1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
4 *
5 * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
6 *
7 * See industrialio/accels/sca3000.h for comments.
8 */
9
10#include <linux/interrupt.h>
11#include <linux/fs.h>
12#include <linux/device.h>
13#include <linux/slab.h>
14#include <linux/kernel.h>
15#include <linux/spi/spi.h>
16#include <linux/sysfs.h>
17#include <linux/module.h>
18#include <linux/uaccess.h>
19#include <linux/iio/iio.h>
20#include <linux/iio/sysfs.h>
21#include <linux/iio/events.h>
22#include <linux/iio/buffer.h>
23#include <linux/iio/kfifo_buf.h>
24
25#define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
26#define SCA3000_READ_REG(a) ((a) << 2)
27
28#define SCA3000_REG_REVID_ADDR				0x00
29#define   SCA3000_REG_REVID_MAJOR_MASK			GENMASK(8, 4)
30#define   SCA3000_REG_REVID_MINOR_MASK			GENMASK(3, 0)
31
32#define SCA3000_REG_STATUS_ADDR				0x02
33#define   SCA3000_LOCKED				BIT(5)
34#define   SCA3000_EEPROM_CS_ERROR			BIT(1)
35#define   SCA3000_SPI_FRAME_ERROR			BIT(0)
36
37/* All reads done using register decrement so no need to directly access LSBs */
38#define SCA3000_REG_X_MSB_ADDR				0x05
39#define SCA3000_REG_Y_MSB_ADDR				0x07
40#define SCA3000_REG_Z_MSB_ADDR				0x09
41
42#define SCA3000_REG_RING_OUT_ADDR			0x0f
43
44/* Temp read untested - the e05 doesn't have the sensor */
45#define SCA3000_REG_TEMP_MSB_ADDR			0x13
46
47#define SCA3000_REG_MODE_ADDR				0x14
48#define SCA3000_MODE_PROT_MASK				0x28
49#define   SCA3000_REG_MODE_RING_BUF_ENABLE		BIT(7)
50#define   SCA3000_REG_MODE_RING_BUF_8BIT		BIT(6)
51
52/*
53 * Free fall detection triggers an interrupt if the acceleration
54 * is below a threshold for equivalent of 25cm drop
55 */
56#define   SCA3000_REG_MODE_FREE_FALL_DETECT		BIT(4)
57#define   SCA3000_REG_MODE_MEAS_MODE_NORMAL		0x00
58#define   SCA3000_REG_MODE_MEAS_MODE_OP_1		0x01
59#define   SCA3000_REG_MODE_MEAS_MODE_OP_2		0x02
60
61/*
62 * In motion detection mode the accelerations are band pass filtered
63 * (approx 1 - 25Hz) and then a programmable threshold used to trigger
64 * and interrupt.
65 */
66#define   SCA3000_REG_MODE_MEAS_MODE_MOT_DET		0x03
67#define   SCA3000_REG_MODE_MODE_MASK			0x03
68
69#define SCA3000_REG_BUF_COUNT_ADDR			0x15
70
71#define SCA3000_REG_INT_STATUS_ADDR			0x16
72#define   SCA3000_REG_INT_STATUS_THREE_QUARTERS		BIT(7)
73#define   SCA3000_REG_INT_STATUS_HALF			BIT(6)
74
75#define SCA3000_INT_STATUS_FREE_FALL			BIT(3)
76#define SCA3000_INT_STATUS_Y_TRIGGER			BIT(2)
77#define SCA3000_INT_STATUS_X_TRIGGER			BIT(1)
78#define SCA3000_INT_STATUS_Z_TRIGGER			BIT(0)
79
80/* Used to allow access to multiplexed registers */
81#define SCA3000_REG_CTRL_SEL_ADDR			0x18
82/* Only available for SCA3000-D03 and SCA3000-D01 */
83#define   SCA3000_REG_CTRL_SEL_I2C_DISABLE		0x01
84#define   SCA3000_REG_CTRL_SEL_MD_CTRL			0x02
85#define   SCA3000_REG_CTRL_SEL_MD_Y_TH			0x03
86#define   SCA3000_REG_CTRL_SEL_MD_X_TH			0x04
87#define   SCA3000_REG_CTRL_SEL_MD_Z_TH			0x05
88/*
89 * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
90 * will not function
91 */
92#define   SCA3000_REG_CTRL_SEL_OUT_CTRL			0x0B
93
94#define     SCA3000_REG_OUT_CTRL_PROT_MASK		0xE0
95#define     SCA3000_REG_OUT_CTRL_BUF_X_EN		0x10
96#define     SCA3000_REG_OUT_CTRL_BUF_Y_EN		0x08
97#define     SCA3000_REG_OUT_CTRL_BUF_Z_EN		0x04
98#define     SCA3000_REG_OUT_CTRL_BUF_DIV_MASK		0x03
99#define     SCA3000_REG_OUT_CTRL_BUF_DIV_4		0x02
100#define     SCA3000_REG_OUT_CTRL_BUF_DIV_2		0x01
101
102
103/*
104 * Control which motion detector interrupts are on.
105 * For now only OR combinations are supported.
106 */
107#define SCA3000_MD_CTRL_PROT_MASK			0xC0
108#define SCA3000_MD_CTRL_OR_Y				BIT(0)
109#define SCA3000_MD_CTRL_OR_X				BIT(1)
110#define SCA3000_MD_CTRL_OR_Z				BIT(2)
111/* Currently unsupported */
112#define SCA3000_MD_CTRL_AND_Y				BIT(3)
113#define SCA3000_MD_CTRL_AND_X				BIT(4)
114#define SCA3000_MD_CTRL_AND_Z				BIT(5)
115
116/*
117 * Some control registers of complex access methods requiring this register to
118 * be used to remove a lock.
119 */
120#define SCA3000_REG_UNLOCK_ADDR				0x1e
121
122#define SCA3000_REG_INT_MASK_ADDR			0x21
123#define   SCA3000_REG_INT_MASK_PROT_MASK		0x1C
124
125#define   SCA3000_REG_INT_MASK_RING_THREE_QUARTER	BIT(7)
126#define   SCA3000_REG_INT_MASK_RING_HALF		BIT(6)
127
128#define SCA3000_REG_INT_MASK_ALL_INTS			0x02
129#define SCA3000_REG_INT_MASK_ACTIVE_HIGH		0x01
130#define SCA3000_REG_INT_MASK_ACTIVE_LOW			0x00
131/* Values of multiplexed registers (write to ctrl_data after select) */
132#define SCA3000_REG_CTRL_DATA_ADDR			0x22
133
134/*
135 * Measurement modes available on some sca3000 series chips. Code assumes others
136 * may become available in the future.
137 *
138 * Bypass - Bypass the low-pass filter in the signal channel so as to increase
139 *          signal bandwidth.
140 *
141 * Narrow - Narrow low-pass filtering of the signal channel and half output
142 *          data rate by decimation.
143 *
144 * Wide - Widen low-pass filtering of signal channel to increase bandwidth
145 */
146#define SCA3000_OP_MODE_BYPASS				0x01
147#define SCA3000_OP_MODE_NARROW				0x02
148#define SCA3000_OP_MODE_WIDE				0x04
149#define SCA3000_MAX_TX 6
150#define SCA3000_MAX_RX 2
151
152/**
153 * struct sca3000_state - device instance state information
154 * @us:			the associated spi device
155 * @info:			chip variant information
156 * @last_timestamp:		the timestamp of the last event
157 * @mo_det_use_count:		reference counter for the motion detection unit
158 * @lock:			lock used to protect elements of sca3000_state
159 *				and the underlying device state.
160 * @tx:			dma-able transmit buffer
161 * @rx:			dma-able receive buffer
162 **/
163struct sca3000_state {
164	struct spi_device		*us;
165	const struct sca3000_chip_info	*info;
166	s64				last_timestamp;
167	int				mo_det_use_count;
168	struct mutex			lock;
169	/* Can these share a cacheline ? */
170	u8				rx[384] __aligned(IIO_DMA_MINALIGN);
171	u8				tx[6] __aligned(IIO_DMA_MINALIGN);
172};
173
174/**
175 * struct sca3000_chip_info - model dependent parameters
176 * @scale:			scale * 10^-6
177 * @temp_output:		some devices have temperature sensors.
178 * @measurement_mode_freq:	normal mode sampling frequency
179 * @measurement_mode_3db_freq:	3db cutoff frequency of the low pass filter for
180 * the normal measurement mode.
181 * @option_mode_1:		first optional mode. Not all models have one
182 * @option_mode_1_freq:		option mode 1 sampling frequency
183 * @option_mode_1_3db_freq:	3db cutoff frequency of the low pass filter for
184 * the first option mode.
185 * @option_mode_2:		second optional mode. Not all chips have one
186 * @option_mode_2_freq:		option mode 2 sampling frequency
187 * @option_mode_2_3db_freq:	3db cutoff frequency of the low pass filter for
188 * the second option mode.
189 * @mot_det_mult_xz:		Bit wise multipliers to calculate the threshold
190 * for motion detection in the x and z axis.
191 * @mot_det_mult_y:		Bit wise multipliers to calculate the threshold
192 * for motion detection in the y axis.
193 *
194 * This structure is used to hold information about the functionality of a given
195 * sca3000 variant.
196 **/
197struct sca3000_chip_info {
198	unsigned int		scale;
199	bool			temp_output;
200	int			measurement_mode_freq;
201	int			measurement_mode_3db_freq;
202	int			option_mode_1;
203	int			option_mode_1_freq;
204	int			option_mode_1_3db_freq;
205	int			option_mode_2;
206	int			option_mode_2_freq;
207	int			option_mode_2_3db_freq;
208	int			mot_det_mult_xz[6];
209	int			mot_det_mult_y[7];
210};
211
212enum sca3000_variant {
213	d01,
214	e02,
215	e04,
216	e05,
217};
218
219/*
220 * Note where option modes are not defined, the chip simply does not
221 * support any.
222 * Other chips in the sca3000 series use i2c and are not included here.
223 *
224 * Some of these devices are only listed in the family data sheet and
225 * do not actually appear to be available.
226 */
227static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
228	[d01] = {
229		.scale = 7357,
230		.temp_output = true,
231		.measurement_mode_freq = 250,
232		.measurement_mode_3db_freq = 45,
233		.option_mode_1 = SCA3000_OP_MODE_BYPASS,
234		.option_mode_1_freq = 250,
235		.option_mode_1_3db_freq = 70,
236		.mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
237		.mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
238	},
239	[e02] = {
240		.scale = 9810,
241		.measurement_mode_freq = 125,
242		.measurement_mode_3db_freq = 40,
243		.option_mode_1 = SCA3000_OP_MODE_NARROW,
244		.option_mode_1_freq = 63,
245		.option_mode_1_3db_freq = 11,
246		.mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
247		.mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
248	},
249	[e04] = {
250		.scale = 19620,
251		.measurement_mode_freq = 100,
252		.measurement_mode_3db_freq = 38,
253		.option_mode_1 = SCA3000_OP_MODE_NARROW,
254		.option_mode_1_freq = 50,
255		.option_mode_1_3db_freq = 9,
256		.option_mode_2 = SCA3000_OP_MODE_WIDE,
257		.option_mode_2_freq = 400,
258		.option_mode_2_3db_freq = 70,
259		.mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
260		.mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
261	},
262	[e05] = {
263		.scale = 61313,
264		.measurement_mode_freq = 200,
265		.measurement_mode_3db_freq = 60,
266		.option_mode_1 = SCA3000_OP_MODE_NARROW,
267		.option_mode_1_freq = 50,
268		.option_mode_1_3db_freq = 9,
269		.option_mode_2 = SCA3000_OP_MODE_WIDE,
270		.option_mode_2_freq = 400,
271		.option_mode_2_3db_freq = 75,
272		.mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
273		.mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
274	},
275};
276
277static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
278{
279	st->tx[0] = SCA3000_WRITE_REG(address);
280	st->tx[1] = val;
281	return spi_write(st->us, st->tx, 2);
282}
283
284static int sca3000_read_data_short(struct sca3000_state *st,
285				   u8 reg_address_high,
286				   int len)
287{
288	struct spi_transfer xfer[2] = {
289		{
290			.len = 1,
291			.tx_buf = st->tx,
292		}, {
293			.len = len,
294			.rx_buf = st->rx,
295		}
296	};
297	st->tx[0] = SCA3000_READ_REG(reg_address_high);
298
299	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
300}
301
302/**
303 * sca3000_reg_lock_on() - test if the ctrl register lock is on
304 * @st: Driver specific device instance data.
305 *
306 * Lock must be held.
307 **/
308static int sca3000_reg_lock_on(struct sca3000_state *st)
309{
310	int ret;
311
312	ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
313	if (ret < 0)
314		return ret;
315
316	return !(st->rx[0] & SCA3000_LOCKED);
317}
318
319/**
320 * __sca3000_unlock_reg_lock() - unlock the control registers
321 * @st: Driver specific device instance data.
322 *
323 * Note the device does not appear to support doing this in a single transfer.
324 * This should only ever be used as part of ctrl reg read.
325 * Lock must be held before calling this
326 */
327static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
328{
329	struct spi_transfer xfer[3] = {
330		{
331			.len = 2,
332			.cs_change = 1,
333			.tx_buf = st->tx,
334		}, {
335			.len = 2,
336			.cs_change = 1,
337			.tx_buf = st->tx + 2,
338		}, {
339			.len = 2,
340			.tx_buf = st->tx + 4,
341		},
342	};
343	st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
344	st->tx[1] = 0x00;
345	st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
346	st->tx[3] = 0x50;
347	st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
348	st->tx[5] = 0xA0;
349
350	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
351}
352
353/**
354 * sca3000_write_ctrl_reg() - write to a lock protect ctrl register
355 * @st: Driver specific device instance data.
356 * @sel: selects which registers we wish to write to
357 * @val: the value to be written
358 *
359 * Certain control registers are protected against overwriting by the lock
360 * register and use a shared write address. This function allows writing of
361 * these registers.
362 * Lock must be held.
363 */
364static int sca3000_write_ctrl_reg(struct sca3000_state *st,
365				  u8 sel,
366				  uint8_t val)
367{
368	int ret;
369
370	ret = sca3000_reg_lock_on(st);
371	if (ret < 0)
372		goto error_ret;
373	if (ret) {
374		ret = __sca3000_unlock_reg_lock(st);
375		if (ret)
376			goto error_ret;
377	}
378
379	/* Set the control select register */
380	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
381	if (ret)
382		goto error_ret;
383
384	/* Write the actual value into the register */
385	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
386
387error_ret:
388	return ret;
389}
390
391/**
392 * sca3000_read_ctrl_reg() - read from lock protected control register.
393 * @st: Driver specific device instance data.
394 * @ctrl_reg: Which ctrl register do we want to read.
395 *
396 * Lock must be held.
397 */
398static int sca3000_read_ctrl_reg(struct sca3000_state *st,
399				 u8 ctrl_reg)
400{
401	int ret;
402
403	ret = sca3000_reg_lock_on(st);
404	if (ret < 0)
405		goto error_ret;
406	if (ret) {
407		ret = __sca3000_unlock_reg_lock(st);
408		if (ret)
409			goto error_ret;
410	}
411	/* Set the control select register */
412	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
413	if (ret)
414		goto error_ret;
415	ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
416	if (ret)
417		goto error_ret;
418	return st->rx[0];
419error_ret:
420	return ret;
421}
422
423/**
424 * sca3000_print_rev() - sysfs interface to read the chip revision number
425 * @indio_dev: Device instance specific generic IIO data.
426 * Driver specific device instance data can be obtained via
427 * iio_priv(indio_dev)
428 */
429static int sca3000_print_rev(struct iio_dev *indio_dev)
430{
431	int ret;
432	struct sca3000_state *st = iio_priv(indio_dev);
433
434	mutex_lock(&st->lock);
435	ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
436	if (ret < 0)
437		goto error_ret;
438	dev_info(&indio_dev->dev,
439		 "sca3000 revision major=%lu, minor=%lu\n",
440		 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
441		 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
442error_ret:
443	mutex_unlock(&st->lock);
444
445	return ret;
446}
447
448static ssize_t
449sca3000_show_available_3db_freqs(struct device *dev,
450				 struct device_attribute *attr,
451				 char *buf)
452{
453	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
454	struct sca3000_state *st = iio_priv(indio_dev);
455	int len;
456
457	len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
458	if (st->info->option_mode_1)
459		len += sprintf(buf + len, " %d",
460			       st->info->option_mode_1_3db_freq);
461	if (st->info->option_mode_2)
462		len += sprintf(buf + len, " %d",
463			       st->info->option_mode_2_3db_freq);
464	len += sprintf(buf + len, "\n");
465
466	return len;
467}
468
469static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
470		       S_IRUGO, sca3000_show_available_3db_freqs,
471		       NULL, 0);
472
473static const struct iio_event_spec sca3000_event = {
474	.type = IIO_EV_TYPE_MAG,
475	.dir = IIO_EV_DIR_RISING,
476	.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
477};
478
479/*
480 * Note the hack in the number of bits to pretend we have 2 more than
481 * we do in the fifo.
482 */
483#define SCA3000_CHAN(index, mod)				\
484	{							\
485		.type = IIO_ACCEL,				\
486		.modified = 1,					\
487		.channel2 = mod,				\
488		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
489		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
490			BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
491		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
492		.address = index,				\
493		.scan_index = index,				\
494		.scan_type = {					\
495			.sign = 's',				\
496			.realbits = 13,				\
497			.storagebits = 16,			\
498			.shift = 3,				\
499			.endianness = IIO_BE,			\
500		},						\
501		.event_spec = &sca3000_event,			\
502		.num_event_specs = 1,				\
503	}
504
505static const struct iio_event_spec sca3000_freefall_event_spec = {
506	.type = IIO_EV_TYPE_MAG,
507	.dir = IIO_EV_DIR_FALLING,
508	.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
509		BIT(IIO_EV_INFO_PERIOD),
510};
511
512static const struct iio_chan_spec sca3000_channels[] = {
513	SCA3000_CHAN(0, IIO_MOD_X),
514	SCA3000_CHAN(1, IIO_MOD_Y),
515	SCA3000_CHAN(2, IIO_MOD_Z),
516	{
517		.type = IIO_ACCEL,
518		.modified = 1,
519		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
520		.scan_index = -1, /* Fake channel */
521		.event_spec = &sca3000_freefall_event_spec,
522		.num_event_specs = 1,
523	},
524};
525
526static const struct iio_chan_spec sca3000_channels_with_temp[] = {
527	SCA3000_CHAN(0, IIO_MOD_X),
528	SCA3000_CHAN(1, IIO_MOD_Y),
529	SCA3000_CHAN(2, IIO_MOD_Z),
530	{
531		.type = IIO_TEMP,
532		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
533		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
534			BIT(IIO_CHAN_INFO_OFFSET),
535		/* No buffer support */
536		.scan_index = -1,
537		.scan_type = {
538			.sign = 'u',
539			.realbits = 9,
540			.storagebits = 16,
541			.shift = 5,
542			.endianness = IIO_BE,
543		},
544	},
545	{
546		.type = IIO_ACCEL,
547		.modified = 1,
548		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
549		.scan_index = -1, /* Fake channel */
550		.event_spec = &sca3000_freefall_event_spec,
551		.num_event_specs = 1,
552	},
553};
554
555static u8 sca3000_addresses[3][3] = {
556	[0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
557	       SCA3000_MD_CTRL_OR_X},
558	[1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
559	       SCA3000_MD_CTRL_OR_Y},
560	[2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
561	       SCA3000_MD_CTRL_OR_Z},
562};
563
564/**
565 * __sca3000_get_base_freq() - obtain mode specific base frequency
566 * @st: Private driver specific device instance specific state.
567 * @info: chip type specific information.
568 * @base_freq: Base frequency for the current measurement mode.
569 *
570 * lock must be held
571 */
572static inline int __sca3000_get_base_freq(struct sca3000_state *st,
573					  const struct sca3000_chip_info *info,
574					  int *base_freq)
575{
576	int ret;
577
578	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
579	if (ret)
580		goto error_ret;
581	switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
582	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
583		*base_freq = info->measurement_mode_freq;
584		break;
585	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
586		*base_freq = info->option_mode_1_freq;
587		break;
588	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
589		*base_freq = info->option_mode_2_freq;
590		break;
591	default:
592		ret = -EINVAL;
593	}
594error_ret:
595	return ret;
596}
597
598/**
599 * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
600 * @st: Private driver specific device instance specific state.
601 * @val: The frequency read back.
602 *
603 * lock must be held
604 **/
605static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
606{
607	int ret;
608
609	ret = __sca3000_get_base_freq(st, st->info, val);
610	if (ret)
611		return ret;
612
613	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
614	if (ret < 0)
615		return ret;
616
617	if (*val > 0) {
618		ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
619		switch (ret) {
620		case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
621			*val /= 2;
622			break;
623		case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
624			*val /= 4;
625			break;
626		}
627	}
628
629	return 0;
630}
631
632/**
633 * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
634 * @st: Private driver specific device instance specific state.
635 * @val: The frequency desired.
636 *
637 * lock must be held
638 */
639static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
640{
641	int ret, base_freq, ctrlval;
642
643	ret = __sca3000_get_base_freq(st, st->info, &base_freq);
644	if (ret)
645		return ret;
646
647	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
648	if (ret < 0)
649		return ret;
650
651	ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
652
653	if (val == base_freq / 2)
654		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
655	if (val == base_freq / 4)
656		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
657	else if (val != base_freq)
658		return -EINVAL;
659
660	return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
661				     ctrlval);
662}
663
664static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
665{
666	int ret;
667
668	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
669	if (ret)
670		return ret;
671
672	/* mask bottom 2 bits - only ones that are relevant */
673	st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
674	switch (st->rx[0]) {
675	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
676		*val = st->info->measurement_mode_3db_freq;
677		return IIO_VAL_INT;
678	case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
679		return -EBUSY;
680	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
681		*val = st->info->option_mode_1_3db_freq;
682		return IIO_VAL_INT;
683	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
684		*val = st->info->option_mode_2_3db_freq;
685		return IIO_VAL_INT;
686	default:
687		return -EINVAL;
688	}
689}
690
691static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
692{
693	int ret;
694	int mode;
695
696	if (val == st->info->measurement_mode_3db_freq)
697		mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
698	else if (st->info->option_mode_1 &&
699		 (val == st->info->option_mode_1_3db_freq))
700		mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
701	else if (st->info->option_mode_2 &&
702		 (val == st->info->option_mode_2_3db_freq))
703		mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
704	else
705		return -EINVAL;
706	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
707	if (ret)
708		return ret;
709
710	st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
711	st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
712
713	return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
714}
715
716static int sca3000_read_raw(struct iio_dev *indio_dev,
717			    struct iio_chan_spec const *chan,
718			    int *val,
719			    int *val2,
720			    long mask)
721{
722	struct sca3000_state *st = iio_priv(indio_dev);
723	int ret;
724	u8 address;
725
726	switch (mask) {
727	case IIO_CHAN_INFO_RAW:
728		mutex_lock(&st->lock);
729		if (chan->type == IIO_ACCEL) {
730			if (st->mo_det_use_count) {
731				mutex_unlock(&st->lock);
732				return -EBUSY;
733			}
734			address = sca3000_addresses[chan->address][0];
735			ret = sca3000_read_data_short(st, address, 2);
736			if (ret < 0) {
737				mutex_unlock(&st->lock);
738				return ret;
739			}
740			*val = sign_extend32(be16_to_cpup((__be16 *)st->rx) >>
741					     chan->scan_type.shift,
742					     chan->scan_type.realbits - 1);
743		} else {
744			/* get the temperature when available */
745			ret = sca3000_read_data_short(st,
746						      SCA3000_REG_TEMP_MSB_ADDR,
747						      2);
748			if (ret < 0) {
749				mutex_unlock(&st->lock);
750				return ret;
751			}
752			*val = (be16_to_cpup((__be16 *)st->rx) >>
753				chan->scan_type.shift) &
754				GENMASK(chan->scan_type.realbits - 1, 0);
755		}
756		mutex_unlock(&st->lock);
757		return IIO_VAL_INT;
758	case IIO_CHAN_INFO_SCALE:
759		*val = 0;
760		if (chan->type == IIO_ACCEL)
761			*val2 = st->info->scale;
762		else /* temperature */
763			*val2 = 555556;
764		return IIO_VAL_INT_PLUS_MICRO;
765	case IIO_CHAN_INFO_OFFSET:
766		*val = -214;
767		*val2 = 600000;
768		return IIO_VAL_INT_PLUS_MICRO;
769	case IIO_CHAN_INFO_SAMP_FREQ:
770		mutex_lock(&st->lock);
771		ret = sca3000_read_raw_samp_freq(st, val);
772		mutex_unlock(&st->lock);
773		return ret ? ret : IIO_VAL_INT;
774	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
775		mutex_lock(&st->lock);
776		ret = sca3000_read_3db_freq(st, val);
777		mutex_unlock(&st->lock);
778		return ret;
779	default:
780		return -EINVAL;
781	}
782}
783
784static int sca3000_write_raw(struct iio_dev *indio_dev,
785			     struct iio_chan_spec const *chan,
786			     int val, int val2, long mask)
787{
788	struct sca3000_state *st = iio_priv(indio_dev);
789	int ret;
790
791	switch (mask) {
792	case IIO_CHAN_INFO_SAMP_FREQ:
793		if (val2)
794			return -EINVAL;
795		mutex_lock(&st->lock);
796		ret = sca3000_write_raw_samp_freq(st, val);
797		mutex_unlock(&st->lock);
798		return ret;
799	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
800		if (val2)
801			return -EINVAL;
802		mutex_lock(&st->lock);
803		ret = sca3000_write_3db_freq(st, val);
804		mutex_unlock(&st->lock);
805		return ret;
806	default:
807		return -EINVAL;
808	}
809
810	return ret;
811}
812
813/**
814 * sca3000_read_av_freq() - sysfs function to get available frequencies
815 * @dev: Device structure for this device.
816 * @attr: Description of the attribute.
817 * @buf: Incoming string
818 *
819 * The later modes are only relevant to the ring buffer - and depend on current
820 * mode. Note that data sheet gives rather wide tolerances for these so integer
821 * division will give good enough answer and not all chips have them specified
822 * at all.
823 **/
824static ssize_t sca3000_read_av_freq(struct device *dev,
825				    struct device_attribute *attr,
826				    char *buf)
827{
828	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
829	struct sca3000_state *st = iio_priv(indio_dev);
830	int len = 0, ret, val;
831
832	mutex_lock(&st->lock);
833	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
834	val = st->rx[0];
835	mutex_unlock(&st->lock);
836	if (ret)
837		goto error_ret;
838
839	switch (val & SCA3000_REG_MODE_MODE_MASK) {
840	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
841		len += sprintf(buf + len, "%d %d %d\n",
842			       st->info->measurement_mode_freq,
843			       st->info->measurement_mode_freq / 2,
844			       st->info->measurement_mode_freq / 4);
845		break;
846	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
847		len += sprintf(buf + len, "%d %d %d\n",
848			       st->info->option_mode_1_freq,
849			       st->info->option_mode_1_freq / 2,
850			       st->info->option_mode_1_freq / 4);
851		break;
852	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
853		len += sprintf(buf + len, "%d %d %d\n",
854			       st->info->option_mode_2_freq,
855			       st->info->option_mode_2_freq / 2,
856			       st->info->option_mode_2_freq / 4);
857		break;
858	}
859	return len;
860error_ret:
861	return ret;
862}
863
864/*
865 * Should only really be registered if ring buffer support is compiled in.
866 * Does no harm however and doing it right would add a fair bit of complexity
867 */
868static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
869
870/*
871 * sca3000_read_event_value() - query of a threshold or period
872 */
873static int sca3000_read_event_value(struct iio_dev *indio_dev,
874				    const struct iio_chan_spec *chan,
875				    enum iio_event_type type,
876				    enum iio_event_direction dir,
877				    enum iio_event_info info,
878				    int *val, int *val2)
879{
880	struct sca3000_state *st = iio_priv(indio_dev);
881	long ret;
882	int i;
883
884	switch (info) {
885	case IIO_EV_INFO_VALUE:
886		mutex_lock(&st->lock);
887		ret = sca3000_read_ctrl_reg(st,
888					    sca3000_addresses[chan->address][1]);
889		mutex_unlock(&st->lock);
890		if (ret < 0)
891			return ret;
892		*val = 0;
893		if (chan->channel2 == IIO_MOD_Y)
894			for_each_set_bit(i, &ret,
895					 ARRAY_SIZE(st->info->mot_det_mult_y))
896				*val += st->info->mot_det_mult_y[i];
897		else
898			for_each_set_bit(i, &ret,
899					 ARRAY_SIZE(st->info->mot_det_mult_xz))
900				*val += st->info->mot_det_mult_xz[i];
901
902		return IIO_VAL_INT;
903	case IIO_EV_INFO_PERIOD:
904		*val = 0;
905		*val2 = 226000;
906		return IIO_VAL_INT_PLUS_MICRO;
907	default:
908		return -EINVAL;
909	}
910}
911
912/**
913 * sca3000_write_event_value() - control of threshold and period
914 * @indio_dev: Device instance specific IIO information.
915 * @chan: Description of the channel for which the event is being
916 * configured.
917 * @type: The type of event being configured, here magnitude rising
918 * as everything else is read only.
919 * @dir: Direction of the event (here rising)
920 * @info: What information about the event are we configuring.
921 * Here the threshold only.
922 * @val: Integer part of the value being written..
923 * @val2: Non integer part of the value being written. Here always 0.
924 */
925static int sca3000_write_event_value(struct iio_dev *indio_dev,
926				     const struct iio_chan_spec *chan,
927				     enum iio_event_type type,
928				     enum iio_event_direction dir,
929				     enum iio_event_info info,
930				     int val, int val2)
931{
932	struct sca3000_state *st = iio_priv(indio_dev);
933	int ret;
934	int i;
935	u8 nonlinear = 0;
936
937	if (chan->channel2 == IIO_MOD_Y) {
938		i = ARRAY_SIZE(st->info->mot_det_mult_y);
939		while (i > 0)
940			if (val >= st->info->mot_det_mult_y[--i]) {
941				nonlinear |= (1 << i);
942				val -= st->info->mot_det_mult_y[i];
943			}
944	} else {
945		i = ARRAY_SIZE(st->info->mot_det_mult_xz);
946		while (i > 0)
947			if (val >= st->info->mot_det_mult_xz[--i]) {
948				nonlinear |= (1 << i);
949				val -= st->info->mot_det_mult_xz[i];
950			}
951	}
952
953	mutex_lock(&st->lock);
954	ret = sca3000_write_ctrl_reg(st,
955				     sca3000_addresses[chan->address][1],
956				     nonlinear);
957	mutex_unlock(&st->lock);
958
959	return ret;
960}
961
962static struct attribute *sca3000_attributes[] = {
963	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
964	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
965	NULL,
966};
967
968static const struct attribute_group sca3000_attribute_group = {
969	.attrs = sca3000_attributes,
970};
971
972static int sca3000_read_data(struct sca3000_state *st,
973			     u8 reg_address_high,
974			     u8 *rx,
975			     int len)
976{
977	int ret;
978	struct spi_transfer xfer[2] = {
979		{
980			.len = 1,
981			.tx_buf = st->tx,
982		}, {
983			.len = len,
984			.rx_buf = rx,
985		}
986	};
987
988	st->tx[0] = SCA3000_READ_REG(reg_address_high);
989	ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
990	if (ret) {
991		dev_err(&st->us->dev, "problem reading register\n");
992		return ret;
993	}
994
995	return 0;
996}
997
998/**
999 * sca3000_ring_int_process() - ring specific interrupt handling.
1000 * @val: Value of the interrupt status register.
1001 * @indio_dev: Device instance specific IIO device structure.
1002 */
1003static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
1004{
1005	struct sca3000_state *st = iio_priv(indio_dev);
1006	int ret, i, num_available;
1007
1008	mutex_lock(&st->lock);
1009
1010	if (val & SCA3000_REG_INT_STATUS_HALF) {
1011		ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1012					      1);
1013		if (ret)
1014			goto error_ret;
1015		num_available = st->rx[0];
1016		/*
1017		 * num_available is the total number of samples available
1018		 * i.e. number of time points * number of channels.
1019		 */
1020		ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
1021					num_available * 2);
1022		if (ret)
1023			goto error_ret;
1024		for (i = 0; i < num_available / 3; i++) {
1025			/*
1026			 * Dirty hack to cover for 11 bit in fifo, 13 bit
1027			 * direct reading.
1028			 *
1029			 * In theory the bottom two bits are undefined.
1030			 * In reality they appear to always be 0.
1031			 */
1032			iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
1033		}
1034	}
1035error_ret:
1036	mutex_unlock(&st->lock);
1037}
1038
1039/**
1040 * sca3000_event_handler() - handling ring and non ring events
1041 * @irq: The irq being handled.
1042 * @private: struct iio_device pointer for the device.
1043 *
1044 * Ring related interrupt handler. Depending on event, push to
1045 * the ring buffer event chrdev or the event one.
1046 *
1047 * This function is complicated by the fact that the devices can signify ring
1048 * and non ring events via the same interrupt line and they can only
1049 * be distinguished via a read of the relevant status register.
1050 */
1051static irqreturn_t sca3000_event_handler(int irq, void *private)
1052{
1053	struct iio_dev *indio_dev = private;
1054	struct sca3000_state *st = iio_priv(indio_dev);
1055	int ret, val;
1056	s64 last_timestamp = iio_get_time_ns(indio_dev);
1057
1058	/*
1059	 * Could lead if badly timed to an extra read of status reg,
1060	 * but ensures no interrupt is missed.
1061	 */
1062	mutex_lock(&st->lock);
1063	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1064	val = st->rx[0];
1065	mutex_unlock(&st->lock);
1066	if (ret)
1067		goto done;
1068
1069	sca3000_ring_int_process(val, indio_dev);
1070
1071	if (val & SCA3000_INT_STATUS_FREE_FALL)
1072		iio_push_event(indio_dev,
1073			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1074						  0,
1075						  IIO_MOD_X_AND_Y_AND_Z,
1076						  IIO_EV_TYPE_MAG,
1077						  IIO_EV_DIR_FALLING),
1078			       last_timestamp);
1079
1080	if (val & SCA3000_INT_STATUS_Y_TRIGGER)
1081		iio_push_event(indio_dev,
1082			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1083						  0,
1084						  IIO_MOD_Y,
1085						  IIO_EV_TYPE_MAG,
1086						  IIO_EV_DIR_RISING),
1087			       last_timestamp);
1088
1089	if (val & SCA3000_INT_STATUS_X_TRIGGER)
1090		iio_push_event(indio_dev,
1091			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1092						  0,
1093						  IIO_MOD_X,
1094						  IIO_EV_TYPE_MAG,
1095						  IIO_EV_DIR_RISING),
1096			       last_timestamp);
1097
1098	if (val & SCA3000_INT_STATUS_Z_TRIGGER)
1099		iio_push_event(indio_dev,
1100			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1101						  0,
1102						  IIO_MOD_Z,
1103						  IIO_EV_TYPE_MAG,
1104						  IIO_EV_DIR_RISING),
1105			       last_timestamp);
1106
1107done:
1108	return IRQ_HANDLED;
1109}
1110
1111/*
1112 * sca3000_read_event_config() what events are enabled
1113 */
1114static int sca3000_read_event_config(struct iio_dev *indio_dev,
1115				     const struct iio_chan_spec *chan,
1116				     enum iio_event_type type,
1117				     enum iio_event_direction dir)
1118{
1119	struct sca3000_state *st = iio_priv(indio_dev);
1120	int ret;
1121	/* read current value of mode register */
1122	mutex_lock(&st->lock);
1123
1124	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1125	if (ret)
1126		goto error_ret;
1127
1128	switch (chan->channel2) {
1129	case IIO_MOD_X_AND_Y_AND_Z:
1130		ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
1131		break;
1132	case IIO_MOD_X:
1133	case IIO_MOD_Y:
1134	case IIO_MOD_Z:
1135		/*
1136		 * Motion detection mode cannot run at the same time as
1137		 * acceleration data being read.
1138		 */
1139		if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1140		    != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
1141			ret = 0;
1142		} else {
1143			ret = sca3000_read_ctrl_reg(st,
1144						SCA3000_REG_CTRL_SEL_MD_CTRL);
1145			if (ret < 0)
1146				goto error_ret;
1147			/* only supporting logical or's for now */
1148			ret = !!(ret & sca3000_addresses[chan->address][2]);
1149		}
1150		break;
1151	default:
1152		ret = -EINVAL;
1153	}
1154
1155error_ret:
1156	mutex_unlock(&st->lock);
1157
1158	return ret;
1159}
1160
1161static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
1162{
1163	struct sca3000_state *st = iio_priv(indio_dev);
1164	int ret;
1165
1166	/* read current value of mode register */
1167	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1168	if (ret)
1169		return ret;
1170
1171	/* if off and should be on */
1172	if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1173		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1174					 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
1175	/* if on and should be off */
1176	else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1177		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1178					 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
1179	else
1180		return 0;
1181}
1182
1183static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
1184					   int state)
1185{
1186	struct sca3000_state *st = iio_priv(indio_dev);
1187	int ret, ctrlval;
1188
1189	/*
1190	 * First read the motion detector config to find out if
1191	 * this axis is on
1192	 */
1193	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1194	if (ret < 0)
1195		return ret;
1196	ctrlval = ret;
1197	/* if off and should be on */
1198	if (state && !(ctrlval & sca3000_addresses[axis][2])) {
1199		ret = sca3000_write_ctrl_reg(st,
1200					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1201					     ctrlval |
1202					     sca3000_addresses[axis][2]);
1203		if (ret)
1204			return ret;
1205		st->mo_det_use_count++;
1206	} else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
1207		ret = sca3000_write_ctrl_reg(st,
1208					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1209					     ctrlval &
1210					     ~(sca3000_addresses[axis][2]));
1211		if (ret)
1212			return ret;
1213		st->mo_det_use_count--;
1214	}
1215
1216	/* read current value of mode register */
1217	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1218	if (ret)
1219		return ret;
1220	/* if off and should be on */
1221	if ((st->mo_det_use_count) &&
1222	    ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1223	     != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1224		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1225			(st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
1226			| SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
1227	/* if on and should be off */
1228	else if (!(st->mo_det_use_count) &&
1229		 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1230		  == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1231		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1232			st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
1233	else
1234		return 0;
1235}
1236
1237/**
1238 * sca3000_write_event_config() - simple on off control for motion detector
1239 * @indio_dev: IIO device instance specific structure. Data specific to this
1240 * particular driver may be accessed via iio_priv(indio_dev).
1241 * @chan: Description of the channel whose event we are configuring.
1242 * @type: The type of event.
1243 * @dir: The direction of the event.
1244 * @state: Desired state of event being configured.
1245 *
1246 * This is a per axis control, but enabling any will result in the
1247 * motion detector unit being enabled.
1248 * N.B. enabling motion detector stops normal data acquisition.
1249 * There is a complexity in knowing which mode to return to when
1250 * this mode is disabled.  Currently normal mode is assumed.
1251 **/
1252static int sca3000_write_event_config(struct iio_dev *indio_dev,
1253				      const struct iio_chan_spec *chan,
1254				      enum iio_event_type type,
1255				      enum iio_event_direction dir,
1256				      int state)
1257{
1258	struct sca3000_state *st = iio_priv(indio_dev);
1259	int ret;
1260
1261	mutex_lock(&st->lock);
1262	switch (chan->channel2) {
1263	case IIO_MOD_X_AND_Y_AND_Z:
1264		ret = sca3000_freefall_set_state(indio_dev, state);
1265		break;
1266
1267	case IIO_MOD_X:
1268	case IIO_MOD_Y:
1269	case IIO_MOD_Z:
1270		ret = sca3000_motion_detect_set_state(indio_dev,
1271						      chan->address,
1272						      state);
1273		break;
1274	default:
1275		ret = -EINVAL;
1276		break;
1277	}
1278	mutex_unlock(&st->lock);
1279
1280	return ret;
1281}
1282
1283static inline
1284int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
1285{
1286	struct sca3000_state *st = iio_priv(indio_dev);
1287	int ret;
1288
1289	mutex_lock(&st->lock);
1290	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1291	if (ret)
1292		goto error_ret;
1293	if (state) {
1294		dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
1295		ret = sca3000_write_reg(st,
1296			SCA3000_REG_MODE_ADDR,
1297			(st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
1298	} else
1299		ret = sca3000_write_reg(st,
1300			SCA3000_REG_MODE_ADDR,
1301			(st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
1302error_ret:
1303	mutex_unlock(&st->lock);
1304
1305	return ret;
1306}
1307
1308/**
1309 * sca3000_hw_ring_preenable() - hw ring buffer preenable function
1310 * @indio_dev: structure representing the IIO device. Device instance
1311 * specific state can be accessed via iio_priv(indio_dev).
1312 *
1313 * Very simple enable function as the chip will allows normal reads
1314 * during ring buffer operation so as long as it is indeed running
1315 * before we notify the core, the precise ordering does not matter.
1316 */
1317static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
1318{
1319	int ret;
1320	struct sca3000_state *st = iio_priv(indio_dev);
1321
1322	mutex_lock(&st->lock);
1323
1324	/* Enable the 50% full interrupt */
1325	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1326	if (ret)
1327		goto error_unlock;
1328	ret = sca3000_write_reg(st,
1329				SCA3000_REG_INT_MASK_ADDR,
1330				st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
1331	if (ret)
1332		goto error_unlock;
1333
1334	mutex_unlock(&st->lock);
1335
1336	return __sca3000_hw_ring_state_set(indio_dev, 1);
1337
1338error_unlock:
1339	mutex_unlock(&st->lock);
1340
1341	return ret;
1342}
1343
1344static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
1345{
1346	int ret;
1347	struct sca3000_state *st = iio_priv(indio_dev);
1348
1349	ret = __sca3000_hw_ring_state_set(indio_dev, 0);
1350	if (ret)
1351		return ret;
1352
1353	/* Disable the 50% full interrupt */
1354	mutex_lock(&st->lock);
1355
1356	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1357	if (ret)
1358		goto unlock;
1359	ret = sca3000_write_reg(st,
1360				SCA3000_REG_INT_MASK_ADDR,
1361				st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
1362unlock:
1363	mutex_unlock(&st->lock);
1364	return ret;
1365}
1366
1367static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
1368	.preenable = &sca3000_hw_ring_preenable,
1369	.postdisable = &sca3000_hw_ring_postdisable,
1370};
1371
1372/**
1373 * sca3000_clean_setup() - get the device into a predictable state
1374 * @st: Device instance specific private data structure
1375 *
1376 * Devices use flash memory to store many of the register values
1377 * and hence can come up in somewhat unpredictable states.
1378 * Hence reset everything on driver load.
1379 */
1380static int sca3000_clean_setup(struct sca3000_state *st)
1381{
1382	int ret;
1383
1384	mutex_lock(&st->lock);
1385	/* Ensure all interrupts have been acknowledged */
1386	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1387	if (ret)
1388		goto error_ret;
1389
1390	/* Turn off all motion detection channels */
1391	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1392	if (ret < 0)
1393		goto error_ret;
1394	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1395				     ret & SCA3000_MD_CTRL_PROT_MASK);
1396	if (ret)
1397		goto error_ret;
1398
1399	/* Disable ring buffer */
1400	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1401	if (ret < 0)
1402		goto error_ret;
1403	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1404				     (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
1405				     | SCA3000_REG_OUT_CTRL_BUF_X_EN
1406				     | SCA3000_REG_OUT_CTRL_BUF_Y_EN
1407				     | SCA3000_REG_OUT_CTRL_BUF_Z_EN
1408				     | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
1409	if (ret)
1410		goto error_ret;
1411	/* Enable interrupts, relevant to mode and set up as active low */
1412	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1413	if (ret)
1414		goto error_ret;
1415	ret = sca3000_write_reg(st,
1416				SCA3000_REG_INT_MASK_ADDR,
1417				(ret & SCA3000_REG_INT_MASK_PROT_MASK)
1418				| SCA3000_REG_INT_MASK_ACTIVE_LOW);
1419	if (ret)
1420		goto error_ret;
1421	/*
1422	 * Select normal measurement mode, free fall off, ring off
1423	 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1424	 * as that occurs in one of the example on the datasheet
1425	 */
1426	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1427	if (ret)
1428		goto error_ret;
1429	ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1430				(st->rx[0] & SCA3000_MODE_PROT_MASK));
1431
1432error_ret:
1433	mutex_unlock(&st->lock);
1434	return ret;
1435}
1436
1437static const struct iio_info sca3000_info = {
1438	.attrs = &sca3000_attribute_group,
1439	.read_raw = &sca3000_read_raw,
1440	.write_raw = &sca3000_write_raw,
1441	.read_event_value = &sca3000_read_event_value,
1442	.write_event_value = &sca3000_write_event_value,
1443	.read_event_config = &sca3000_read_event_config,
1444	.write_event_config = &sca3000_write_event_config,
1445};
1446
1447static int sca3000_probe(struct spi_device *spi)
1448{
1449	int ret;
1450	struct sca3000_state *st;
1451	struct iio_dev *indio_dev;
1452
1453	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1454	if (!indio_dev)
1455		return -ENOMEM;
1456
1457	st = iio_priv(indio_dev);
1458	spi_set_drvdata(spi, indio_dev);
1459	st->us = spi;
1460	mutex_init(&st->lock);
1461	st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1462					      ->driver_data];
1463
1464	indio_dev->name = spi_get_device_id(spi)->name;
1465	indio_dev->info = &sca3000_info;
1466	if (st->info->temp_output) {
1467		indio_dev->channels = sca3000_channels_with_temp;
1468		indio_dev->num_channels =
1469			ARRAY_SIZE(sca3000_channels_with_temp);
1470	} else {
1471		indio_dev->channels = sca3000_channels;
1472		indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1473	}
1474	indio_dev->modes = INDIO_DIRECT_MODE;
1475
1476	ret = devm_iio_kfifo_buffer_setup(&spi->dev, indio_dev,
1477					  &sca3000_ring_setup_ops);
1478	if (ret)
1479		return ret;
1480
1481	if (spi->irq) {
1482		ret = request_threaded_irq(spi->irq,
1483					   NULL,
1484					   &sca3000_event_handler,
1485					   IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1486					   "sca3000",
1487					   indio_dev);
1488		if (ret)
1489			return ret;
1490	}
1491	ret = sca3000_clean_setup(st);
1492	if (ret)
1493		goto error_free_irq;
1494
1495	ret = sca3000_print_rev(indio_dev);
1496	if (ret)
1497		goto error_free_irq;
1498
1499	return iio_device_register(indio_dev);
1500
1501error_free_irq:
1502	if (spi->irq)
1503		free_irq(spi->irq, indio_dev);
1504
1505	return ret;
1506}
1507
1508static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1509{
1510	int ret;
1511
1512	mutex_lock(&st->lock);
1513	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1514	if (ret)
1515		goto error_ret;
1516	ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
1517				(st->rx[0] &
1518				 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
1519				   SCA3000_REG_INT_MASK_RING_HALF |
1520				   SCA3000_REG_INT_MASK_ALL_INTS)));
1521error_ret:
1522	mutex_unlock(&st->lock);
1523	return ret;
1524}
1525
1526static void sca3000_remove(struct spi_device *spi)
1527{
1528	struct iio_dev *indio_dev = spi_get_drvdata(spi);
1529	struct sca3000_state *st = iio_priv(indio_dev);
1530
1531	iio_device_unregister(indio_dev);
1532
1533	/* Must ensure no interrupts can be generated after this! */
1534	sca3000_stop_all_interrupts(st);
1535	if (spi->irq)
1536		free_irq(spi->irq, indio_dev);
1537}
1538
1539static const struct spi_device_id sca3000_id[] = {
1540	{"sca3000_d01", d01},
1541	{"sca3000_e02", e02},
1542	{"sca3000_e04", e04},
1543	{"sca3000_e05", e05},
1544	{}
1545};
1546MODULE_DEVICE_TABLE(spi, sca3000_id);
1547
1548static struct spi_driver sca3000_driver = {
1549	.driver = {
1550		.name = "sca3000",
1551	},
1552	.probe = sca3000_probe,
1553	.remove = sca3000_remove,
1554	.id_table = sca3000_id,
1555};
1556module_spi_driver(sca3000_driver);
1557
1558MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1559MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1560MODULE_LICENSE("GPL v2");
1561