1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/i2c/busses/i2c-tegra.c
4 *
5 * Copyright (C) 2010 Google, Inc.
6 * Author: Colin Cross <ccross@android.com>
7 */
8
9#include <linux/acpi.h>
10#include <linux/bitfield.h>
11#include <linux/clk.h>
12#include <linux/delay.h>
13#include <linux/dmaengine.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/i2c.h>
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/iopoll.h>
21#include <linux/irq.h>
22#include <linux/kernel.h>
23#include <linux/ktime.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/pinctrl/consumer.h>
27#include <linux/platform_device.h>
28#include <linux/pm_runtime.h>
29#include <linux/reset.h>
30
31#define BYTES_PER_FIFO_WORD 4
32
33#define I2C_CNFG				0x000
34#define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
35#define I2C_CNFG_PACKET_MODE_EN			BIT(10)
36#define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
37#define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
38#define I2C_STATUS				0x01c
39#define I2C_SL_CNFG				0x020
40#define I2C_SL_CNFG_NACK			BIT(1)
41#define I2C_SL_CNFG_NEWSL			BIT(2)
42#define I2C_SL_ADDR1				0x02c
43#define I2C_SL_ADDR2				0x030
44#define I2C_TLOW_SEXT				0x034
45#define I2C_TX_FIFO				0x050
46#define I2C_RX_FIFO				0x054
47#define I2C_PACKET_TRANSFER_STATUS		0x058
48#define I2C_FIFO_CONTROL			0x05c
49#define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
50#define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
51#define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
52#define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
53#define I2C_FIFO_STATUS				0x060
54#define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
55#define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
56#define I2C_INT_MASK				0x064
57#define I2C_INT_STATUS				0x068
58#define I2C_INT_BUS_CLR_DONE			BIT(11)
59#define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
60#define I2C_INT_NO_ACK				BIT(3)
61#define I2C_INT_ARBITRATION_LOST		BIT(2)
62#define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
63#define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
64#define I2C_CLK_DIVISOR				0x06c
65#define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
66#define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
67
68#define DVC_CTRL_REG1				0x000
69#define DVC_CTRL_REG1_INTR_EN			BIT(10)
70#define DVC_CTRL_REG3				0x008
71#define DVC_CTRL_REG3_SW_PROG			BIT(26)
72#define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
73#define DVC_STATUS				0x00c
74#define DVC_STATUS_I2C_DONE_INTR		BIT(30)
75
76#define I2C_ERR_NONE				0x00
77#define I2C_ERR_NO_ACK				BIT(0)
78#define I2C_ERR_ARBITRATION_LOST		BIT(1)
79#define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
80#define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
81
82#define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
83#define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
84#define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
85#define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
86#define PACKET_HEADER0_PROTOCOL_I2C		1
87
88#define I2C_HEADER_CONT_ON_NAK			BIT(21)
89#define I2C_HEADER_READ				BIT(19)
90#define I2C_HEADER_10BIT_ADDR			BIT(18)
91#define I2C_HEADER_IE_ENABLE			BIT(17)
92#define I2C_HEADER_REPEAT_START			BIT(16)
93#define I2C_HEADER_CONTINUE_XFER		BIT(15)
94#define I2C_HEADER_SLAVE_ADDR_SHIFT		1
95
96#define I2C_BUS_CLEAR_CNFG			0x084
97#define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
98#define I2C_BC_STOP_COND			BIT(2)
99#define I2C_BC_TERMINATE			BIT(1)
100#define I2C_BC_ENABLE				BIT(0)
101#define I2C_BUS_CLEAR_STATUS			0x088
102#define I2C_BC_STATUS				BIT(0)
103
104#define I2C_CONFIG_LOAD				0x08c
105#define I2C_MSTR_CONFIG_LOAD			BIT(0)
106
107#define I2C_CLKEN_OVERRIDE			0x090
108#define I2C_MST_CORE_CLKEN_OVR			BIT(0)
109
110#define I2C_INTERFACE_TIMING_0			0x094
111#define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
112#define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
113#define I2C_INTERFACE_TIMING_1			0x098
114#define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
115#define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
116#define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
117#define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
118
119#define I2C_HS_INTERFACE_TIMING_0		0x09c
120#define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
121#define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
122#define I2C_HS_INTERFACE_TIMING_1		0x0a0
123#define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
124#define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
125#define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
126
127#define I2C_MST_FIFO_CONTROL			0x0b4
128#define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
129#define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
130#define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
131#define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
132
133#define I2C_MST_FIFO_STATUS			0x0b8
134#define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
135#define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
136
137/* configuration load timeout in microseconds */
138#define I2C_CONFIG_LOAD_TIMEOUT			1000000
139
140/* packet header size in bytes */
141#define I2C_PACKET_HEADER_SIZE			12
142
143/*
144 * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145 * avoid DMA overhead, otherwise external APB DMA controller will be used.
146 * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147 * I2C_PACKET_HEADER_SIZE.
148 */
149#define I2C_PIO_MODE_PREFERRED_LEN		32
150
151/*
152 * msg_end_type: The bus control which needs to be sent at end of transfer.
153 * @MSG_END_STOP: Send stop pulse.
154 * @MSG_END_REPEAT_START: Send repeat-start.
155 * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156 */
157enum msg_end_type {
158	MSG_END_STOP,
159	MSG_END_REPEAT_START,
160	MSG_END_CONTINUE,
161};
162
163/**
164 * struct tegra_i2c_hw_feature : per hardware generation features
165 * @has_continue_xfer_support: continue-transfer supported
166 * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167 *		completion interrupt on per packet basis.
168 * @has_config_load_reg: Has the config load register to load the new
169 *		configuration.
170 * @clk_divisor_hs_mode: Clock divisor in HS mode.
171 * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172 *		applicable if there is no fast clock source i.e. single clock
173 *		source.
174 * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175 *		applicable if there is no fast clock source i.e. single clock
176 *		source.
177 * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178 *		applicable if there is no fast clock source (i.e. single
179 *		clock source).
180 * @has_multi_master_mode: The I2C controller supports running in single-master
181 *		or multi-master mode.
182 * @has_slcg_override_reg: The I2C controller supports a register that
183 *		overrides the second level clock gating.
184 * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185 *		provides additional features and allows for longer messages to
186 *		be transferred in one go.
187 * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188 *		allowing 0 length transfers.
189 * @supports_bus_clear: Bus Clear support to recover from bus hang during
190 *		SDA stuck low from device for some unknown reasons.
191 * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192 * @tlow_std_mode: Low period of the clock in standard mode.
193 * @thigh_std_mode: High period of the clock in standard mode.
194 * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195 * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196 * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197 *		in standard mode.
198 * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199 *		conditions in fast/fast-plus modes.
200 * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201 *		in HS mode.
202 * @has_interface_timing_reg: Has interface timing register to program the tuned
203 *		timing settings.
204 */
205struct tegra_i2c_hw_feature {
206	bool has_continue_xfer_support;
207	bool has_per_pkt_xfer_complete_irq;
208	bool has_config_load_reg;
209	u32 clk_divisor_hs_mode;
210	u32 clk_divisor_std_mode;
211	u32 clk_divisor_fast_mode;
212	u32 clk_divisor_fast_plus_mode;
213	bool has_multi_master_mode;
214	bool has_slcg_override_reg;
215	bool has_mst_fifo;
216	const struct i2c_adapter_quirks *quirks;
217	bool supports_bus_clear;
218	bool has_apb_dma;
219	u32 tlow_std_mode;
220	u32 thigh_std_mode;
221	u32 tlow_fast_fastplus_mode;
222	u32 thigh_fast_fastplus_mode;
223	u32 setup_hold_time_std_mode;
224	u32 setup_hold_time_fast_fast_plus_mode;
225	u32 setup_hold_time_hs_mode;
226	bool has_interface_timing_reg;
227};
228
229/**
230 * struct tegra_i2c_dev - per device I2C context
231 * @dev: device reference for power management
232 * @hw: Tegra I2C HW feature
233 * @adapter: core I2C layer adapter information
234 * @div_clk: clock reference for div clock of I2C controller
235 * @clocks: array of I2C controller clocks
236 * @nclocks: number of clocks in the array
237 * @rst: reset control for the I2C controller
238 * @base: ioremapped registers cookie
239 * @base_phys: physical base address of the I2C controller
240 * @cont_id: I2C controller ID, used for packet header
241 * @irq: IRQ number of transfer complete interrupt
242 * @is_dvc: identifies the DVC I2C controller, has a different register layout
243 * @is_vi: identifies the VI I2C controller, has a different register layout
244 * @msg_complete: transfer completion notifier
245 * @msg_buf_remaining: size of unsent data in the message buffer
246 * @msg_len: length of message in current transfer
247 * @msg_err: error code for completed message
248 * @msg_buf: pointer to current message data
249 * @msg_read: indicates that the transfer is a read access
250 * @timings: i2c timings information like bus frequency
251 * @multimaster_mode: indicates that I2C controller is in multi-master mode
252 * @dma_chan: DMA channel
253 * @dma_phys: handle to DMA resources
254 * @dma_buf: pointer to allocated DMA buffer
255 * @dma_buf_size: DMA buffer size
256 * @dma_mode: indicates active DMA transfer
257 * @dma_complete: DMA completion notifier
258 * @atomic_mode: indicates active atomic transfer
259 */
260struct tegra_i2c_dev {
261	struct device *dev;
262	struct i2c_adapter adapter;
263
264	const struct tegra_i2c_hw_feature *hw;
265	struct reset_control *rst;
266	unsigned int cont_id;
267	unsigned int irq;
268
269	phys_addr_t base_phys;
270	void __iomem *base;
271
272	struct clk_bulk_data clocks[2];
273	unsigned int nclocks;
274
275	struct clk *div_clk;
276	struct i2c_timings timings;
277
278	struct completion msg_complete;
279	size_t msg_buf_remaining;
280	unsigned int msg_len;
281	int msg_err;
282	u8 *msg_buf;
283
284	struct completion dma_complete;
285	struct dma_chan *dma_chan;
286	unsigned int dma_buf_size;
287	struct device *dma_dev;
288	dma_addr_t dma_phys;
289	void *dma_buf;
290
291	bool multimaster_mode;
292	bool atomic_mode;
293	bool dma_mode;
294	bool msg_read;
295	bool is_dvc;
296	bool is_vi;
297};
298
299#define IS_DVC(dev) (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) && (dev)->is_dvc)
300#define IS_VI(dev)  (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) && (dev)->is_vi)
301
302static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
303		       unsigned int reg)
304{
305	writel_relaxed(val, i2c_dev->base + reg);
306}
307
308static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
309{
310	return readl_relaxed(i2c_dev->base + reg);
311}
312
313/*
314 * If necessary, i2c_writel() and i2c_readl() will offset the register
315 * in order to talk to the I2C block inside the DVC block.
316 */
317static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
318{
319	if (IS_DVC(i2c_dev))
320		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
321	else if (IS_VI(i2c_dev))
322		reg = 0xc00 + (reg << 2);
323
324	return reg;
325}
326
327static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
328{
329	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
330
331	/* read back register to make sure that register writes completed */
332	if (reg != I2C_TX_FIFO)
333		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
334	else if (IS_VI(i2c_dev))
335		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
336}
337
338static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
339{
340	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
341}
342
343static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
344			unsigned int reg, unsigned int len)
345{
346	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
347}
348
349static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
350			   unsigned int reg, unsigned int len)
351{
352	u32 *data32 = data;
353
354	/*
355	 * VI I2C controller has known hardware bug where writes get stuck
356	 * when immediate multiple writes happen to TX_FIFO register.
357	 * Recommended software work around is to read I2C register after
358	 * each write to TX_FIFO register to flush out the data.
359	 */
360	while (len--)
361		i2c_writel(i2c_dev, *data32++, reg);
362}
363
364static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
365		       unsigned int reg, unsigned int len)
366{
367	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
368}
369
370static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
371{
372	u32 int_mask;
373
374	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
375	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
376}
377
378static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
379{
380	u32 int_mask;
381
382	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
383	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
384}
385
386static void tegra_i2c_dma_complete(void *args)
387{
388	struct tegra_i2c_dev *i2c_dev = args;
389
390	complete(&i2c_dev->dma_complete);
391}
392
393static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
394{
395	struct dma_async_tx_descriptor *dma_desc;
396	enum dma_transfer_direction dir;
397
398	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
399
400	reinit_completion(&i2c_dev->dma_complete);
401
402	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
403
404	dma_desc = dmaengine_prep_slave_single(i2c_dev->dma_chan, i2c_dev->dma_phys,
405					       len, dir, DMA_PREP_INTERRUPT |
406					       DMA_CTRL_ACK);
407	if (!dma_desc) {
408		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
409			i2c_dev->msg_read ? "RX" : "TX");
410		return -EINVAL;
411	}
412
413	dma_desc->callback = tegra_i2c_dma_complete;
414	dma_desc->callback_param = i2c_dev;
415
416	dmaengine_submit(dma_desc);
417	dma_async_issue_pending(i2c_dev->dma_chan);
418
419	return 0;
420}
421
422static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
423{
424	if (i2c_dev->dma_buf) {
425		dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
426				  i2c_dev->dma_buf, i2c_dev->dma_phys);
427		i2c_dev->dma_buf = NULL;
428	}
429
430	if (i2c_dev->dma_chan) {
431		dma_release_channel(i2c_dev->dma_chan);
432		i2c_dev->dma_chan = NULL;
433	}
434}
435
436static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
437{
438	dma_addr_t dma_phys;
439	u32 *dma_buf;
440	int err;
441
442	if (IS_VI(i2c_dev))
443		return 0;
444
445	if (i2c_dev->hw->has_apb_dma) {
446		if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
447			dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
448			return 0;
449		}
450	} else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
451		dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
452		return 0;
453	}
454
455	/*
456	 * The same channel will be used for both RX and TX.
457	 * Keeping the name as "tx" for backward compatibility
458	 * with existing devicetrees.
459	 */
460	i2c_dev->dma_chan = dma_request_chan(i2c_dev->dev, "tx");
461	if (IS_ERR(i2c_dev->dma_chan)) {
462		err = PTR_ERR(i2c_dev->dma_chan);
463		i2c_dev->dma_chan = NULL;
464		goto err_out;
465	}
466
467	i2c_dev->dma_dev = i2c_dev->dma_chan->device->dev;
468	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
469				I2C_PACKET_HEADER_SIZE;
470
471	dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
472				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
473	if (!dma_buf) {
474		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
475		err = -ENOMEM;
476		goto err_out;
477	}
478
479	i2c_dev->dma_buf = dma_buf;
480	i2c_dev->dma_phys = dma_phys;
481
482	return 0;
483
484err_out:
485	tegra_i2c_release_dma(i2c_dev);
486	if (err != -EPROBE_DEFER) {
487		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
488		dev_err(i2c_dev->dev, "falling back to PIO\n");
489		return 0;
490	}
491
492	return err;
493}
494
495/*
496 * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
497 * block.  This block is identical to the rest of the I2C blocks, except that
498 * it only supports master mode, it has registers moved around, and it needs
499 * some extra init to get it into I2C mode.  The register moves are handled
500 * by i2c_readl() and i2c_writel().
501 */
502static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
503{
504	u32 val;
505
506	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
507	val |= DVC_CTRL_REG3_SW_PROG;
508	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
509	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
510
511	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
512	val |= DVC_CTRL_REG1_INTR_EN;
513	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
514}
515
516static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
517{
518	u32 value;
519
520	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
521		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
522	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
523
524	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
525		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
526		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
527		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
528	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
529
530	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
531		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
532	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
533
534	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
535		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
536		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
537	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
538
539	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
540	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
541
542	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
543}
544
545static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
546				   u32 reg, u32 mask, u32 delay_us,
547				   u32 timeout_us)
548{
549	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
550	u32 val;
551
552	if (!i2c_dev->atomic_mode)
553		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
554						  delay_us, timeout_us);
555
556	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
557						 delay_us, timeout_us);
558}
559
560static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
561{
562	u32 mask, val, offset;
563	int err;
564
565	if (i2c_dev->hw->has_mst_fifo) {
566		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
567		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
568		offset = I2C_MST_FIFO_CONTROL;
569	} else {
570		mask = I2C_FIFO_CONTROL_TX_FLUSH |
571		       I2C_FIFO_CONTROL_RX_FLUSH;
572		offset = I2C_FIFO_CONTROL;
573	}
574
575	val = i2c_readl(i2c_dev, offset);
576	val |= mask;
577	i2c_writel(i2c_dev, val, offset);
578
579	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
580	if (err) {
581		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
582		return err;
583	}
584
585	return 0;
586}
587
588static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
589{
590	int err;
591
592	if (!i2c_dev->hw->has_config_load_reg)
593		return 0;
594
595	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
596
597	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
598				      1000, I2C_CONFIG_LOAD_TIMEOUT);
599	if (err) {
600		dev_err(i2c_dev->dev, "failed to load config\n");
601		return err;
602	}
603
604	return 0;
605}
606
607static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
608{
609	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
610	acpi_handle handle = ACPI_HANDLE(i2c_dev->dev);
611	struct i2c_timings *t = &i2c_dev->timings;
612	int err;
613
614	/*
615	 * The reset shouldn't ever fail in practice. The failure will be a
616	 * sign of a severe problem that needs to be resolved. Still we don't
617	 * want to fail the initialization completely because this may break
618	 * kernel boot up since voltage regulators use I2C. Hence, we will
619	 * emit a noisy warning on error, which won't stay unnoticed and
620	 * won't hose machine entirely.
621	 */
622	if (handle)
623		err = acpi_evaluate_object(handle, "_RST", NULL, NULL);
624	else
625		err = reset_control_reset(i2c_dev->rst);
626
627	WARN_ON_ONCE(err);
628
629	if (IS_DVC(i2c_dev))
630		tegra_dvc_init(i2c_dev);
631
632	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
633	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
634
635	if (i2c_dev->hw->has_multi_master_mode)
636		val |= I2C_CNFG_MULTI_MASTER_MODE;
637
638	i2c_writel(i2c_dev, val, I2C_CNFG);
639	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
640
641	if (IS_VI(i2c_dev))
642		tegra_i2c_vi_init(i2c_dev);
643
644	switch (t->bus_freq_hz) {
645	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
646	default:
647		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
648		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
649		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
650
651		if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
652			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
653		else
654			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
655		break;
656
657	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
658		tlow = i2c_dev->hw->tlow_std_mode;
659		thigh = i2c_dev->hw->thigh_std_mode;
660		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
661		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
662		break;
663	}
664
665	/* make sure clock divisor programmed correctly */
666	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
667				 i2c_dev->hw->clk_divisor_hs_mode) |
668		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
669	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
670
671	if (i2c_dev->hw->has_interface_timing_reg) {
672		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
673		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
674		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
675	}
676
677	/*
678	 * Configure setup and hold times only when tsu_thd is non-zero.
679	 * Otherwise, preserve the chip default values.
680	 */
681	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
682		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
683
684	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
685
686	err = clk_set_rate(i2c_dev->div_clk,
687			   t->bus_freq_hz * clk_multiplier);
688	if (err) {
689		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
690		return err;
691	}
692
693	if (!IS_DVC(i2c_dev) && !IS_VI(i2c_dev)) {
694		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
695
696		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
697		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
698		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
699		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
700	}
701
702	err = tegra_i2c_flush_fifos(i2c_dev);
703	if (err)
704		return err;
705
706	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
707		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
708
709	err = tegra_i2c_wait_for_config_load(i2c_dev);
710	if (err)
711		return err;
712
713	return 0;
714}
715
716static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
717{
718	u32 cnfg;
719
720	/*
721	 * NACK interrupt is generated before the I2C controller generates
722	 * the STOP condition on the bus.  So, wait for 2 clock periods
723	 * before disabling the controller so that the STOP condition has
724	 * been delivered properly.
725	 */
726	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
727
728	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
729	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
730		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
731
732	return tegra_i2c_wait_for_config_load(i2c_dev);
733}
734
735static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
736{
737	size_t buf_remaining = i2c_dev->msg_buf_remaining;
738	unsigned int words_to_transfer, rx_fifo_avail;
739	u8 *buf = i2c_dev->msg_buf;
740	u32 val;
741
742	/*
743	 * Catch overflow due to message fully sent before the check for
744	 * RX FIFO availability.
745	 */
746	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
747		return -EINVAL;
748
749	if (i2c_dev->hw->has_mst_fifo) {
750		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
751		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
752	} else {
753		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
754		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
755	}
756
757	/* round down to exclude partial word at the end of buffer */
758	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
759	if (words_to_transfer > rx_fifo_avail)
760		words_to_transfer = rx_fifo_avail;
761
762	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
763
764	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
765	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
766	rx_fifo_avail -= words_to_transfer;
767
768	/*
769	 * If there is a partial word at the end of buffer, handle it
770	 * manually to prevent overwriting past the end of buffer.
771	 */
772	if (rx_fifo_avail > 0 && buf_remaining > 0) {
773		/*
774		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
775		 * when (words_to_transfer was > rx_fifo_avail) earlier
776		 * in this function.
777		 */
778		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
779		val = cpu_to_le32(val);
780		memcpy(buf, &val, buf_remaining);
781		buf_remaining = 0;
782		rx_fifo_avail--;
783	}
784
785	/* RX FIFO must be drained, otherwise it's an Overflow case. */
786	if (WARN_ON_ONCE(rx_fifo_avail))
787		return -EINVAL;
788
789	i2c_dev->msg_buf_remaining = buf_remaining;
790	i2c_dev->msg_buf = buf;
791
792	return 0;
793}
794
795static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
796{
797	size_t buf_remaining = i2c_dev->msg_buf_remaining;
798	unsigned int words_to_transfer, tx_fifo_avail;
799	u8 *buf = i2c_dev->msg_buf;
800	u32 val;
801
802	if (i2c_dev->hw->has_mst_fifo) {
803		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
804		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
805	} else {
806		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
807		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
808	}
809
810	/* round down to exclude partial word at the end of buffer */
811	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
812
813	/*
814	 * This hunk pushes 4 bytes at a time into the TX FIFO.
815	 *
816	 * It's very common to have < 4 bytes, hence there is no word
817	 * to push if we have less than 4 bytes to transfer.
818	 */
819	if (words_to_transfer) {
820		if (words_to_transfer > tx_fifo_avail)
821			words_to_transfer = tx_fifo_avail;
822
823		/*
824		 * Update state before writing to FIFO.  Note that this may
825		 * cause us to finish writing all bytes (AKA buf_remaining
826		 * goes to 0), hence we have a potential for an interrupt
827		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
828		 * is disabled at this point.
829		 */
830		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
831		tx_fifo_avail -= words_to_transfer;
832
833		i2c_dev->msg_buf_remaining = buf_remaining;
834		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
835
836		if (IS_VI(i2c_dev))
837			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
838		else
839			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
840
841		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
842	}
843
844	/*
845	 * If there is a partial word at the end of buffer, handle it manually
846	 * to prevent reading past the end of buffer, which could cross a page
847	 * boundary and fault.
848	 */
849	if (tx_fifo_avail > 0 && buf_remaining > 0) {
850		/*
851		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
852		 * when (words_to_transfer was > tx_fifo_avail) earlier
853		 * in this function for non-zero words_to_transfer.
854		 */
855		memcpy(&val, buf, buf_remaining);
856		val = le32_to_cpu(val);
857
858		i2c_dev->msg_buf_remaining = 0;
859		i2c_dev->msg_buf = NULL;
860
861		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
862	}
863
864	return 0;
865}
866
867static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
868{
869	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
870	struct tegra_i2c_dev *i2c_dev = dev_id;
871	u32 status;
872
873	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
874
875	if (status == 0) {
876		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
877			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
878			 i2c_readl(i2c_dev, I2C_STATUS),
879			 i2c_readl(i2c_dev, I2C_CNFG));
880		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
881		goto err;
882	}
883
884	if (status & status_err) {
885		tegra_i2c_disable_packet_mode(i2c_dev);
886		if (status & I2C_INT_NO_ACK)
887			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
888		if (status & I2C_INT_ARBITRATION_LOST)
889			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
890		goto err;
891	}
892
893	/*
894	 * I2C transfer is terminated during the bus clear, so skip
895	 * processing the other interrupts.
896	 */
897	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
898		goto err;
899
900	if (!i2c_dev->dma_mode) {
901		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
902			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
903				/*
904				 * Overflow error condition: message fully sent,
905				 * with no XFER_COMPLETE interrupt but hardware
906				 * asks to transfer more.
907				 */
908				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
909				goto err;
910			}
911		}
912
913		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
914			if (i2c_dev->msg_buf_remaining)
915				tegra_i2c_fill_tx_fifo(i2c_dev);
916			else
917				tegra_i2c_mask_irq(i2c_dev,
918						   I2C_INT_TX_FIFO_DATA_REQ);
919		}
920	}
921
922	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
923	if (IS_DVC(i2c_dev))
924		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
925
926	/*
927	 * During message read XFER_COMPLETE interrupt is triggered prior to
928	 * DMA completion and during message write XFER_COMPLETE interrupt is
929	 * triggered after DMA completion.
930	 *
931	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
932	 * so forcing msg_buf_remaining to 0 in DMA mode.
933	 */
934	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
935		if (i2c_dev->dma_mode)
936			i2c_dev->msg_buf_remaining = 0;
937		/*
938		 * Underflow error condition: XFER_COMPLETE before message
939		 * fully sent.
940		 */
941		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
942			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
943			goto err;
944		}
945		complete(&i2c_dev->msg_complete);
946	}
947	goto done;
948err:
949	/* mask all interrupts on error */
950	tegra_i2c_mask_irq(i2c_dev,
951			   I2C_INT_NO_ACK |
952			   I2C_INT_ARBITRATION_LOST |
953			   I2C_INT_PACKET_XFER_COMPLETE |
954			   I2C_INT_TX_FIFO_DATA_REQ |
955			   I2C_INT_RX_FIFO_DATA_REQ);
956
957	if (i2c_dev->hw->supports_bus_clear)
958		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
959
960	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
961
962	if (IS_DVC(i2c_dev))
963		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
964
965	if (i2c_dev->dma_mode) {
966		dmaengine_terminate_async(i2c_dev->dma_chan);
967		complete(&i2c_dev->dma_complete);
968	}
969
970	complete(&i2c_dev->msg_complete);
971done:
972	return IRQ_HANDLED;
973}
974
975static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
976				       size_t len)
977{
978	struct dma_slave_config slv_config = {0};
979	u32 val, reg, dma_burst, reg_offset;
980	int err;
981
982	if (i2c_dev->hw->has_mst_fifo)
983		reg = I2C_MST_FIFO_CONTROL;
984	else
985		reg = I2C_FIFO_CONTROL;
986
987	if (i2c_dev->dma_mode) {
988		if (len & 0xF)
989			dma_burst = 1;
990		else if (len & 0x10)
991			dma_burst = 4;
992		else
993			dma_burst = 8;
994
995		if (i2c_dev->msg_read) {
996			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
997
998			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
999			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1000			slv_config.src_maxburst = dma_burst;
1001
1002			if (i2c_dev->hw->has_mst_fifo)
1003				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1004			else
1005				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1006		} else {
1007			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1008
1009			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1010			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1011			slv_config.dst_maxburst = dma_burst;
1012
1013			if (i2c_dev->hw->has_mst_fifo)
1014				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1015			else
1016				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1017		}
1018
1019		slv_config.device_fc = true;
1020		err = dmaengine_slave_config(i2c_dev->dma_chan, &slv_config);
1021		if (err) {
1022			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1023			dev_err(i2c_dev->dev, "falling back to PIO\n");
1024
1025			tegra_i2c_release_dma(i2c_dev);
1026			i2c_dev->dma_mode = false;
1027		} else {
1028			goto out;
1029		}
1030	}
1031
1032	if (i2c_dev->hw->has_mst_fifo)
1033		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1034		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1035	else
1036		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1037		      I2C_FIFO_CONTROL_RX_TRIG(1);
1038out:
1039	i2c_writel(i2c_dev, val, reg);
1040}
1041
1042static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1043					       struct completion *complete,
1044					       unsigned int timeout_ms)
1045{
1046	ktime_t ktime = ktime_get();
1047	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1048
1049	do {
1050		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1051
1052		if (status)
1053			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1054
1055		if (completion_done(complete)) {
1056			s64 delta = ktime_ms_delta(ktimeout, ktime);
1057
1058			return msecs_to_jiffies(delta) ?: 1;
1059		}
1060
1061		ktime = ktime_get();
1062
1063	} while (ktime_before(ktime, ktimeout));
1064
1065	return 0;
1066}
1067
1068static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1069					       struct completion *complete,
1070					       unsigned int timeout_ms)
1071{
1072	unsigned long ret;
1073
1074	if (i2c_dev->atomic_mode) {
1075		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1076	} else {
1077		enable_irq(i2c_dev->irq);
1078		ret = wait_for_completion_timeout(complete,
1079						  msecs_to_jiffies(timeout_ms));
1080		disable_irq(i2c_dev->irq);
1081
1082		/*
1083		 * Under some rare circumstances (like running KASAN +
1084		 * NFS root) CPU, which handles interrupt, may stuck in
1085		 * uninterruptible state for a significant time.  In this
1086		 * case we will get timeout if I2C transfer is running on
1087		 * a sibling CPU, despite of IRQ being raised.
1088		 *
1089		 * In order to handle this rare condition, the IRQ status
1090		 * needs to be checked after timeout.
1091		 */
1092		if (ret == 0)
1093			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1094	}
1095
1096	return ret;
1097}
1098
1099static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1100{
1101	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1102	u32 val, time_left;
1103	int err;
1104
1105	reinit_completion(&i2c_dev->msg_complete);
1106
1107	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1108	      I2C_BC_TERMINATE;
1109	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1110
1111	err = tegra_i2c_wait_for_config_load(i2c_dev);
1112	if (err)
1113		return err;
1114
1115	val |= I2C_BC_ENABLE;
1116	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1117	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1118
1119	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1120	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1121
1122	if (time_left == 0) {
1123		dev_err(i2c_dev->dev, "failed to clear bus\n");
1124		return -ETIMEDOUT;
1125	}
1126
1127	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1128	if (!(val & I2C_BC_STATUS)) {
1129		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1130		return -EIO;
1131	}
1132
1133	return -EAGAIN;
1134}
1135
1136static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1137					 struct i2c_msg *msg,
1138					 enum msg_end_type end_state)
1139{
1140	u32 *dma_buf = i2c_dev->dma_buf;
1141	u32 packet_header;
1142
1143	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1144			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1145				   PACKET_HEADER0_PROTOCOL_I2C) |
1146			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1147			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1148
1149	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1150		*dma_buf++ = packet_header;
1151	else
1152		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1153
1154	packet_header = i2c_dev->msg_len - 1;
1155
1156	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1157		*dma_buf++ = packet_header;
1158	else
1159		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1160
1161	packet_header = I2C_HEADER_IE_ENABLE;
1162
1163	if (end_state == MSG_END_CONTINUE)
1164		packet_header |= I2C_HEADER_CONTINUE_XFER;
1165	else if (end_state == MSG_END_REPEAT_START)
1166		packet_header |= I2C_HEADER_REPEAT_START;
1167
1168	if (msg->flags & I2C_M_TEN) {
1169		packet_header |= msg->addr;
1170		packet_header |= I2C_HEADER_10BIT_ADDR;
1171	} else {
1172		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1173	}
1174
1175	if (msg->flags & I2C_M_IGNORE_NAK)
1176		packet_header |= I2C_HEADER_CONT_ON_NAK;
1177
1178	if (msg->flags & I2C_M_RD)
1179		packet_header |= I2C_HEADER_READ;
1180
1181	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1182		*dma_buf++ = packet_header;
1183	else
1184		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1185}
1186
1187static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1188				   struct i2c_msg *msg)
1189{
1190	if (i2c_dev->msg_err == I2C_ERR_NONE)
1191		return 0;
1192
1193	tegra_i2c_init(i2c_dev);
1194
1195	/* start recovery upon arbitration loss in single master mode */
1196	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1197		if (!i2c_dev->multimaster_mode)
1198			return i2c_recover_bus(&i2c_dev->adapter);
1199
1200		return -EAGAIN;
1201	}
1202
1203	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1204		if (msg->flags & I2C_M_IGNORE_NAK)
1205			return 0;
1206
1207		return -EREMOTEIO;
1208	}
1209
1210	return -EIO;
1211}
1212
1213static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1214			      struct i2c_msg *msg,
1215			      enum msg_end_type end_state)
1216{
1217	unsigned long time_left, xfer_time = 100;
1218	size_t xfer_size;
1219	u32 int_mask;
1220	int err;
1221
1222	err = tegra_i2c_flush_fifos(i2c_dev);
1223	if (err)
1224		return err;
1225
1226	i2c_dev->msg_buf = msg->buf;
1227	i2c_dev->msg_len = msg->len;
1228
1229	i2c_dev->msg_err = I2C_ERR_NONE;
1230	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1231	reinit_completion(&i2c_dev->msg_complete);
1232
1233	/*
1234	 * For SMBUS block read command, read only 1 byte in the first transfer.
1235	 * Adjust that 1 byte for the next transfer in the msg buffer and msg
1236	 * length.
1237	 */
1238	if (msg->flags & I2C_M_RECV_LEN) {
1239		if (end_state == MSG_END_CONTINUE) {
1240			i2c_dev->msg_len = 1;
1241		} else {
1242			i2c_dev->msg_buf += 1;
1243			i2c_dev->msg_len -= 1;
1244		}
1245	}
1246
1247	i2c_dev->msg_buf_remaining = i2c_dev->msg_len;
1248
1249	if (i2c_dev->msg_read)
1250		xfer_size = i2c_dev->msg_len;
1251	else
1252		xfer_size = i2c_dev->msg_len + I2C_PACKET_HEADER_SIZE;
1253
1254	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1255
1256	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1257			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1258
1259	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1260
1261	/*
1262	 * Transfer time in mSec = Total bits / transfer rate
1263	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1264	 */
1265	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1266				       i2c_dev->timings.bus_freq_hz);
1267
1268	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1269	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1270
1271	if (i2c_dev->dma_mode) {
1272		if (i2c_dev->msg_read) {
1273			dma_sync_single_for_device(i2c_dev->dma_dev,
1274						   i2c_dev->dma_phys,
1275						   xfer_size, DMA_FROM_DEVICE);
1276
1277			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1278			if (err)
1279				return err;
1280		} else {
1281			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1282						i2c_dev->dma_phys,
1283						xfer_size, DMA_TO_DEVICE);
1284		}
1285	}
1286
1287	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1288
1289	if (!i2c_dev->msg_read) {
1290		if (i2c_dev->dma_mode) {
1291			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1292			       msg->buf, i2c_dev->msg_len);
1293
1294			dma_sync_single_for_device(i2c_dev->dma_dev,
1295						   i2c_dev->dma_phys,
1296						   xfer_size, DMA_TO_DEVICE);
1297
1298			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1299			if (err)
1300				return err;
1301		} else {
1302			tegra_i2c_fill_tx_fifo(i2c_dev);
1303		}
1304	}
1305
1306	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1307		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1308
1309	if (!i2c_dev->dma_mode) {
1310		if (msg->flags & I2C_M_RD)
1311			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1312		else if (i2c_dev->msg_buf_remaining)
1313			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1314	}
1315
1316	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1317	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1318		i2c_readl(i2c_dev, I2C_INT_MASK));
1319
1320	if (i2c_dev->dma_mode) {
1321		time_left = tegra_i2c_wait_completion(i2c_dev,
1322						      &i2c_dev->dma_complete,
1323						      xfer_time);
1324
1325		/*
1326		 * Synchronize DMA first, since dmaengine_terminate_sync()
1327		 * performs synchronization after the transfer's termination
1328		 * and we want to get a completion if transfer succeeded.
1329		 */
1330		dmaengine_synchronize(i2c_dev->dma_chan);
1331		dmaengine_terminate_sync(i2c_dev->dma_chan);
1332
1333		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1334			dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1335			tegra_i2c_init(i2c_dev);
1336			return -ETIMEDOUT;
1337		}
1338
1339		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1340			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1341						i2c_dev->dma_phys,
1342						xfer_size, DMA_FROM_DEVICE);
1343
1344			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, i2c_dev->msg_len);
1345		}
1346	}
1347
1348	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1349					      xfer_time);
1350
1351	tegra_i2c_mask_irq(i2c_dev, int_mask);
1352
1353	if (time_left == 0) {
1354		dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1355		tegra_i2c_init(i2c_dev);
1356		return -ETIMEDOUT;
1357	}
1358
1359	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1360		time_left, completion_done(&i2c_dev->msg_complete),
1361		i2c_dev->msg_err);
1362
1363	i2c_dev->dma_mode = false;
1364
1365	err = tegra_i2c_error_recover(i2c_dev, msg);
1366	if (err)
1367		return err;
1368
1369	return 0;
1370}
1371
1372static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1373			  int num)
1374{
1375	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1376	int i, ret;
1377
1378	ret = pm_runtime_get_sync(i2c_dev->dev);
1379	if (ret < 0) {
1380		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1381		pm_runtime_put_noidle(i2c_dev->dev);
1382		return ret;
1383	}
1384
1385	for (i = 0; i < num; i++) {
1386		enum msg_end_type end_type = MSG_END_STOP;
1387
1388		if (i < (num - 1)) {
1389			/* check whether follow up message is coming */
1390			if (msgs[i + 1].flags & I2C_M_NOSTART)
1391				end_type = MSG_END_CONTINUE;
1392			else
1393				end_type = MSG_END_REPEAT_START;
1394		}
1395		/* If M_RECV_LEN use ContinueXfer to read the first byte */
1396		if (msgs[i].flags & I2C_M_RECV_LEN) {
1397			ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1398			if (ret)
1399				break;
1400			/* Set the msg length from first byte */
1401			msgs[i].len += msgs[i].buf[0];
1402			dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1403		}
1404		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1405		if (ret)
1406			break;
1407	}
1408
1409	pm_runtime_put(i2c_dev->dev);
1410
1411	return ret ?: i;
1412}
1413
1414static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1415				 struct i2c_msg msgs[], int num)
1416{
1417	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1418	int ret;
1419
1420	i2c_dev->atomic_mode = true;
1421	ret = tegra_i2c_xfer(adap, msgs, num);
1422	i2c_dev->atomic_mode = false;
1423
1424	return ret;
1425}
1426
1427static u32 tegra_i2c_func(struct i2c_adapter *adap)
1428{
1429	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1430	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1431		  I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1432
1433	if (i2c_dev->hw->has_continue_xfer_support)
1434		ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1435
1436	return ret;
1437}
1438
1439static const struct i2c_algorithm tegra_i2c_algo = {
1440	.master_xfer		= tegra_i2c_xfer,
1441	.master_xfer_atomic	= tegra_i2c_xfer_atomic,
1442	.functionality		= tegra_i2c_func,
1443};
1444
1445/* payload size is only 12 bit */
1446static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1447	.flags = I2C_AQ_NO_ZERO_LEN,
1448	.max_read_len = SZ_4K,
1449	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1450};
1451
1452static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1453	.flags = I2C_AQ_NO_ZERO_LEN,
1454	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1455};
1456
1457static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1458	.recover_bus = tegra_i2c_issue_bus_clear,
1459};
1460
1461static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1462	.has_continue_xfer_support = false,
1463	.has_per_pkt_xfer_complete_irq = false,
1464	.clk_divisor_hs_mode = 3,
1465	.clk_divisor_std_mode = 0,
1466	.clk_divisor_fast_mode = 0,
1467	.clk_divisor_fast_plus_mode = 0,
1468	.has_config_load_reg = false,
1469	.has_multi_master_mode = false,
1470	.has_slcg_override_reg = false,
1471	.has_mst_fifo = false,
1472	.quirks = &tegra_i2c_quirks,
1473	.supports_bus_clear = false,
1474	.has_apb_dma = true,
1475	.tlow_std_mode = 0x4,
1476	.thigh_std_mode = 0x2,
1477	.tlow_fast_fastplus_mode = 0x4,
1478	.thigh_fast_fastplus_mode = 0x2,
1479	.setup_hold_time_std_mode = 0x0,
1480	.setup_hold_time_fast_fast_plus_mode = 0x0,
1481	.setup_hold_time_hs_mode = 0x0,
1482	.has_interface_timing_reg = false,
1483};
1484
1485static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1486	.has_continue_xfer_support = true,
1487	.has_per_pkt_xfer_complete_irq = false,
1488	.clk_divisor_hs_mode = 3,
1489	.clk_divisor_std_mode = 0,
1490	.clk_divisor_fast_mode = 0,
1491	.clk_divisor_fast_plus_mode = 0,
1492	.has_config_load_reg = false,
1493	.has_multi_master_mode = false,
1494	.has_slcg_override_reg = false,
1495	.has_mst_fifo = false,
1496	.quirks = &tegra_i2c_quirks,
1497	.supports_bus_clear = false,
1498	.has_apb_dma = true,
1499	.tlow_std_mode = 0x4,
1500	.thigh_std_mode = 0x2,
1501	.tlow_fast_fastplus_mode = 0x4,
1502	.thigh_fast_fastplus_mode = 0x2,
1503	.setup_hold_time_std_mode = 0x0,
1504	.setup_hold_time_fast_fast_plus_mode = 0x0,
1505	.setup_hold_time_hs_mode = 0x0,
1506	.has_interface_timing_reg = false,
1507};
1508
1509static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1510	.has_continue_xfer_support = true,
1511	.has_per_pkt_xfer_complete_irq = true,
1512	.clk_divisor_hs_mode = 1,
1513	.clk_divisor_std_mode = 0x19,
1514	.clk_divisor_fast_mode = 0x19,
1515	.clk_divisor_fast_plus_mode = 0x10,
1516	.has_config_load_reg = false,
1517	.has_multi_master_mode = false,
1518	.has_slcg_override_reg = false,
1519	.has_mst_fifo = false,
1520	.quirks = &tegra_i2c_quirks,
1521	.supports_bus_clear = true,
1522	.has_apb_dma = true,
1523	.tlow_std_mode = 0x4,
1524	.thigh_std_mode = 0x2,
1525	.tlow_fast_fastplus_mode = 0x4,
1526	.thigh_fast_fastplus_mode = 0x2,
1527	.setup_hold_time_std_mode = 0x0,
1528	.setup_hold_time_fast_fast_plus_mode = 0x0,
1529	.setup_hold_time_hs_mode = 0x0,
1530	.has_interface_timing_reg = false,
1531};
1532
1533static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1534	.has_continue_xfer_support = true,
1535	.has_per_pkt_xfer_complete_irq = true,
1536	.clk_divisor_hs_mode = 1,
1537	.clk_divisor_std_mode = 0x19,
1538	.clk_divisor_fast_mode = 0x19,
1539	.clk_divisor_fast_plus_mode = 0x10,
1540	.has_config_load_reg = true,
1541	.has_multi_master_mode = false,
1542	.has_slcg_override_reg = true,
1543	.has_mst_fifo = false,
1544	.quirks = &tegra_i2c_quirks,
1545	.supports_bus_clear = true,
1546	.has_apb_dma = true,
1547	.tlow_std_mode = 0x4,
1548	.thigh_std_mode = 0x2,
1549	.tlow_fast_fastplus_mode = 0x4,
1550	.thigh_fast_fastplus_mode = 0x2,
1551	.setup_hold_time_std_mode = 0x0,
1552	.setup_hold_time_fast_fast_plus_mode = 0x0,
1553	.setup_hold_time_hs_mode = 0x0,
1554	.has_interface_timing_reg = true,
1555};
1556
1557static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1558	.has_continue_xfer_support = true,
1559	.has_per_pkt_xfer_complete_irq = true,
1560	.clk_divisor_hs_mode = 1,
1561	.clk_divisor_std_mode = 0x19,
1562	.clk_divisor_fast_mode = 0x19,
1563	.clk_divisor_fast_plus_mode = 0x10,
1564	.has_config_load_reg = true,
1565	.has_multi_master_mode = false,
1566	.has_slcg_override_reg = true,
1567	.has_mst_fifo = false,
1568	.quirks = &tegra_i2c_quirks,
1569	.supports_bus_clear = true,
1570	.has_apb_dma = true,
1571	.tlow_std_mode = 0x4,
1572	.thigh_std_mode = 0x2,
1573	.tlow_fast_fastplus_mode = 0x4,
1574	.thigh_fast_fastplus_mode = 0x2,
1575	.setup_hold_time_std_mode = 0,
1576	.setup_hold_time_fast_fast_plus_mode = 0,
1577	.setup_hold_time_hs_mode = 0,
1578	.has_interface_timing_reg = true,
1579};
1580
1581static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1582	.has_continue_xfer_support = true,
1583	.has_per_pkt_xfer_complete_irq = true,
1584	.clk_divisor_hs_mode = 1,
1585	.clk_divisor_std_mode = 0x16,
1586	.clk_divisor_fast_mode = 0x19,
1587	.clk_divisor_fast_plus_mode = 0x10,
1588	.has_config_load_reg = true,
1589	.has_multi_master_mode = false,
1590	.has_slcg_override_reg = true,
1591	.has_mst_fifo = false,
1592	.quirks = &tegra_i2c_quirks,
1593	.supports_bus_clear = true,
1594	.has_apb_dma = false,
1595	.tlow_std_mode = 0x4,
1596	.thigh_std_mode = 0x3,
1597	.tlow_fast_fastplus_mode = 0x4,
1598	.thigh_fast_fastplus_mode = 0x2,
1599	.setup_hold_time_std_mode = 0,
1600	.setup_hold_time_fast_fast_plus_mode = 0,
1601	.setup_hold_time_hs_mode = 0,
1602	.has_interface_timing_reg = true,
1603};
1604
1605static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1606	.has_continue_xfer_support = true,
1607	.has_per_pkt_xfer_complete_irq = true,
1608	.clk_divisor_hs_mode = 1,
1609	.clk_divisor_std_mode = 0x4f,
1610	.clk_divisor_fast_mode = 0x3c,
1611	.clk_divisor_fast_plus_mode = 0x16,
1612	.has_config_load_reg = true,
1613	.has_multi_master_mode = true,
1614	.has_slcg_override_reg = true,
1615	.has_mst_fifo = true,
1616	.quirks = &tegra194_i2c_quirks,
1617	.supports_bus_clear = true,
1618	.has_apb_dma = false,
1619	.tlow_std_mode = 0x8,
1620	.thigh_std_mode = 0x7,
1621	.tlow_fast_fastplus_mode = 0x2,
1622	.thigh_fast_fastplus_mode = 0x2,
1623	.setup_hold_time_std_mode = 0x08080808,
1624	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1625	.setup_hold_time_hs_mode = 0x090909,
1626	.has_interface_timing_reg = true,
1627};
1628
1629static const struct of_device_id tegra_i2c_of_match[] = {
1630	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1631	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1632#if IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC)
1633	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1634#endif
1635	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1636	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1637	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1638	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1639	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1640#if IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC)
1641	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1642#endif
1643	{},
1644};
1645MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1646
1647static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1648{
1649	struct device_node *np = i2c_dev->dev->of_node;
1650	bool multi_mode;
1651
1652	i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1653
1654	multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1655	i2c_dev->multimaster_mode = multi_mode;
1656
1657	if (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) &&
1658	    of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1659		i2c_dev->is_dvc = true;
1660
1661	if (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) &&
1662	    of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1663		i2c_dev->is_vi = true;
1664}
1665
1666static int tegra_i2c_init_reset(struct tegra_i2c_dev *i2c_dev)
1667{
1668	if (ACPI_HANDLE(i2c_dev->dev))
1669		return 0;
1670
1671	i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1672	if (IS_ERR(i2c_dev->rst))
1673		return dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1674				      "failed to get reset control\n");
1675
1676	return 0;
1677}
1678
1679static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1680{
1681	int err;
1682
1683	if (ACPI_HANDLE(i2c_dev->dev))
1684		return 0;
1685
1686	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1687
1688	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1689		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1690
1691	if (IS_VI(i2c_dev))
1692		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1693
1694	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1695				i2c_dev->clocks);
1696	if (err)
1697		return err;
1698
1699	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1700	if (err)
1701		return err;
1702
1703	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1704
1705	if (!i2c_dev->multimaster_mode)
1706		return 0;
1707
1708	err = clk_enable(i2c_dev->div_clk);
1709	if (err) {
1710		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1711		goto unprepare_clocks;
1712	}
1713
1714	return 0;
1715
1716unprepare_clocks:
1717	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1718
1719	return err;
1720}
1721
1722static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1723{
1724	if (i2c_dev->multimaster_mode)
1725		clk_disable(i2c_dev->div_clk);
1726
1727	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1728}
1729
1730static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1731{
1732	int ret;
1733
1734	ret = pm_runtime_get_sync(i2c_dev->dev);
1735	if (ret < 0)
1736		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1737	else
1738		ret = tegra_i2c_init(i2c_dev);
1739
1740	pm_runtime_put_sync(i2c_dev->dev);
1741
1742	return ret;
1743}
1744
1745static int tegra_i2c_probe(struct platform_device *pdev)
1746{
1747	struct tegra_i2c_dev *i2c_dev;
1748	struct resource *res;
1749	int err;
1750
1751	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1752	if (!i2c_dev)
1753		return -ENOMEM;
1754
1755	platform_set_drvdata(pdev, i2c_dev);
1756
1757	init_completion(&i2c_dev->msg_complete);
1758	init_completion(&i2c_dev->dma_complete);
1759
1760	i2c_dev->hw = device_get_match_data(&pdev->dev);
1761	i2c_dev->cont_id = pdev->id;
1762	i2c_dev->dev = &pdev->dev;
1763
1764	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1765	if (IS_ERR(i2c_dev->base))
1766		return PTR_ERR(i2c_dev->base);
1767
1768	i2c_dev->base_phys = res->start;
1769
1770	err = platform_get_irq(pdev, 0);
1771	if (err < 0)
1772		return err;
1773
1774	i2c_dev->irq = err;
1775
1776	/* interrupt will be enabled during of transfer time */
1777	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1778
1779	err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1780					NULL, tegra_i2c_isr,
1781					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1782					dev_name(i2c_dev->dev), i2c_dev);
1783	if (err)
1784		return err;
1785
1786	tegra_i2c_parse_dt(i2c_dev);
1787
1788	err = tegra_i2c_init_reset(i2c_dev);
1789	if (err)
1790		return err;
1791
1792	err = tegra_i2c_init_clocks(i2c_dev);
1793	if (err)
1794		return err;
1795
1796	err = tegra_i2c_init_dma(i2c_dev);
1797	if (err)
1798		goto release_clocks;
1799
1800	/*
1801	 * VI I2C is in VE power domain which is not always ON and not
1802	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1803	 * non IRQ-safe domain because this prevents powering off the power
1804	 * domain.
1805	 *
1806	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1807	 * be used for atomic transfers.
1808	 */
1809	if (!IS_VI(i2c_dev))
1810		pm_runtime_irq_safe(i2c_dev->dev);
1811
1812	pm_runtime_enable(i2c_dev->dev);
1813
1814	err = tegra_i2c_init_hardware(i2c_dev);
1815	if (err)
1816		goto release_rpm;
1817
1818	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1819	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1820	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1821	i2c_dev->adapter.retries = 1;
1822	i2c_dev->adapter.timeout = 6 * HZ;
1823	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1824	i2c_dev->adapter.owner = THIS_MODULE;
1825	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1826	i2c_dev->adapter.algo = &tegra_i2c_algo;
1827	i2c_dev->adapter.nr = pdev->id;
1828	ACPI_COMPANION_SET(&i2c_dev->adapter.dev, ACPI_COMPANION(&pdev->dev));
1829
1830	if (i2c_dev->hw->supports_bus_clear)
1831		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1832
1833	strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1834		sizeof(i2c_dev->adapter.name));
1835
1836	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1837	if (err)
1838		goto release_rpm;
1839
1840	return 0;
1841
1842release_rpm:
1843	pm_runtime_disable(i2c_dev->dev);
1844
1845	tegra_i2c_release_dma(i2c_dev);
1846release_clocks:
1847	tegra_i2c_release_clocks(i2c_dev);
1848
1849	return err;
1850}
1851
1852static void tegra_i2c_remove(struct platform_device *pdev)
1853{
1854	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1855
1856	i2c_del_adapter(&i2c_dev->adapter);
1857	pm_runtime_force_suspend(i2c_dev->dev);
1858
1859	tegra_i2c_release_dma(i2c_dev);
1860	tegra_i2c_release_clocks(i2c_dev);
1861}
1862
1863static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1864{
1865	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1866	int err;
1867
1868	err = pinctrl_pm_select_default_state(dev);
1869	if (err)
1870		return err;
1871
1872	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1873	if (err)
1874		return err;
1875
1876	/*
1877	 * VI I2C device is attached to VE power domain which goes through
1878	 * power ON/OFF during runtime PM resume/suspend, meaning that
1879	 * controller needs to be re-initialized after power ON.
1880	 */
1881	if (IS_VI(i2c_dev)) {
1882		err = tegra_i2c_init(i2c_dev);
1883		if (err)
1884			goto disable_clocks;
1885	}
1886
1887	return 0;
1888
1889disable_clocks:
1890	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1891
1892	return err;
1893}
1894
1895static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1896{
1897	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1898
1899	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1900
1901	return pinctrl_pm_select_idle_state(dev);
1902}
1903
1904static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1905{
1906	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1907	int err;
1908
1909	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1910
1911	if (!pm_runtime_status_suspended(dev)) {
1912		err = tegra_i2c_runtime_suspend(dev);
1913		if (err)
1914			return err;
1915	}
1916
1917	return 0;
1918}
1919
1920static int __maybe_unused tegra_i2c_resume(struct device *dev)
1921{
1922	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1923	int err;
1924
1925	/*
1926	 * We need to ensure that clocks are enabled so that registers can be
1927	 * restored in tegra_i2c_init().
1928	 */
1929	err = tegra_i2c_runtime_resume(dev);
1930	if (err)
1931		return err;
1932
1933	err = tegra_i2c_init(i2c_dev);
1934	if (err)
1935		return err;
1936
1937	/*
1938	 * In case we are runtime suspended, disable clocks again so that we
1939	 * don't unbalance the clock reference counts during the next runtime
1940	 * resume transition.
1941	 */
1942	if (pm_runtime_status_suspended(dev)) {
1943		err = tegra_i2c_runtime_suspend(dev);
1944		if (err)
1945			return err;
1946	}
1947
1948	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1949
1950	return 0;
1951}
1952
1953static const struct dev_pm_ops tegra_i2c_pm = {
1954	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1955	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1956			   NULL)
1957};
1958
1959static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1960	{.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1961	{.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1962	{.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1963	{ }
1964};
1965MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1966
1967static struct platform_driver tegra_i2c_driver = {
1968	.probe = tegra_i2c_probe,
1969	.remove_new = tegra_i2c_remove,
1970	.driver = {
1971		.name = "tegra-i2c",
1972		.of_match_table = tegra_i2c_of_match,
1973		.acpi_match_table = tegra_i2c_acpi_match,
1974		.pm = &tegra_i2c_pm,
1975	},
1976};
1977module_platform_driver(tegra_i2c_driver);
1978
1979MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1980MODULE_AUTHOR("Colin Cross");
1981MODULE_LICENSE("GPL v2");
1982