 0) && ch->hardware_control)
408		return -ENOTSUPP;
409
410	/* Enable vddadc by grabbing PM runtime */
411	pm_runtime_get_sync(gpadc->dev);
412
413	/* Check if ADC is not busy, lock and proceed */
414	do {
415		ret = abx500_get_register_interruptible(gpadc->dev,
416			AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
417		if (ret < 0)
418			goto out;
419		if (!(val & AB8500_GPADC_STAT_BUSY))
420			break;
421		msleep(20);
422	} while (++looplimit < 10);
423	if (looplimit >= 10 && (val & AB8500_GPADC_STAT_BUSY)) {
424		dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
425		ret = -EINVAL;
426		goto out;
427	}
428
429	/* Enable GPADC */
430	ctrl1 = AB8500_GPADC_CTRL1_ENABLE;
431
432	/* Select the channel source and set average samples */
433	switch (ch->avg_sample) {
434	case 1:
435		ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_1;
436		break;
437	case 4:
438		ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_4;
439		break;
440	case 8:
441		ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_8;
442		break;
443	default:
444		ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_16;
445		break;
446	}
447
448	if (ch->hardware_control) {
449		ret = abx500_set_register_interruptible(gpadc->dev,
450				AB8500_GPADC, AB8500_GPADC_CTRL3_REG, ctrl23);
451		ctrl1 |= AB8500_GPADC_CTRL1_TRIG_ENA;
452		if (ch->falling_edge)
453			ctrl1 |= AB8500_GPADC_CTRL1_TRIG_EDGE;
454	} else {
455		ret = abx500_set_register_interruptible(gpadc->dev,
456				AB8500_GPADC, AB8500_GPADC_CTRL2_REG, ctrl23);
457	}
458	if (ret < 0) {
459		dev_err(gpadc->dev,
460			"gpadc_conversion: set avg samples failed\n");
461		goto out;
462	}
463
464	/*
465	 * Enable ADC, buffering, select rising edge and enable ADC path
466	 * charging current sense if it needed, ABB 3.0 needs some special
467	 * treatment too.
468	 */
469	switch (ch->id) {
470	case AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT:
471	case AB8500_GPADC_CHAN_USB_CHARGER_CURRENT:
472		ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA |
473			AB8500_GPADC_CTRL1_ICHAR_ENA;
474		break;
475	case AB8500_GPADC_CHAN_BAT_TEMP:
476		if (!is_ab8500_2p0_or_earlier(gpadc->ab8500)) {
477			ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA |
478				AB8500_GPADC_CTRL1_BTEMP_PULL_UP;
479			/*
480			 * Delay might be needed for ABB8500 cut 3.0, if not,
481			 * remove when hardware will be available
482			 */
483			delay_min = 1000; /* Delay in micro seconds */
484			delay_max = 10000; /* large range optimises sleepmode */
485			break;
486		}
487		fallthrough;
488	default:
489		ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA;
490		break;
491	}
492
493	/* Write configuration to control register 1 */
494	ret = abx500_set_register_interruptible(gpadc->dev,
495		AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ctrl1);
496	if (ret < 0) {
497		dev_err(gpadc->dev,
498			"gpadc_conversion: set Control register failed\n");
499		goto out;
500	}
501
502	if (delay_min != 0)
503		usleep_range(delay_min, delay_max);
504
505	if (ch->hardware_control) {
506		/* Set trigger delay timer */
507		ret = abx500_set_register_interruptible(gpadc->dev,
508			AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG,
509			ch->trig_timer);
510		if (ret < 0) {
511			dev_err(gpadc->dev,
512				"gpadc_conversion: trig timer failed\n");
513			goto out;
514		}
515		completion_timeout = 2 * HZ;
516		data_low_addr = AB8500_GPADC_AUTODATAL_REG;
517		data_high_addr = AB8500_GPADC_AUTODATAH_REG;
518	} else {
519		/* Start SW conversion */
520		ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
521			AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
522			AB8500_GPADC_CTRL1_START_SW_CONV,
523			AB8500_GPADC_CTRL1_START_SW_CONV);
524		if (ret < 0) {
525			dev_err(gpadc->dev,
526				"gpadc_conversion: start s/w conv failed\n");
527			goto out;
528		}
529		completion_timeout = msecs_to_jiffies(AB8500_GPADC_CONVERSION_TIME);
530		data_low_addr = AB8500_GPADC_MANDATAL_REG;
531		data_high_addr = AB8500_GPADC_MANDATAH_REG;
532	}
533
534	/* Wait for completion of conversion */
535	if (!wait_for_completion_timeout(&gpadc->complete,
536			completion_timeout)) {
537		dev_err(gpadc->dev,
538			"timeout didn't receive GPADC conv interrupt\n");
539		ret = -EINVAL;
540		goto out;
541	}
542
543	/* Read the converted RAW data */
544	ret = abx500_get_register_interruptible(gpadc->dev,
545			AB8500_GPADC, data_low_addr, &low_data);
546	if (ret < 0) {
547		dev_err(gpadc->dev,
548			"gpadc_conversion: read low data failed\n");
549		goto out;
550	}
551
552	ret = abx500_get_register_interruptible(gpadc->dev,
553		AB8500_GPADC, data_high_addr, &high_data);
554	if (ret < 0) {
555		dev_err(gpadc->dev,
556			"gpadc_conversion: read high data failed\n");
557		goto out;
558	}
559
560	/* Check if double conversion is required */
561	if ((ch->id == AB8500_GPADC_CHAN_BAT_CTRL_AND_IBAT) ||
562	    (ch->id == AB8500_GPADC_CHAN_VBAT_MEAS_AND_IBAT) ||
563	    (ch->id == AB8500_GPADC_CHAN_VBAT_TRUE_MEAS_AND_IBAT) ||
564	    (ch->id == AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT)) {
565
566		if (ch->hardware_control) {
567			/* not supported */
568			ret = -ENOTSUPP;
569			dev_err(gpadc->dev,
570				"gpadc_conversion: only SW double conversion supported\n");
571			goto out;
572		} else {
573			/* Read the converted RAW data 2 */
574			ret = abx500_get_register_interruptible(gpadc->dev,
575				AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG,
576				&low_data2);
577			if (ret < 0) {
578				dev_err(gpadc->dev,
579					"gpadc_conversion: read sw low data 2 failed\n");
580				goto out;
581			}
582
583			ret = abx500_get_register_interruptible(gpadc->dev,
584				AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG,
585				&high_data2);
586			if (ret < 0) {
587				dev_err(gpadc->dev,
588					"gpadc_conversion: read sw high data 2 failed\n");
589				goto out;
590			}
591			if (ibat != NULL) {
592				*ibat = (high_data2 << 8) | low_data2;
593			} else {
594				dev_warn(gpadc->dev,
595					"gpadc_conversion: ibat not stored\n");
596			}
597
598		}
599	}
600
601	/* Disable GPADC */
602	ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
603		AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_DISABLE);
604	if (ret < 0) {
605		dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
606		goto out;
607	}
608
609	/* This eventually drops the regulator */
610	pm_runtime_mark_last_busy(gpadc->dev);
611	pm_runtime_put_autosuspend(gpadc->dev);
612
613	return (high_data << 8) | low_data;
614
615out:
616	/*
617	 * It has shown to be needed to turn off the GPADC if an error occurs,
618	 * otherwise we might have problem when waiting for the busy bit in the
619	 * GPADC status register to go low. In V1.1 there wait_for_completion
620	 * seems to timeout when waiting for an interrupt.. Not seen in V2.0
621	 */
622	(void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
623		AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_DISABLE);
624	pm_runtime_put(gpadc->dev);
625	dev_err(gpadc->dev,
626		"gpadc_conversion: Failed to AD convert channel %d\n", ch->id);
627
628	return ret;
629}
630
631/**
632 * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion
633 * @irq: irq number
634 * @data: pointer to the data passed during request irq
635 *
636 * This is a interrupt service routine for gpadc conversion completion.
637 * Notifies the gpadc completion is completed and the converted raw value
638 * can be read from the registers.
639 * Returns IRQ status(IRQ_HANDLED)
640 */
641static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *data)
642{
643	struct ab8500_gpadc *gpadc = data;
644
645	complete(&gpadc->complete);
646
647	return IRQ_HANDLED;
648}
649
650static int otp_cal_regs[] = {
651	AB8500_GPADC_CAL_1,
652	AB8500_GPADC_CAL_2,
653	AB8500_GPADC_CAL_3,
654	AB8500_GPADC_CAL_4,
655	AB8500_GPADC_CAL_5,
656	AB8500_GPADC_CAL_6,
657	AB8500_GPADC_CAL_7,
658};
659
660static int otp4_cal_regs[] = {
661	AB8540_GPADC_OTP4_REG_7,
662	AB8540_GPADC_OTP4_REG_6,
663	AB8540_GPADC_OTP4_REG_5,
664};
665
666static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
667{
668	int i;
669	int ret[ARRAY_SIZE(otp_cal_regs)];
670	u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
671	int ret_otp4[ARRAY_SIZE(otp4_cal_regs)];
672	u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)];
673	int vmain_high, vmain_low;
674	int btemp_high, btemp_low;
675	int vbat_high, vbat_low;
676	int ibat_high, ibat_low;
677	s64 V_gain, V_offset, V2A_gain, V2A_offset;
678
679	/* First we read all OTP registers and store the error code */
680	for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
681		ret[i] = abx500_get_register_interruptible(gpadc->dev,
682			AB8500_OTP_EMUL, otp_cal_regs[i],  &gpadc_cal[i]);
683		if (ret[i] < 0) {
684			/* Continue anyway: maybe the other registers are OK */
685			dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
686				__func__, otp_cal_regs[i]);
687		} else {
688			/* Put this in the entropy pool as device-unique */
689			add_device_randomness(&ret[i], sizeof(ret[i]));
690		}
691	}
692
693	/*
694	 * The ADC calibration data is stored in OTP registers.
695	 * The layout of the calibration data is outlined below and a more
696	 * detailed description can be found in UM0836
697	 *
698	 * vm_h/l = vmain_high/low
699	 * bt_h/l = btemp_high/low
700	 * vb_h/l = vbat_high/low
701	 *
702	 * Data bits 8500/9540:
703	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
704	 * |.......|.......|.......|.......|.......|.......|.......|.......
705	 * |						   | vm_h9 | vm_h8
706	 * |.......|.......|.......|.......|.......|.......|.......|.......
707	 * |		   | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
708	 * |.......|.......|.......|.......|.......|.......|.......|.......
709	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
710	 * |.......|.......|.......|.......|.......|.......|.......|.......
711	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
712	 * |.......|.......|.......|.......|.......|.......|.......|.......
713	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
714	 * |.......|.......|.......|.......|.......|.......|.......|.......
715	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
716	 * |.......|.......|.......|.......|.......|.......|.......|.......
717	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
718	 * |.......|.......|.......|.......|.......|.......|.......|.......
719	 *
720	 * Data bits 8540:
721	 * OTP2
722	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
723	 * |.......|.......|.......|.......|.......|.......|.......|.......
724	 * |
725	 * |.......|.......|.......|.......|.......|.......|.......|.......
726	 * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
727	 * |.......|.......|.......|.......|.......|.......|.......|.......
728	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
729	 * |.......|.......|.......|.......|.......|.......|.......|.......
730	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
731	 * |.......|.......|.......|.......|.......|.......|.......|.......
732	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
733	 * |.......|.......|.......|.......|.......|.......|.......|.......
734	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
735	 * |.......|.......|.......|.......|.......|.......|.......|.......
736	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
737	 * |.......|.......|.......|.......|.......|.......|.......|.......
738	 *
739	 * Data bits 8540:
740	 * OTP4
741	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
742	 * |.......|.......|.......|.......|.......|.......|.......|.......
743	 * |					   | ib_h9 | ib_h8 | ib_h7
744	 * |.......|.......|.......|.......|.......|.......|.......|.......
745	 * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5
746	 * |.......|.......|.......|.......|.......|.......|.......|.......
747	 * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 |
748	 *
749	 *
750	 * Ideal output ADC codes corresponding to injected input voltages
751	 * during manufacturing is:
752	 *
753	 * vmain_high: Vin = 19500mV / ADC ideal code = 997
754	 * vmain_low:  Vin = 315mV   / ADC ideal code = 16
755	 * btemp_high: Vin = 1300mV  / ADC ideal code = 985
756	 * btemp_low:  Vin = 21mV    / ADC ideal code = 16
757	 * vbat_high:  Vin = 4700mV  / ADC ideal code = 982
758	 * vbat_low:   Vin = 2380mV  / ADC ideal code = 33
759	 */
760
761	if (is_ab8540(gpadc->ab8500)) {
762		/* Calculate gain and offset for VMAIN if all reads succeeded*/
763		if (!(ret[1] < 0 || ret[2] < 0)) {
764			vmain_high = (((gpadc_cal[1] & 0xFF) << 2) |
765				((gpadc_cal[2] & 0xC0) >> 6));
766			vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
767
768			gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_hi =
769				(u16)vmain_high;
770			gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_lo =
771				(u16)vmain_low;
772
773			gpadc->cal_data[AB8500_CAL_VMAIN].gain = AB8500_GPADC_CALIB_SCALE *
774				(19500 - 315) / (vmain_high - vmain_low);
775			gpadc->cal_data[AB8500_CAL_VMAIN].offset = AB8500_GPADC_CALIB_SCALE *
776				19500 - (AB8500_GPADC_CALIB_SCALE * (19500 - 315) /
777				(vmain_high - vmain_low)) * vmain_high;
778		} else {
779			gpadc->cal_data[AB8500_CAL_VMAIN].gain = 0;
780		}
781
782		/* Read IBAT calibration Data */
783		for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) {
784			ret_otp4[i] = abx500_get_register_interruptible(
785					gpadc->dev, AB8500_OTP_EMUL,
786					otp4_cal_regs[i],  &gpadc_otp4[i]);
787			if (ret_otp4[i] < 0)
788				dev_err(gpadc->dev,
789					"%s: read otp4 reg 0x%02x failed\n",
790					__func__, otp4_cal_regs[i]);
791		}
792
793		/* Calculate gain and offset for IBAT if all reads succeeded */
794		if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) {
795			ibat_high = (((gpadc_otp4[0] & 0x07) << 7) |
796				((gpadc_otp4[1] & 0xFE) >> 1));
797			ibat_low = (((gpadc_otp4[1] & 0x01) << 5) |
798				((gpadc_otp4[2] & 0xF8) >> 3));
799
800			gpadc->cal_data[AB8500_CAL_IBAT].otp_calib_hi =
801				(u16)ibat_high;
802			gpadc->cal_data[AB8500_CAL_IBAT].otp_calib_lo =
803				(u16)ibat_low;
804
805			V_gain = ((AB8500_GPADC_IBAT_VDROP_H - AB8500_GPADC_IBAT_VDROP_L)
806				<< AB8500_GPADC_CALIB_SHIFT_IBAT) / (ibat_high - ibat_low);
807
808			V_offset = (AB8500_GPADC_IBAT_VDROP_H << AB8500_GPADC_CALIB_SHIFT_IBAT) -
809				(((AB8500_GPADC_IBAT_VDROP_H - AB8500_GPADC_IBAT_VDROP_L) <<
810				AB8500_GPADC_CALIB_SHIFT_IBAT) / (ibat_high - ibat_low))
811				* ibat_high;
812			/*
813			 * Result obtained is in mV (at a scale factor),
814			 * we need to calculate gain and offset to get mA
815			 */
816			V2A_gain = (AB8500_ADC_CH_IBAT_MAX - AB8500_ADC_CH_IBAT_MIN)/
817				(AB8500_ADC_CH_IBAT_MAX_V - AB8500_ADC_CH_IBAT_MIN_V);
818			V2A_offset = ((AB8500_ADC_CH_IBAT_MAX_V * AB8500_ADC_CH_IBAT_MIN -
819				AB8500_ADC_CH_IBAT_MAX * AB8500_ADC_CH_IBAT_MIN_V)
820				<< AB8500_GPADC_CALIB_SHIFT_IBAT)
821				/ (AB8500_ADC_CH_IBAT_MAX_V - AB8500_ADC_CH_IBAT_MIN_V);
822
823			gpadc->cal_data[AB8500_CAL_IBAT].gain =
824				V_gain * V2A_gain;
825			gpadc->cal_data[AB8500_CAL_IBAT].offset =
826				V_offset * V2A_gain + V2A_offset;
827		} else {
828			gpadc->cal_data[AB8500_CAL_IBAT].gain = 0;
829		}
830	} else {
831		/* Calculate gain and offset for VMAIN if all reads succeeded */
832		if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
833			vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
834				((gpadc_cal[1] & 0x3F) << 2) |
835				((gpadc_cal[2] & 0xC0) >> 6));
836			vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
837
838			gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_hi =
839				(u16)vmain_high;
840			gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_lo =
841				(u16)vmain_low;
842
843			gpadc->cal_data[AB8500_CAL_VMAIN].gain = AB8500_GPADC_CALIB_SCALE *
844				(19500 - 315) / (vmain_high - vmain_low);
845
846			gpadc->cal_data[AB8500_CAL_VMAIN].offset = AB8500_GPADC_CALIB_SCALE *
847				19500 - (AB8500_GPADC_CALIB_SCALE * (19500 - 315) /
848				(vmain_high - vmain_low)) * vmain_high;
849		} else {
850			gpadc->cal_data[AB8500_CAL_VMAIN].gain = 0;
851		}
852	}
853
854	/* Calculate gain and offset for BTEMP if all reads succeeded */
855	if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
856		btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
857			(gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7));
858		btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
859
860		gpadc->cal_data[AB8500_CAL_BTEMP].otp_calib_hi = (u16)btemp_high;
861		gpadc->cal_data[AB8500_CAL_BTEMP].otp_calib_lo = (u16)btemp_low;
862
863		gpadc->cal_data[AB8500_CAL_BTEMP].gain =
864			AB8500_GPADC_CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
865		gpadc->cal_data[AB8500_CAL_BTEMP].offset = AB8500_GPADC_CALIB_SCALE * 1300 -
866			(AB8500_GPADC_CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low))
867			* btemp_high;
868	} else {
869		gpadc->cal_data[AB8500_CAL_BTEMP].gain = 0;
870	}
871
872	/* Calculate gain and offset for VBAT if all reads succeeded */
873	if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
874		vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
875		vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
876
877		gpadc->cal_data[AB8500_CAL_VBAT].otp_calib_hi = (u16)vbat_high;
878		gpadc->cal_data[AB8500_CAL_VBAT].otp_calib_lo = (u16)vbat_low;
879
880		gpadc->cal_data[AB8500_CAL_VBAT].gain = AB8500_GPADC_CALIB_SCALE *
881			(4700 - 2380) /	(vbat_high - vbat_low);
882		gpadc->cal_data[AB8500_CAL_VBAT].offset = AB8500_GPADC_CALIB_SCALE * 4700 -
883			(AB8500_GPADC_CALIB_SCALE * (4700 - 2380) /
884			(vbat_high - vbat_low)) * vbat_high;
885	} else {
886		gpadc->cal_data[AB8500_CAL_VBAT].gain = 0;
887	}
888}
889
890static int ab8500_gpadc_read_raw(struct iio_dev *indio_dev,
891				 struct iio_chan_spec const *chan,
892				 int *val, int *val2, long mask)
893{
894	struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
895	const struct ab8500_gpadc_chan_info *ch;
896	int raw_val;
897	int processed;
898
899	ch = ab8500_gpadc_get_channel(gpadc, chan->address);
900	if (!ch) {
901		dev_err(gpadc->dev, "no such channel %lu\n",
902			chan->address);
903		return -EINVAL;
904	}
905
906	raw_val = ab8500_gpadc_read(gpadc, ch, NULL);
907	if (raw_val < 0)
908		return raw_val;
909
910	if (mask == IIO_CHAN_INFO_RAW) {
911		*val = raw_val;
912		return IIO_VAL_INT;
913	}
914
915	if (mask == IIO_CHAN_INFO_PROCESSED) {
916		processed = ab8500_gpadc_ad_to_voltage(gpadc, ch->id, raw_val);
917		if (processed < 0)
918			return processed;
919
920		/* Return millivolt or milliamps or millicentigrades */
921		*val = processed;
922		return IIO_VAL_INT;
923	}
924
925	return -EINVAL;
926}
927
928static int ab8500_gpadc_fwnode_xlate(struct iio_dev *indio_dev,
929				     const struct fwnode_reference_args *iiospec)
930{
931	int i;
932
933	for (i = 0; i < indio_dev->num_channels; i++)
934		if (indio_dev->channels[i].channel == iiospec->args[0])
935			return i;
936
937	return -EINVAL;
938}
939
940static const struct iio_info ab8500_gpadc_info = {
941	.fwnode_xlate = ab8500_gpadc_fwnode_xlate,
942	.read_raw = ab8500_gpadc_read_raw,
943};
944
945static int ab8500_gpadc_runtime_suspend(struct device *dev)
946{
947	struct iio_dev *indio_dev = dev_get_drvdata(dev);
948	struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
949
950	regulator_disable(gpadc->vddadc);
951
952	return 0;
953}
954
955static int ab8500_gpadc_runtime_resume(struct device *dev)
956{
957	struct iio_dev *indio_dev = dev_get_drvdata(dev);
958	struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
959	int ret;
960
961	ret = regulator_enable(gpadc->vddadc);
962	if (ret)
963		dev_err(dev, "Failed to enable vddadc: %d\n", ret);
964
965	return ret;
966}
967
968/**
969 * ab8500_gpadc_parse_channel() - process devicetree channel configuration
970 * @dev: pointer to containing device
971 * @fwnode: fw node for the channel to configure
972 * @ch: channel info to fill in
973 * @iio_chan: IIO channel specification to fill in
974 *
975 * The devicetree will set up the channel for use with the specific device,
976 * and define usage for things like AUX GPADC inputs more precisely.
977 */
978static int ab8500_gpadc_parse_channel(struct device *dev,
979				      struct fwnode_handle *fwnode,
980				      struct ab8500_gpadc_chan_info *ch,
981				      struct iio_chan_spec *iio_chan)
982{
983	const char *name = fwnode_get_name(fwnode);
984	u32 chan;
985	int ret;
986
987	ret = fwnode_property_read_u32(fwnode, "reg", &chan);
988	if (ret) {
989		dev_err(dev, "invalid channel number %s\n", name);
990		return ret;
991	}
992	if (chan > AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT) {
993		dev_err(dev, "%s channel number out of range %d\n", name, chan);
994		return -EINVAL;
995	}
996
997	iio_chan->channel = chan;
998	iio_chan->datasheet_name = name;
999	iio_chan->indexed = 1;
1000	iio_chan->address = chan;
1001	iio_chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1002		BIT(IIO_CHAN_INFO_PROCESSED);
1003	/* Most are voltages (also temperatures), some are currents */
1004	if ((chan == AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT) ||
1005	    (chan == AB8500_GPADC_CHAN_USB_CHARGER_CURRENT))
1006		iio_chan->type = IIO_CURRENT;
1007	else
1008		iio_chan->type = IIO_VOLTAGE;
1009
1010	ch->id = chan;
1011
1012	/* Sensible defaults */
1013	ch->avg_sample = 16;
1014	ch->hardware_control = false;
1015	ch->falling_edge = false;
1016	ch->trig_timer = 0;
1017
1018	return 0;
1019}
1020
1021/**
1022 * ab8500_gpadc_parse_channels() - Parse the GPADC channels from DT
1023 * @gpadc: the GPADC to configure the channels for
1024 * @chans: the IIO channels we parsed
1025 * @nchans: the number of IIO channels we parsed
1026 */
1027static int ab8500_gpadc_parse_channels(struct ab8500_gpadc *gpadc,
1028				       struct iio_chan_spec **chans_parsed,
1029				       unsigned int *nchans_parsed)
1030{
1031	struct fwnode_handle *child;
1032	struct ab8500_gpadc_chan_info *ch;
1033	struct iio_chan_spec *iio_chans;
1034	unsigned int nchans;
1035	int i;
1036
1037	nchans = device_get_child_node_count(gpadc->dev);
1038	if (!nchans) {
1039		dev_err(gpadc->dev, "no channel children\n");
1040		return -ENODEV;
1041	}
1042	dev_info(gpadc->dev, "found %d ADC channels\n", nchans);
1043
1044	iio_chans = devm_kcalloc(gpadc->dev, nchans,
1045				 sizeof(*iio_chans), GFP_KERNEL);
1046	if (!iio_chans)
1047		return -ENOMEM;
1048
1049	gpadc->chans = devm_kcalloc(gpadc->dev, nchans,
1050				    sizeof(*gpadc->chans), GFP_KERNEL);
1051	if (!gpadc->chans)
1052		return -ENOMEM;
1053
1054	i = 0;
1055	device_for_each_child_node(gpadc->dev, child) {
1056		struct iio_chan_spec *iio_chan;
1057		int ret;
1058
1059		ch = &gpadc->chans[i];
1060		iio_chan = &iio_chans[i];
1061
1062		ret = ab8500_gpadc_parse_channel(gpadc->dev, child, ch,
1063						 iio_chan);
1064		if (ret) {
1065			fwnode_handle_put(child);
1066			return ret;
1067		}
1068		i++;
1069	}
1070	gpadc->nchans = nchans;
1071	*chans_parsed = iio_chans;
1072	*nchans_parsed = nchans;
1073
1074	return 0;
1075}
1076
1077static int ab8500_gpadc_probe(struct platform_device *pdev)
1078{
1079	struct ab8500_gpadc *gpadc;
1080	struct iio_dev *indio_dev;
1081	struct device *dev = &pdev->dev;
1082	struct iio_chan_spec *iio_chans;
1083	unsigned int n_iio_chans;
1084	int ret;
1085
1086	indio_dev = devm_iio_device_alloc(dev, sizeof(*gpadc));
1087	if (!indio_dev)
1088		return -ENOMEM;
1089
1090	platform_set_drvdata(pdev, indio_dev);
1091	gpadc = iio_priv(indio_dev);
1092
1093	gpadc->dev = dev;
1094	gpadc->ab8500 = dev_get_drvdata(dev->parent);
1095
1096	ret = ab8500_gpadc_parse_channels(gpadc, &iio_chans, &n_iio_chans);
1097	if (ret)
1098		return ret;
1099
1100	gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END");
1101	if (gpadc->irq_sw < 0)
1102		return gpadc->irq_sw;
1103
1104	if (is_ab8500(gpadc->ab8500)) {
1105		gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END");
1106		if (gpadc->irq_hw < 0)
1107			return gpadc->irq_hw;
1108	} else {
1109		gpadc->irq_hw = 0;
1110	}
1111
1112	/* Initialize completion used to notify completion of conversion */
1113	init_completion(&gpadc->complete);
1114
1115	/* Request interrupts */
1116	ret = devm_request_threaded_irq(dev, gpadc->irq_sw, NULL,
1117		ab8500_bm_gpadcconvend_handler,	IRQF_NO_SUSPEND | IRQF_ONESHOT,
1118		"ab8500-gpadc-sw", gpadc);
1119	if (ret < 0) {
1120		dev_err(dev,
1121			"failed to request sw conversion irq %d\n",
1122			gpadc->irq_sw);
1123		return ret;
1124	}
1125
1126	if (gpadc->irq_hw) {
1127		ret = devm_request_threaded_irq(dev, gpadc->irq_hw, NULL,
1128			ab8500_bm_gpadcconvend_handler,	IRQF_NO_SUSPEND | IRQF_ONESHOT,
1129			"ab8500-gpadc-hw", gpadc);
1130		if (ret < 0) {
1131			dev_err(dev,
1132				"Failed to request hw conversion irq: %d\n",
1133				gpadc->irq_hw);
1134			return ret;
1135		}
1136	}
1137
1138	/* The VTVout LDO used to power the AB8500 GPADC */
1139	gpadc->vddadc = devm_regulator_get(dev, "vddadc");
1140	if (IS_ERR(gpadc->vddadc))
1141		return dev_err_probe(dev, PTR_ERR(gpadc->vddadc),
1142				     "failed to get vddadc\n");
1143
1144	ret = regulator_enable(gpadc->vddadc);
1145	if (ret) {
1146		dev_err(dev, "failed to enable vddadc: %d\n", ret);
1147		return ret;
1148	}
1149
1150	/* Enable runtime PM */
1151	pm_runtime_get_noresume(dev);
1152	pm_runtime_set_active(dev);
1153	pm_runtime_enable(dev);
1154	pm_runtime_set_autosuspend_delay(dev, AB8500_GPADC_AUTOSUSPEND_DELAY);
1155	pm_runtime_use_autosuspend(dev);
1156
1157	ab8500_gpadc_read_calibration_data(gpadc);
1158
1159	pm_runtime_put(dev);
1160
1161	indio_dev->name = "ab8500-gpadc";
1162	indio_dev->modes = INDIO_DIRECT_MODE;
1163	indio_dev->info = &ab8500_gpadc_info;
1164	indio_dev->channels = iio_chans;
1165	indio_dev->num_channels = n_iio_chans;
1166
1167	ret = devm_iio_device_register(dev, indio_dev);
1168	if (ret)
1169		goto out_dis_pm;
1170
1171	return 0;
1172
1173out_dis_pm:
1174	pm_runtime_get_sync(dev);
1175	pm_runtime_put_noidle(dev);
1176	pm_runtime_disable(dev);
1177	regulator_disable(gpadc->vddadc);
1178
1179	return ret;
1180}
1181
1182static void ab8500_gpadc_remove(struct platform_device *pdev)
1183{
1184	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1185	struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
1186
1187	pm_runtime_get_sync(gpadc->dev);
1188	pm_runtime_put_noidle(gpadc->dev);
1189	pm_runtime_disable(gpadc->dev);
1190	regulator_disable(gpadc->vddadc);
1191}
1192
1193static DEFINE_RUNTIME_DEV_PM_OPS(ab8500_gpadc_pm_ops,
1194				 ab8500_gpadc_runtime_suspend,
1195				 ab8500_gpadc_runtime_resume, NULL);
1196
1197static struct platform_driver ab8500_gpadc_driver = {
1198	.probe = ab8500_gpadc_probe,
1199	.remove_new = ab8500_gpadc_remove,
1200	.driver = {
1201		.name = "ab8500-gpadc",
1202		.pm = pm_ptr(&ab8500_gpadc_pm_ops),
1203	},
1204};
1205builtin_platform_driver(ab8500_gpadc_driver);
1206