1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core IIO driver for Bosch BMA400 triaxial acceleration sensor.
4 *
5 * Copyright 2019 Dan Robertson <dan@dlrobertson.com>
6 *
7 * TODO:
8 *  - Support for power management
9 *  - Support events and interrupts
10 *  - Create channel for step count
11 *  - Create channel for sensor time
12 */
13
14#include <linux/bitfield.h>
15#include <linux/bitops.h>
16#include <linux/device.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/mutex.h>
20#include <linux/regmap.h>
21#include <linux/regulator/consumer.h>
22#include <linux/slab.h>
23
24#include <asm/unaligned.h>
25
26#include <linux/iio/iio.h>
27#include <linux/iio/buffer.h>
28#include <linux/iio/events.h>
29#include <linux/iio/sysfs.h>
30#include <linux/iio/trigger.h>
31#include <linux/iio/trigger_consumer.h>
32#include <linux/iio/triggered_buffer.h>
33
34#include "bma400.h"
35
36/*
37 * The G-range selection may be one of 2g, 4g, 8, or 16g. The scale may
38 * be selected with the acc_range bits of the ACC_CONFIG1 register.
39 * NB: This buffer is populated in the device init.
40 */
41static int bma400_scales[8];
42
43/*
44 * See the ACC_CONFIG1 section of the datasheet.
45 * NB: This buffer is populated in the device init.
46 */
47static int bma400_sample_freqs[14];
48
49static const int bma400_osr_range[] = { 0, 1, 3 };
50
51static int tap_reset_timeout[BMA400_TAP_TIM_LIST_LEN] = {
52	300000,
53	400000,
54	500000,
55	600000
56};
57
58static int tap_max2min_time[BMA400_TAP_TIM_LIST_LEN] = {
59	30000,
60	45000,
61	60000,
62	90000
63};
64
65static int double_tap2_min_delay[BMA400_TAP_TIM_LIST_LEN] = {
66	20000,
67	40000,
68	60000,
69	80000
70};
71
72/* See the ACC_CONFIG0 section of the datasheet */
73enum bma400_power_mode {
74	POWER_MODE_SLEEP   = 0x00,
75	POWER_MODE_LOW     = 0x01,
76	POWER_MODE_NORMAL  = 0x02,
77	POWER_MODE_INVALID = 0x03,
78};
79
80enum bma400_scan {
81	BMA400_ACCL_X,
82	BMA400_ACCL_Y,
83	BMA400_ACCL_Z,
84	BMA400_TEMP,
85};
86
87struct bma400_sample_freq {
88	int hz;
89	int uhz;
90};
91
92enum bma400_activity {
93	BMA400_STILL,
94	BMA400_WALKING,
95	BMA400_RUNNING,
96};
97
98struct bma400_data {
99	struct device *dev;
100	struct regmap *regmap;
101	struct mutex mutex; /* data register lock */
102	struct iio_mount_matrix orientation;
103	enum bma400_power_mode power_mode;
104	struct bma400_sample_freq sample_freq;
105	int oversampling_ratio;
106	int scale;
107	struct iio_trigger *trig;
108	int steps_enabled;
109	bool step_event_en;
110	bool activity_event_en;
111	unsigned int generic_event_en;
112	unsigned int tap_event_en_bitmask;
113	/* Correct time stamp alignment */
114	struct {
115		__le16 buff[3];
116		u8 temperature;
117		s64 ts __aligned(8);
118	} buffer __aligned(IIO_DMA_MINALIGN);
119	__le16 status;
120	__be16 duration;
121};
122
123static bool bma400_is_writable_reg(struct device *dev, unsigned int reg)
124{
125	switch (reg) {
126	case BMA400_CHIP_ID_REG:
127	case BMA400_ERR_REG:
128	case BMA400_STATUS_REG:
129	case BMA400_X_AXIS_LSB_REG:
130	case BMA400_X_AXIS_MSB_REG:
131	case BMA400_Y_AXIS_LSB_REG:
132	case BMA400_Y_AXIS_MSB_REG:
133	case BMA400_Z_AXIS_LSB_REG:
134	case BMA400_Z_AXIS_MSB_REG:
135	case BMA400_SENSOR_TIME0:
136	case BMA400_SENSOR_TIME1:
137	case BMA400_SENSOR_TIME2:
138	case BMA400_EVENT_REG:
139	case BMA400_INT_STAT0_REG:
140	case BMA400_INT_STAT1_REG:
141	case BMA400_INT_STAT2_REG:
142	case BMA400_TEMP_DATA_REG:
143	case BMA400_FIFO_LENGTH0_REG:
144	case BMA400_FIFO_LENGTH1_REG:
145	case BMA400_FIFO_DATA_REG:
146	case BMA400_STEP_CNT0_REG:
147	case BMA400_STEP_CNT1_REG:
148	case BMA400_STEP_CNT3_REG:
149	case BMA400_STEP_STAT_REG:
150		return false;
151	default:
152		return true;
153	}
154}
155
156static bool bma400_is_volatile_reg(struct device *dev, unsigned int reg)
157{
158	switch (reg) {
159	case BMA400_ERR_REG:
160	case BMA400_STATUS_REG:
161	case BMA400_X_AXIS_LSB_REG:
162	case BMA400_X_AXIS_MSB_REG:
163	case BMA400_Y_AXIS_LSB_REG:
164	case BMA400_Y_AXIS_MSB_REG:
165	case BMA400_Z_AXIS_LSB_REG:
166	case BMA400_Z_AXIS_MSB_REG:
167	case BMA400_SENSOR_TIME0:
168	case BMA400_SENSOR_TIME1:
169	case BMA400_SENSOR_TIME2:
170	case BMA400_EVENT_REG:
171	case BMA400_INT_STAT0_REG:
172	case BMA400_INT_STAT1_REG:
173	case BMA400_INT_STAT2_REG:
174	case BMA400_TEMP_DATA_REG:
175	case BMA400_FIFO_LENGTH0_REG:
176	case BMA400_FIFO_LENGTH1_REG:
177	case BMA400_FIFO_DATA_REG:
178	case BMA400_STEP_CNT0_REG:
179	case BMA400_STEP_CNT1_REG:
180	case BMA400_STEP_CNT3_REG:
181	case BMA400_STEP_STAT_REG:
182		return true;
183	default:
184		return false;
185	}
186}
187
188const struct regmap_config bma400_regmap_config = {
189	.reg_bits = 8,
190	.val_bits = 8,
191	.max_register = BMA400_CMD_REG,
192	.cache_type = REGCACHE_RBTREE,
193	.writeable_reg = bma400_is_writable_reg,
194	.volatile_reg = bma400_is_volatile_reg,
195};
196EXPORT_SYMBOL_NS(bma400_regmap_config, IIO_BMA400);
197
198static const struct iio_mount_matrix *
199bma400_accel_get_mount_matrix(const struct iio_dev *indio_dev,
200			      const struct iio_chan_spec *chan)
201{
202	struct bma400_data *data = iio_priv(indio_dev);
203
204	return &data->orientation;
205}
206
207static const struct iio_chan_spec_ext_info bma400_ext_info[] = {
208	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma400_accel_get_mount_matrix),
209	{ }
210};
211
212static const struct iio_event_spec bma400_step_detect_event = {
213	.type = IIO_EV_TYPE_CHANGE,
214	.dir = IIO_EV_DIR_NONE,
215	.mask_separate = BIT(IIO_EV_INFO_ENABLE),
216};
217
218static const struct iio_event_spec bma400_activity_event = {
219	.type = IIO_EV_TYPE_CHANGE,
220	.dir = IIO_EV_DIR_NONE,
221	.mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE),
222};
223
224static const struct iio_event_spec bma400_accel_event[] = {
225	{
226		.type = IIO_EV_TYPE_MAG,
227		.dir = IIO_EV_DIR_FALLING,
228		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
229				       BIT(IIO_EV_INFO_PERIOD) |
230				       BIT(IIO_EV_INFO_HYSTERESIS) |
231				       BIT(IIO_EV_INFO_ENABLE),
232	},
233	{
234		.type = IIO_EV_TYPE_MAG,
235		.dir = IIO_EV_DIR_RISING,
236		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
237				       BIT(IIO_EV_INFO_PERIOD) |
238				       BIT(IIO_EV_INFO_HYSTERESIS) |
239				       BIT(IIO_EV_INFO_ENABLE),
240	},
241	{
242		.type = IIO_EV_TYPE_GESTURE,
243		.dir = IIO_EV_DIR_SINGLETAP,
244		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
245				       BIT(IIO_EV_INFO_ENABLE) |
246				       BIT(IIO_EV_INFO_RESET_TIMEOUT),
247	},
248	{
249		.type = IIO_EV_TYPE_GESTURE,
250		.dir = IIO_EV_DIR_DOUBLETAP,
251		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
252				       BIT(IIO_EV_INFO_ENABLE) |
253				       BIT(IIO_EV_INFO_RESET_TIMEOUT) |
254				       BIT(IIO_EV_INFO_TAP2_MIN_DELAY),
255	},
256};
257
258static int usec_to_tapreg_raw(int usec, const int *time_list)
259{
260	int index;
261
262	for (index = 0; index < BMA400_TAP_TIM_LIST_LEN; index++) {
263		if (usec == time_list[index])
264			return index;
265	}
266	return -EINVAL;
267}
268
269static ssize_t in_accel_gesture_tap_maxtomin_time_show(struct device *dev,
270						       struct device_attribute *attr,
271						       char *buf)
272{
273	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
274	struct bma400_data *data = iio_priv(indio_dev);
275	int ret, reg_val, raw, vals[2];
276
277	ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1, &reg_val);
278	if (ret)
279		return ret;
280
281	raw = FIELD_GET(BMA400_TAP_TICSTH_MSK, reg_val);
282	vals[0] = 0;
283	vals[1] = tap_max2min_time[raw];
284
285	return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
286}
287
288static ssize_t in_accel_gesture_tap_maxtomin_time_store(struct device *dev,
289							struct device_attribute *attr,
290							const char *buf, size_t len)
291{
292	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
293	struct bma400_data *data = iio_priv(indio_dev);
294	int ret, val_int, val_fract, raw;
295
296	ret = iio_str_to_fixpoint(buf, 100000, &val_int, &val_fract);
297	if (ret)
298		return ret;
299
300	raw = usec_to_tapreg_raw(val_fract, tap_max2min_time);
301	if (raw < 0)
302		return -EINVAL;
303
304	ret = regmap_update_bits(data->regmap, BMA400_TAP_CONFIG1,
305				 BMA400_TAP_TICSTH_MSK,
306				 FIELD_PREP(BMA400_TAP_TICSTH_MSK, raw));
307	if (ret)
308		return ret;
309
310	return len;
311}
312
313static IIO_DEVICE_ATTR_RW(in_accel_gesture_tap_maxtomin_time, 0);
314
315/*
316 * Tap interrupts works with 200 Hz input data rate and the time based tap
317 * controls are in the terms of data samples so the below calculation is
318 * used to convert the configuration values into seconds.
319 * e.g.:
320 * 60 data samples * 0.005 ms = 0.3 seconds.
321 * 80 data samples * 0.005 ms = 0.4 seconds.
322 */
323
324/* quiet configuration values in seconds */
325static IIO_CONST_ATTR(in_accel_gesture_tap_reset_timeout_available,
326		      "0.3 0.4 0.5 0.6");
327
328/* tics_th configuration values in seconds */
329static IIO_CONST_ATTR(in_accel_gesture_tap_maxtomin_time_available,
330		      "0.03 0.045 0.06 0.09");
331
332/* quiet_dt configuration values in seconds */
333static IIO_CONST_ATTR(in_accel_gesture_doubletap_tap2_min_delay_available,
334		      "0.02 0.04 0.06 0.08");
335
336/* List of sensitivity values available to configure tap interrupts */
337static IIO_CONST_ATTR(in_accel_gesture_tap_value_available, "0 1 2 3 4 5 6 7");
338
339static struct attribute *bma400_event_attributes[] = {
340	&iio_const_attr_in_accel_gesture_tap_value_available.dev_attr.attr,
341	&iio_const_attr_in_accel_gesture_tap_reset_timeout_available.dev_attr.attr,
342	&iio_const_attr_in_accel_gesture_tap_maxtomin_time_available.dev_attr.attr,
343	&iio_const_attr_in_accel_gesture_doubletap_tap2_min_delay_available.dev_attr.attr,
344	&iio_dev_attr_in_accel_gesture_tap_maxtomin_time.dev_attr.attr,
345	NULL
346};
347
348static const struct attribute_group bma400_event_attribute_group = {
349	.attrs = bma400_event_attributes,
350};
351
352#define BMA400_ACC_CHANNEL(_index, _axis) { \
353	.type = IIO_ACCEL, \
354	.modified = 1, \
355	.channel2 = IIO_MOD_##_axis, \
356	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
357	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
358		BIT(IIO_CHAN_INFO_SCALE) | \
359		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
360	.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
361		BIT(IIO_CHAN_INFO_SCALE) | \
362		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
363	.ext_info = bma400_ext_info, \
364	.scan_index = _index,	\
365	.scan_type = {		\
366		.sign = 's',	\
367		.realbits = 12,		\
368		.storagebits = 16,	\
369		.endianness = IIO_LE,	\
370	},				\
371	.event_spec = bma400_accel_event,			\
372	.num_event_specs = ARRAY_SIZE(bma400_accel_event)	\
373}
374
375#define BMA400_ACTIVITY_CHANNEL(_chan2) {	\
376	.type = IIO_ACTIVITY,			\
377	.modified = 1,				\
378	.channel2 = _chan2,			\
379	.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),	\
380	.scan_index = -1, /* No buffer support */		\
381	.event_spec = &bma400_activity_event,			\
382	.num_event_specs = 1,					\
383}
384
385static const struct iio_chan_spec bma400_channels[] = {
386	BMA400_ACC_CHANNEL(0, X),
387	BMA400_ACC_CHANNEL(1, Y),
388	BMA400_ACC_CHANNEL(2, Z),
389	{
390		.type = IIO_TEMP,
391		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
392		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ),
393		.scan_index = 3,
394		.scan_type = {
395			.sign = 's',
396			.realbits = 8,
397			.storagebits = 8,
398			.endianness = IIO_LE,
399		},
400	},
401	{
402		.type = IIO_STEPS,
403		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
404				      BIT(IIO_CHAN_INFO_ENABLE),
405		.scan_index = -1, /* No buffer support */
406		.event_spec = &bma400_step_detect_event,
407		.num_event_specs = 1,
408	},
409	BMA400_ACTIVITY_CHANNEL(IIO_MOD_STILL),
410	BMA400_ACTIVITY_CHANNEL(IIO_MOD_WALKING),
411	BMA400_ACTIVITY_CHANNEL(IIO_MOD_RUNNING),
412	IIO_CHAN_SOFT_TIMESTAMP(4),
413};
414
415static int bma400_get_temp_reg(struct bma400_data *data, int *val, int *val2)
416{
417	unsigned int raw_temp;
418	int host_temp;
419	int ret;
420
421	if (data->power_mode == POWER_MODE_SLEEP)
422		return -EBUSY;
423
424	ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &raw_temp);
425	if (ret)
426		return ret;
427
428	host_temp = sign_extend32(raw_temp, 7);
429	/*
430	 * The formula for the TEMP_DATA register in the datasheet
431	 * is: x * 0.5 + 23
432	 */
433	*val = (host_temp >> 1) + 23;
434	*val2 = (host_temp & 0x1) * 500000;
435	return IIO_VAL_INT_PLUS_MICRO;
436}
437
438static int bma400_get_accel_reg(struct bma400_data *data,
439				const struct iio_chan_spec *chan,
440				int *val)
441{
442	__le16 raw_accel;
443	int lsb_reg;
444	int ret;
445
446	if (data->power_mode == POWER_MODE_SLEEP)
447		return -EBUSY;
448
449	switch (chan->channel2) {
450	case IIO_MOD_X:
451		lsb_reg = BMA400_X_AXIS_LSB_REG;
452		break;
453	case IIO_MOD_Y:
454		lsb_reg = BMA400_Y_AXIS_LSB_REG;
455		break;
456	case IIO_MOD_Z:
457		lsb_reg = BMA400_Z_AXIS_LSB_REG;
458		break;
459	default:
460		dev_err(data->dev, "invalid axis channel modifier\n");
461		return -EINVAL;
462	}
463
464	/* bulk read two registers, with the base being the LSB register */
465	ret = regmap_bulk_read(data->regmap, lsb_reg, &raw_accel,
466			       sizeof(raw_accel));
467	if (ret)
468		return ret;
469
470	*val = sign_extend32(le16_to_cpu(raw_accel), 11);
471	return IIO_VAL_INT;
472}
473
474static void bma400_output_data_rate_from_raw(int raw, unsigned int *val,
475					     unsigned int *val2)
476{
477	*val = BMA400_ACC_ODR_MAX_HZ >> (BMA400_ACC_ODR_MAX_RAW - raw);
478	if (raw > BMA400_ACC_ODR_MIN_RAW)
479		*val2 = 0;
480	else
481		*val2 = 500000;
482}
483
484static int bma400_get_accel_output_data_rate(struct bma400_data *data)
485{
486	unsigned int val;
487	unsigned int odr;
488	int ret;
489
490	switch (data->power_mode) {
491	case POWER_MODE_LOW:
492		/*
493		 * Runs at a fixed rate in low-power mode. See section 4.3
494		 * in the datasheet.
495		 */
496		bma400_output_data_rate_from_raw(BMA400_ACC_ODR_LP_RAW,
497						 &data->sample_freq.hz,
498						 &data->sample_freq.uhz);
499		return 0;
500	case POWER_MODE_NORMAL:
501		/*
502		 * In normal mode the ODR can be found in the ACC_CONFIG1
503		 * register.
504		 */
505		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
506		if (ret)
507			goto error;
508
509		odr = val & BMA400_ACC_ODR_MASK;
510		if (odr < BMA400_ACC_ODR_MIN_RAW ||
511		    odr > BMA400_ACC_ODR_MAX_RAW) {
512			ret = -EINVAL;
513			goto error;
514		}
515
516		bma400_output_data_rate_from_raw(odr, &data->sample_freq.hz,
517						 &data->sample_freq.uhz);
518		return 0;
519	case POWER_MODE_SLEEP:
520		data->sample_freq.hz = 0;
521		data->sample_freq.uhz = 0;
522		return 0;
523	default:
524		ret = 0;
525		goto error;
526	}
527error:
528	data->sample_freq.hz = -1;
529	data->sample_freq.uhz = -1;
530	return ret;
531}
532
533static int bma400_set_accel_output_data_rate(struct bma400_data *data,
534					     int hz, int uhz)
535{
536	unsigned int idx;
537	unsigned int odr;
538	unsigned int val;
539	int ret;
540
541	if (hz >= BMA400_ACC_ODR_MIN_WHOLE_HZ) {
542		if (uhz || hz > BMA400_ACC_ODR_MAX_HZ)
543			return -EINVAL;
544
545		/* Note this works because MIN_WHOLE_HZ is odd */
546		idx = __ffs(hz);
547
548		if (hz >> idx != BMA400_ACC_ODR_MIN_WHOLE_HZ)
549			return -EINVAL;
550
551		idx += BMA400_ACC_ODR_MIN_RAW + 1;
552	} else if (hz == BMA400_ACC_ODR_MIN_HZ && uhz == 500000) {
553		idx = BMA400_ACC_ODR_MIN_RAW;
554	} else {
555		return -EINVAL;
556	}
557
558	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
559	if (ret)
560		return ret;
561
562	/* preserve the range and normal mode osr */
563	odr = (~BMA400_ACC_ODR_MASK & val) | idx;
564
565	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, odr);
566	if (ret)
567		return ret;
568
569	bma400_output_data_rate_from_raw(idx, &data->sample_freq.hz,
570					 &data->sample_freq.uhz);
571	return 0;
572}
573
574static int bma400_get_accel_oversampling_ratio(struct bma400_data *data)
575{
576	unsigned int val;
577	unsigned int osr;
578	int ret;
579
580	/*
581	 * The oversampling ratio is stored in a different register
582	 * based on the power-mode. In normal mode the OSR is stored
583	 * in ACC_CONFIG1. In low-power mode it is stored in
584	 * ACC_CONFIG0.
585	 */
586	switch (data->power_mode) {
587	case POWER_MODE_LOW:
588		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
589		if (ret) {
590			data->oversampling_ratio = -1;
591			return ret;
592		}
593
594		osr = (val & BMA400_LP_OSR_MASK) >> BMA400_LP_OSR_SHIFT;
595
596		data->oversampling_ratio = osr;
597		return 0;
598	case POWER_MODE_NORMAL:
599		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
600		if (ret) {
601			data->oversampling_ratio = -1;
602			return ret;
603		}
604
605		osr = (val & BMA400_NP_OSR_MASK) >> BMA400_NP_OSR_SHIFT;
606
607		data->oversampling_ratio = osr;
608		return 0;
609	case POWER_MODE_SLEEP:
610		data->oversampling_ratio = 0;
611		return 0;
612	default:
613		data->oversampling_ratio = -1;
614		return -EINVAL;
615	}
616}
617
618static int bma400_set_accel_oversampling_ratio(struct bma400_data *data,
619					       int val)
620{
621	unsigned int acc_config;
622	int ret;
623
624	if (val & ~BMA400_TWO_BITS_MASK)
625		return -EINVAL;
626
627	/*
628	 * The oversampling ratio is stored in a different register
629	 * based on the power-mode.
630	 */
631	switch (data->power_mode) {
632	case POWER_MODE_LOW:
633		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG,
634				  &acc_config);
635		if (ret)
636			return ret;
637
638		ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
639				   (acc_config & ~BMA400_LP_OSR_MASK) |
640				   (val << BMA400_LP_OSR_SHIFT));
641		if (ret) {
642			dev_err(data->dev, "Failed to write out OSR\n");
643			return ret;
644		}
645
646		data->oversampling_ratio = val;
647		return 0;
648	case POWER_MODE_NORMAL:
649		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG,
650				  &acc_config);
651		if (ret)
652			return ret;
653
654		ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
655				   (acc_config & ~BMA400_NP_OSR_MASK) |
656				   (val << BMA400_NP_OSR_SHIFT));
657		if (ret) {
658			dev_err(data->dev, "Failed to write out OSR\n");
659			return ret;
660		}
661
662		data->oversampling_ratio = val;
663		return 0;
664	default:
665		return -EINVAL;
666	}
667	return ret;
668}
669
670static int bma400_accel_scale_to_raw(struct bma400_data *data,
671				     unsigned int val)
672{
673	int raw;
674
675	if (val == 0)
676		return -EINVAL;
677
678	/* Note this works because BMA400_SCALE_MIN is odd */
679	raw = __ffs(val);
680
681	if (val >> raw != BMA400_SCALE_MIN)
682		return -EINVAL;
683
684	return raw;
685}
686
687static int bma400_get_accel_scale(struct bma400_data *data)
688{
689	unsigned int raw_scale;
690	unsigned int val;
691	int ret;
692
693	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
694	if (ret)
695		return ret;
696
697	raw_scale = (val & BMA400_ACC_SCALE_MASK) >> BMA400_SCALE_SHIFT;
698	if (raw_scale > BMA400_TWO_BITS_MASK)
699		return -EINVAL;
700
701	data->scale = BMA400_SCALE_MIN << raw_scale;
702
703	return 0;
704}
705
706static int bma400_set_accel_scale(struct bma400_data *data, unsigned int val)
707{
708	unsigned int acc_config;
709	int raw;
710	int ret;
711
712	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config);
713	if (ret)
714		return ret;
715
716	raw = bma400_accel_scale_to_raw(data, val);
717	if (raw < 0)
718		return raw;
719
720	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
721			   (acc_config & ~BMA400_ACC_SCALE_MASK) |
722			   (raw << BMA400_SCALE_SHIFT));
723	if (ret)
724		return ret;
725
726	data->scale = val;
727	return 0;
728}
729
730static int bma400_get_power_mode(struct bma400_data *data)
731{
732	unsigned int val;
733	int ret;
734
735	ret = regmap_read(data->regmap, BMA400_STATUS_REG, &val);
736	if (ret) {
737		dev_err(data->dev, "Failed to read status register\n");
738		return ret;
739	}
740
741	data->power_mode = (val >> 1) & BMA400_TWO_BITS_MASK;
742	return 0;
743}
744
745static int bma400_set_power_mode(struct bma400_data *data,
746				 enum bma400_power_mode mode)
747{
748	unsigned int val;
749	int ret;
750
751	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
752	if (ret)
753		return ret;
754
755	if (data->power_mode == mode)
756		return 0;
757
758	if (mode == POWER_MODE_INVALID)
759		return -EINVAL;
760
761	/* Preserve the low-power oversample ratio etc */
762	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
763			   mode | (val & ~BMA400_TWO_BITS_MASK));
764	if (ret) {
765		dev_err(data->dev, "Failed to write to power-mode\n");
766		return ret;
767	}
768
769	data->power_mode = mode;
770
771	/*
772	 * Update our cached osr and odr based on the new
773	 * power-mode.
774	 */
775	bma400_get_accel_output_data_rate(data);
776	bma400_get_accel_oversampling_ratio(data);
777	return 0;
778}
779
780static int bma400_enable_steps(struct bma400_data *data, int val)
781{
782	int ret;
783
784	if (data->steps_enabled == val)
785		return 0;
786
787	ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG1_REG,
788				 BMA400_STEP_INT_MSK,
789				 FIELD_PREP(BMA400_STEP_INT_MSK, val ? 1 : 0));
790	if (ret)
791		return ret;
792	data->steps_enabled = val;
793	return ret;
794}
795
796static int bma400_get_steps_reg(struct bma400_data *data, int *val)
797{
798	u8 *steps_raw;
799	int ret;
800
801	steps_raw = kmalloc(BMA400_STEP_RAW_LEN, GFP_KERNEL);
802	if (!steps_raw)
803		return -ENOMEM;
804
805	ret = regmap_bulk_read(data->regmap, BMA400_STEP_CNT0_REG,
806			       steps_raw, BMA400_STEP_RAW_LEN);
807	if (ret) {
808		kfree(steps_raw);
809		return ret;
810	}
811	*val = get_unaligned_le24(steps_raw);
812	kfree(steps_raw);
813	return IIO_VAL_INT;
814}
815
816static void bma400_init_tables(void)
817{
818	int raw;
819	int i;
820
821	for (i = 0; i + 1 < ARRAY_SIZE(bma400_sample_freqs); i += 2) {
822		raw = (i / 2) + 5;
823		bma400_output_data_rate_from_raw(raw, &bma400_sample_freqs[i],
824						 &bma400_sample_freqs[i + 1]);
825	}
826
827	for (i = 0; i + 1 < ARRAY_SIZE(bma400_scales); i += 2) {
828		raw = i / 2;
829		bma400_scales[i] = 0;
830		bma400_scales[i + 1] = BMA400_SCALE_MIN << raw;
831	}
832}
833
834static void bma400_power_disable(void *data_ptr)
835{
836	struct bma400_data *data = data_ptr;
837	int ret;
838
839	mutex_lock(&data->mutex);
840	ret = bma400_set_power_mode(data, POWER_MODE_SLEEP);
841	mutex_unlock(&data->mutex);
842	if (ret)
843		dev_warn(data->dev, "Failed to put device into sleep mode (%pe)\n",
844			 ERR_PTR(ret));
845}
846
847static enum iio_modifier bma400_act_to_mod(enum bma400_activity activity)
848{
849	switch (activity) {
850	case BMA400_STILL:
851		return IIO_MOD_STILL;
852	case BMA400_WALKING:
853		return IIO_MOD_WALKING;
854	case BMA400_RUNNING:
855		return IIO_MOD_RUNNING;
856	default:
857		return IIO_NO_MOD;
858	}
859}
860
861static int bma400_init(struct bma400_data *data)
862{
863	static const char * const regulator_names[] = { "vdd", "vddio" };
864	unsigned int val;
865	int ret;
866
867	ret = devm_regulator_bulk_get_enable(data->dev,
868					     ARRAY_SIZE(regulator_names),
869					     regulator_names);
870	if (ret)
871		return dev_err_probe(data->dev, ret, "Failed to get regulators\n");
872
873	/* Try to read chip_id register. It must return 0x90. */
874	ret = regmap_read(data->regmap, BMA400_CHIP_ID_REG, &val);
875	if (ret) {
876		dev_err(data->dev, "Failed to read chip id register\n");
877		return ret;
878	}
879
880	if (val != BMA400_ID_REG_VAL) {
881		dev_err(data->dev, "Chip ID mismatch\n");
882		return -ENODEV;
883	}
884
885	ret = bma400_get_power_mode(data);
886	if (ret) {
887		dev_err(data->dev, "Failed to get the initial power-mode\n");
888		return ret;
889	}
890
891	if (data->power_mode != POWER_MODE_NORMAL) {
892		ret = bma400_set_power_mode(data, POWER_MODE_NORMAL);
893		if (ret) {
894			dev_err(data->dev, "Failed to wake up the device\n");
895			return ret;
896		}
897		/*
898		 * TODO: The datasheet waits 1500us here in the example, but
899		 * lists 2/ODR as the wakeup time.
900		 */
901		usleep_range(1500, 2000);
902	}
903
904	ret = devm_add_action_or_reset(data->dev, bma400_power_disable, data);
905	if (ret)
906		return ret;
907
908	bma400_init_tables();
909
910	ret = bma400_get_accel_output_data_rate(data);
911	if (ret)
912		return ret;
913
914	ret = bma400_get_accel_oversampling_ratio(data);
915	if (ret)
916		return ret;
917
918	ret = bma400_get_accel_scale(data);
919	if (ret)
920		return ret;
921
922	/* Configure INT1 pin to open drain */
923	ret = regmap_write(data->regmap, BMA400_INT_IO_CTRL_REG, 0x06);
924	if (ret)
925		return ret;
926	/*
927	 * Once the interrupt engine is supported we might use the
928	 * data_src_reg, but for now ensure this is set to the
929	 * variable ODR filter selectable by the sample frequency
930	 * channel.
931	 */
932	return regmap_write(data->regmap, BMA400_ACC_CONFIG2_REG, 0x00);
933}
934
935static int bma400_read_raw(struct iio_dev *indio_dev,
936			   struct iio_chan_spec const *chan, int *val,
937			   int *val2, long mask)
938{
939	struct bma400_data *data = iio_priv(indio_dev);
940	unsigned int activity;
941	int ret;
942
943	switch (mask) {
944	case IIO_CHAN_INFO_PROCESSED:
945		switch (chan->type) {
946		case IIO_TEMP:
947			mutex_lock(&data->mutex);
948			ret = bma400_get_temp_reg(data, val, val2);
949			mutex_unlock(&data->mutex);
950			return ret;
951		case IIO_STEPS:
952			return bma400_get_steps_reg(data, val);
953		case IIO_ACTIVITY:
954			ret = regmap_read(data->regmap, BMA400_STEP_STAT_REG,
955					  &activity);
956			if (ret)
957				return ret;
958			/*
959			 * The device does not support confidence value levels,
960			 * so we will always have 100% for current activity and
961			 * 0% for the others.
962			 */
963			if (chan->channel2 == bma400_act_to_mod(activity))
964				*val = 100;
965			else
966				*val = 0;
967			return IIO_VAL_INT;
968		default:
969			return -EINVAL;
970		}
971	case IIO_CHAN_INFO_RAW:
972		mutex_lock(&data->mutex);
973		ret = bma400_get_accel_reg(data, chan, val);
974		mutex_unlock(&data->mutex);
975		return ret;
976	case IIO_CHAN_INFO_SAMP_FREQ:
977		switch (chan->type) {
978		case IIO_ACCEL:
979			if (data->sample_freq.hz < 0)
980				return -EINVAL;
981
982			*val = data->sample_freq.hz;
983			*val2 = data->sample_freq.uhz;
984			return IIO_VAL_INT_PLUS_MICRO;
985		case IIO_TEMP:
986			/*
987			 * Runs at a fixed sampling frequency. See Section 4.4
988			 * of the datasheet.
989			 */
990			*val = 6;
991			*val2 = 250000;
992			return IIO_VAL_INT_PLUS_MICRO;
993		default:
994			return -EINVAL;
995		}
996	case IIO_CHAN_INFO_SCALE:
997		*val = 0;
998		*val2 = data->scale;
999		return IIO_VAL_INT_PLUS_MICRO;
1000	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1001		/*
1002		 * TODO: We could avoid this logic and returning -EINVAL here if
1003		 * we set both the low-power and normal mode OSR registers when
1004		 * we configure the device.
1005		 */
1006		if (data->oversampling_ratio < 0)
1007			return -EINVAL;
1008
1009		*val = data->oversampling_ratio;
1010		return IIO_VAL_INT;
1011	case IIO_CHAN_INFO_ENABLE:
1012		*val = data->steps_enabled;
1013		return IIO_VAL_INT;
1014	default:
1015		return -EINVAL;
1016	}
1017}
1018
1019static int bma400_read_avail(struct iio_dev *indio_dev,
1020			     struct iio_chan_spec const *chan,
1021			     const int **vals, int *type, int *length,
1022			     long mask)
1023{
1024	switch (mask) {
1025	case IIO_CHAN_INFO_SCALE:
1026		*type = IIO_VAL_INT_PLUS_MICRO;
1027		*vals = bma400_scales;
1028		*length = ARRAY_SIZE(bma400_scales);
1029		return IIO_AVAIL_LIST;
1030	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1031		*type = IIO_VAL_INT;
1032		*vals = bma400_osr_range;
1033		*length = ARRAY_SIZE(bma400_osr_range);
1034		return IIO_AVAIL_RANGE;
1035	case IIO_CHAN_INFO_SAMP_FREQ:
1036		*type = IIO_VAL_INT_PLUS_MICRO;
1037		*vals = bma400_sample_freqs;
1038		*length = ARRAY_SIZE(bma400_sample_freqs);
1039		return IIO_AVAIL_LIST;
1040	default:
1041		return -EINVAL;
1042	}
1043}
1044
1045static int bma400_write_raw(struct iio_dev *indio_dev,
1046			    struct iio_chan_spec const *chan, int val, int val2,
1047			    long mask)
1048{
1049	struct bma400_data *data = iio_priv(indio_dev);
1050	int ret;
1051
1052	switch (mask) {
1053	case IIO_CHAN_INFO_SAMP_FREQ:
1054		/*
1055		 * The sample frequency is readonly for the temperature
1056		 * register and a fixed value in low-power mode.
1057		 */
1058		if (chan->type != IIO_ACCEL)
1059			return -EINVAL;
1060
1061		mutex_lock(&data->mutex);
1062		ret = bma400_set_accel_output_data_rate(data, val, val2);
1063		mutex_unlock(&data->mutex);
1064		return ret;
1065	case IIO_CHAN_INFO_SCALE:
1066		if (val != 0 ||
1067		    val2 < BMA400_SCALE_MIN || val2 > BMA400_SCALE_MAX)
1068			return -EINVAL;
1069
1070		mutex_lock(&data->mutex);
1071		ret = bma400_set_accel_scale(data, val2);
1072		mutex_unlock(&data->mutex);
1073		return ret;
1074	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1075		mutex_lock(&data->mutex);
1076		ret = bma400_set_accel_oversampling_ratio(data, val);
1077		mutex_unlock(&data->mutex);
1078		return ret;
1079	case IIO_CHAN_INFO_ENABLE:
1080		mutex_lock(&data->mutex);
1081		ret = bma400_enable_steps(data, val);
1082		mutex_unlock(&data->mutex);
1083		return ret;
1084	default:
1085		return -EINVAL;
1086	}
1087}
1088
1089static int bma400_write_raw_get_fmt(struct iio_dev *indio_dev,
1090				    struct iio_chan_spec const *chan,
1091				    long mask)
1092{
1093	switch (mask) {
1094	case IIO_CHAN_INFO_SAMP_FREQ:
1095		return IIO_VAL_INT_PLUS_MICRO;
1096	case IIO_CHAN_INFO_SCALE:
1097		return IIO_VAL_INT_PLUS_MICRO;
1098	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1099		return IIO_VAL_INT;
1100	case IIO_CHAN_INFO_ENABLE:
1101		return IIO_VAL_INT;
1102	default:
1103		return -EINVAL;
1104	}
1105}
1106
1107static int bma400_read_event_config(struct iio_dev *indio_dev,
1108				    const struct iio_chan_spec *chan,
1109				    enum iio_event_type type,
1110				    enum iio_event_direction dir)
1111{
1112	struct bma400_data *data = iio_priv(indio_dev);
1113
1114	switch (chan->type) {
1115	case IIO_ACCEL:
1116		switch (dir) {
1117		case IIO_EV_DIR_RISING:
1118			return FIELD_GET(BMA400_INT_GEN1_MSK,
1119					 data->generic_event_en);
1120		case IIO_EV_DIR_FALLING:
1121			return FIELD_GET(BMA400_INT_GEN2_MSK,
1122					 data->generic_event_en);
1123		case IIO_EV_DIR_SINGLETAP:
1124			return FIELD_GET(BMA400_S_TAP_MSK,
1125					 data->tap_event_en_bitmask);
1126		case IIO_EV_DIR_DOUBLETAP:
1127			return FIELD_GET(BMA400_D_TAP_MSK,
1128					 data->tap_event_en_bitmask);
1129		default:
1130			return -EINVAL;
1131		}
1132	case IIO_STEPS:
1133		return data->step_event_en;
1134	case IIO_ACTIVITY:
1135		return data->activity_event_en;
1136	default:
1137		return -EINVAL;
1138	}
1139}
1140
1141static int bma400_steps_event_enable(struct bma400_data *data, int state)
1142{
1143	int ret;
1144
1145	ret = bma400_enable_steps(data, 1);
1146	if (ret)
1147		return ret;
1148
1149	ret = regmap_update_bits(data->regmap, BMA400_INT12_MAP_REG,
1150				 BMA400_STEP_INT_MSK,
1151				 FIELD_PREP(BMA400_STEP_INT_MSK,
1152					    state));
1153	if (ret)
1154		return ret;
1155	data->step_event_en = state;
1156	return 0;
1157}
1158
1159static int bma400_activity_event_en(struct bma400_data *data,
1160				    enum iio_event_direction dir,
1161				    int state)
1162{
1163	int ret, reg, msk, value;
1164	int field_value = 0;
1165
1166	switch (dir) {
1167	case IIO_EV_DIR_RISING:
1168		reg = BMA400_GEN1INT_CONFIG0;
1169		msk = BMA400_INT_GEN1_MSK;
1170		value = 2;
1171		set_mask_bits(&field_value, BMA400_INT_GEN1_MSK,
1172			      FIELD_PREP(BMA400_INT_GEN1_MSK, state));
1173		break;
1174	case IIO_EV_DIR_FALLING:
1175		reg = BMA400_GEN2INT_CONFIG0;
1176		msk = BMA400_INT_GEN2_MSK;
1177		value = 0;
1178		set_mask_bits(&field_value, BMA400_INT_GEN2_MSK,
1179			      FIELD_PREP(BMA400_INT_GEN2_MSK, state));
1180		break;
1181	default:
1182		return -EINVAL;
1183	}
1184
1185	/* Enabling all axis for interrupt evaluation */
1186	ret = regmap_write(data->regmap, reg, 0xF8);
1187	if (ret)
1188		return ret;
1189
1190	/* OR combination of all axis for interrupt evaluation */
1191	ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG1_OFF, value);
1192	if (ret)
1193		return ret;
1194
1195	/* Initial value to avoid interrupts while enabling*/
1196	ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG2_OFF, 0x0A);
1197	if (ret)
1198		return ret;
1199
1200	/* Initial duration value to avoid interrupts while enabling*/
1201	ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG31_OFF, 0x0F);
1202	if (ret)
1203		return ret;
1204
1205	ret = regmap_update_bits(data->regmap, BMA400_INT1_MAP_REG, msk,
1206				 field_value);
1207	if (ret)
1208		return ret;
1209
1210	ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG0_REG, msk,
1211				 field_value);
1212	if (ret)
1213		return ret;
1214
1215	set_mask_bits(&data->generic_event_en, msk, field_value);
1216	return 0;
1217}
1218
1219static int bma400_tap_event_en(struct bma400_data *data,
1220			       enum iio_event_direction dir, int state)
1221{
1222	unsigned int mask, field_value;
1223	int ret;
1224
1225	/*
1226	 * Tap interrupts can be configured only in normal mode.
1227	 * See table in section 4.3 "Power modes - performance modes" of
1228	 * datasheet v1.2.
1229	 */
1230	if (data->power_mode != POWER_MODE_NORMAL)
1231		return -EINVAL;
1232
1233	/*
1234	 * Tap interrupts are operating with a data rate of 200Hz.
1235	 * See section 4.7 "Tap sensing interrupt" in datasheet v1.2.
1236	 */
1237	if (data->sample_freq.hz != 200 && state) {
1238		dev_err(data->dev, "Invalid data rate for tap interrupts.\n");
1239		return -EINVAL;
1240	}
1241
1242	ret = regmap_update_bits(data->regmap, BMA400_INT12_MAP_REG,
1243				 BMA400_S_TAP_MSK,
1244				 FIELD_PREP(BMA400_S_TAP_MSK, state));
1245	if (ret)
1246		return ret;
1247
1248	switch (dir) {
1249	case IIO_EV_DIR_SINGLETAP:
1250		mask = BMA400_S_TAP_MSK;
1251		set_mask_bits(&field_value, BMA400_S_TAP_MSK,
1252			      FIELD_PREP(BMA400_S_TAP_MSK, state));
1253		break;
1254	case IIO_EV_DIR_DOUBLETAP:
1255		mask = BMA400_D_TAP_MSK;
1256		set_mask_bits(&field_value, BMA400_D_TAP_MSK,
1257			      FIELD_PREP(BMA400_D_TAP_MSK, state));
1258		break;
1259	default:
1260		return -EINVAL;
1261	}
1262
1263	ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG1_REG, mask,
1264				 field_value);
1265	if (ret)
1266		return ret;
1267
1268	set_mask_bits(&data->tap_event_en_bitmask, mask, field_value);
1269
1270	return 0;
1271}
1272
1273static int bma400_disable_adv_interrupt(struct bma400_data *data)
1274{
1275	int ret;
1276
1277	ret = regmap_write(data->regmap, BMA400_INT_CONFIG0_REG, 0);
1278	if (ret)
1279		return ret;
1280
1281	ret = regmap_write(data->regmap, BMA400_INT_CONFIG1_REG, 0);
1282	if (ret)
1283		return ret;
1284
1285	data->tap_event_en_bitmask = 0;
1286	data->generic_event_en = 0;
1287	data->step_event_en = false;
1288	data->activity_event_en = false;
1289
1290	return 0;
1291}
1292
1293static int bma400_write_event_config(struct iio_dev *indio_dev,
1294				     const struct iio_chan_spec *chan,
1295				     enum iio_event_type type,
1296				     enum iio_event_direction dir, int state)
1297{
1298	struct bma400_data *data = iio_priv(indio_dev);
1299	int ret;
1300
1301	switch (chan->type) {
1302	case IIO_ACCEL:
1303		switch (type) {
1304		case IIO_EV_TYPE_MAG:
1305			mutex_lock(&data->mutex);
1306			ret = bma400_activity_event_en(data, dir, state);
1307			mutex_unlock(&data->mutex);
1308			return ret;
1309		case IIO_EV_TYPE_GESTURE:
1310			mutex_lock(&data->mutex);
1311			ret = bma400_tap_event_en(data, dir, state);
1312			mutex_unlock(&data->mutex);
1313			return ret;
1314		default:
1315			return -EINVAL;
1316		}
1317	case IIO_STEPS:
1318		mutex_lock(&data->mutex);
1319		ret = bma400_steps_event_enable(data, state);
1320		mutex_unlock(&data->mutex);
1321		return ret;
1322	case IIO_ACTIVITY:
1323		mutex_lock(&data->mutex);
1324		if (!data->step_event_en) {
1325			ret = bma400_steps_event_enable(data, true);
1326			if (ret) {
1327				mutex_unlock(&data->mutex);
1328				return ret;
1329			}
1330		}
1331		data->activity_event_en = state;
1332		mutex_unlock(&data->mutex);
1333		return 0;
1334	default:
1335		return -EINVAL;
1336	}
1337}
1338
1339static int get_gen_config_reg(enum iio_event_direction dir)
1340{
1341	switch (dir) {
1342	case IIO_EV_DIR_FALLING:
1343		return BMA400_GEN2INT_CONFIG0;
1344	case IIO_EV_DIR_RISING:
1345		return BMA400_GEN1INT_CONFIG0;
1346	default:
1347		return -EINVAL;
1348	}
1349}
1350
1351static int bma400_read_event_value(struct iio_dev *indio_dev,
1352				   const struct iio_chan_spec *chan,
1353				   enum iio_event_type type,
1354				   enum iio_event_direction dir,
1355				   enum iio_event_info info,
1356				   int *val, int *val2)
1357{
1358	struct bma400_data *data = iio_priv(indio_dev);
1359	int ret, reg, reg_val, raw;
1360
1361	if (chan->type != IIO_ACCEL)
1362		return -EINVAL;
1363
1364	switch (type) {
1365	case IIO_EV_TYPE_MAG:
1366		reg = get_gen_config_reg(dir);
1367		if (reg < 0)
1368			return -EINVAL;
1369
1370		*val2 = 0;
1371		switch (info) {
1372		case IIO_EV_INFO_VALUE:
1373			ret = regmap_read(data->regmap,
1374					  reg + BMA400_GEN_CONFIG2_OFF,
1375					  val);
1376			if (ret)
1377				return ret;
1378			return IIO_VAL_INT;
1379		case IIO_EV_INFO_PERIOD:
1380			mutex_lock(&data->mutex);
1381			ret = regmap_bulk_read(data->regmap,
1382					       reg + BMA400_GEN_CONFIG3_OFF,
1383					       &data->duration,
1384					       sizeof(data->duration));
1385			if (ret) {
1386				mutex_unlock(&data->mutex);
1387				return ret;
1388			}
1389			*val = be16_to_cpu(data->duration);
1390			mutex_unlock(&data->mutex);
1391			return IIO_VAL_INT;
1392		case IIO_EV_INFO_HYSTERESIS:
1393			ret = regmap_read(data->regmap, reg, val);
1394			if (ret)
1395				return ret;
1396			*val = FIELD_GET(BMA400_GEN_HYST_MSK, *val);
1397			return IIO_VAL_INT;
1398		default:
1399			return -EINVAL;
1400		}
1401	case IIO_EV_TYPE_GESTURE:
1402		switch (info) {
1403		case IIO_EV_INFO_VALUE:
1404			ret = regmap_read(data->regmap, BMA400_TAP_CONFIG,
1405					  &reg_val);
1406			if (ret)
1407				return ret;
1408
1409			*val = FIELD_GET(BMA400_TAP_SEN_MSK, reg_val);
1410			return IIO_VAL_INT;
1411		case IIO_EV_INFO_RESET_TIMEOUT:
1412			ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1,
1413					  &reg_val);
1414			if (ret)
1415				return ret;
1416
1417			raw = FIELD_GET(BMA400_TAP_QUIET_MSK, reg_val);
1418			*val = 0;
1419			*val2 = tap_reset_timeout[raw];
1420			return IIO_VAL_INT_PLUS_MICRO;
1421		case IIO_EV_INFO_TAP2_MIN_DELAY:
1422			ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1,
1423					  &reg_val);
1424			if (ret)
1425				return ret;
1426
1427			raw = FIELD_GET(BMA400_TAP_QUIETDT_MSK, reg_val);
1428			*val = 0;
1429			*val2 = double_tap2_min_delay[raw];
1430			return IIO_VAL_INT_PLUS_MICRO;
1431		default:
1432			return -EINVAL;
1433		}
1434	default:
1435		return -EINVAL;
1436	}
1437}
1438
1439static int bma400_write_event_value(struct iio_dev *indio_dev,
1440				    const struct iio_chan_spec *chan,
1441				    enum iio_event_type type,
1442				    enum iio_event_direction dir,
1443				    enum iio_event_info info,
1444				    int val, int val2)
1445{
1446	struct bma400_data *data = iio_priv(indio_dev);
1447	int reg, ret, raw;
1448
1449	if (chan->type != IIO_ACCEL)
1450		return -EINVAL;
1451
1452	switch (type) {
1453	case IIO_EV_TYPE_MAG:
1454		reg = get_gen_config_reg(dir);
1455		if (reg < 0)
1456			return -EINVAL;
1457
1458		switch (info) {
1459		case IIO_EV_INFO_VALUE:
1460			if (val < 1 || val > 255)
1461				return -EINVAL;
1462
1463			return regmap_write(data->regmap,
1464					    reg + BMA400_GEN_CONFIG2_OFF,
1465					    val);
1466		case IIO_EV_INFO_PERIOD:
1467			if (val < 1 || val > 65535)
1468				return -EINVAL;
1469
1470			mutex_lock(&data->mutex);
1471			put_unaligned_be16(val, &data->duration);
1472			ret = regmap_bulk_write(data->regmap,
1473						reg + BMA400_GEN_CONFIG3_OFF,
1474						&data->duration,
1475						sizeof(data->duration));
1476			mutex_unlock(&data->mutex);
1477			return ret;
1478		case IIO_EV_INFO_HYSTERESIS:
1479			if (val < 0 || val > 3)
1480				return -EINVAL;
1481
1482			return regmap_update_bits(data->regmap, reg,
1483						  BMA400_GEN_HYST_MSK,
1484						  FIELD_PREP(BMA400_GEN_HYST_MSK,
1485							     val));
1486		default:
1487			return -EINVAL;
1488		}
1489	case IIO_EV_TYPE_GESTURE:
1490		switch (info) {
1491		case IIO_EV_INFO_VALUE:
1492			if (val < 0 || val > 7)
1493				return -EINVAL;
1494
1495			return regmap_update_bits(data->regmap,
1496						  BMA400_TAP_CONFIG,
1497						  BMA400_TAP_SEN_MSK,
1498						  FIELD_PREP(BMA400_TAP_SEN_MSK,
1499							     val));
1500		case IIO_EV_INFO_RESET_TIMEOUT:
1501			raw = usec_to_tapreg_raw(val2, tap_reset_timeout);
1502			if (raw < 0)
1503				return -EINVAL;
1504
1505			return regmap_update_bits(data->regmap,
1506						  BMA400_TAP_CONFIG1,
1507						  BMA400_TAP_QUIET_MSK,
1508						  FIELD_PREP(BMA400_TAP_QUIET_MSK,
1509							     raw));
1510		case IIO_EV_INFO_TAP2_MIN_DELAY:
1511			raw = usec_to_tapreg_raw(val2, double_tap2_min_delay);
1512			if (raw < 0)
1513				return -EINVAL;
1514
1515			return regmap_update_bits(data->regmap,
1516						  BMA400_TAP_CONFIG1,
1517						  BMA400_TAP_QUIETDT_MSK,
1518						  FIELD_PREP(BMA400_TAP_QUIETDT_MSK,
1519							     raw));
1520		default:
1521			return -EINVAL;
1522		}
1523	default:
1524		return -EINVAL;
1525	}
1526}
1527
1528static int bma400_data_rdy_trigger_set_state(struct iio_trigger *trig,
1529					     bool state)
1530{
1531	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1532	struct bma400_data *data = iio_priv(indio_dev);
1533	int ret;
1534
1535	ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG0_REG,
1536				 BMA400_INT_DRDY_MSK,
1537				 FIELD_PREP(BMA400_INT_DRDY_MSK, state));
1538	if (ret)
1539		return ret;
1540
1541	return regmap_update_bits(data->regmap, BMA400_INT1_MAP_REG,
1542				  BMA400_INT_DRDY_MSK,
1543				  FIELD_PREP(BMA400_INT_DRDY_MSK, state));
1544}
1545
1546static const unsigned long bma400_avail_scan_masks[] = {
1547	BIT(BMA400_ACCL_X) | BIT(BMA400_ACCL_Y) | BIT(BMA400_ACCL_Z),
1548	BIT(BMA400_ACCL_X) | BIT(BMA400_ACCL_Y) | BIT(BMA400_ACCL_Z)
1549	| BIT(BMA400_TEMP),
1550	0
1551};
1552
1553static const struct iio_info bma400_info = {
1554	.read_raw          = bma400_read_raw,
1555	.read_avail        = bma400_read_avail,
1556	.write_raw         = bma400_write_raw,
1557	.write_raw_get_fmt = bma400_write_raw_get_fmt,
1558	.read_event_config = bma400_read_event_config,
1559	.write_event_config = bma400_write_event_config,
1560	.write_event_value = bma400_write_event_value,
1561	.read_event_value = bma400_read_event_value,
1562	.event_attrs = &bma400_event_attribute_group,
1563};
1564
1565static const struct iio_trigger_ops bma400_trigger_ops = {
1566	.set_trigger_state = &bma400_data_rdy_trigger_set_state,
1567	.validate_device = &iio_trigger_validate_own_device,
1568};
1569
1570static irqreturn_t bma400_trigger_handler(int irq, void *p)
1571{
1572	struct iio_poll_func *pf = p;
1573	struct iio_dev *indio_dev = pf->indio_dev;
1574	struct bma400_data *data = iio_priv(indio_dev);
1575	int ret, temp;
1576
1577	/* Lock to protect the data->buffer */
1578	mutex_lock(&data->mutex);
1579
1580	/* bulk read six registers, with the base being the LSB register */
1581	ret = regmap_bulk_read(data->regmap, BMA400_X_AXIS_LSB_REG,
1582			       &data->buffer.buff, sizeof(data->buffer.buff));
1583	if (ret)
1584		goto unlock_err;
1585
1586	if (test_bit(BMA400_TEMP, indio_dev->active_scan_mask)) {
1587		ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &temp);
1588		if (ret)
1589			goto unlock_err;
1590
1591		data->buffer.temperature = temp;
1592	}
1593
1594	iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
1595					   iio_get_time_ns(indio_dev));
1596
1597	mutex_unlock(&data->mutex);
1598	iio_trigger_notify_done(indio_dev->trig);
1599	return IRQ_HANDLED;
1600
1601unlock_err:
1602	mutex_unlock(&data->mutex);
1603	return IRQ_NONE;
1604}
1605
1606static irqreturn_t bma400_interrupt(int irq, void *private)
1607{
1608	struct iio_dev *indio_dev = private;
1609	struct bma400_data *data = iio_priv(indio_dev);
1610	s64 timestamp = iio_get_time_ns(indio_dev);
1611	unsigned int act, ev_dir = IIO_EV_DIR_NONE;
1612	int ret;
1613
1614	/* Lock to protect the data->status */
1615	mutex_lock(&data->mutex);
1616	ret = regmap_bulk_read(data->regmap, BMA400_INT_STAT0_REG,
1617			       &data->status,
1618			       sizeof(data->status));
1619	/*
1620	 * if none of the bit is set in the status register then it is
1621	 * spurious interrupt.
1622	 */
1623	if (ret || !data->status)
1624		goto unlock_err;
1625
1626	/*
1627	 * Disable all advance interrupts if interrupt engine overrun occurs.
1628	 * See section 4.7 "Interrupt engine overrun" in datasheet v1.2.
1629	 */
1630	if (FIELD_GET(BMA400_INT_ENG_OVRUN_MSK, le16_to_cpu(data->status))) {
1631		bma400_disable_adv_interrupt(data);
1632		dev_err(data->dev, "Interrupt engine overrun\n");
1633		goto unlock_err;
1634	}
1635
1636	if (FIELD_GET(BMA400_INT_S_TAP_MSK, le16_to_cpu(data->status)))
1637		iio_push_event(indio_dev,
1638			       IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
1639						  IIO_MOD_X_OR_Y_OR_Z,
1640						  IIO_EV_TYPE_GESTURE,
1641						  IIO_EV_DIR_SINGLETAP),
1642			       timestamp);
1643
1644	if (FIELD_GET(BMA400_INT_D_TAP_MSK, le16_to_cpu(data->status)))
1645		iio_push_event(indio_dev,
1646			       IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
1647						  IIO_MOD_X_OR_Y_OR_Z,
1648						  IIO_EV_TYPE_GESTURE,
1649						  IIO_EV_DIR_DOUBLETAP),
1650			       timestamp);
1651
1652	if (FIELD_GET(BMA400_INT_GEN1_MSK, le16_to_cpu(data->status)))
1653		ev_dir = IIO_EV_DIR_RISING;
1654
1655	if (FIELD_GET(BMA400_INT_GEN2_MSK, le16_to_cpu(data->status)))
1656		ev_dir = IIO_EV_DIR_FALLING;
1657
1658	if (ev_dir != IIO_EV_DIR_NONE) {
1659		iio_push_event(indio_dev,
1660			       IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
1661						  IIO_MOD_X_OR_Y_OR_Z,
1662						  IIO_EV_TYPE_MAG, ev_dir),
1663			       timestamp);
1664	}
1665
1666	if (FIELD_GET(BMA400_STEP_STAT_MASK, le16_to_cpu(data->status))) {
1667		iio_push_event(indio_dev,
1668			       IIO_MOD_EVENT_CODE(IIO_STEPS, 0, IIO_NO_MOD,
1669						  IIO_EV_TYPE_CHANGE,
1670						  IIO_EV_DIR_NONE),
1671			       timestamp);
1672
1673		if (data->activity_event_en) {
1674			ret = regmap_read(data->regmap, BMA400_STEP_STAT_REG,
1675					  &act);
1676			if (ret)
1677				goto unlock_err;
1678
1679			iio_push_event(indio_dev,
1680				       IIO_MOD_EVENT_CODE(IIO_ACTIVITY, 0,
1681							  bma400_act_to_mod(act),
1682							  IIO_EV_TYPE_CHANGE,
1683							  IIO_EV_DIR_NONE),
1684				       timestamp);
1685		}
1686	}
1687
1688	if (FIELD_GET(BMA400_INT_DRDY_MSK, le16_to_cpu(data->status))) {
1689		mutex_unlock(&data->mutex);
1690		iio_trigger_poll_nested(data->trig);
1691		return IRQ_HANDLED;
1692	}
1693
1694	mutex_unlock(&data->mutex);
1695	return IRQ_HANDLED;
1696
1697unlock_err:
1698	mutex_unlock(&data->mutex);
1699	return IRQ_NONE;
1700}
1701
1702int bma400_probe(struct device *dev, struct regmap *regmap, int irq,
1703		 const char *name)
1704{
1705	struct iio_dev *indio_dev;
1706	struct bma400_data *data;
1707	int ret;
1708
1709	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1710	if (!indio_dev)
1711		return -ENOMEM;
1712
1713	data = iio_priv(indio_dev);
1714	data->regmap = regmap;
1715	data->dev = dev;
1716
1717	ret = bma400_init(data);
1718	if (ret)
1719		return ret;
1720
1721	ret = iio_read_mount_matrix(dev, &data->orientation);
1722	if (ret)
1723		return ret;
1724
1725	mutex_init(&data->mutex);
1726	indio_dev->name = name;
1727	indio_dev->info = &bma400_info;
1728	indio_dev->channels = bma400_channels;
1729	indio_dev->num_channels = ARRAY_SIZE(bma400_channels);
1730	indio_dev->available_scan_masks = bma400_avail_scan_masks;
1731	indio_dev->modes = INDIO_DIRECT_MODE;
1732
1733	if (irq > 0) {
1734		data->trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
1735						    indio_dev->name,
1736						    iio_device_id(indio_dev));
1737		if (!data->trig)
1738			return -ENOMEM;
1739
1740		data->trig->ops = &bma400_trigger_ops;
1741		iio_trigger_set_drvdata(data->trig, indio_dev);
1742
1743		ret = devm_iio_trigger_register(data->dev, data->trig);
1744		if (ret)
1745			return dev_err_probe(data->dev, ret,
1746					     "iio trigger register fail\n");
1747
1748		indio_dev->trig = iio_trigger_get(data->trig);
1749		ret = devm_request_threaded_irq(dev, irq, NULL,
1750						&bma400_interrupt,
1751						IRQF_TRIGGER_RISING | IRQF_ONESHOT,
1752						indio_dev->name, indio_dev);
1753		if (ret)
1754			return dev_err_probe(data->dev, ret,
1755					     "request irq %d failed\n", irq);
1756	}
1757
1758	ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
1759					      &bma400_trigger_handler, NULL);
1760	if (ret)
1761		return dev_err_probe(data->dev, ret,
1762				     "iio triggered buffer setup failed\n");
1763
1764	return devm_iio_device_register(dev, indio_dev);
1765}
1766EXPORT_SYMBOL_NS(bma400_probe, IIO_BMA400);
1767
1768MODULE_AUTHOR("Dan Robertson <dan@dlrobertson.com>");
1769MODULE_AUTHOR("Jagath Jog J <jagathjog1996@gmail.com>");
1770MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor core");
1771MODULE_LICENSE("GPL");
1772