1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
4 *
5 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
6 *
7 * There are three ways that this I2C controller can be driven:
8 *
9 * - Raw control of the SDA and SCK signals.
10 *
11 *   This corresponds to MODE_RAW, which takes control of the signals
12 *   directly for a certain number of clock cycles (the INT_TIMING
13 *   interrupt can be used for timing).
14 *
15 * - Atomic commands. A low level I2C symbol (such as generate
16 *   start/stop/ack/nack bit, generate byte, receive byte, and receive
17 *   ACK) is given to the hardware, with detection of completion by bits
18 *   in the LINESTAT register.
19 *
20 *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
21 *   state machine in the interrupt handler to compose/react to I2C
22 *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
23 *   which emits a simple fixed sequence of atomic mode commands.
24 *
25 *   Due to software control, the use of atomic commands usually results
26 *   in suboptimal use of the bus, with gaps between the I2C symbols while
27 *   the driver decides what to do next.
28 *
29 * - Automatic mode. A bus address, and whether to read/write is
30 *   specified, and the hardware takes care of the I2C state machine,
31 *   using a FIFO to send/receive bytes of data to an I2C slave. The
32 *   driver just has to keep the FIFO drained or filled in response to the
33 *   appropriate FIFO interrupts.
34 *
35 *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
36 *   with control of repeated start bits between I2C messages.
37 *
38 *   Use of automatic mode and the FIFO can make much more efficient use
39 *   of the bus compared to individual atomic commands, with potentially
40 *   no wasted time between I2C symbols or I2C messages.
41 *
42 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
43 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
44 * the bus), MODE_ATOMIC must be used since automatic mode is normally
45 * started by the writing of data into the FIFO.
46 *
47 * The other modes are used in specific circumstances where MODE_ATOMIC and
48 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
49 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
50 * it is in a sane state.
51 *
52 * Notice that the driver implements a timer-based timeout mechanism.
53 * The reason for this mechanism is to reduce the number of interrupts
54 * received in automatic mode.
55 *
56 * The driver would get a slave event and transaction done interrupts for
57 * each atomic mode command that gets completed. However, these events are
58 * not needed in automatic mode, becase those atomic mode commands are
59 * managed automatically by the hardware.
60 *
61 * In practice, normal I2C transactions will be complete well before you
62 * get the timer interrupt, as the timer is re-scheduled during FIFO
63 * maintenance and disabled after the transaction is complete.
64 *
65 * In this way normal automatic mode operation isn't impacted by
66 * unnecessary interrupts, but the exceptional abort condition can still be
67 * detected (with a slight delay).
68 */
69
70#include <linux/bitops.h>
71#include <linux/clk.h>
72#include <linux/completion.h>
73#include <linux/err.h>
74#include <linux/i2c.h>
75#include <linux/init.h>
76#include <linux/interrupt.h>
77#include <linux/io.h>
78#include <linux/kernel.h>
79#include <linux/module.h>
80#include <linux/of_platform.h>
81#include <linux/platform_device.h>
82#include <linux/pm_runtime.h>
83#include <linux/slab.h>
84#include <linux/timer.h>
85
86/* Register offsets */
87
88#define SCB_STATUS_REG			0x00
89#define SCB_OVERRIDE_REG		0x04
90#define SCB_READ_ADDR_REG		0x08
91#define SCB_READ_COUNT_REG		0x0c
92#define SCB_WRITE_ADDR_REG		0x10
93#define SCB_READ_DATA_REG		0x14
94#define SCB_WRITE_DATA_REG		0x18
95#define SCB_FIFO_STATUS_REG		0x1c
96#define SCB_CONTROL_SOFT_RESET		0x1f
97#define SCB_CLK_SET_REG			0x3c
98#define SCB_INT_STATUS_REG		0x40
99#define SCB_INT_CLEAR_REG		0x44
100#define SCB_INT_MASK_REG		0x48
101#define SCB_CONTROL_REG			0x4c
102#define SCB_TIME_TPL_REG		0x50
103#define SCB_TIME_TPH_REG		0x54
104#define SCB_TIME_TP2S_REG		0x58
105#define SCB_TIME_TBI_REG		0x60
106#define SCB_TIME_TSL_REG		0x64
107#define SCB_TIME_TDL_REG		0x68
108#define SCB_TIME_TSDL_REG		0x6c
109#define SCB_TIME_TSDH_REG		0x70
110#define SCB_READ_XADDR_REG		0x74
111#define SCB_WRITE_XADDR_REG		0x78
112#define SCB_WRITE_COUNT_REG		0x7c
113#define SCB_CORE_REV_REG		0x80
114#define SCB_TIME_TCKH_REG		0x84
115#define SCB_TIME_TCKL_REG		0x88
116#define SCB_FIFO_FLUSH_REG		0x8c
117#define SCB_READ_FIFO_REG		0x94
118#define SCB_CLEAR_REG			0x98
119
120/* SCB_CONTROL_REG bits */
121
122#define SCB_CONTROL_CLK_ENABLE		0x1e0
123#define SCB_CONTROL_TRANSACTION_HALT	0x200
124
125#define FIFO_READ_FULL			BIT(0)
126#define FIFO_READ_EMPTY			BIT(1)
127#define FIFO_WRITE_FULL			BIT(2)
128#define FIFO_WRITE_EMPTY		BIT(3)
129
130/* SCB_CLK_SET_REG bits */
131#define SCB_FILT_DISABLE		BIT(31)
132#define SCB_FILT_BYPASS			BIT(30)
133#define SCB_FILT_INC_MASK		0x7f
134#define SCB_FILT_INC_SHIFT		16
135#define SCB_INC_MASK			0x7f
136#define SCB_INC_SHIFT			8
137
138/* SCB_INT_*_REG bits */
139
140#define INT_BUS_INACTIVE		BIT(0)
141#define INT_UNEXPECTED_START		BIT(1)
142#define INT_SCLK_LOW_TIMEOUT		BIT(2)
143#define INT_SDAT_LOW_TIMEOUT		BIT(3)
144#define INT_WRITE_ACK_ERR		BIT(4)
145#define INT_ADDR_ACK_ERR		BIT(5)
146#define INT_FIFO_FULL			BIT(9)
147#define INT_FIFO_FILLING		BIT(10)
148#define INT_FIFO_EMPTY			BIT(11)
149#define INT_FIFO_EMPTYING		BIT(12)
150#define INT_TRANSACTION_DONE		BIT(15)
151#define INT_SLAVE_EVENT			BIT(16)
152#define INT_MASTER_HALTED		BIT(17)
153#define INT_TIMING			BIT(18)
154#define INT_STOP_DETECTED		BIT(19)
155
156#define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING)
157
158/* Level interrupts need clearing after handling instead of before */
159#define INT_LEVEL			0x01e00
160
161/* Don't allow any interrupts while the clock may be off */
162#define INT_ENABLE_MASK_INACTIVE	0x00000
163
164/* Interrupt masks for the different driver modes */
165
166#define INT_ENABLE_MASK_RAW		INT_TIMING
167
168#define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \
169					 INT_SLAVE_EVENT      | \
170					 INT_ADDR_ACK_ERR     | \
171					 INT_WRITE_ACK_ERR)
172
173#define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \
174					 INT_ADDR_ACK_ERR     | \
175					 INT_WRITE_ACK_ERR    | \
176					 INT_FIFO_FULL        | \
177					 INT_FIFO_FILLING     | \
178					 INT_FIFO_EMPTY       | \
179					 INT_MASTER_HALTED    | \
180					 INT_STOP_DETECTED)
181
182#define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \
183					 INT_ADDR_ACK_ERR     | \
184					 INT_WRITE_ACK_ERR)
185
186/* SCB_STATUS_REG fields */
187
188#define LINESTAT_SCLK_LINE_STATUS	BIT(0)
189#define LINESTAT_SCLK_EN		BIT(1)
190#define LINESTAT_SDAT_LINE_STATUS	BIT(2)
191#define LINESTAT_SDAT_EN		BIT(3)
192#define LINESTAT_DET_START_STATUS	BIT(4)
193#define LINESTAT_DET_STOP_STATUS	BIT(5)
194#define LINESTAT_DET_ACK_STATUS		BIT(6)
195#define LINESTAT_DET_NACK_STATUS	BIT(7)
196#define LINESTAT_BUS_IDLE		BIT(8)
197#define LINESTAT_T_DONE_STATUS		BIT(9)
198#define LINESTAT_SCLK_OUT_STATUS	BIT(10)
199#define LINESTAT_SDAT_OUT_STATUS	BIT(11)
200#define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12)
201#define LINESTAT_START_BIT_DET		BIT(13)
202#define LINESTAT_STOP_BIT_DET		BIT(14)
203#define LINESTAT_ACK_DET		BIT(15)
204#define LINESTAT_NACK_DET		BIT(16)
205#define LINESTAT_INPUT_HELD_V		BIT(17)
206#define LINESTAT_ABORT_DET		BIT(18)
207#define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET)
208#define LINESTAT_INPUT_DATA		0xff000000
209#define LINESTAT_INPUT_DATA_SHIFT	24
210
211#define LINESTAT_CLEAR_SHIFT		13
212#define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT)
213
214/* SCB_OVERRIDE_REG fields */
215
216#define OVERRIDE_SCLK_OVR		BIT(0)
217#define OVERRIDE_SCLKEN_OVR		BIT(1)
218#define OVERRIDE_SDAT_OVR		BIT(2)
219#define OVERRIDE_SDATEN_OVR		BIT(3)
220#define OVERRIDE_MASTER			BIT(9)
221#define OVERRIDE_LINE_OVR_EN		BIT(10)
222#define OVERRIDE_DIRECT			BIT(11)
223#define OVERRIDE_CMD_SHIFT		4
224#define OVERRIDE_CMD_MASK		0x1f
225#define OVERRIDE_DATA_SHIFT		24
226
227#define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \
228					 OVERRIDE_SCLKEN_OVR)
229#define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \
230					 OVERRIDE_SCLKEN_OVR | \
231					 OVERRIDE_SCLK_OVR)
232#define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \
233					 OVERRIDE_SDATEN_OVR)
234#define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \
235					 OVERRIDE_SDATEN_OVR | \
236					 OVERRIDE_SDAT_OVR)
237
238/* OVERRIDE_CMD values */
239
240#define CMD_PAUSE			0x00
241#define CMD_GEN_DATA			0x01
242#define CMD_GEN_START			0x02
243#define CMD_GEN_STOP			0x03
244#define CMD_GEN_ACK			0x04
245#define CMD_GEN_NACK			0x05
246#define CMD_RET_DATA			0x08
247#define CMD_RET_ACK			0x09
248
249/* Fixed timing values */
250
251#define TIMEOUT_TBI			0x0
252#define TIMEOUT_TSL			0xffff
253#define TIMEOUT_TDL			0x0
254
255/* Transaction timeout */
256
257#define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000))
258
259/*
260 * Worst incs are 1 (inaccurate) and 16*256 (irregular).
261 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
262 * in the middle of the valid range (0-127).
263 */
264#define SCB_OPT_INC		64
265
266/* Setup the clock enable filtering for 25 ns */
267#define SCB_FILT_GLITCH		25
268
269/*
270 * Bits to return from interrupt handler functions for different modes.
271 * This delays completion until we've finished with the registers, so that the
272 * function waiting for completion can safely disable the clock to save power.
273 */
274#define ISR_COMPLETE_M		BIT(31)
275#define ISR_FATAL_M		BIT(30)
276#define ISR_WAITSTOP		BIT(29)
277#define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */
278#define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
279#define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M)
280
281#define IMG_I2C_PM_TIMEOUT	1000 /* ms */
282
283enum img_i2c_mode {
284	MODE_INACTIVE,
285	MODE_RAW,
286	MODE_ATOMIC,
287	MODE_AUTOMATIC,
288	MODE_SEQUENCE,
289	MODE_FATAL,
290	MODE_WAITSTOP,
291	MODE_SUSPEND,
292};
293
294/* Timing parameters for i2c modes (in ns) */
295struct img_i2c_timings {
296	const char *name;
297	unsigned int max_bitrate;
298	unsigned int tckh, tckl, tsdh, tsdl;
299	unsigned int tp2s, tpl, tph;
300};
301
302/* The timings array must be ordered from slower to faster */
303static struct img_i2c_timings timings[] = {
304	/* Standard mode */
305	{
306		.name = "standard",
307		.max_bitrate = I2C_MAX_STANDARD_MODE_FREQ,
308		.tckh = 4000,
309		.tckl = 4700,
310		.tsdh = 4700,
311		.tsdl = 8700,
312		.tp2s = 4700,
313		.tpl = 4700,
314		.tph = 4000,
315	},
316	/* Fast mode */
317	{
318		.name = "fast",
319		.max_bitrate = I2C_MAX_FAST_MODE_FREQ,
320		.tckh = 600,
321		.tckl = 1300,
322		.tsdh = 600,
323		.tsdl = 1200,
324		.tp2s = 1300,
325		.tpl = 600,
326		.tph = 600,
327	},
328};
329
330/* Reset dance */
331static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
332				  CMD_GEN_DATA, 0xff,
333				  CMD_RET_ACK,
334				  CMD_GEN_START,
335				  CMD_GEN_STOP,
336				  0 };
337/* Just issue a stop (after an abort condition) */
338static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
339				  0 };
340
341/* We're interested in different interrupts depending on the mode */
342static unsigned int img_i2c_int_enable_by_mode[] = {
343	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
344	[MODE_RAW]       = INT_ENABLE_MASK_RAW,
345	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
346	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
347	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
348	[MODE_FATAL]     = 0,
349	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
350	[MODE_SUSPEND]   = 0,
351};
352
353/* Atomic command names */
354static const char * const img_i2c_atomic_cmd_names[] = {
355	[CMD_PAUSE]	= "PAUSE",
356	[CMD_GEN_DATA]	= "GEN_DATA",
357	[CMD_GEN_START]	= "GEN_START",
358	[CMD_GEN_STOP]	= "GEN_STOP",
359	[CMD_GEN_ACK]	= "GEN_ACK",
360	[CMD_GEN_NACK]	= "GEN_NACK",
361	[CMD_RET_DATA]	= "RET_DATA",
362	[CMD_RET_ACK]	= "RET_ACK",
363};
364
365struct img_i2c {
366	struct i2c_adapter adap;
367
368	void __iomem *base;
369
370	/*
371	 * The scb core clock is used to get the input frequency, and to disable
372	 * it after every set of transactions to save some power.
373	 */
374	struct clk *scb_clk, *sys_clk;
375	unsigned int bitrate;
376	bool need_wr_rd_fence;
377
378	/* state */
379	struct completion msg_complete;
380	spinlock_t lock;	/* lock before doing anything with the state */
381	struct i2c_msg msg;
382
383	/* After the last transaction, wait for a stop bit */
384	bool last_msg;
385	int msg_status;
386
387	enum img_i2c_mode mode;
388	u32 int_enable;		/* depends on mode */
389	u32 line_status;	/* line status over command */
390
391	/*
392	 * To avoid slave event interrupts in automatic mode, use a timer to
393	 * poll the abort condition if we don't get an interrupt for too long.
394	 */
395	struct timer_list check_timer;
396	bool t_halt;
397
398	/* atomic mode state */
399	bool at_t_done;
400	bool at_slave_event;
401	int at_cur_cmd;
402	u8 at_cur_data;
403
404	/* Sequence: either reset or stop. See img_i2c_sequence. */
405	u8 *seq;
406
407	/* raw mode */
408	unsigned int raw_timeout;
409};
410
411static int img_i2c_runtime_suspend(struct device *dev);
412static int img_i2c_runtime_resume(struct device *dev);
413
414static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
415{
416	writel(value, i2c->base + offset);
417}
418
419static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
420{
421	return readl(i2c->base + offset);
422}
423
424/*
425 * The code to read from the master read fifo, and write to the master
426 * write fifo, checks a bit in an SCB register before every byte to
427 * ensure that the fifo is not full (write fifo) or empty (read fifo).
428 * Due to clock domain crossing inside the SCB block the updated value
429 * of this bit is only visible after 2 cycles.
430 *
431 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
432 * revision register), and it's called after reading from or writing to the
433 * fifos to ensure that subsequent reads of the fifo status bits do not read
434 * stale values.
435 */
436static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
437{
438	if (i2c->need_wr_rd_fence) {
439		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
440		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
441	}
442}
443
444static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
445{
446	i2c->mode = mode;
447	i2c->int_enable = img_i2c_int_enable_by_mode[mode];
448	i2c->line_status = 0;
449}
450
451static void img_i2c_raw_op(struct img_i2c *i2c)
452{
453	i2c->raw_timeout = 0;
454	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
455		OVERRIDE_SCLKEN_OVR |
456		OVERRIDE_SDATEN_OVR |
457		OVERRIDE_MASTER |
458		OVERRIDE_LINE_OVR_EN |
459		OVERRIDE_DIRECT |
460		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
461		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
462}
463
464static const char *img_i2c_atomic_op_name(unsigned int cmd)
465{
466	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
467		return "UNKNOWN";
468	return img_i2c_atomic_cmd_names[cmd];
469}
470
471/* Send a single atomic mode command to the hardware */
472static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
473{
474	i2c->at_cur_cmd = cmd;
475	i2c->at_cur_data = data;
476
477	/* work around lack of data setup time when generating data */
478	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
479		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
480
481		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
482			/* hold the data line down for a moment */
483			img_i2c_switch_mode(i2c, MODE_RAW);
484			img_i2c_raw_op(i2c);
485			return;
486		}
487	}
488
489	dev_dbg(i2c->adap.dev.parent,
490		"atomic cmd=%s (%d) data=%#x\n",
491		img_i2c_atomic_op_name(cmd), cmd, data);
492	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
493	i2c->at_slave_event = false;
494	i2c->line_status = 0;
495
496	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
497		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
498		OVERRIDE_MASTER |
499		OVERRIDE_DIRECT |
500		(data << OVERRIDE_DATA_SHIFT));
501}
502
503/* Start a transaction in atomic mode */
504static void img_i2c_atomic_start(struct img_i2c *i2c)
505{
506	img_i2c_switch_mode(i2c, MODE_ATOMIC);
507	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
508	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
509}
510
511static void img_i2c_soft_reset(struct img_i2c *i2c)
512{
513	i2c->t_halt = false;
514	img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
515	img_i2c_writel(i2c, SCB_CONTROL_REG,
516		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
517}
518
519/*
520 * Enable or release transaction halt for control of repeated starts.
521 * In version 3.3 of the IP when transaction halt is set, an interrupt
522 * will be generated after each byte of a transfer instead of after
523 * every transfer but before the stop bit.
524 * Due to this behaviour we have to be careful that every time we
525 * release the transaction halt we have to re-enable it straight away
526 * so that we only process a single byte, not doing so will result in
527 * all remaining bytes been processed and a stop bit being issued,
528 * which will prevent us having a repeated start.
529 */
530static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
531{
532	u32 val;
533
534	if (i2c->t_halt == t_halt)
535		return;
536	i2c->t_halt = t_halt;
537	val = img_i2c_readl(i2c, SCB_CONTROL_REG);
538	if (t_halt)
539		val |= SCB_CONTROL_TRANSACTION_HALT;
540	else
541		val &= ~SCB_CONTROL_TRANSACTION_HALT;
542	img_i2c_writel(i2c, SCB_CONTROL_REG, val);
543}
544
545/* Drain data from the FIFO into the buffer (automatic mode) */
546static void img_i2c_read_fifo(struct img_i2c *i2c)
547{
548	while (i2c->msg.len) {
549		u32 fifo_status;
550		u8 data;
551
552		img_i2c_wr_rd_fence(i2c);
553		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
554		if (fifo_status & FIFO_READ_EMPTY)
555			break;
556
557		data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
558		*i2c->msg.buf = data;
559
560		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
561		i2c->msg.len--;
562		i2c->msg.buf++;
563	}
564}
565
566/* Fill the FIFO with data from the buffer (automatic mode) */
567static void img_i2c_write_fifo(struct img_i2c *i2c)
568{
569	while (i2c->msg.len) {
570		u32 fifo_status;
571
572		img_i2c_wr_rd_fence(i2c);
573		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
574		if (fifo_status & FIFO_WRITE_FULL)
575			break;
576
577		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
578		i2c->msg.len--;
579		i2c->msg.buf++;
580	}
581
582	/* Disable fifo emptying interrupt if nothing more to write */
583	if (!i2c->msg.len)
584		i2c->int_enable &= ~INT_FIFO_EMPTYING;
585}
586
587/* Start a read transaction in automatic mode */
588static void img_i2c_read(struct img_i2c *i2c)
589{
590	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
591	if (!i2c->last_msg)
592		i2c->int_enable |= INT_SLAVE_EVENT;
593
594	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
595	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
596	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
597
598	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
599}
600
601/* Start a write transaction in automatic mode */
602static void img_i2c_write(struct img_i2c *i2c)
603{
604	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
605	if (!i2c->last_msg)
606		i2c->int_enable |= INT_SLAVE_EVENT;
607
608	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
609	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
610
611	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
612	img_i2c_write_fifo(i2c);
613
614	/* img_i2c_write_fifo() may modify int_enable */
615	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
616}
617
618/*
619 * Indicate that the transaction is complete. This is called from the
620 * ISR to wake up the waiting thread, after which the ISR must not
621 * access any more SCB registers.
622 */
623static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
624{
625	img_i2c_switch_mode(i2c, MODE_INACTIVE);
626	if (status) {
627		i2c->msg_status = status;
628		img_i2c_transaction_halt(i2c, false);
629	}
630	complete(&i2c->msg_complete);
631}
632
633static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
634					u32 int_status, u32 line_status)
635{
636	/* Stay in raw mode for this, so we don't just loop infinitely */
637	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
638	img_i2c_switch_mode(i2c, MODE_ATOMIC);
639	return 0;
640}
641
642static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
643				u32 line_status)
644{
645	if (int_status & INT_TIMING) {
646		if (i2c->raw_timeout == 0)
647			return img_i2c_raw_atomic_delay_handler(i2c,
648				int_status, line_status);
649		--i2c->raw_timeout;
650	}
651	return 0;
652}
653
654static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
655{
656	static const unsigned int continue_bits[] = {
657		[CMD_GEN_START] = LINESTAT_START_BIT_DET,
658		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
659		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
660		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
661		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
662	};
663	int next_cmd = -1;
664	u8 next_data = 0x00;
665
666	if (int_status & INT_SLAVE_EVENT)
667		i2c->at_slave_event = true;
668	if (int_status & INT_TRANSACTION_DONE)
669		i2c->at_t_done = true;
670
671	if (!i2c->at_slave_event || !i2c->at_t_done)
672		return 0;
673
674	/* wait if no continue bits are set */
675	if (i2c->at_cur_cmd >= 0 &&
676	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
677		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
678
679		if (cont_bits) {
680			cont_bits |= LINESTAT_ABORT_DET;
681			if (!(i2c->line_status & cont_bits))
682				return 0;
683		}
684	}
685
686	/* follow the sequence of commands in i2c->seq */
687	next_cmd = *i2c->seq;
688	/* stop on a nil */
689	if (!next_cmd) {
690		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
691		return ISR_COMPLETE(0);
692	}
693	/* when generating data, the next byte is the data */
694	if (next_cmd == CMD_GEN_DATA) {
695		++i2c->seq;
696		next_data = *i2c->seq;
697	}
698	++i2c->seq;
699	img_i2c_atomic_op(i2c, next_cmd, next_data);
700
701	return 0;
702}
703
704static void img_i2c_reset_start(struct img_i2c *i2c)
705{
706	/* Initiate the magic dance */
707	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
708	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
709	i2c->seq = img_i2c_reset_seq;
710	i2c->at_slave_event = true;
711	i2c->at_t_done = true;
712	i2c->at_cur_cmd = -1;
713
714	/* img_i2c_reset_seq isn't empty so the following won't fail */
715	img_i2c_sequence(i2c, 0);
716}
717
718static void img_i2c_stop_start(struct img_i2c *i2c)
719{
720	/* Initiate a stop bit sequence */
721	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
722	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
723	i2c->seq = img_i2c_stop_seq;
724	i2c->at_slave_event = true;
725	i2c->at_t_done = true;
726	i2c->at_cur_cmd = -1;
727
728	/* img_i2c_stop_seq isn't empty so the following won't fail */
729	img_i2c_sequence(i2c, 0);
730}
731
732static unsigned int img_i2c_atomic(struct img_i2c *i2c,
733				   u32 int_status,
734				   u32 line_status)
735{
736	int next_cmd = -1;
737	u8 next_data = 0x00;
738
739	if (int_status & INT_SLAVE_EVENT)
740		i2c->at_slave_event = true;
741	if (int_status & INT_TRANSACTION_DONE)
742		i2c->at_t_done = true;
743
744	if (!i2c->at_slave_event || !i2c->at_t_done)
745		goto next_atomic_cmd;
746	if (i2c->line_status & LINESTAT_ABORT_DET) {
747		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
748		next_cmd = CMD_GEN_STOP;
749		i2c->msg_status = -EIO;
750		goto next_atomic_cmd;
751	}
752
753	/* i2c->at_cur_cmd may have completed */
754	switch (i2c->at_cur_cmd) {
755	case CMD_GEN_START:
756		next_cmd = CMD_GEN_DATA;
757		next_data = i2c_8bit_addr_from_msg(&i2c->msg);
758		break;
759	case CMD_GEN_DATA:
760		if (i2c->line_status & LINESTAT_INPUT_HELD_V)
761			next_cmd = CMD_RET_ACK;
762		break;
763	case CMD_RET_ACK:
764		if (i2c->line_status & LINESTAT_ACK_DET ||
765		    (i2c->line_status & LINESTAT_NACK_DET &&
766		    i2c->msg.flags & I2C_M_IGNORE_NAK)) {
767			if (i2c->msg.len == 0) {
768				next_cmd = CMD_GEN_STOP;
769			} else if (i2c->msg.flags & I2C_M_RD) {
770				next_cmd = CMD_RET_DATA;
771			} else {
772				next_cmd = CMD_GEN_DATA;
773				next_data = *i2c->msg.buf;
774				--i2c->msg.len;
775				++i2c->msg.buf;
776			}
777		} else if (i2c->line_status & LINESTAT_NACK_DET) {
778			i2c->msg_status = -EIO;
779			next_cmd = CMD_GEN_STOP;
780		}
781		break;
782	case CMD_RET_DATA:
783		if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
784			*i2c->msg.buf = (i2c->line_status &
785						LINESTAT_INPUT_DATA)
786					>> LINESTAT_INPUT_DATA_SHIFT;
787			--i2c->msg.len;
788			++i2c->msg.buf;
789			if (i2c->msg.len)
790				next_cmd = CMD_GEN_ACK;
791			else
792				next_cmd = CMD_GEN_NACK;
793		}
794		break;
795	case CMD_GEN_ACK:
796		if (i2c->line_status & LINESTAT_ACK_DET) {
797			next_cmd = CMD_RET_DATA;
798		} else {
799			i2c->msg_status = -EIO;
800			next_cmd = CMD_GEN_STOP;
801		}
802		break;
803	case CMD_GEN_NACK:
804		next_cmd = CMD_GEN_STOP;
805		break;
806	case CMD_GEN_STOP:
807		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
808		return ISR_COMPLETE(0);
809	default:
810		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
811			i2c->at_cur_cmd);
812		i2c->msg_status = -EIO;
813		next_cmd = CMD_GEN_STOP;
814		break;
815	}
816
817next_atomic_cmd:
818	if (next_cmd != -1) {
819		/* don't actually stop unless we're the last transaction */
820		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
821						!i2c->last_msg)
822			return ISR_COMPLETE(0);
823		img_i2c_atomic_op(i2c, next_cmd, next_data);
824	}
825	return 0;
826}
827
828/*
829 * Timer function to check if something has gone wrong in automatic mode (so we
830 * don't have to handle so many interrupts just to catch an exception).
831 */
832static void img_i2c_check_timer(struct timer_list *t)
833{
834	struct img_i2c *i2c = from_timer(i2c, t, check_timer);
835	unsigned long flags;
836	unsigned int line_status;
837
838	spin_lock_irqsave(&i2c->lock, flags);
839	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
840
841	/* check for an abort condition */
842	if (line_status & LINESTAT_ABORT_DET) {
843		dev_dbg(i2c->adap.dev.parent,
844			"abort condition detected by check timer\n");
845		/* enable slave event interrupt mask to trigger irq */
846		img_i2c_writel(i2c, SCB_INT_MASK_REG,
847			       i2c->int_enable | INT_SLAVE_EVENT);
848	}
849
850	spin_unlock_irqrestore(&i2c->lock, flags);
851}
852
853static unsigned int img_i2c_auto(struct img_i2c *i2c,
854				 unsigned int int_status,
855				 unsigned int line_status)
856{
857	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
858		return ISR_COMPLETE(EIO);
859
860	if (line_status & LINESTAT_ABORT_DET) {
861		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
862		/* empty the read fifo */
863		if ((i2c->msg.flags & I2C_M_RD) &&
864		    (int_status & INT_FIFO_FULL_FILLING))
865			img_i2c_read_fifo(i2c);
866		/* use atomic mode and try to force a stop bit */
867		i2c->msg_status = -EIO;
868		img_i2c_stop_start(i2c);
869		return 0;
870	}
871
872	/* Enable transaction halt on start bit */
873	if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
874		img_i2c_transaction_halt(i2c, !i2c->last_msg);
875		/* we're no longer interested in the slave event */
876		i2c->int_enable &= ~INT_SLAVE_EVENT;
877	}
878
879	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
880
881	if (int_status & INT_STOP_DETECTED) {
882		/* Drain remaining data in FIFO and complete transaction */
883		if (i2c->msg.flags & I2C_M_RD)
884			img_i2c_read_fifo(i2c);
885		return ISR_COMPLETE(0);
886	}
887
888	if (i2c->msg.flags & I2C_M_RD) {
889		if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
890			img_i2c_read_fifo(i2c);
891			if (i2c->msg.len == 0)
892				return ISR_WAITSTOP;
893		}
894	} else {
895		if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
896			if ((int_status & INT_FIFO_EMPTY) &&
897			    i2c->msg.len == 0)
898				return ISR_WAITSTOP;
899			img_i2c_write_fifo(i2c);
900		}
901	}
902	if (int_status & INT_MASTER_HALTED) {
903		/*
904		 * Release and then enable transaction halt, to
905		 * allow only a single byte to proceed.
906		 */
907		img_i2c_transaction_halt(i2c, false);
908		img_i2c_transaction_halt(i2c, !i2c->last_msg);
909	}
910
911	return 0;
912}
913
914static irqreturn_t img_i2c_isr(int irq, void *dev_id)
915{
916	struct img_i2c *i2c = dev_id;
917	u32 int_status, line_status;
918	/* We handle transaction completion AFTER accessing registers */
919	unsigned int hret;
920
921	/* Read interrupt status register. */
922	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
923	/* Clear detected interrupts. */
924	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
925
926	/*
927	 * Read line status and clear it until it actually is clear.  We have
928	 * to be careful not to lose any line status bits that get latched.
929	 */
930	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
931	if (line_status & LINESTAT_LATCHED) {
932		img_i2c_writel(i2c, SCB_CLEAR_REG,
933			      (line_status & LINESTAT_LATCHED)
934				>> LINESTAT_CLEAR_SHIFT);
935		img_i2c_wr_rd_fence(i2c);
936	}
937
938	spin_lock(&i2c->lock);
939
940	/* Keep track of line status bits received */
941	i2c->line_status &= ~LINESTAT_INPUT_DATA;
942	i2c->line_status |= line_status;
943
944	/*
945	 * Certain interrupts indicate that sclk low timeout is not
946	 * a problem. If any of these are set, just continue.
947	 */
948	if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
949	    !(int_status & (INT_SLAVE_EVENT |
950			    INT_FIFO_EMPTY |
951			    INT_FIFO_FULL))) {
952		dev_crit(i2c->adap.dev.parent,
953			 "fatal: clock low timeout occurred %s addr 0x%02x\n",
954			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
955			 i2c->msg.addr);
956		hret = ISR_FATAL(EIO);
957		goto out;
958	}
959
960	if (i2c->mode == MODE_ATOMIC)
961		hret = img_i2c_atomic(i2c, int_status, line_status);
962	else if (i2c->mode == MODE_AUTOMATIC)
963		hret = img_i2c_auto(i2c, int_status, line_status);
964	else if (i2c->mode == MODE_SEQUENCE)
965		hret = img_i2c_sequence(i2c, int_status);
966	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
967			 (line_status & LINESTAT_STOP_BIT_DET))
968		hret = ISR_COMPLETE(0);
969	else if (i2c->mode == MODE_RAW)
970		hret = img_i2c_raw(i2c, int_status, line_status);
971	else
972		hret = 0;
973
974	/* Clear detected level interrupts. */
975	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
976
977out:
978	if (hret & ISR_WAITSTOP) {
979		/*
980		 * Only wait for stop on last message.
981		 * Also we may already have detected the stop bit.
982		 */
983		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
984			hret = ISR_COMPLETE(0);
985		else
986			img_i2c_switch_mode(i2c, MODE_WAITSTOP);
987	}
988
989	/* now we've finished using regs, handle transaction completion */
990	if (hret & ISR_COMPLETE_M) {
991		int status = -(hret & ISR_STATUS_M);
992
993		img_i2c_complete_transaction(i2c, status);
994		if (hret & ISR_FATAL_M)
995			img_i2c_switch_mode(i2c, MODE_FATAL);
996	}
997
998	/* Enable interrupts (int_enable may be altered by changing mode) */
999	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1000
1001	spin_unlock(&i2c->lock);
1002
1003	return IRQ_HANDLED;
1004}
1005
1006/* Force a bus reset sequence and wait for it to complete */
1007static int img_i2c_reset_bus(struct img_i2c *i2c)
1008{
1009	unsigned long flags;
1010	unsigned long time_left;
1011
1012	spin_lock_irqsave(&i2c->lock, flags);
1013	reinit_completion(&i2c->msg_complete);
1014	img_i2c_reset_start(i2c);
1015	spin_unlock_irqrestore(&i2c->lock, flags);
1016
1017	time_left = wait_for_completion_timeout(&i2c->msg_complete,
1018					      IMG_I2C_TIMEOUT);
1019	if (time_left == 0)
1020		return -ETIMEDOUT;
1021	return 0;
1022}
1023
1024static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1025			int num)
1026{
1027	struct img_i2c *i2c = i2c_get_adapdata(adap);
1028	bool atomic = false;
1029	int i, ret;
1030	unsigned long time_left;
1031
1032	if (i2c->mode == MODE_SUSPEND) {
1033		WARN(1, "refusing to service transaction in suspended state\n");
1034		return -EIO;
1035	}
1036
1037	if (i2c->mode == MODE_FATAL)
1038		return -EIO;
1039
1040	for (i = 0; i < num; i++) {
1041		/*
1042		 * 0 byte reads are not possible because the slave could try
1043		 * and pull the data line low, preventing a stop bit.
1044		 */
1045		if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1046			return -EIO;
1047		/*
1048		 * 0 byte writes are possible and used for probing, but we
1049		 * cannot do them in automatic mode, so use atomic mode
1050		 * instead.
1051		 *
1052		 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1053		 * in atomic mode.
1054		 */
1055		if (!msgs[i].len ||
1056		    (msgs[i].flags & I2C_M_IGNORE_NAK))
1057			atomic = true;
1058	}
1059
1060	ret = pm_runtime_resume_and_get(adap->dev.parent);
1061	if (ret < 0)
1062		return ret;
1063
1064	for (i = 0; i < num; i++) {
1065		struct i2c_msg *msg = &msgs[i];
1066		unsigned long flags;
1067
1068		spin_lock_irqsave(&i2c->lock, flags);
1069
1070		/*
1071		 * Make a copy of the message struct. We mustn't modify the
1072		 * original or we'll confuse drivers and i2c-dev.
1073		 */
1074		i2c->msg = *msg;
1075		i2c->msg_status = 0;
1076
1077		/*
1078		 * After the last message we must have waited for a stop bit.
1079		 * Not waiting can cause problems when the clock is disabled
1080		 * before the stop bit is sent, and the linux I2C interface
1081		 * requires separate transfers not to joined with repeated
1082		 * start.
1083		 */
1084		i2c->last_msg = (i == num - 1);
1085		reinit_completion(&i2c->msg_complete);
1086
1087		/*
1088		 * Clear line status and all interrupts before starting a
1089		 * transfer, as we may have unserviced interrupts from
1090		 * previous transfers that might be handled in the context
1091		 * of the new transfer.
1092		 */
1093		img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1094		img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1095
1096		if (atomic) {
1097			img_i2c_atomic_start(i2c);
1098		} else {
1099			/*
1100			 * Enable transaction halt if not the last message in
1101			 * the queue so that we can control repeated starts.
1102			 */
1103			img_i2c_transaction_halt(i2c, !i2c->last_msg);
1104
1105			if (msg->flags & I2C_M_RD)
1106				img_i2c_read(i2c);
1107			else
1108				img_i2c_write(i2c);
1109
1110			/*
1111			 * Release and then enable transaction halt, to
1112			 * allow only a single byte to proceed.
1113			 * This doesn't have an effect on the initial transfer
1114			 * but will allow the following transfers to start
1115			 * processing if the previous transfer was marked as
1116			 * complete while the i2c block was halted.
1117			 */
1118			img_i2c_transaction_halt(i2c, false);
1119			img_i2c_transaction_halt(i2c, !i2c->last_msg);
1120		}
1121		spin_unlock_irqrestore(&i2c->lock, flags);
1122
1123		time_left = wait_for_completion_timeout(&i2c->msg_complete,
1124						      IMG_I2C_TIMEOUT);
1125		del_timer_sync(&i2c->check_timer);
1126
1127		if (time_left == 0) {
1128			dev_err(adap->dev.parent, "i2c transfer timed out\n");
1129			i2c->msg_status = -ETIMEDOUT;
1130			break;
1131		}
1132
1133		if (i2c->msg_status)
1134			break;
1135	}
1136
1137	pm_runtime_mark_last_busy(adap->dev.parent);
1138	pm_runtime_put_autosuspend(adap->dev.parent);
1139
1140	return i2c->msg_status ? i2c->msg_status : num;
1141}
1142
1143static u32 img_i2c_func(struct i2c_adapter *adap)
1144{
1145	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1146}
1147
1148static const struct i2c_algorithm img_i2c_algo = {
1149	.master_xfer = img_i2c_xfer,
1150	.functionality = img_i2c_func,
1151};
1152
1153static int img_i2c_init(struct img_i2c *i2c)
1154{
1155	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1156	unsigned int i, data, prescale, inc, int_bitrate, filt;
1157	struct img_i2c_timings timing;
1158	u32 rev;
1159	int ret;
1160
1161	ret = pm_runtime_resume_and_get(i2c->adap.dev.parent);
1162	if (ret < 0)
1163		return ret;
1164
1165	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1166	if ((rev & 0x00ffffff) < 0x00020200) {
1167		dev_info(i2c->adap.dev.parent,
1168			 "Unknown hardware revision (%d.%d.%d.%d)\n",
1169			 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1170			 (rev >> 8) & 0xff, rev & 0xff);
1171		pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1172		pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1173		return -EINVAL;
1174	}
1175
1176	/* Fencing enabled by default. */
1177	i2c->need_wr_rd_fence = true;
1178
1179	/* Determine what mode we're in from the bitrate */
1180	timing = timings[0];
1181	for (i = 0; i < ARRAY_SIZE(timings); i++) {
1182		if (i2c->bitrate <= timings[i].max_bitrate) {
1183			timing = timings[i];
1184			break;
1185		}
1186	}
1187	if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1188		dev_warn(i2c->adap.dev.parent,
1189			 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1190			 i2c->bitrate,
1191			 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1192		timing = timings[ARRAY_SIZE(timings) - 1];
1193		i2c->bitrate = timing.max_bitrate;
1194	}
1195
1196	bitrate_khz = i2c->bitrate / 1000;
1197	clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1198
1199	/* Find the prescale that would give us that inc (approx delay = 0) */
1200	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1201	prescale = clamp_t(unsigned int, prescale, 1, 8);
1202	clk_khz /= prescale;
1203
1204	/* Setup the clock increment value */
1205	inc = (256 * 16 * bitrate_khz) / clk_khz;
1206
1207	/*
1208	 * The clock generation logic allows to filter glitches on the bus.
1209	 * This filter is able to remove bus glitches shorter than 50ns.
1210	 * If the clock enable rate is greater than 20 MHz, no filtering
1211	 * is required, so we need to disable it.
1212	 * If it's between the 20-40 MHz range, there's no need to divide
1213	 * the clock to get a filter.
1214	 */
1215	if (clk_khz < 20000) {
1216		filt = SCB_FILT_DISABLE;
1217	} else if (clk_khz < 40000) {
1218		filt = SCB_FILT_BYPASS;
1219	} else {
1220		/* Calculate filter clock */
1221		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1222
1223		/* Scale up if needed */
1224		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1225			inc++;
1226
1227		if (filt > SCB_FILT_INC_MASK)
1228			filt = SCB_FILT_INC_MASK;
1229
1230		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1231	}
1232	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1233	img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1234
1235	/* Obtain the clock period of the fx16 clock in ns */
1236	clk_period = (256 * 1000000) / (clk_khz * inc);
1237
1238	/* Calculate the bitrate in terms of internal clock pulses */
1239	int_bitrate = 1000000 / (bitrate_khz * clk_period);
1240	if ((1000000 % (bitrate_khz * clk_period)) >=
1241	    ((bitrate_khz * clk_period) / 2))
1242		int_bitrate++;
1243
1244	/*
1245	 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1246	 * values from there if they don't meet minimum timing requirements
1247	 */
1248	tckh = int_bitrate / 2;
1249	tckl = int_bitrate - tckh;
1250
1251	/* Adjust TCKH and TCKL values */
1252	data = DIV_ROUND_UP(timing.tckl, clk_period);
1253
1254	if (tckl < data) {
1255		tckl = data;
1256		tckh = int_bitrate - tckl;
1257	}
1258
1259	if (tckh > 0)
1260		--tckh;
1261
1262	if (tckl > 0)
1263		--tckl;
1264
1265	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1266	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1267
1268	/* Setup TSDH value */
1269	tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1270
1271	if (tsdh > 1)
1272		data = tsdh - 1;
1273	else
1274		data = 0x01;
1275	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1276
1277	/* This value is used later */
1278	tsdh = data;
1279
1280	/* Setup TPL value */
1281	data = timing.tpl / clk_period;
1282	if (data > 0)
1283		--data;
1284	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1285
1286	/* Setup TPH value */
1287	data = timing.tph / clk_period;
1288	if (data > 0)
1289		--data;
1290	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1291
1292	/* Setup TSDL value to TPL + TSDH + 2 */
1293	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1294
1295	/* Setup TP2S value */
1296	data = timing.tp2s / clk_period;
1297	if (data > 0)
1298		--data;
1299	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1300
1301	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1302	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1303	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1304
1305	/* Take module out of soft reset and enable clocks */
1306	img_i2c_soft_reset(i2c);
1307
1308	/* Disable all interrupts */
1309	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1310
1311	/* Clear all interrupts */
1312	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1313
1314	/* Clear the scb_line_status events */
1315	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1316
1317	/* Enable interrupts */
1318	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1319
1320	/* Perform a synchronous sequence to reset the bus */
1321	ret = img_i2c_reset_bus(i2c);
1322
1323	pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1324	pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1325
1326	return ret;
1327}
1328
1329static int img_i2c_probe(struct platform_device *pdev)
1330{
1331	struct device_node *node = pdev->dev.of_node;
1332	struct img_i2c *i2c;
1333	int irq, ret;
1334	u32 val;
1335
1336	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1337	if (!i2c)
1338		return -ENOMEM;
1339
1340	i2c->base = devm_platform_ioremap_resource(pdev, 0);
1341	if (IS_ERR(i2c->base))
1342		return PTR_ERR(i2c->base);
1343
1344	irq = platform_get_irq(pdev, 0);
1345	if (irq < 0)
1346		return irq;
1347
1348	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1349	if (IS_ERR(i2c->sys_clk)) {
1350		dev_err(&pdev->dev, "can't get system clock\n");
1351		return PTR_ERR(i2c->sys_clk);
1352	}
1353
1354	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1355	if (IS_ERR(i2c->scb_clk)) {
1356		dev_err(&pdev->dev, "can't get core clock\n");
1357		return PTR_ERR(i2c->scb_clk);
1358	}
1359
1360	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1361			       pdev->name, i2c);
1362	if (ret) {
1363		dev_err(&pdev->dev, "can't request irq %d\n", irq);
1364		return ret;
1365	}
1366
1367	/* Set up the exception check timer */
1368	timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
1369
1370	i2c->bitrate = timings[0].max_bitrate;
1371	if (!of_property_read_u32(node, "clock-frequency", &val))
1372		i2c->bitrate = val;
1373
1374	i2c_set_adapdata(&i2c->adap, i2c);
1375	i2c->adap.dev.parent = &pdev->dev;
1376	i2c->adap.dev.of_node = node;
1377	i2c->adap.owner = THIS_MODULE;
1378	i2c->adap.algo = &img_i2c_algo;
1379	i2c->adap.retries = 5;
1380	i2c->adap.nr = pdev->id;
1381	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1382
1383	img_i2c_switch_mode(i2c, MODE_INACTIVE);
1384	spin_lock_init(&i2c->lock);
1385	init_completion(&i2c->msg_complete);
1386
1387	platform_set_drvdata(pdev, i2c);
1388
1389	pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT);
1390	pm_runtime_use_autosuspend(&pdev->dev);
1391	pm_runtime_enable(&pdev->dev);
1392	if (!pm_runtime_enabled(&pdev->dev)) {
1393		ret = img_i2c_runtime_resume(&pdev->dev);
1394		if (ret)
1395			return ret;
1396	}
1397
1398	ret = img_i2c_init(i2c);
1399	if (ret)
1400		goto rpm_disable;
1401
1402	ret = i2c_add_numbered_adapter(&i2c->adap);
1403	if (ret < 0)
1404		goto rpm_disable;
1405
1406	return 0;
1407
1408rpm_disable:
1409	if (!pm_runtime_enabled(&pdev->dev))
1410		img_i2c_runtime_suspend(&pdev->dev);
1411	pm_runtime_disable(&pdev->dev);
1412	pm_runtime_dont_use_autosuspend(&pdev->dev);
1413	return ret;
1414}
1415
1416static void img_i2c_remove(struct platform_device *dev)
1417{
1418	struct img_i2c *i2c = platform_get_drvdata(dev);
1419
1420	i2c_del_adapter(&i2c->adap);
1421	pm_runtime_disable(&dev->dev);
1422	if (!pm_runtime_status_suspended(&dev->dev))
1423		img_i2c_runtime_suspend(&dev->dev);
1424}
1425
1426static int img_i2c_runtime_suspend(struct device *dev)
1427{
1428	struct img_i2c *i2c = dev_get_drvdata(dev);
1429
1430	clk_disable_unprepare(i2c->scb_clk);
1431	clk_disable_unprepare(i2c->sys_clk);
1432
1433	return 0;
1434}
1435
1436static int img_i2c_runtime_resume(struct device *dev)
1437{
1438	struct img_i2c *i2c = dev_get_drvdata(dev);
1439	int ret;
1440
1441	ret = clk_prepare_enable(i2c->sys_clk);
1442	if (ret) {
1443		dev_err(dev, "Unable to enable sys clock\n");
1444		return ret;
1445	}
1446
1447	ret = clk_prepare_enable(i2c->scb_clk);
1448	if (ret) {
1449		dev_err(dev, "Unable to enable scb clock\n");
1450		clk_disable_unprepare(i2c->sys_clk);
1451		return ret;
1452	}
1453
1454	return 0;
1455}
1456
1457static int img_i2c_suspend(struct device *dev)
1458{
1459	struct img_i2c *i2c = dev_get_drvdata(dev);
1460	int ret;
1461
1462	ret = pm_runtime_force_suspend(dev);
1463	if (ret)
1464		return ret;
1465
1466	img_i2c_switch_mode(i2c, MODE_SUSPEND);
1467
1468	return 0;
1469}
1470
1471static int img_i2c_resume(struct device *dev)
1472{
1473	struct img_i2c *i2c = dev_get_drvdata(dev);
1474	int ret;
1475
1476	ret = pm_runtime_force_resume(dev);
1477	if (ret)
1478		return ret;
1479
1480	img_i2c_init(i2c);
1481
1482	return 0;
1483}
1484
1485static const struct dev_pm_ops img_i2c_pm = {
1486	RUNTIME_PM_OPS(img_i2c_runtime_suspend, img_i2c_runtime_resume, NULL)
1487	SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
1488};
1489
1490static const struct of_device_id img_scb_i2c_match[] = {
1491	{ .compatible = "img,scb-i2c" },
1492	{ }
1493};
1494MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1495
1496static struct platform_driver img_scb_i2c_driver = {
1497	.driver = {
1498		.name		= "img-i2c-scb",
1499		.of_match_table	= img_scb_i2c_match,
1500		.pm		= pm_ptr(&img_i2c_pm),
1501	},
1502	.probe = img_i2c_probe,
1503	.remove_new = img_i2c_remove,
1504};
1505module_platform_driver(img_scb_i2c_driver);
1506
1507MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
1508MODULE_DESCRIPTION("IMG host I2C driver");
1509MODULE_LICENSE("GPL v2");
1510