1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Freescale MXS I2C bus driver
4 *
5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
7 *
8 * based on a (non-working) driver which was:
9 *
10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
11 */
12
13#include <linux/slab.h>
14#include <linux/device.h>
15#include <linux/module.h>
16#include <linux/i2c.h>
17#include <linux/err.h>
18#include <linux/interrupt.h>
19#include <linux/completion.h>
20#include <linux/platform_device.h>
21#include <linux/jiffies.h>
22#include <linux/io.h>
23#include <linux/stmp_device.h>
24#include <linux/of.h>
25#include <linux/dma-mapping.h>
26#include <linux/dmaengine.h>
27#include <linux/dma/mxs-dma.h>
28
29#define DRIVER_NAME "mxs-i2c"
30
31#define MXS_I2C_CTRL0		(0x00)
32#define MXS_I2C_CTRL0_SET	(0x04)
33#define MXS_I2C_CTRL0_CLR	(0x08)
34
35#define MXS_I2C_CTRL0_SFTRST			0x80000000
36#define MXS_I2C_CTRL0_RUN			0x20000000
37#define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
38#define MXS_I2C_CTRL0_PIO_MODE			0x01000000
39#define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
40#define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
41#define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
42#define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
43#define MXS_I2C_CTRL0_DIRECTION			0x00010000
44#define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
45
46#define MXS_I2C_TIMING0		(0x10)
47#define MXS_I2C_TIMING1		(0x20)
48#define MXS_I2C_TIMING2		(0x30)
49
50#define MXS_I2C_CTRL1		(0x40)
51#define MXS_I2C_CTRL1_SET	(0x44)
52#define MXS_I2C_CTRL1_CLR	(0x48)
53
54#define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
55#define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
56#define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
57#define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
58#define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
59#define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
60#define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
61#define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
62#define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
63
64#define MXS_I2C_STAT		(0x50)
65#define MXS_I2C_STAT_GOT_A_NAK			0x10000000
66#define MXS_I2C_STAT_BUS_BUSY			0x00000800
67#define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
68
69#define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
70
71#define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
72
73#define MXS_I2C_DEBUG0_DMAREQ	0x80000000
74
75#define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
76				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
77				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
78				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
79				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
80				 MXS_I2C_CTRL1_SLAVE_IRQ)
81
82
83#define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
84				 MXS_I2C_CTRL0_PRE_SEND_START |	\
85				 MXS_I2C_CTRL0_MASTER_MODE |	\
86				 MXS_I2C_CTRL0_DIRECTION |	\
87				 MXS_I2C_CTRL0_XFER_COUNT(1))
88
89#define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
90				 MXS_I2C_CTRL0_MASTER_MODE |	\
91				 MXS_I2C_CTRL0_DIRECTION)
92
93#define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
94				 MXS_I2C_CTRL0_MASTER_MODE)
95
96enum mxs_i2c_devtype {
97	MXS_I2C_UNKNOWN = 0,
98	MXS_I2C_V1,
99	MXS_I2C_V2,
100};
101
102/**
103 * struct mxs_i2c_dev - per device, private MXS-I2C data
104 *
105 * @dev: driver model device node
106 * @dev_type: distinguish i.MX23/i.MX28 features
107 * @regs: IO registers pointer
108 * @cmd_complete: completion object for transaction wait
109 * @cmd_err: error code for last transaction
110 * @adapter: i2c subsystem adapter node
111 */
112struct mxs_i2c_dev {
113	struct device *dev;
114	enum mxs_i2c_devtype dev_type;
115	void __iomem *regs;
116	struct completion cmd_complete;
117	int cmd_err;
118	struct i2c_adapter adapter;
119
120	uint32_t timing0;
121	uint32_t timing1;
122	uint32_t timing2;
123
124	/* DMA support components */
125	struct dma_chan			*dmach;
126	uint32_t			pio_data[2];
127	uint32_t			addr_data;
128	struct scatterlist		sg_io[2];
129	bool				dma_read;
130};
131
132static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
133{
134	int ret = stmp_reset_block(i2c->regs);
135	if (ret)
136		return ret;
137
138	/*
139	 * Configure timing for the I2C block. The I2C TIMING2 register has to
140	 * be programmed with this particular magic number. The rest is derived
141	 * from the XTAL speed and requested I2C speed.
142	 *
143	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
144	 */
145	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
146	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
147	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
148
149	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
150
151	return 0;
152}
153
154static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
155{
156	if (i2c->dma_read) {
157		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
158		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
159	} else {
160		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
161	}
162}
163
164static void mxs_i2c_dma_irq_callback(void *param)
165{
166	struct mxs_i2c_dev *i2c = param;
167
168	complete(&i2c->cmd_complete);
169	mxs_i2c_dma_finish(i2c);
170}
171
172static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
173			struct i2c_msg *msg, u8 *buf, uint32_t flags)
174{
175	struct dma_async_tx_descriptor *desc;
176	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
177
178	i2c->addr_data = i2c_8bit_addr_from_msg(msg);
179
180	if (msg->flags & I2C_M_RD) {
181		i2c->dma_read = true;
182
183		/*
184		 * SELECT command.
185		 */
186
187		/* Queue the PIO register write transfer. */
188		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
189		desc = dmaengine_prep_slave_sg(i2c->dmach,
190					(struct scatterlist *)&i2c->pio_data[0],
191					1, DMA_TRANS_NONE, 0);
192		if (!desc) {
193			dev_err(i2c->dev,
194				"Failed to get PIO reg. write descriptor.\n");
195			goto select_init_pio_fail;
196		}
197
198		/* Queue the DMA data transfer. */
199		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
200		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
201		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
202					DMA_MEM_TO_DEV,
203					DMA_PREP_INTERRUPT |
204					MXS_DMA_CTRL_WAIT4END);
205		if (!desc) {
206			dev_err(i2c->dev,
207				"Failed to get DMA data write descriptor.\n");
208			goto select_init_dma_fail;
209		}
210
211		/*
212		 * READ command.
213		 */
214
215		/* Queue the PIO register write transfer. */
216		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
217				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
218		desc = dmaengine_prep_slave_sg(i2c->dmach,
219					(struct scatterlist *)&i2c->pio_data[1],
220					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
221		if (!desc) {
222			dev_err(i2c->dev,
223				"Failed to get PIO reg. write descriptor.\n");
224			goto select_init_dma_fail;
225		}
226
227		/* Queue the DMA data transfer. */
228		sg_init_one(&i2c->sg_io[1], buf, msg->len);
229		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
230		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
231					DMA_DEV_TO_MEM,
232					DMA_PREP_INTERRUPT |
233					MXS_DMA_CTRL_WAIT4END);
234		if (!desc) {
235			dev_err(i2c->dev,
236				"Failed to get DMA data write descriptor.\n");
237			goto read_init_dma_fail;
238		}
239	} else {
240		i2c->dma_read = false;
241
242		/*
243		 * WRITE command.
244		 */
245
246		/* Queue the PIO register write transfer. */
247		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
248				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
249		desc = dmaengine_prep_slave_sg(i2c->dmach,
250					(struct scatterlist *)&i2c->pio_data[0],
251					1, DMA_TRANS_NONE, 0);
252		if (!desc) {
253			dev_err(i2c->dev,
254				"Failed to get PIO reg. write descriptor.\n");
255			goto write_init_pio_fail;
256		}
257
258		/* Queue the DMA data transfer. */
259		sg_init_table(i2c->sg_io, 2);
260		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
261		sg_set_buf(&i2c->sg_io[1], buf, msg->len);
262		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
263		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
264					DMA_MEM_TO_DEV,
265					DMA_PREP_INTERRUPT |
266					MXS_DMA_CTRL_WAIT4END);
267		if (!desc) {
268			dev_err(i2c->dev,
269				"Failed to get DMA data write descriptor.\n");
270			goto write_init_dma_fail;
271		}
272	}
273
274	/*
275	 * The last descriptor must have this callback,
276	 * to finish the DMA transaction.
277	 */
278	desc->callback = mxs_i2c_dma_irq_callback;
279	desc->callback_param = i2c;
280
281	/* Start the transfer. */
282	dmaengine_submit(desc);
283	dma_async_issue_pending(i2c->dmach);
284	return 0;
285
286/* Read failpath. */
287read_init_dma_fail:
288	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
289select_init_dma_fail:
290	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
291select_init_pio_fail:
292	dmaengine_terminate_sync(i2c->dmach);
293	return -EINVAL;
294
295/* Write failpath. */
296write_init_dma_fail:
297	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
298write_init_pio_fail:
299	dmaengine_terminate_sync(i2c->dmach);
300	return -EINVAL;
301}
302
303static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
304{
305	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
306
307	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
308		if (readl(i2c->regs + MXS_I2C_CTRL1) &
309				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
310			return -ENXIO;
311		if (time_after(jiffies, timeout))
312			return -ETIMEDOUT;
313		cond_resched();
314	}
315
316	return 0;
317}
318
319static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
320{
321	u32 state;
322
323	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
324
325	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
326		i2c->cmd_err = -ENXIO;
327	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
328			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
329			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
330			  MXS_I2C_CTRL1_SLAVE_IRQ))
331		i2c->cmd_err = -EIO;
332
333	return i2c->cmd_err;
334}
335
336static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
337{
338	u32 reg;
339
340	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
341
342	/* readback makes sure the write is latched into hardware */
343	reg = readl(i2c->regs + MXS_I2C_CTRL0);
344	reg |= MXS_I2C_CTRL0_RUN;
345	writel(reg, i2c->regs + MXS_I2C_CTRL0);
346}
347
348/*
349 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
350 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
351 * must be written during PIO mode operation. First, the CTRL0 register has
352 * to be programmed with all the necessary bits but the RUN bit. Then the
353 * payload has to be written into the DATA register. Finally, the transmission
354 * is executed by setting the RUN bit in CTRL0.
355 */
356static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
357					  u32 data)
358{
359	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
360
361	if (i2c->dev_type == MXS_I2C_V1)
362		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
363
364	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
365	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
366}
367
368static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
369			struct i2c_msg *msg, uint32_t flags)
370{
371	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
372	uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
373	uint32_t data = 0;
374	int i, ret, xlen = 0, xmit = 0;
375	uint32_t start;
376
377	/* Mute IRQs coming from this block. */
378	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
379
380	/*
381	 * MX23 idea:
382	 * - Enable CTRL0::PIO_MODE (1 << 24)
383	 * - Enable CTRL1::ACK_MODE (1 << 27)
384	 *
385	 * WARNING! The MX23 is broken in some way, even if it claims
386	 * to support PIO, when we try to transfer any amount of data
387	 * that is not aligned to 4 bytes, the DMA engine will have
388	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
389	 * transfer. This in turn will mess up the next transfer as
390	 * the block it emit one byte write onto the bus terminated
391	 * with a NAK+STOP. A possible workaround is to reset the IP
392	 * block after every PIO transmission, which might just work.
393	 *
394	 * NOTE: The CTRL0::PIO_MODE description is important, since
395	 * it outlines how the PIO mode is really supposed to work.
396	 */
397	if (msg->flags & I2C_M_RD) {
398		/*
399		 * PIO READ transfer:
400		 *
401		 * This transfer MUST be limited to 4 bytes maximum. It is not
402		 * possible to transfer more than four bytes via PIO, since we
403		 * can not in any way make sure we can read the data from the
404		 * DATA register fast enough. Besides, the RX FIFO is only four
405		 * bytes deep, thus we can only really read up to four bytes at
406		 * time. Finally, there is no bit indicating us that new data
407		 * arrived at the FIFO and can thus be fetched from the DATA
408		 * register.
409		 */
410		BUG_ON(msg->len > 4);
411
412		/* SELECT command. */
413		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
414					      addr_data);
415
416		ret = mxs_i2c_pio_wait_xfer_end(i2c);
417		if (ret) {
418			dev_dbg(i2c->dev,
419				"PIO: Failed to send SELECT command!\n");
420			goto cleanup;
421		}
422
423		/* READ command. */
424		mxs_i2c_pio_trigger_cmd(i2c,
425					MXS_CMD_I2C_READ | flags |
426					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
427
428		ret = mxs_i2c_pio_wait_xfer_end(i2c);
429		if (ret) {
430			dev_dbg(i2c->dev,
431				"PIO: Failed to send READ command!\n");
432			goto cleanup;
433		}
434
435		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
436		for (i = 0; i < msg->len; i++) {
437			msg->buf[i] = data & 0xff;
438			data >>= 8;
439		}
440	} else {
441		/*
442		 * PIO WRITE transfer:
443		 *
444		 * The code below implements clock stretching to circumvent
445		 * the possibility of kernel not being able to supply data
446		 * fast enough. It is possible to transfer arbitrary amount
447		 * of data using PIO write.
448		 */
449
450		/*
451		 * The LSB of data buffer is the first byte blasted across
452		 * the bus. Higher order bytes follow. Thus the following
453		 * filling schematic.
454		 */
455
456		data = addr_data << 24;
457
458		/* Start the transfer with START condition. */
459		start = MXS_I2C_CTRL0_PRE_SEND_START;
460
461		/* If the transfer is long, use clock stretching. */
462		if (msg->len > 3)
463			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
464
465		for (i = 0; i < msg->len; i++) {
466			data >>= 8;
467			data |= (msg->buf[i] << 24);
468
469			xmit = 0;
470
471			/* This is the last transfer of the message. */
472			if (i + 1 == msg->len) {
473				/* Add optional STOP flag. */
474				start |= flags;
475				/* Remove RETAIN_CLOCK bit. */
476				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
477				xmit = 1;
478			}
479
480			/* Four bytes are ready in the "data" variable. */
481			if ((i & 3) == 2)
482				xmit = 1;
483
484			/* Nothing interesting happened, continue stuffing. */
485			if (!xmit)
486				continue;
487
488			/*
489			 * Compute the size of the transfer and shift the
490			 * data accordingly.
491			 *
492			 * i = (4k + 0) .... xlen = 2
493			 * i = (4k + 1) .... xlen = 3
494			 * i = (4k + 2) .... xlen = 4
495			 * i = (4k + 3) .... xlen = 1
496			 */
497
498			if ((i % 4) == 3)
499				xlen = 1;
500			else
501				xlen = (i % 4) + 2;
502
503			data >>= (4 - xlen) * 8;
504
505			dev_dbg(i2c->dev,
506				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
507				xlen, i, msg->len,
508				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
509				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
510				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
511
512			writel(MXS_I2C_DEBUG0_DMAREQ,
513			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
514
515			mxs_i2c_pio_trigger_write_cmd(i2c,
516				start | MXS_I2C_CTRL0_MASTER_MODE |
517				MXS_I2C_CTRL0_DIRECTION |
518				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
519
520			/* The START condition is sent only once. */
521			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
522
523			/* Wait for the end of the transfer. */
524			ret = mxs_i2c_pio_wait_xfer_end(i2c);
525			if (ret) {
526				dev_dbg(i2c->dev,
527					"PIO: Failed to finish WRITE cmd!\n");
528				break;
529			}
530
531			/* Check NAK here. */
532			ret = readl(i2c->regs + MXS_I2C_STAT) &
533				    MXS_I2C_STAT_GOT_A_NAK;
534			if (ret) {
535				ret = -ENXIO;
536				goto cleanup;
537			}
538		}
539	}
540
541	/* make sure we capture any occurred error into cmd_err */
542	ret = mxs_i2c_pio_check_error_state(i2c);
543
544cleanup:
545	/* Clear any dangling IRQs and re-enable interrupts. */
546	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
547	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
548
549	/* Clear the PIO_MODE on i.MX23 */
550	if (i2c->dev_type == MXS_I2C_V1)
551		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
552
553	return ret;
554}
555
556/*
557 * Low level master read/write transaction.
558 */
559static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
560				int stop)
561{
562	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
563	int ret;
564	int flags;
565	u8 *dma_buf;
566	int use_pio = 0;
567	unsigned long time_left;
568
569	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
570
571	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572		msg->addr, msg->len, msg->flags, stop);
573
574	/*
575	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
576	 * 4 bytes of length. The write transfer is not limited as it can use
577	 * clock stretching to avoid FIFO underruns.
578	 */
579	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
580		use_pio = 1;
581	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
582		use_pio = 1;
583
584	i2c->cmd_err = 0;
585	if (use_pio) {
586		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
587		/* No need to reset the block if NAK was received. */
588		if (ret && (ret != -ENXIO))
589			mxs_i2c_reset(i2c);
590	} else {
591		dma_buf = i2c_get_dma_safe_msg_buf(msg, 1);
592		if (!dma_buf)
593			return -ENOMEM;
594
595		reinit_completion(&i2c->cmd_complete);
596		ret = mxs_i2c_dma_setup_xfer(adap, msg, dma_buf, flags);
597		if (ret) {
598			i2c_put_dma_safe_msg_buf(dma_buf, msg, false);
599			return ret;
600		}
601
602		time_left = wait_for_completion_timeout(&i2c->cmd_complete,
603						msecs_to_jiffies(1000));
604		i2c_put_dma_safe_msg_buf(dma_buf, msg, true);
605		if (!time_left)
606			goto timeout;
607
608		ret = i2c->cmd_err;
609	}
610
611	if (ret == -ENXIO) {
612		/*
613		 * If the transfer fails with a NAK from the slave the
614		 * controller halts until it gets told to return to idle state.
615		 */
616		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
617		       i2c->regs + MXS_I2C_CTRL1_SET);
618	}
619
620	/*
621	 * WARNING!
622	 * The i.MX23 is strange. After each and every operation, it's I2C IP
623	 * block must be reset, otherwise the IP block will misbehave. This can
624	 * be observed on the bus by the block sending out one single byte onto
625	 * the bus. In case such an error happens, bit 27 will be set in the
626	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
627	 * and is marked as "TBD" instead. To reset this bit to a correct state,
628	 * reset the whole block. Since the block reset does not take long, do
629	 * reset the block after every transfer to play safe.
630	 */
631	if (i2c->dev_type == MXS_I2C_V1)
632		mxs_i2c_reset(i2c);
633
634	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
635
636	return ret;
637
638timeout:
639	dev_dbg(i2c->dev, "Timeout!\n");
640	mxs_i2c_dma_finish(i2c);
641	ret = mxs_i2c_reset(i2c);
642	if (ret)
643		return ret;
644
645	return -ETIMEDOUT;
646}
647
648static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
649			int num)
650{
651	int i;
652	int err;
653
654	for (i = 0; i < num; i++) {
655		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
656		if (err)
657			return err;
658	}
659
660	return num;
661}
662
663static u32 mxs_i2c_func(struct i2c_adapter *adap)
664{
665	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
666}
667
668static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
669{
670	struct mxs_i2c_dev *i2c = dev_id;
671	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
672
673	if (!stat)
674		return IRQ_NONE;
675
676	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
677		i2c->cmd_err = -ENXIO;
678	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
679		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
680		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
681		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
682		i2c->cmd_err = -EIO;
683
684	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
685
686	return IRQ_HANDLED;
687}
688
689static const struct i2c_algorithm mxs_i2c_algo = {
690	.master_xfer = mxs_i2c_xfer,
691	.functionality = mxs_i2c_func,
692};
693
694static const struct i2c_adapter_quirks mxs_i2c_quirks = {
695	.flags = I2C_AQ_NO_ZERO_LEN,
696};
697
698static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
699{
700	/* The I2C block clock runs at 24MHz */
701	const uint32_t clk = 24000000;
702	uint32_t divider;
703	uint16_t high_count, low_count, rcv_count, xmit_count;
704	uint32_t bus_free, leadin;
705	struct device *dev = i2c->dev;
706
707	divider = DIV_ROUND_UP(clk, speed);
708
709	if (divider < 25) {
710		/*
711		 * limit the divider, so that min(low_count, high_count)
712		 * is >= 1
713		 */
714		divider = 25;
715		dev_warn(dev,
716			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
717			speed / 1000, speed % 1000,
718			clk / divider / 1000, clk / divider % 1000);
719	} else if (divider > 1897) {
720		/*
721		 * limit the divider, so that max(low_count, high_count)
722		 * cannot exceed 1023
723		 */
724		divider = 1897;
725		dev_warn(dev,
726			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
727			speed / 1000, speed % 1000,
728			clk / divider / 1000, clk / divider % 1000);
729	}
730
731	/*
732	 * The I2C spec specifies the following timing data:
733	 *                          standard mode  fast mode Bitfield name
734	 * tLOW (SCL LOW period)     4700 ns        1300 ns
735	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
736	 * tSU;DAT (data setup time)  250 ns         100 ns
737	 * tHD;STA (START hold time) 4000 ns         600 ns
738	 * tBUF (bus free time)      4700 ns        1300 ns
739	 *
740	 * The hardware (of the i.MX28 at least) seems to add 2 additional
741	 * clock cycles to the low_count and 7 cycles to the high_count.
742	 * This is compensated for by subtracting the respective constants
743	 * from the values written to the timing registers.
744	 */
745	if (speed > I2C_MAX_STANDARD_MODE_FREQ) {
746		/* fast mode */
747		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
748		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
749		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
750		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
751	} else {
752		/* normal mode */
753		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
754		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
755		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
756		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
757	}
758	rcv_count = high_count * 3 / 8;
759	xmit_count = low_count * 3 / 8;
760
761	dev_dbg(dev,
762		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
763		speed, clk / divider, divider, low_count, high_count,
764		xmit_count, rcv_count, leadin, bus_free);
765
766	low_count -= 2;
767	high_count -= 7;
768	i2c->timing0 = (high_count << 16) | rcv_count;
769	i2c->timing1 = (low_count << 16) | xmit_count;
770	i2c->timing2 = (bus_free << 16 | leadin);
771}
772
773static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
774{
775	uint32_t speed;
776	struct device *dev = i2c->dev;
777	struct device_node *node = dev->of_node;
778	int ret;
779
780	ret = of_property_read_u32(node, "clock-frequency", &speed);
781	if (ret) {
782		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
783		speed = I2C_MAX_STANDARD_MODE_FREQ;
784	}
785
786	mxs_i2c_derive_timing(i2c, speed);
787
788	return 0;
789}
790
791static const struct of_device_id mxs_i2c_dt_ids[] = {
792	{ .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, },
793	{ .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, },
794	{ /* sentinel */ }
795};
796MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
797
798static int mxs_i2c_probe(struct platform_device *pdev)
799{
800	struct device *dev = &pdev->dev;
801	struct mxs_i2c_dev *i2c;
802	struct i2c_adapter *adap;
803	int err, irq;
804
805	i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
806	if (!i2c)
807		return -ENOMEM;
808
809	i2c->dev_type = (uintptr_t)of_device_get_match_data(&pdev->dev);
810
811	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
812	if (IS_ERR(i2c->regs))
813		return PTR_ERR(i2c->regs);
814
815	irq = platform_get_irq(pdev, 0);
816	if (irq < 0)
817		return irq;
818
819	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
820	if (err)
821		return err;
822
823	i2c->dev = dev;
824
825	init_completion(&i2c->cmd_complete);
826
827	if (dev->of_node) {
828		err = mxs_i2c_get_ofdata(i2c);
829		if (err)
830			return err;
831	}
832
833	/* Setup the DMA */
834	i2c->dmach = dma_request_chan(dev, "rx-tx");
835	if (IS_ERR(i2c->dmach)) {
836		return dev_err_probe(dev, PTR_ERR(i2c->dmach),
837				     "Failed to request dma\n");
838	}
839
840	platform_set_drvdata(pdev, i2c);
841
842	/* Do reset to enforce correct startup after pinmuxing */
843	err = mxs_i2c_reset(i2c);
844	if (err)
845		return err;
846
847	adap = &i2c->adapter;
848	strscpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
849	adap->owner = THIS_MODULE;
850	adap->algo = &mxs_i2c_algo;
851	adap->quirks = &mxs_i2c_quirks;
852	adap->dev.parent = dev;
853	adap->nr = pdev->id;
854	adap->dev.of_node = pdev->dev.of_node;
855	i2c_set_adapdata(adap, i2c);
856	err = i2c_add_numbered_adapter(adap);
857	if (err) {
858		writel(MXS_I2C_CTRL0_SFTRST,
859				i2c->regs + MXS_I2C_CTRL0_SET);
860		return err;
861	}
862
863	return 0;
864}
865
866static void mxs_i2c_remove(struct platform_device *pdev)
867{
868	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
869
870	i2c_del_adapter(&i2c->adapter);
871
872	if (i2c->dmach)
873		dma_release_channel(i2c->dmach);
874
875	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
876}
877
878static struct platform_driver mxs_i2c_driver = {
879	.driver = {
880		   .name = DRIVER_NAME,
881		   .of_match_table = mxs_i2c_dt_ids,
882		   },
883	.probe = mxs_i2c_probe,
884	.remove_new = mxs_i2c_remove,
885};
886
887static int __init mxs_i2c_init(void)
888{
889	return platform_driver_register(&mxs_i2c_driver);
890}
891subsys_initcall(mxs_i2c_init);
892
893static void __exit mxs_i2c_exit(void)
894{
895	platform_driver_unregister(&mxs_i2c_driver);
896}
897module_exit(mxs_i2c_exit);
898
899MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
900MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
901MODULE_DESCRIPTION("MXS I2C Bus Driver");
902MODULE_LICENSE("GPL");
903MODULE_ALIAS("platform:" DRIVER_NAME);
904