1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2014, Sony Mobile Communications AB.
5 *
6 */
7
8#include <linux/acpi.h>
9#include <linux/atomic.h>
10#include <linux/clk.h>
11#include <linux/delay.h>
12#include <linux/dmaengine.h>
13#include <linux/dmapool.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/i2c.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/platform_device.h>
22#include <linux/pm_runtime.h>
23#include <linux/scatterlist.h>
24
25/* QUP Registers */
26#define QUP_CONFIG		0x000
27#define QUP_STATE		0x004
28#define QUP_IO_MODE		0x008
29#define QUP_SW_RESET		0x00c
30#define QUP_OPERATIONAL		0x018
31#define QUP_ERROR_FLAGS		0x01c
32#define QUP_ERROR_FLAGS_EN	0x020
33#define QUP_OPERATIONAL_MASK	0x028
34#define QUP_HW_VERSION		0x030
35#define QUP_MX_OUTPUT_CNT	0x100
36#define QUP_OUT_FIFO_BASE	0x110
37#define QUP_MX_WRITE_CNT	0x150
38#define QUP_MX_INPUT_CNT	0x200
39#define QUP_MX_READ_CNT		0x208
40#define QUP_IN_FIFO_BASE	0x218
41#define QUP_I2C_CLK_CTL		0x400
42#define QUP_I2C_STATUS		0x404
43#define QUP_I2C_MASTER_GEN	0x408
44
45/* QUP States and reset values */
46#define QUP_RESET_STATE		0
47#define QUP_RUN_STATE		1
48#define QUP_PAUSE_STATE		3
49#define QUP_STATE_MASK		3
50
51#define QUP_STATE_VALID		BIT(2)
52#define QUP_I2C_MAST_GEN	BIT(4)
53#define QUP_I2C_FLUSH		BIT(6)
54
55#define QUP_OPERATIONAL_RESET	0x000ff0
56#define QUP_I2C_STATUS_RESET	0xfffffc
57
58/* QUP OPERATIONAL FLAGS */
59#define QUP_I2C_NACK_FLAG	BIT(3)
60#define QUP_OUT_NOT_EMPTY	BIT(4)
61#define QUP_IN_NOT_EMPTY	BIT(5)
62#define QUP_OUT_FULL		BIT(6)
63#define QUP_OUT_SVC_FLAG	BIT(8)
64#define QUP_IN_SVC_FLAG		BIT(9)
65#define QUP_MX_OUTPUT_DONE	BIT(10)
66#define QUP_MX_INPUT_DONE	BIT(11)
67#define OUT_BLOCK_WRITE_REQ	BIT(12)
68#define IN_BLOCK_READ_REQ	BIT(13)
69
70/* I2C mini core related values */
71#define QUP_NO_INPUT		BIT(7)
72#define QUP_CLOCK_AUTO_GATE	BIT(13)
73#define I2C_MINI_CORE		(2 << 8)
74#define I2C_N_VAL		15
75#define I2C_N_VAL_V2		7
76
77/* Most significant word offset in FIFO port */
78#define QUP_MSW_SHIFT		(I2C_N_VAL + 1)
79
80/* Packing/Unpacking words in FIFOs, and IO modes */
81#define QUP_OUTPUT_BLK_MODE	(1 << 10)
82#define QUP_OUTPUT_BAM_MODE	(3 << 10)
83#define QUP_INPUT_BLK_MODE	(1 << 12)
84#define QUP_INPUT_BAM_MODE	(3 << 12)
85#define QUP_BAM_MODE		(QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
86#define QUP_UNPACK_EN		BIT(14)
87#define QUP_PACK_EN		BIT(15)
88
89#define QUP_REPACK_EN		(QUP_UNPACK_EN | QUP_PACK_EN)
90#define QUP_V2_TAGS_EN		1
91
92#define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
93#define QUP_OUTPUT_FIFO_SIZE(x)	(((x) >> 2) & 0x07)
94#define QUP_INPUT_BLOCK_SIZE(x)	(((x) >> 5) & 0x03)
95#define QUP_INPUT_FIFO_SIZE(x)	(((x) >> 7) & 0x07)
96
97/* QUP tags */
98#define QUP_TAG_START		(1 << 8)
99#define QUP_TAG_DATA		(2 << 8)
100#define QUP_TAG_STOP		(3 << 8)
101#define QUP_TAG_REC		(4 << 8)
102#define QUP_BAM_INPUT_EOT		0x93
103#define QUP_BAM_FLUSH_STOP		0x96
104
105/* QUP v2 tags */
106#define QUP_TAG_V2_START               0x81
107#define QUP_TAG_V2_DATAWR              0x82
108#define QUP_TAG_V2_DATAWR_STOP         0x83
109#define QUP_TAG_V2_DATARD              0x85
110#define QUP_TAG_V2_DATARD_NACK         0x86
111#define QUP_TAG_V2_DATARD_STOP         0x87
112
113/* Status, Error flags */
114#define I2C_STATUS_WR_BUFFER_FULL	BIT(0)
115#define I2C_STATUS_BUS_ACTIVE		BIT(8)
116#define I2C_STATUS_ERROR_MASK		0x38000fc
117#define QUP_STATUS_ERROR_FLAGS		0x7c
118
119#define QUP_READ_LIMIT			256
120#define SET_BIT				0x1
121#define RESET_BIT			0x0
122#define ONE_BYTE			0x1
123#define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
124
125/* Maximum transfer length for single DMA descriptor */
126#define MX_TX_RX_LEN			SZ_64K
127#define MX_BLOCKS			(MX_TX_RX_LEN / QUP_READ_LIMIT)
128/* Maximum transfer length for all DMA descriptors */
129#define MX_DMA_TX_RX_LEN		(2 * MX_TX_RX_LEN)
130#define MX_DMA_BLOCKS			(MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
131
132/*
133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on
134 * the top of maximum transfer time calculated from i2c bus speed to compensate
135 * the overheads.
136 */
137#define TOUT_MIN			2
138
139/* Default values. Use these if FW query fails */
140#define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ
141#define DEFAULT_SRC_CLK 20000000
142
143/*
144 * Max tags length (start, stop and maximum 2 bytes address) for each QUP
145 * data transfer
146 */
147#define QUP_MAX_TAGS_LEN		4
148/* Max data length for each DATARD tags */
149#define RECV_MAX_DATA_LEN		254
150/* TAG length for DATA READ in RX FIFO  */
151#define READ_RX_TAGS_LEN		2
152
153static unsigned int scl_freq;
154module_param_named(scl_freq, scl_freq, uint, 0444);
155MODULE_PARM_DESC(scl_freq, "SCL frequency override");
156
157/*
158 * count: no of blocks
159 * pos: current block number
160 * tx_tag_len: tx tag length for current block
161 * rx_tag_len: rx tag length for current block
162 * data_len: remaining data length for current message
163 * cur_blk_len: data length for current block
164 * total_tx_len: total tx length including tag bytes for current QUP transfer
165 * total_rx_len: total rx length including tag bytes for current QUP transfer
166 * tx_fifo_data_pos: current byte number in TX FIFO word
167 * tx_fifo_free: number of free bytes in current QUP block write.
168 * rx_fifo_data_pos: current byte number in RX FIFO word
169 * fifo_available: number of available bytes in RX FIFO for current
170 *		   QUP block read
171 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
172 *		 to TX FIFO will be appended in this data and will be written to
173 *		 TX FIFO when all the 4 bytes are available.
174 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
175 *		 contains the 4 bytes of RX data.
176 * cur_data: pointer to tell cur data position for current message
177 * cur_tx_tags: pointer to tell cur position in tags
178 * tx_tags_sent: all tx tag bytes have been written in FIFO word
179 * send_last_word: for tx FIFO, last word send is pending in current block
180 * rx_bytes_read: if all the bytes have been read from rx FIFO.
181 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
182 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
183 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
184 * tags: contains tx tag bytes for current QUP transfer
185 */
186struct qup_i2c_block {
187	int		count;
188	int		pos;
189	int		tx_tag_len;
190	int		rx_tag_len;
191	int		data_len;
192	int		cur_blk_len;
193	int		total_tx_len;
194	int		total_rx_len;
195	int		tx_fifo_data_pos;
196	int		tx_fifo_free;
197	int		rx_fifo_data_pos;
198	int		fifo_available;
199	u32		tx_fifo_data;
200	u32		rx_fifo_data;
201	u8		*cur_data;
202	u8		*cur_tx_tags;
203	bool		tx_tags_sent;
204	bool		send_last_word;
205	bool		rx_tags_fetched;
206	bool		rx_bytes_read;
207	bool		is_tx_blk_mode;
208	bool		is_rx_blk_mode;
209	u8		tags[6];
210};
211
212struct qup_i2c_tag {
213	u8 *start;
214	dma_addr_t addr;
215};
216
217struct qup_i2c_bam {
218	struct	qup_i2c_tag tag;
219	struct	dma_chan *dma;
220	struct	scatterlist *sg;
221	unsigned int sg_cnt;
222};
223
224struct qup_i2c_dev {
225	struct device		*dev;
226	void __iomem		*base;
227	int			irq;
228	struct clk		*clk;
229	struct clk		*pclk;
230	struct i2c_adapter	adap;
231
232	int			clk_ctl;
233	int			out_fifo_sz;
234	int			in_fifo_sz;
235	int			out_blk_sz;
236	int			in_blk_sz;
237
238	int			blk_xfer_limit;
239	unsigned long		one_byte_t;
240	unsigned long		xfer_timeout;
241	struct qup_i2c_block	blk;
242
243	struct i2c_msg		*msg;
244	/* Current posion in user message buffer */
245	int			pos;
246	/* I2C protocol errors */
247	u32			bus_err;
248	/* QUP core errors */
249	u32			qup_err;
250
251	/* To check if this is the last msg */
252	bool			is_last;
253	bool			is_smbus_read;
254
255	/* To configure when bus is in run state */
256	u32			config_run;
257
258	/* dma parameters */
259	bool			is_dma;
260	/* To check if the current transfer is using DMA */
261	bool			use_dma;
262	unsigned int		max_xfer_sg_len;
263	unsigned int		tag_buf_pos;
264	/* The threshold length above which block mode will be used */
265	unsigned int		blk_mode_threshold;
266	struct			dma_pool *dpool;
267	struct			qup_i2c_tag start_tag;
268	struct			qup_i2c_bam brx;
269	struct			qup_i2c_bam btx;
270
271	struct completion	xfer;
272	/* function to write data in tx fifo */
273	void (*write_tx_fifo)(struct qup_i2c_dev *qup);
274	/* function to read data from rx fifo */
275	void (*read_rx_fifo)(struct qup_i2c_dev *qup);
276	/* function to write tags in tx fifo for i2c read transfer */
277	void (*write_rx_tags)(struct qup_i2c_dev *qup);
278};
279
280static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
281{
282	struct qup_i2c_dev *qup = dev;
283	struct qup_i2c_block *blk = &qup->blk;
284	u32 bus_err;
285	u32 qup_err;
286	u32 opflags;
287
288	bus_err = readl(qup->base + QUP_I2C_STATUS);
289	qup_err = readl(qup->base + QUP_ERROR_FLAGS);
290	opflags = readl(qup->base + QUP_OPERATIONAL);
291
292	if (!qup->msg) {
293		/* Clear Error interrupt */
294		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
295		return IRQ_HANDLED;
296	}
297
298	bus_err &= I2C_STATUS_ERROR_MASK;
299	qup_err &= QUP_STATUS_ERROR_FLAGS;
300
301	/* Clear the error bits in QUP_ERROR_FLAGS */
302	if (qup_err)
303		writel(qup_err, qup->base + QUP_ERROR_FLAGS);
304
305	/* Clear the error bits in QUP_I2C_STATUS */
306	if (bus_err)
307		writel(bus_err, qup->base + QUP_I2C_STATUS);
308
309	/*
310	 * Check for BAM mode and returns if already error has come for current
311	 * transfer. In Error case, sometimes, QUP generates more than one
312	 * interrupt.
313	 */
314	if (qup->use_dma && (qup->qup_err || qup->bus_err))
315		return IRQ_HANDLED;
316
317	/* Reset the QUP State in case of error */
318	if (qup_err || bus_err) {
319		/*
320		 * Don���t reset the QUP state in case of BAM mode. The BAM
321		 * flush operation needs to be scheduled in transfer function
322		 * which will clear the remaining schedule descriptors in BAM
323		 * HW FIFO and generates the BAM interrupt.
324		 */
325		if (!qup->use_dma)
326			writel(QUP_RESET_STATE, qup->base + QUP_STATE);
327		goto done;
328	}
329
330	if (opflags & QUP_OUT_SVC_FLAG) {
331		writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
332
333		if (opflags & OUT_BLOCK_WRITE_REQ) {
334			blk->tx_fifo_free += qup->out_blk_sz;
335			if (qup->msg->flags & I2C_M_RD)
336				qup->write_rx_tags(qup);
337			else
338				qup->write_tx_fifo(qup);
339		}
340	}
341
342	if (opflags & QUP_IN_SVC_FLAG) {
343		writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
344
345		if (!blk->is_rx_blk_mode) {
346			blk->fifo_available += qup->in_fifo_sz;
347			qup->read_rx_fifo(qup);
348		} else if (opflags & IN_BLOCK_READ_REQ) {
349			blk->fifo_available += qup->in_blk_sz;
350			qup->read_rx_fifo(qup);
351		}
352	}
353
354	if (qup->msg->flags & I2C_M_RD) {
355		if (!blk->rx_bytes_read)
356			return IRQ_HANDLED;
357	} else {
358		/*
359		 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
360		 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
361		 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
362		 * of interrupt for write message in FIFO mode is
363		 * QUP_MAX_OUTPUT_DONE_FLAG condition.
364		 */
365		if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
366			return IRQ_HANDLED;
367	}
368
369done:
370	qup->qup_err = qup_err;
371	qup->bus_err = bus_err;
372	complete(&qup->xfer);
373	return IRQ_HANDLED;
374}
375
376static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
377				   u32 req_state, u32 req_mask)
378{
379	int retries = 1;
380	u32 state;
381
382	/*
383	 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
384	 * cycles. So retry once after a 1uS delay.
385	 */
386	do {
387		state = readl(qup->base + QUP_STATE);
388
389		if (state & QUP_STATE_VALID &&
390		    (state & req_mask) == req_state)
391			return 0;
392
393		udelay(1);
394	} while (retries--);
395
396	return -ETIMEDOUT;
397}
398
399static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
400{
401	return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
402}
403
404static void qup_i2c_flush(struct qup_i2c_dev *qup)
405{
406	u32 val = readl(qup->base + QUP_STATE);
407
408	val |= QUP_I2C_FLUSH;
409	writel(val, qup->base + QUP_STATE);
410}
411
412static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
413{
414	return qup_i2c_poll_state_mask(qup, 0, 0);
415}
416
417static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
418{
419	return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
420}
421
422static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
423{
424	if (qup_i2c_poll_state_valid(qup) != 0)
425		return -EIO;
426
427	writel(state, qup->base + QUP_STATE);
428
429	if (qup_i2c_poll_state(qup, state) != 0)
430		return -EIO;
431	return 0;
432}
433
434/* Check if I2C bus returns to IDLE state */
435static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
436{
437	unsigned long timeout;
438	u32 status;
439	int ret = 0;
440
441	timeout = jiffies + len * 4;
442	for (;;) {
443		status = readl(qup->base + QUP_I2C_STATUS);
444		if (!(status & I2C_STATUS_BUS_ACTIVE))
445			break;
446
447		if (time_after(jiffies, timeout))
448			ret = -ETIMEDOUT;
449
450		usleep_range(len, len * 2);
451	}
452
453	return ret;
454}
455
456static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
457{
458	struct qup_i2c_block *blk = &qup->blk;
459	struct i2c_msg *msg = qup->msg;
460	u32 addr = i2c_8bit_addr_from_msg(msg);
461	u32 qup_tag;
462	int idx;
463	u32 val;
464
465	if (qup->pos == 0) {
466		val = QUP_TAG_START | addr;
467		idx = 1;
468		blk->tx_fifo_free--;
469	} else {
470		val = 0;
471		idx = 0;
472	}
473
474	while (blk->tx_fifo_free && qup->pos < msg->len) {
475		if (qup->pos == msg->len - 1)
476			qup_tag = QUP_TAG_STOP;
477		else
478			qup_tag = QUP_TAG_DATA;
479
480		if (idx & 1)
481			val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
482		else
483			val = qup_tag | msg->buf[qup->pos];
484
485		/* Write out the pair and the last odd value */
486		if (idx & 1 || qup->pos == msg->len - 1)
487			writel(val, qup->base + QUP_OUT_FIFO_BASE);
488
489		qup->pos++;
490		idx++;
491		blk->tx_fifo_free--;
492	}
493}
494
495static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
496				 struct i2c_msg *msg)
497{
498	qup->blk.pos = 0;
499	qup->blk.data_len = msg->len;
500	qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
501}
502
503static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
504{
505	int data_len;
506
507	if (qup->blk.data_len > qup->blk_xfer_limit)
508		data_len = qup->blk_xfer_limit;
509	else
510		data_len = qup->blk.data_len;
511
512	return data_len;
513}
514
515static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
516{
517	return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
518}
519
520static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
521			struct i2c_msg *msg)
522{
523	int len = 0;
524
525	if (qup->is_smbus_read) {
526		tags[len++] = QUP_TAG_V2_DATARD_STOP;
527		tags[len++] = qup_i2c_get_data_len(qup);
528	} else {
529		tags[len++] = QUP_TAG_V2_START;
530		tags[len++] = addr & 0xff;
531
532		if (msg->flags & I2C_M_TEN)
533			tags[len++] = addr >> 8;
534
535		tags[len++] = QUP_TAG_V2_DATARD;
536		/* Read 1 byte indicating the length of the SMBus message */
537		tags[len++] = 1;
538	}
539	return len;
540}
541
542static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
543			    struct i2c_msg *msg)
544{
545	u16 addr = i2c_8bit_addr_from_msg(msg);
546	int len = 0;
547	int data_len;
548
549	int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
550
551	/* Handle tags for SMBus block read */
552	if (qup_i2c_check_msg_len(msg))
553		return qup_i2c_set_tags_smb(addr, tags, qup, msg);
554
555	if (qup->blk.pos == 0) {
556		tags[len++] = QUP_TAG_V2_START;
557		tags[len++] = addr & 0xff;
558
559		if (msg->flags & I2C_M_TEN)
560			tags[len++] = addr >> 8;
561	}
562
563	/* Send _STOP commands for the last block */
564	if (last) {
565		if (msg->flags & I2C_M_RD)
566			tags[len++] = QUP_TAG_V2_DATARD_STOP;
567		else
568			tags[len++] = QUP_TAG_V2_DATAWR_STOP;
569	} else {
570		if (msg->flags & I2C_M_RD)
571			tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
572				      QUP_TAG_V2_DATARD_NACK :
573				      QUP_TAG_V2_DATARD;
574		else
575			tags[len++] = QUP_TAG_V2_DATAWR;
576	}
577
578	data_len = qup_i2c_get_data_len(qup);
579
580	/* 0 implies 256 bytes */
581	if (data_len == QUP_READ_LIMIT)
582		tags[len++] = 0;
583	else
584		tags[len++] = data_len;
585
586	return len;
587}
588
589
590static void qup_i2c_bam_cb(void *data)
591{
592	struct qup_i2c_dev *qup = data;
593
594	complete(&qup->xfer);
595}
596
597static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
598			  unsigned int buflen, struct qup_i2c_dev *qup,
599			  int dir)
600{
601	int ret;
602
603	sg_set_buf(sg, buf, buflen);
604	ret = dma_map_sg(qup->dev, sg, 1, dir);
605	if (!ret)
606		return -EINVAL;
607
608	return 0;
609}
610
611static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
612{
613	if (qup->btx.dma)
614		dma_release_channel(qup->btx.dma);
615	if (qup->brx.dma)
616		dma_release_channel(qup->brx.dma);
617	qup->btx.dma = NULL;
618	qup->brx.dma = NULL;
619}
620
621static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
622{
623	int err;
624
625	if (!qup->btx.dma) {
626		qup->btx.dma = dma_request_chan(qup->dev, "tx");
627		if (IS_ERR(qup->btx.dma)) {
628			err = PTR_ERR(qup->btx.dma);
629			qup->btx.dma = NULL;
630			dev_err(qup->dev, "\n tx channel not available");
631			return err;
632		}
633	}
634
635	if (!qup->brx.dma) {
636		qup->brx.dma = dma_request_chan(qup->dev, "rx");
637		if (IS_ERR(qup->brx.dma)) {
638			dev_err(qup->dev, "\n rx channel not available");
639			err = PTR_ERR(qup->brx.dma);
640			qup->brx.dma = NULL;
641			qup_i2c_rel_dma(qup);
642			return err;
643		}
644	}
645	return 0;
646}
647
648static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
649{
650	int ret = 0, limit = QUP_READ_LIMIT;
651	u32 len = 0, blocks, rem;
652	u32 i = 0, tlen, tx_len = 0;
653	u8 *tags;
654
655	qup->blk_xfer_limit = QUP_READ_LIMIT;
656	qup_i2c_set_blk_data(qup, msg);
657
658	blocks = qup->blk.count;
659	rem = msg->len - (blocks - 1) * limit;
660
661	if (msg->flags & I2C_M_RD) {
662		while (qup->blk.pos < blocks) {
663			tlen = (i == (blocks - 1)) ? rem : limit;
664			tags = &qup->start_tag.start[qup->tag_buf_pos + len];
665			len += qup_i2c_set_tags(tags, qup, msg);
666			qup->blk.data_len -= tlen;
667
668			/* scratch buf to read the start and len tags */
669			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
670					     &qup->brx.tag.start[0],
671					     2, qup, DMA_FROM_DEVICE);
672
673			if (ret)
674				return ret;
675
676			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
677					     &msg->buf[limit * i],
678					     tlen, qup,
679					     DMA_FROM_DEVICE);
680			if (ret)
681				return ret;
682
683			i++;
684			qup->blk.pos = i;
685		}
686		ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
687				     &qup->start_tag.start[qup->tag_buf_pos],
688				     len, qup, DMA_TO_DEVICE);
689		if (ret)
690			return ret;
691
692		qup->tag_buf_pos += len;
693	} else {
694		while (qup->blk.pos < blocks) {
695			tlen = (i == (blocks - 1)) ? rem : limit;
696			tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
697			len = qup_i2c_set_tags(tags, qup, msg);
698			qup->blk.data_len -= tlen;
699
700			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
701					     tags, len,
702					     qup, DMA_TO_DEVICE);
703			if (ret)
704				return ret;
705
706			tx_len += len;
707			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
708					     &msg->buf[limit * i],
709					     tlen, qup, DMA_TO_DEVICE);
710			if (ret)
711				return ret;
712			i++;
713			qup->blk.pos = i;
714		}
715
716		qup->tag_buf_pos += tx_len;
717	}
718
719	return 0;
720}
721
722static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
723{
724	struct dma_async_tx_descriptor *txd, *rxd = NULL;
725	int ret = 0;
726	dma_cookie_t cookie_rx, cookie_tx;
727	u32 len = 0;
728	u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
729
730	/* schedule the EOT and FLUSH I2C tags */
731	len = 1;
732	if (rx_cnt) {
733		qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
734		len++;
735
736		/* scratch buf to read the BAM EOT FLUSH tags */
737		ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
738				     &qup->brx.tag.start[0],
739				     1, qup, DMA_FROM_DEVICE);
740		if (ret)
741			return ret;
742	}
743
744	qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
745	ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
746			     len, qup, DMA_TO_DEVICE);
747	if (ret)
748		return ret;
749
750	txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
751				      DMA_MEM_TO_DEV,
752				      DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
753	if (!txd) {
754		dev_err(qup->dev, "failed to get tx desc\n");
755		ret = -EINVAL;
756		goto desc_err;
757	}
758
759	if (!rx_cnt) {
760		txd->callback = qup_i2c_bam_cb;
761		txd->callback_param = qup;
762	}
763
764	cookie_tx = dmaengine_submit(txd);
765	if (dma_submit_error(cookie_tx)) {
766		ret = -EINVAL;
767		goto desc_err;
768	}
769
770	dma_async_issue_pending(qup->btx.dma);
771
772	if (rx_cnt) {
773		rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
774					      rx_cnt, DMA_DEV_TO_MEM,
775					      DMA_PREP_INTERRUPT);
776		if (!rxd) {
777			dev_err(qup->dev, "failed to get rx desc\n");
778			ret = -EINVAL;
779
780			/* abort TX descriptors */
781			dmaengine_terminate_sync(qup->btx.dma);
782			goto desc_err;
783		}
784
785		rxd->callback = qup_i2c_bam_cb;
786		rxd->callback_param = qup;
787		cookie_rx = dmaengine_submit(rxd);
788		if (dma_submit_error(cookie_rx)) {
789			ret = -EINVAL;
790			goto desc_err;
791		}
792
793		dma_async_issue_pending(qup->brx.dma);
794	}
795
796	if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
797		dev_err(qup->dev, "normal trans timed out\n");
798		ret = -ETIMEDOUT;
799	}
800
801	if (ret || qup->bus_err || qup->qup_err) {
802		reinit_completion(&qup->xfer);
803
804		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
805		if (ret) {
806			dev_err(qup->dev, "change to run state timed out");
807			goto desc_err;
808		}
809
810		qup_i2c_flush(qup);
811
812		/* wait for remaining interrupts to occur */
813		if (!wait_for_completion_timeout(&qup->xfer, HZ))
814			dev_err(qup->dev, "flush timed out\n");
815
816		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
817	}
818
819desc_err:
820	dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
821
822	if (rx_cnt)
823		dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
824			     DMA_FROM_DEVICE);
825
826	return ret;
827}
828
829static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
830{
831	qup->btx.sg_cnt = 0;
832	qup->brx.sg_cnt = 0;
833	qup->tag_buf_pos = 0;
834}
835
836static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
837			    int num)
838{
839	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
840	int ret = 0;
841	int idx = 0;
842
843	enable_irq(qup->irq);
844	ret = qup_i2c_req_dma(qup);
845
846	if (ret)
847		goto out;
848
849	writel(0, qup->base + QUP_MX_INPUT_CNT);
850	writel(0, qup->base + QUP_MX_OUTPUT_CNT);
851
852	/* set BAM mode */
853	writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
854
855	/* mask fifo irqs */
856	writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
857
858	/* set RUN STATE */
859	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
860	if (ret)
861		goto out;
862
863	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
864	qup_i2c_bam_clear_tag_buffers(qup);
865
866	for (idx = 0; idx < num; idx++) {
867		qup->msg = msg + idx;
868		qup->is_last = idx == (num - 1);
869
870		ret = qup_i2c_bam_make_desc(qup, qup->msg);
871		if (ret)
872			break;
873
874		/*
875		 * Make DMA descriptor and schedule the BAM transfer if its
876		 * already crossed the maximum length. Since the memory for all
877		 * tags buffers have been taken for 2 maximum possible
878		 * transfers length so it will never cross the buffer actual
879		 * length.
880		 */
881		if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
882		    qup->brx.sg_cnt > qup->max_xfer_sg_len ||
883		    qup->is_last) {
884			ret = qup_i2c_bam_schedule_desc(qup);
885			if (ret)
886				break;
887
888			qup_i2c_bam_clear_tag_buffers(qup);
889		}
890	}
891
892out:
893	disable_irq(qup->irq);
894
895	qup->msg = NULL;
896	return ret;
897}
898
899static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
900				     struct i2c_msg *msg)
901{
902	unsigned long left;
903	int ret = 0;
904
905	left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
906	if (!left) {
907		writel(1, qup->base + QUP_SW_RESET);
908		ret = -ETIMEDOUT;
909	}
910
911	if (qup->bus_err || qup->qup_err)
912		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
913
914	return ret;
915}
916
917static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
918{
919	struct qup_i2c_block *blk = &qup->blk;
920	struct i2c_msg *msg = qup->msg;
921	u32 val = 0;
922	int idx = 0;
923
924	while (blk->fifo_available && qup->pos < msg->len) {
925		if ((idx & 1) == 0) {
926			/* Reading 2 words at time */
927			val = readl(qup->base + QUP_IN_FIFO_BASE);
928			msg->buf[qup->pos++] = val & 0xFF;
929		} else {
930			msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
931		}
932		idx++;
933		blk->fifo_available--;
934	}
935
936	if (qup->pos == msg->len)
937		blk->rx_bytes_read = true;
938}
939
940static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
941{
942	struct i2c_msg *msg = qup->msg;
943	u32 addr, len, val;
944
945	addr = i2c_8bit_addr_from_msg(msg);
946
947	/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
948	len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
949
950	val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
951	writel(val, qup->base + QUP_OUT_FIFO_BASE);
952}
953
954static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
955{
956	struct qup_i2c_block *blk = &qup->blk;
957	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
958	u32 io_mode = QUP_REPACK_EN;
959
960	blk->is_tx_blk_mode = blk->total_tx_len > qup->out_fifo_sz;
961	blk->is_rx_blk_mode = blk->total_rx_len > qup->in_fifo_sz;
962
963	if (blk->is_tx_blk_mode) {
964		io_mode |= QUP_OUTPUT_BLK_MODE;
965		writel(0, qup->base + QUP_MX_WRITE_CNT);
966		writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
967	} else {
968		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
969		writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
970	}
971
972	if (blk->total_rx_len) {
973		if (blk->is_rx_blk_mode) {
974			io_mode |= QUP_INPUT_BLK_MODE;
975			writel(0, qup->base + QUP_MX_READ_CNT);
976			writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
977		} else {
978			writel(0, qup->base + QUP_MX_INPUT_CNT);
979			writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
980		}
981	} else {
982		qup_config |= QUP_NO_INPUT;
983	}
984
985	writel(qup_config, qup->base + QUP_CONFIG);
986	writel(io_mode, qup->base + QUP_IO_MODE);
987}
988
989static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
990{
991	blk->tx_fifo_free = 0;
992	blk->fifo_available = 0;
993	blk->rx_bytes_read = false;
994}
995
996static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
997{
998	struct qup_i2c_block *blk = &qup->blk;
999	int ret;
1000
1001	qup_i2c_clear_blk_v1(blk);
1002	qup_i2c_conf_v1(qup);
1003	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1004	if (ret)
1005		return ret;
1006
1007	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1008
1009	ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1010	if (ret)
1011		return ret;
1012
1013	reinit_completion(&qup->xfer);
1014	enable_irq(qup->irq);
1015	if (!blk->is_tx_blk_mode) {
1016		blk->tx_fifo_free = qup->out_fifo_sz;
1017
1018		if (is_rx)
1019			qup_i2c_write_rx_tags_v1(qup);
1020		else
1021			qup_i2c_write_tx_fifo_v1(qup);
1022	}
1023
1024	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1025	if (ret)
1026		goto err;
1027
1028	ret = qup_i2c_wait_for_complete(qup, qup->msg);
1029	if (ret)
1030		goto err;
1031
1032	ret = qup_i2c_bus_active(qup, ONE_BYTE);
1033
1034err:
1035	disable_irq(qup->irq);
1036	return ret;
1037}
1038
1039static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1040{
1041	struct i2c_msg *msg = qup->msg;
1042	struct qup_i2c_block *blk = &qup->blk;
1043
1044	qup->pos = 0;
1045	blk->total_tx_len = msg->len + 1;
1046	blk->total_rx_len = 0;
1047
1048	return qup_i2c_conf_xfer_v1(qup, false);
1049}
1050
1051static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1052{
1053	struct qup_i2c_block *blk = &qup->blk;
1054
1055	qup->pos = 0;
1056	blk->total_tx_len = 2;
1057	blk->total_rx_len = qup->msg->len;
1058
1059	return qup_i2c_conf_xfer_v1(qup, true);
1060}
1061
1062static int qup_i2c_xfer(struct i2c_adapter *adap,
1063			struct i2c_msg msgs[],
1064			int num)
1065{
1066	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1067	int ret, idx;
1068
1069	ret = pm_runtime_get_sync(qup->dev);
1070	if (ret < 0)
1071		goto out;
1072
1073	qup->bus_err = 0;
1074	qup->qup_err = 0;
1075
1076	writel(1, qup->base + QUP_SW_RESET);
1077	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1078	if (ret)
1079		goto out;
1080
1081	/* Configure QUP as I2C mini core */
1082	writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1083
1084	for (idx = 0; idx < num; idx++) {
1085		if (qup_i2c_poll_state_i2c_master(qup)) {
1086			ret = -EIO;
1087			goto out;
1088		}
1089
1090		if (qup_i2c_check_msg_len(&msgs[idx])) {
1091			ret = -EINVAL;
1092			goto out;
1093		}
1094
1095		qup->msg = &msgs[idx];
1096		if (msgs[idx].flags & I2C_M_RD)
1097			ret = qup_i2c_read_one(qup);
1098		else
1099			ret = qup_i2c_write_one(qup);
1100
1101		if (ret)
1102			break;
1103
1104		ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1105		if (ret)
1106			break;
1107	}
1108
1109	if (ret == 0)
1110		ret = num;
1111out:
1112
1113	pm_runtime_mark_last_busy(qup->dev);
1114	pm_runtime_put_autosuspend(qup->dev);
1115
1116	return ret;
1117}
1118
1119/*
1120 * Configure registers related with reconfiguration during run and call it
1121 * before each i2c sub transfer.
1122 */
1123static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1124{
1125	struct qup_i2c_block *blk = &qup->blk;
1126	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1127
1128	if (blk->is_tx_blk_mode)
1129		writel(qup->config_run | blk->total_tx_len,
1130		       qup->base + QUP_MX_OUTPUT_CNT);
1131	else
1132		writel(qup->config_run | blk->total_tx_len,
1133		       qup->base + QUP_MX_WRITE_CNT);
1134
1135	if (blk->total_rx_len) {
1136		if (blk->is_rx_blk_mode)
1137			writel(qup->config_run | blk->total_rx_len,
1138			       qup->base + QUP_MX_INPUT_CNT);
1139		else
1140			writel(qup->config_run | blk->total_rx_len,
1141			       qup->base + QUP_MX_READ_CNT);
1142	} else {
1143		qup_config |= QUP_NO_INPUT;
1144	}
1145
1146	writel(qup_config, qup->base + QUP_CONFIG);
1147}
1148
1149/*
1150 * Configure registers related with transfer mode (FIFO/Block)
1151 * before starting of i2c transfer. It will be called only once in
1152 * QUP RESET state.
1153 */
1154static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1155{
1156	struct qup_i2c_block *blk = &qup->blk;
1157	u32 io_mode = QUP_REPACK_EN;
1158
1159	if (blk->is_tx_blk_mode) {
1160		io_mode |= QUP_OUTPUT_BLK_MODE;
1161		writel(0, qup->base + QUP_MX_WRITE_CNT);
1162	} else {
1163		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1164	}
1165
1166	if (blk->is_rx_blk_mode) {
1167		io_mode |= QUP_INPUT_BLK_MODE;
1168		writel(0, qup->base + QUP_MX_READ_CNT);
1169	} else {
1170		writel(0, qup->base + QUP_MX_INPUT_CNT);
1171	}
1172
1173	writel(io_mode, qup->base + QUP_IO_MODE);
1174}
1175
1176/* Clear required variables before starting of any QUP v2 sub transfer. */
1177static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1178{
1179	blk->send_last_word = false;
1180	blk->tx_tags_sent = false;
1181	blk->tx_fifo_data = 0;
1182	blk->tx_fifo_data_pos = 0;
1183	blk->tx_fifo_free = 0;
1184
1185	blk->rx_tags_fetched = false;
1186	blk->rx_bytes_read = false;
1187	blk->rx_fifo_data = 0;
1188	blk->rx_fifo_data_pos = 0;
1189	blk->fifo_available = 0;
1190}
1191
1192/* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1193static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1194{
1195	struct qup_i2c_block *blk = &qup->blk;
1196	int j;
1197
1198	for (j = blk->rx_fifo_data_pos;
1199	     blk->cur_blk_len && blk->fifo_available;
1200	     blk->cur_blk_len--, blk->fifo_available--) {
1201		if (j == 0)
1202			blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1203
1204		*(blk->cur_data++) = blk->rx_fifo_data;
1205		blk->rx_fifo_data >>= 8;
1206
1207		if (j == 3)
1208			j = 0;
1209		else
1210			j++;
1211	}
1212
1213	blk->rx_fifo_data_pos = j;
1214}
1215
1216/* Receive tags for read message in QUP v2 i2c transfer. */
1217static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1218{
1219	struct qup_i2c_block *blk = &qup->blk;
1220
1221	blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1222	blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1223	blk->rx_fifo_data_pos = blk->rx_tag_len;
1224	blk->fifo_available -= blk->rx_tag_len;
1225}
1226
1227/*
1228 * Read the data and tags from RX FIFO. Since in read case, the tags will be
1229 * preceded by received data bytes so
1230 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1231 *    all tag bytes and discard that.
1232 * 2. Read the data from RX FIFO. When all the data bytes have been read then
1233 *    set rx_bytes_read to true.
1234 */
1235static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1236{
1237	struct qup_i2c_block *blk = &qup->blk;
1238
1239	if (!blk->rx_tags_fetched) {
1240		qup_i2c_recv_tags(qup);
1241		blk->rx_tags_fetched = true;
1242	}
1243
1244	qup_i2c_recv_data(qup);
1245	if (!blk->cur_blk_len)
1246		blk->rx_bytes_read = true;
1247}
1248
1249/*
1250 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1251 * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1252 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1253 */
1254static void
1255qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1256{
1257	struct qup_i2c_block *blk = &qup->blk;
1258	unsigned int j;
1259
1260	for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1261	     (*len)--, blk->tx_fifo_free--) {
1262		blk->tx_fifo_data |= *(*data)++ << (j * 8);
1263		if (j == 3) {
1264			writel(blk->tx_fifo_data,
1265			       qup->base + QUP_OUT_FIFO_BASE);
1266			blk->tx_fifo_data = 0x0;
1267			j = 0;
1268		} else {
1269			j++;
1270		}
1271	}
1272
1273	blk->tx_fifo_data_pos = j;
1274}
1275
1276/* Transfer tags for read message in QUP v2 i2c transfer. */
1277static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1278{
1279	struct qup_i2c_block *blk = &qup->blk;
1280
1281	qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1282	if (blk->tx_fifo_data_pos)
1283		writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1284}
1285
1286/*
1287 * Write the data and tags in TX FIFO. Since in write case, both tags and data
1288 * need to be written and QUP write tags can have maximum 256 data length, so
1289 *
1290 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1291 *    tags to TX FIFO and set tx_tags_sent to true.
1292 * 2. Check if send_last_word is true. It will be set when last few data bytes
1293 *    (less than 4 bytes) are remaining to be written in FIFO because of no FIFO
1294 *    space. All this data bytes are available in tx_fifo_data so write this
1295 *    in FIFO.
1296 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1297 *    then more data is pending otherwise following 3 cases can be possible
1298 *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1299 *       have been written in TX FIFO so nothing else is required.
1300 *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1301 *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1302 *	 in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1303 *       will be always greater than or equal to 4 bytes.
1304 *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1305 *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1306 *       FIFO full so make send_last_word true.
1307 */
1308static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1309{
1310	struct qup_i2c_block *blk = &qup->blk;
1311
1312	if (!blk->tx_tags_sent) {
1313		qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1314				       &blk->tx_tag_len);
1315		blk->tx_tags_sent = true;
1316	}
1317
1318	if (blk->send_last_word)
1319		goto send_last_word;
1320
1321	qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1322	if (!blk->cur_blk_len) {
1323		if (!blk->tx_fifo_data_pos)
1324			return;
1325
1326		if (blk->tx_fifo_free)
1327			goto send_last_word;
1328
1329		blk->send_last_word = true;
1330	}
1331
1332	return;
1333
1334send_last_word:
1335	writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1336}
1337
1338/*
1339 * Main transfer function which read or write i2c data.
1340 * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1341 * transfers can be scheduled.
1342 */
1343static int
1344qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1345		     bool change_pause_state)
1346{
1347	struct qup_i2c_block *blk = &qup->blk;
1348	struct i2c_msg *msg = qup->msg;
1349	int ret;
1350
1351	/*
1352	 * Check if its SMBus Block read for which the top level read will be
1353	 * done into 2 QUP reads. One with message length 1 while other one is
1354	 * with actual length.
1355	 */
1356	if (qup_i2c_check_msg_len(msg)) {
1357		if (qup->is_smbus_read) {
1358			/*
1359			 * If the message length is already read in
1360			 * the first byte of the buffer, account for
1361			 * that by setting the offset
1362			 */
1363			blk->cur_data += 1;
1364			is_first = false;
1365		} else {
1366			change_pause_state = false;
1367		}
1368	}
1369
1370	qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1371
1372	qup_i2c_clear_blk_v2(blk);
1373	qup_i2c_conf_count_v2(qup);
1374
1375	/* If it is first sub transfer, then configure i2c bus clocks */
1376	if (is_first) {
1377		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1378		if (ret)
1379			return ret;
1380
1381		writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1382
1383		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1384		if (ret)
1385			return ret;
1386	}
1387
1388	reinit_completion(&qup->xfer);
1389	enable_irq(qup->irq);
1390	/*
1391	 * In FIFO mode, tx FIFO can be written directly while in block mode the
1392	 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1393	 */
1394	if (!blk->is_tx_blk_mode) {
1395		blk->tx_fifo_free = qup->out_fifo_sz;
1396
1397		if (is_rx)
1398			qup_i2c_write_rx_tags_v2(qup);
1399		else
1400			qup_i2c_write_tx_fifo_v2(qup);
1401	}
1402
1403	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1404	if (ret)
1405		goto err;
1406
1407	ret = qup_i2c_wait_for_complete(qup, msg);
1408	if (ret)
1409		goto err;
1410
1411	/* Move to pause state for all the transfers, except last one */
1412	if (change_pause_state) {
1413		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1414		if (ret)
1415			goto err;
1416	}
1417
1418err:
1419	disable_irq(qup->irq);
1420	return ret;
1421}
1422
1423/*
1424 * Transfer one read/write message in i2c transfer. It splits the message into
1425 * multiple of blk_xfer_limit data length blocks and schedule each
1426 * QUP block individually.
1427 */
1428static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1429{
1430	int ret = 0;
1431	unsigned int data_len, i;
1432	struct i2c_msg *msg = qup->msg;
1433	struct qup_i2c_block *blk = &qup->blk;
1434	u8 *msg_buf = msg->buf;
1435
1436	qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1437	qup_i2c_set_blk_data(qup, msg);
1438
1439	for (i = 0; i < blk->count; i++) {
1440		data_len =  qup_i2c_get_data_len(qup);
1441		blk->pos = i;
1442		blk->cur_tx_tags = blk->tags;
1443		blk->cur_blk_len = data_len;
1444		blk->tx_tag_len =
1445			qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1446
1447		blk->cur_data = msg_buf;
1448
1449		if (is_rx) {
1450			blk->total_tx_len = blk->tx_tag_len;
1451			blk->rx_tag_len = 2;
1452			blk->total_rx_len = blk->rx_tag_len + data_len;
1453		} else {
1454			blk->total_tx_len = blk->tx_tag_len + data_len;
1455			blk->total_rx_len = 0;
1456		}
1457
1458		ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1459					   !qup->is_last || i < blk->count - 1);
1460		if (ret)
1461			return ret;
1462
1463		/* Handle SMBus block read length */
1464		if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1465		    !qup->is_smbus_read) {
1466			if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1467				return -EPROTO;
1468
1469			msg->len = msg->buf[0];
1470			qup->is_smbus_read = true;
1471			ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1472			qup->is_smbus_read = false;
1473			if (ret)
1474				return ret;
1475
1476			msg->len += 1;
1477		}
1478
1479		msg_buf += data_len;
1480		blk->data_len -= qup->blk_xfer_limit;
1481	}
1482
1483	return ret;
1484}
1485
1486/*
1487 * QUP v2 supports 3 modes
1488 * Programmed IO using FIFO mode : Less than FIFO size
1489 * Programmed IO using Block mode : Greater than FIFO size
1490 * DMA using BAM : Appropriate for any transaction size but the address should
1491 *		   be DMA applicable
1492 *
1493 * This function determines the mode which will be used for this transfer. An
1494 * i2c transfer contains multiple message. Following are the rules to determine
1495 * the mode used.
1496 * 1. Determine complete length, maximum tx and rx length for complete transfer.
1497 * 2. If complete transfer length is greater than fifo size then use the DMA
1498 *    mode.
1499 * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1500 *    for maximum tx and rx length to determine mode.
1501 */
1502static int
1503qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1504			  struct i2c_msg msgs[], int num)
1505{
1506	int idx;
1507	bool no_dma = false;
1508	unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1509
1510	/* All i2c_msgs should be transferred using either dma or cpu */
1511	for (idx = 0; idx < num; idx++) {
1512		if (msgs[idx].flags & I2C_M_RD)
1513			max_rx_len = max_t(unsigned int, max_rx_len,
1514					   msgs[idx].len);
1515		else
1516			max_tx_len = max_t(unsigned int, max_tx_len,
1517					   msgs[idx].len);
1518
1519		if (is_vmalloc_addr(msgs[idx].buf))
1520			no_dma = true;
1521
1522		total_len += msgs[idx].len;
1523	}
1524
1525	if (!no_dma && qup->is_dma &&
1526	    (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1527		qup->use_dma = true;
1528	} else {
1529		qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1530			QUP_MAX_TAGS_LEN;
1531		qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1532			READ_RX_TAGS_LEN;
1533	}
1534
1535	return 0;
1536}
1537
1538static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1539			   struct i2c_msg msgs[],
1540			   int num)
1541{
1542	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1543	int ret, idx = 0;
1544
1545	qup->bus_err = 0;
1546	qup->qup_err = 0;
1547
1548	ret = pm_runtime_get_sync(qup->dev);
1549	if (ret < 0)
1550		goto out;
1551
1552	ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1553	if (ret)
1554		goto out;
1555
1556	writel(1, qup->base + QUP_SW_RESET);
1557	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1558	if (ret)
1559		goto out;
1560
1561	/* Configure QUP as I2C mini core */
1562	writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1563	writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1564
1565	if (qup_i2c_poll_state_i2c_master(qup)) {
1566		ret = -EIO;
1567		goto out;
1568	}
1569
1570	if (qup->use_dma) {
1571		reinit_completion(&qup->xfer);
1572		ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1573		qup->use_dma = false;
1574	} else {
1575		qup_i2c_conf_mode_v2(qup);
1576
1577		for (idx = 0; idx < num; idx++) {
1578			qup->msg = &msgs[idx];
1579			qup->is_last = idx == (num - 1);
1580
1581			ret = qup_i2c_xfer_v2_msg(qup, idx,
1582					!!(msgs[idx].flags & I2C_M_RD));
1583			if (ret)
1584				break;
1585		}
1586		qup->msg = NULL;
1587	}
1588
1589	if (!ret)
1590		ret = qup_i2c_bus_active(qup, ONE_BYTE);
1591
1592	if (!ret)
1593		qup_i2c_change_state(qup, QUP_RESET_STATE);
1594
1595	if (ret == 0)
1596		ret = num;
1597out:
1598	pm_runtime_mark_last_busy(qup->dev);
1599	pm_runtime_put_autosuspend(qup->dev);
1600
1601	return ret;
1602}
1603
1604static u32 qup_i2c_func(struct i2c_adapter *adap)
1605{
1606	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL_ALL & ~I2C_FUNC_SMBUS_QUICK);
1607}
1608
1609static const struct i2c_algorithm qup_i2c_algo = {
1610	.master_xfer	= qup_i2c_xfer,
1611	.functionality	= qup_i2c_func,
1612};
1613
1614static const struct i2c_algorithm qup_i2c_algo_v2 = {
1615	.master_xfer	= qup_i2c_xfer_v2,
1616	.functionality	= qup_i2c_func,
1617};
1618
1619/*
1620 * The QUP block will issue a NACK and STOP on the bus when reaching
1621 * the end of the read, the length of the read is specified as one byte
1622 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1623 */
1624static const struct i2c_adapter_quirks qup_i2c_quirks = {
1625	.flags = I2C_AQ_NO_ZERO_LEN,
1626	.max_read_len = QUP_READ_LIMIT,
1627};
1628
1629static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1630	.flags = I2C_AQ_NO_ZERO_LEN,
1631};
1632
1633static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1634{
1635	clk_prepare_enable(qup->clk);
1636	clk_prepare_enable(qup->pclk);
1637}
1638
1639static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1640{
1641	u32 config;
1642
1643	qup_i2c_change_state(qup, QUP_RESET_STATE);
1644	clk_disable_unprepare(qup->clk);
1645	config = readl(qup->base + QUP_CONFIG);
1646	config |= QUP_CLOCK_AUTO_GATE;
1647	writel(config, qup->base + QUP_CONFIG);
1648	clk_disable_unprepare(qup->pclk);
1649}
1650
1651static const struct acpi_device_id qup_i2c_acpi_match[] = {
1652	{ "QCOM8010"},
1653	{ },
1654};
1655MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1656
1657static int qup_i2c_probe(struct platform_device *pdev)
1658{
1659	static const int blk_sizes[] = {4, 16, 32};
1660	struct qup_i2c_dev *qup;
1661	unsigned long one_bit_t;
1662	u32 io_mode, hw_ver, size;
1663	int ret, fs_div, hs_div;
1664	u32 src_clk_freq = DEFAULT_SRC_CLK;
1665	u32 clk_freq = DEFAULT_CLK_FREQ;
1666	int blocks;
1667	bool is_qup_v1;
1668
1669	qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1670	if (!qup)
1671		return -ENOMEM;
1672
1673	qup->dev = &pdev->dev;
1674	init_completion(&qup->xfer);
1675	platform_set_drvdata(pdev, qup);
1676
1677	if (scl_freq) {
1678		dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1679		clk_freq = scl_freq;
1680	} else {
1681		ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1682		if (ret) {
1683			dev_notice(qup->dev, "using default clock-frequency %d",
1684				DEFAULT_CLK_FREQ);
1685		}
1686	}
1687
1688	if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1689		qup->adap.algo = &qup_i2c_algo;
1690		qup->adap.quirks = &qup_i2c_quirks;
1691		is_qup_v1 = true;
1692	} else {
1693		qup->adap.algo = &qup_i2c_algo_v2;
1694		qup->adap.quirks = &qup_i2c_quirks_v2;
1695		is_qup_v1 = false;
1696		if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1697			goto nodma;
1698		else
1699			ret = qup_i2c_req_dma(qup);
1700
1701		if (ret == -EPROBE_DEFER)
1702			goto fail_dma;
1703		else if (ret != 0)
1704			goto nodma;
1705
1706		qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1707		blocks = (MX_DMA_BLOCKS << 1) + 1;
1708		qup->btx.sg = devm_kcalloc(&pdev->dev,
1709					   blocks, sizeof(*qup->btx.sg),
1710					   GFP_KERNEL);
1711		if (!qup->btx.sg) {
1712			ret = -ENOMEM;
1713			goto fail_dma;
1714		}
1715		sg_init_table(qup->btx.sg, blocks);
1716
1717		qup->brx.sg = devm_kcalloc(&pdev->dev,
1718					   blocks, sizeof(*qup->brx.sg),
1719					   GFP_KERNEL);
1720		if (!qup->brx.sg) {
1721			ret = -ENOMEM;
1722			goto fail_dma;
1723		}
1724		sg_init_table(qup->brx.sg, blocks);
1725
1726		/* 2 tag bytes for each block + 5 for start, stop tags */
1727		size = blocks * 2 + 5;
1728
1729		qup->start_tag.start = devm_kzalloc(&pdev->dev,
1730						    size, GFP_KERNEL);
1731		if (!qup->start_tag.start) {
1732			ret = -ENOMEM;
1733			goto fail_dma;
1734		}
1735
1736		qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1737		if (!qup->brx.tag.start) {
1738			ret = -ENOMEM;
1739			goto fail_dma;
1740		}
1741
1742		qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1743		if (!qup->btx.tag.start) {
1744			ret = -ENOMEM;
1745			goto fail_dma;
1746		}
1747		qup->is_dma = true;
1748	}
1749
1750nodma:
1751	/* We support frequencies up to FAST Mode Plus (1MHz) */
1752	if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) {
1753		dev_err(qup->dev, "clock frequency not supported %d\n",
1754			clk_freq);
1755		ret = -EINVAL;
1756		goto fail_dma;
1757	}
1758
1759	qup->base = devm_platform_ioremap_resource(pdev, 0);
1760	if (IS_ERR(qup->base)) {
1761		ret = PTR_ERR(qup->base);
1762		goto fail_dma;
1763	}
1764
1765	qup->irq = platform_get_irq(pdev, 0);
1766	if (qup->irq < 0) {
1767		ret = qup->irq;
1768		goto fail_dma;
1769	}
1770
1771	if (has_acpi_companion(qup->dev)) {
1772		ret = device_property_read_u32(qup->dev,
1773				"src-clock-hz", &src_clk_freq);
1774		if (ret) {
1775			dev_notice(qup->dev, "using default src-clock-hz %d",
1776				DEFAULT_SRC_CLK);
1777		}
1778		ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1779	} else {
1780		qup->clk = devm_clk_get(qup->dev, "core");
1781		if (IS_ERR(qup->clk)) {
1782			dev_err(qup->dev, "Could not get core clock\n");
1783			ret = PTR_ERR(qup->clk);
1784			goto fail_dma;
1785		}
1786
1787		qup->pclk = devm_clk_get(qup->dev, "iface");
1788		if (IS_ERR(qup->pclk)) {
1789			dev_err(qup->dev, "Could not get iface clock\n");
1790			ret = PTR_ERR(qup->pclk);
1791			goto fail_dma;
1792		}
1793		qup_i2c_enable_clocks(qup);
1794		src_clk_freq = clk_get_rate(qup->clk);
1795	}
1796
1797	/*
1798	 * Bootloaders might leave a pending interrupt on certain QUP's,
1799	 * so we reset the core before registering for interrupts.
1800	 */
1801	writel(1, qup->base + QUP_SW_RESET);
1802	ret = qup_i2c_poll_state_valid(qup);
1803	if (ret)
1804		goto fail;
1805
1806	ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1807			       IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
1808			       "i2c_qup", qup);
1809	if (ret) {
1810		dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1811		goto fail;
1812	}
1813
1814	hw_ver = readl(qup->base + QUP_HW_VERSION);
1815	dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1816
1817	io_mode = readl(qup->base + QUP_IO_MODE);
1818
1819	/*
1820	 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1821	 * associated with each byte written/received
1822	 */
1823	size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1824	if (size >= ARRAY_SIZE(blk_sizes)) {
1825		ret = -EIO;
1826		goto fail;
1827	}
1828	qup->out_blk_sz = blk_sizes[size];
1829
1830	size = QUP_INPUT_BLOCK_SIZE(io_mode);
1831	if (size >= ARRAY_SIZE(blk_sizes)) {
1832		ret = -EIO;
1833		goto fail;
1834	}
1835	qup->in_blk_sz = blk_sizes[size];
1836
1837	if (is_qup_v1) {
1838		/*
1839		 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1840		 * single transfer but the block size is in bytes so divide the
1841		 * in_blk_sz and out_blk_sz by 2
1842		 */
1843		qup->in_blk_sz /= 2;
1844		qup->out_blk_sz /= 2;
1845		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1846		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1847		qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1848	} else {
1849		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1850		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1851		qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1852	}
1853
1854	size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1855	qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1856
1857	size = QUP_INPUT_FIFO_SIZE(io_mode);
1858	qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1859
1860	hs_div = 3;
1861	if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) {
1862		fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1863		qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1864	} else {
1865		/* 33%/66% duty cycle */
1866		fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1867		qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1868	}
1869
1870	/*
1871	 * Time it takes for a byte to be clocked out on the bus.
1872	 * Each byte takes 9 clock cycles (8 bits + 1 ack).
1873	 */
1874	one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1875	qup->one_byte_t = one_bit_t * 9;
1876	qup->xfer_timeout = TOUT_MIN * HZ +
1877		usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1878
1879	dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1880		qup->in_blk_sz, qup->in_fifo_sz,
1881		qup->out_blk_sz, qup->out_fifo_sz);
1882
1883	i2c_set_adapdata(&qup->adap, qup);
1884	qup->adap.dev.parent = qup->dev;
1885	qup->adap.dev.of_node = pdev->dev.of_node;
1886	qup->is_last = true;
1887
1888	strscpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1889
1890	pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1891	pm_runtime_use_autosuspend(qup->dev);
1892	pm_runtime_set_active(qup->dev);
1893	pm_runtime_enable(qup->dev);
1894
1895	ret = i2c_add_adapter(&qup->adap);
1896	if (ret)
1897		goto fail_runtime;
1898
1899	return 0;
1900
1901fail_runtime:
1902	pm_runtime_disable(qup->dev);
1903	pm_runtime_set_suspended(qup->dev);
1904fail:
1905	qup_i2c_disable_clocks(qup);
1906fail_dma:
1907	if (qup->btx.dma)
1908		dma_release_channel(qup->btx.dma);
1909	if (qup->brx.dma)
1910		dma_release_channel(qup->brx.dma);
1911	return ret;
1912}
1913
1914static void qup_i2c_remove(struct platform_device *pdev)
1915{
1916	struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1917
1918	if (qup->is_dma) {
1919		dma_release_channel(qup->btx.dma);
1920		dma_release_channel(qup->brx.dma);
1921	}
1922
1923	disable_irq(qup->irq);
1924	qup_i2c_disable_clocks(qup);
1925	i2c_del_adapter(&qup->adap);
1926	pm_runtime_disable(qup->dev);
1927	pm_runtime_set_suspended(qup->dev);
1928}
1929
1930static int qup_i2c_pm_suspend_runtime(struct device *device)
1931{
1932	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1933
1934	dev_dbg(device, "pm_runtime: suspending...\n");
1935	qup_i2c_disable_clocks(qup);
1936	return 0;
1937}
1938
1939static int qup_i2c_pm_resume_runtime(struct device *device)
1940{
1941	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1942
1943	dev_dbg(device, "pm_runtime: resuming...\n");
1944	qup_i2c_enable_clocks(qup);
1945	return 0;
1946}
1947
1948static int qup_i2c_suspend(struct device *device)
1949{
1950	if (!pm_runtime_suspended(device))
1951		return qup_i2c_pm_suspend_runtime(device);
1952	return 0;
1953}
1954
1955static int qup_i2c_resume(struct device *device)
1956{
1957	qup_i2c_pm_resume_runtime(device);
1958	pm_runtime_mark_last_busy(device);
1959	pm_request_autosuspend(device);
1960	return 0;
1961}
1962
1963static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1964	SYSTEM_SLEEP_PM_OPS(qup_i2c_suspend, qup_i2c_resume)
1965	RUNTIME_PM_OPS(qup_i2c_pm_suspend_runtime,
1966		       qup_i2c_pm_resume_runtime, NULL)
1967};
1968
1969static const struct of_device_id qup_i2c_dt_match[] = {
1970	{ .compatible = "qcom,i2c-qup-v1.1.1" },
1971	{ .compatible = "qcom,i2c-qup-v2.1.1" },
1972	{ .compatible = "qcom,i2c-qup-v2.2.1" },
1973	{}
1974};
1975MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1976
1977static struct platform_driver qup_i2c_driver = {
1978	.probe  = qup_i2c_probe,
1979	.remove_new = qup_i2c_remove,
1980	.driver = {
1981		.name = "i2c_qup",
1982		.pm = pm_ptr(&qup_i2c_qup_pm_ops),
1983		.of_match_table = qup_i2c_dt_match,
1984		.acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1985	},
1986};
1987
1988module_platform_driver(qup_i2c_driver);
1989
1990MODULE_LICENSE("GPL v2");
1991MODULE_ALIAS("platform:i2c_qup");
1992